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Abstract
Subgraphs of a larger global graph may be dis-
tributed across multiple devices, and only locally
accessible due to privacy restrictions, although
there may be links between subgraphs. Recently
proposed subgraph Federated Learning (FL) meth-
ods deal with those missing links across local sub-
graphs while distributively training Graph Neural
Networks (GNNs) on them. However, they have
overlooked the inevitable heterogeneity between
subgraphs comprising different communities of a
global graph, consequently collapsing the incom-
patible knowledge from local GNN models. To
this end, we introduce a new subgraph FL prob-
lem, personalized subgraph FL, which focuses
on the joint improvement of the interrelated lo-
cal GNNs rather than learning a single global
model, and propose a novel framework, FED-
erated Personalized sUBgraph learning (FED-
PUB), to tackle it. Since the server cannot ac-
cess the subgraph in each client, FED-PUB uti-
lizes functional embeddings of the local GNNs
using random graphs as inputs to compute sim-
ilarities between them, and use the similarities
to perform weighted averaging for server-side
aggregation. Further, it learns a personalized
sparse mask at each client to select and update
only the subgraph-relevant subset of the aggre-
gated parameters. We validate our FED-PUB
for its subgraph FL performance on six datasets,
considering both non-overlapping and overlap-
ping subgraphs, on which it significantly outper-
forms relevant baselines. Our code is available at
https://github.com/JinheonBaek/FED-PUB.

1. Introduction
Most existing Graph Neural Networks (GNNs) (Hamilton,
2020) focus on a single graph, whose nodes and edges col-
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lected from multiple sources are stored in a central server.
For instance, in a social network platform, every user, with
his/her social networks, contributes to creating a giant net-
work consisting of all users and their connections. However,
in some practical scenarios, each user/institution collects
its own private graph, which is only locally accessible due
to privacy restrictions. For instance, as described in Zhang
et al. (2021), each hospital may have its own patient interac-
tion network to track their physical contacts or co-diagnosis
of disease; however, this graph may not be shared with
others. How can we then collaboratively train, without shar-
ing actual data, GNNs, when the subgraphs are distributed
across multiple participants (i.e., clients)? The most straight-
forward way is to perform Federated Learning (FL) with
GNNs, where each client individually trains a local GNN
on the local data, while a central server aggregates locally
updated GNN weights from multiple clients into one.

However, an important challenge on it is how to deal with
potentially missing edges between subgraphs that are not
captured by individual data owners, but may carry important
information (See Figure 1 (A)). Recent subgraph FL meth-
ods (Wu et al., 2021a; Zhang et al., 2021) tackle this problem
by expanding the local subgraph from other subgraphs, as il-
lustrated in Figure 1 (B). Specifically, they expand the local
subgraph either by exactly augmenting the relevant nodes
from the other subgraphs at the other clients (Wu et al.,
2021a), or by estimating the nodes using the node informa-
tion in the other subgraphs (Zhang et al., 2021). However,
such sharing of node information may compromise data
privacy and can incur high communication costs.

Also, there exists a more important challenge that has been
overlooked by the existing subgraph FL methods. We ob-
serve that they suffer from large performance degeneration
(See Figure 1 right), due to the heterogeneity among sub-
graphs, which is natural since subgraphs comprise different
parts of a global graph. Specifically, two individual sub-
graphs – for example, User 1 and 3 subgraphs in Communi-
ties A and B, respectively, in Figure 1 (A) – are sometimes
completely disjoint, having opposite properties. Meanwhile,
two densely connected subgraphs form a community (e.g.,
User 1 and 2 subgraphs within the Community A of Figure 1
(A)), in which they share similar characteristics. However,
it is challenging to consider such heterogeneity arising from
the community structures of a graph in subgraph FL.
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Figure 1: (A) Local subgraphs with overlapping nodes, missing edges, and community structures. (B) Existing subgraph FL (Wu et al.,
2021a; Zhang et al., 2021) expands local subgraphs to tackle the missing edge problem, but collapses the incompatible knowledge from
heterogeneous subgraphs. (C) Our personalized subgraph FL focuses on the joint improvement of local models working on interrelated
subgraphs, such as ones within the same community, by selectively sharing the knowledge across them. (Right:) Knowledge collapse
results, where local models belonging to two small communities (Communities 1 and 2) suffer from performance degeneration by existing
subgraph FL, FedGNN (Wu et al., 2021a; 2022) and FedSage+ (Zhang et al., 2021). A personalized FL method, FedPer (Arivazhagan
et al., 2019), also underperforms ours since it focuses on individual model’s improvement without considering community structures.

Motivated by this challenge, we introduce a novel prob-
lem of personalized subgraph FL, whose goal is to jointly
improve the interrelated local models trained on the intercon-
nected local subgraphs, for instance, subgraphs belonging to
the same community, by sharing weights among them (See
Figure 1 (C)). However, realizing such selective weight shar-
ing is challenging, since we do not know which subgraph
each client has, due to its local accessibility. To address
this issue, we use functional embeddings of GNNs on ran-
dom graphs to obtain similarity scores between two local
GNNs, and then use them to perform weighted averaging of
the model parameters at the server. However, the similarity
scores only tell how relevant each local model from the other
clients is, but not which of the parameters are relevant. Thus
we further learn and apply personalized sparse masks on
the local GNN at each client to obtain only the subnetwork,
relevant to the local subgraph. We refer to this framework as
FEDerated Personalized sUBgraph learning (FED-PUB).

We extensively validate our FED-PUB on six datasets with
varying numbers of clients on both overlapping and disjoint
subgraph FL scenarios. The experimental results show that
ours significantly outperforms relevant baselines. Further
analyses show that our functional embeddings can discover
community structures among subgraphs, and the masking
strategy localizes GNN parameters with respect to the sub-
graph of each client. Our contributions are as follows:

• We introduce a novel problem of personalized subgraph
FL, which aims at collaborative improvements of the re-
lated local models for subgraphs belonging to the same
community, which has been relatively overlooked.

• We propose a novel framework for personalized subgraph
FL, which performs weighted averaging of the local model
parameters based on their functional similarities obtained
without accessing the data, and learns sparse masks to
select the relevant subnetworks for the given subgraphs.

• We validate our FED-PUB on six real-world datasets on
both overlapping and non-overlapping node scenarios,
demonstrating its effectiveness against relevant baselines.

2. Related Work
Graph Neural Networks (GNNs), which aim to learn the
representations of nodes, edges, and entire graphs, are an
extensively studied topic (Hamilton, 2020; Zhou et al., 2020;
Wu et al., 2021b; Jo et al., 2021; Baek et al., 2021). Most
existing GNNs under a message passing scheme (Gilmer
et al., 2017) iteratively represent a node by aggregating
features from its neighboring nodes as well as itself. For
example, Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) approximates the spectral graph convolu-
tions (Hammond et al., 2011), yielding a mean aggregation
over neighboring nodes. Similarly, for each node, Graph-
SAGE (Hamilton et al., 2017) aggregates the features from
its neighbors to update the node representation. While they
lead to successes on node classification and link prediction
tasks for a single graph, they are not directly applicable to
real-world systems with locally distributed graphs, where
graphs from different sources are not shared across partici-
pants, which gives rise to federated learning to train GNNs.

Federated Learning (Li et al., 2021b) is essential for our
distributed subgraph learning problem. To mention a few,
FedAvg (McMahan et al., 2017) locally trains a model for
each client and then transmits the trained model to a server,
while the server aggregates the model weights from local
clients and then sends the aggregated model back to them.
However, since the locally collected data may largely vary
across different clients, heterogeneity is a crucial issue. To
tackle this, FedProx (Li et al., 2020) proposes the regular-
ization term that minimizes the weight differences between
local and global models, which prevents the local model
from diverging to the local training data. However, when the
local data is extremely heterogeneous, it is more appropriate
to collaboratively train a personalized model for each client
rather than learning a single global model. FedPer (Ari-
vazhagan et al., 2019) is such a method, which shares base
layers while having local personalized layers for each client,
to keep the local knowledge. Further, recent studies propose
to distill the outputs from different clients (Lin et al., 2020;
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Sattler et al., 2021; Zhu et al., 2021), or directly minimize
the differences of their model outputs (Makhija et al., 2022).
However, unlike the commonly studied image and text data,
graph-structured data is defined by connections between in-
stances, which yields additional challenges: missing edges,
and community structures between private subgraphs.

Graph Federated Learning. Few recent studies suggest
using the FL framework to collaboratively train GNNs with-
out sharing graph data (He et al., 2021; Wang et al., 2022),
which can be broadly classified into subgraph- and graph-
level methods. Graph-level FL methods assume that differ-
ent clients have completely disjoint graphs (e.g., molecular
graphs), and recent work (Xie et al., 2021; He et al., 2022;
Tan et al., 2022) focuses on the heterogeneity among non-
IID graphs (i.e., differences in graph labels across clients).
Unlike the graph-level FL that has similar challenges to
general FL scenarios, the subgraph-level FL we target has a
unique graph-structural challenge: there exist missing yet
probable links between subgraphs, since a subgraph is a
part of a larger global graph. To deal with such a missing
link problem among subgraphs, existing methods (Wu et al.,
2021a; Zhang et al., 2021; Yao & Joe-Wong, 2022) augment
the nodes by requesting the node information in the other
subgraphs, and then connecting the existing nodes with the
augmented ones. However, this scheme may compromise
data privacy constraints, and also increases communication
overhead across clients, during the node information sharing
process. Unlike them focusing on the problem of missing
links, our subgraph FL method tackles the new problem with
a completely different perspective by exploring subgraph
communities (Girvan & Newman, 2002; Radicchi et al.,
2004), which are groups of densely connected subgraphs.

3. Problem Statement
We explain GNNs and FL, then define our novel problem of
personalized subgraph FL lying at the intersection of them.

Graph Neural Networks A graph G = (V, E) consists
of a set of n nodes V and a set of m edges E along with its
node feature matrix X ∈ Rn×d, where each row represents
a d-dimensional node feature. (u, v) ∈ E represents an edge
from a node u to a node v. Then, Graph Neural Networks
(GNNs) (Hamilton, 2020) represent nodes based on their
neighborhoods and themselves, as follows:

H l+1
v = UPDl

(
H l

v,AGGl
({

H l
u : ∀u ∈ N (v)

}))
, (1)

where H l
v is the features of the node v at l-th layer, N (v)

denotes a set of adjacent nodes of the node v: N (v) =
{u ∈ V | (u, v) ∈ E}, AGG aggregates the features of v’s
neighbors, and UPD updates the node v’s representation
given its previous representation and the aggregated repre-
sentations from its neighbors. H1 is initialized as X .

Federated Learning The goal of FL is to collaboratively
train models with their local data. Let assume we have K
clients with locally collected data inaccessible from others:
Dk = {Xi,yi}Nk

i=1 for the k-th client, where Xi is a data
instance, yi is its corresponding class label, and Nk is the
number of data instances. Then, a popular FL algorithm,
FedAvg (McMahan et al., 2017), works as follows:

1. (Initialization) At the initial communication round r =
0, the central server initializes the local model parame-
ters of K clients as the global parameters θ̄, as follows:
θ
(0)
k ← θ̄(0) ∀k, where θ(0)

k is the k-th client parameters.

2. (Local Updates) Each local model performs training on
the local data Dk to minimize the task loss L(Dk;θ

(0)
k ),

and then updating the parameters: θ(1)
k ← θ

(0)
k − η∇L.

3. (Global Aggregation) After local training, the server ag-
gregates the local knowledge with respect to the number
of training instances, i.e., θ̄(1) ← Nk

N

∑K
k=1 θ

(1)
k with

N =
∑

k Nk, and distributes the updated global parame-
ters θ̄(1) to local clients selected at the next round.

It iterates between Step 2 and 3 until reaching the final round
R, which shares only parameters without private local data.

Challenges in Subgraph FL While the above FL works
well on image and text data, due to the unique characteris-
tics of graphs, there exist nontrivial challenges for apply-
ing this FL scheme to graph-structured data. In particular,
unlike with an image domain where each instance Xi is
independent to the other images, each node v in a graph
is always influenced by its relationships to adjacent nodes
N (v). Moreover, a local graph Gi could be a subgraph of
a larger global graph G: Gi ⊆ G. In such a case, there
could be missing edges between subgraphs in two different
clients: (u, v) with u ∈ Vi and v ∈ Vj for clients i and j,
respectively. To tackle this problem, existing methods (Wu
et al., 2021a; Zhang et al., 2021) estimate the nodes of a
local subgraph Gk based on the node information from sub-
graphs at other clients Gi with ∀i ̸= k, and then extend
the existing nodes with the estimated ones. However, this
augmentation scheme incurs high communication costs as it
requires sharing node information across clients, which may
also violate data privacy constraints (Abadi et al., 2016).

Yet, there exists a more challenging issue. Assume that
we have a global graph consisting of all subgraphs. Then,
there are communities of such subgraphs (Girvan & New-
man, 2002; Radicchi et al., 2004; Porter et al., 2009), where
subgraphs within the same community are more densely con-
nected to each other than subgraphs outside the community.
Formally, a global graph G can be decomposed into T dif-
ferent communities: Ci ⊆ G ∀i = 1, ..., T , where i-th com-
munity Ci = (Vi, Ei) consists of densely connected nodes.
Then, in a subgraph FL problem, a local subgraph Gj be-
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Figure 2: (A) Two communities, where Community A and B consist of two and one subgraphs, respectively. (B) Similarity Matching:
we first forward randomly generated graphs to models f(G̃;θi), and obtain functional embeddings h̃i, which are then used to estimate
subgraph similarities. Then, the similarities are used in weight aggregation, resulting in personalized model weights θ̄i. (C) Weight
Masking: transmitted weights from the server to clients θ̄i are masked and shifted by local masks µi for localization to local subgraphs.

longs to at least one community: Ci =
⋃J

j=1 Gj . Note that,
based on a network homophily (McPherson et al., 2001),
densely connected subgraphs within the same community
have similar properties, while subgraphs in two opposite
communities are not. Such distributional heterogeneity of
communities may lead the naive FL algorithm to collapse
the incompatible knowledge from different communities.

Personalized Subgraph FL To alleviate the above knowl-
edge collapse issue, we aim to personalize the subgraph FL
algorithm by performing personalized weight averaging and
masking of local model parameters; thereby capturing the
community structures among interrelated subgraphs. To be
more formal, the objective of existing subgraph FL (Wu
et al., 2021a; Zhang et al., 2021; Liu et al., 2021) is as fol-
lows: minθ̄

∑
Gi⊆G L(Gi; θ̄). However, finding a universal

set of parameters (i.e., θ̄) that works on all subgraphs will re-
sult in finding the suboptimal parameter set, since subgraphs
in two different communities with sparse connections are
extremely heterogeneous due to the network homophily. To
address this limitation, we formulate a novel problem of
personalized subgraph FL, formalized as follows:

min
{θi,µi}K

i=1

∑
Gi⊆G

L(Gi;θi,µi), θi ← µi ⊙

 K∑
j=1

αijθj


with αik ≫ αil for Gk ⊆ C and Gl ⊈ C, (2)

where θi is the weight for subgraph Gi belonging to commu-
nity C. αij is a coefficient for weight aggregation between
clients i and j, which can promote collaborative learning
across local models of interrelated subgraphs that belong to
the same community, by assigning larger weights. Yet, this
scalar coefficient αij cannot inform us which elements of
the aggregated weight are relevant to subgraph Gi. There-
fore, we further multiply it to the trainable sparse vector µi

with element-wise multiplication ⊙, to shift and filter out
irrelevant weights from subgraphs of heterogeneous commu-
nities. We will specify how to obtain α and µ in Section 4.
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Figure 3: Effectiveness (left) and efficiencies (right) of different
similarity measurements: parameter, gradient, and our function.

4. Federated Personalized Subgraph Learning
To realize our approach in equation 2, we propose to com-
pute subgraph similarities for discovering communities, and
to mask weights from subgraphs in unrelated communities.

4.1. Subgraph Similarity Estimation
We aim at capturing the community consisting of a group
of densely connected subgraphs. Note that, due to the net-
work homophily where similar instances in the graph are
more associated with each other (McPherson et al., 2001),
subgraphs within the same community should be similar.
Therefore, if one can measure subgraph similarities, we can
group similar ones into the community. However, measur-
ing the similarity between subgraphs is challenging since we
do not know which subgraph each client has due to its local
accessibility. To compute similarities only using the trans-
mittable GNN parameters without accessing the local data,
we propose to approximate the similarities using auxiliary
information obtained from GNNs working on subgraphs.

Model Parameters for Subgraph Similarities To mea-
sure the similarity between local subgraphs without access-
ing them, we may use the model parameters as proxies,
as follows: S(i, j) = (θi · θj)/(∥θi∥∥θj∥), where θ is a
parameter flatten into a vector, and S is a similarity mea-
sure. This may sound reasonable since the GNN trained on
the subgraph will embed its knowledge into its parameters.
However, this scheme has notable drawbacks that similarity
measured in the high-dimensional space is not meaningful
due to the curse of dimensionality (Bellman, 1966), and that
the cost of calculating the similarity between parameters
grows rapidly as the model size increases (See Figure 3).
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Functional Embeddings for Subgraph Similarities To
address these limitations, we propose to measure the func-
tional similarity of GNNs by feeding the same input to all
GNN models and then calculating the similarities using their
outputs, inspired by Jeong et al. (2021). The main intuition
here is that we can consider the transformation defined with
a neural network as a function, and we measure the func-
tional similarity of two networks by the distance of their
outputs for the same input. However, unlike the previous
work, which uses Gaussian noises as inputs for image clas-
sification, we use random graphs as inputs as we work with
GNNs. Formally, let G̃ = (Ṽ, Ẽ) be a random community
graph designed by a stochastic block model (Holland et al.,
1983), where subgraphs within the community have more
edges between them than edges across the communities (See
Appendix B.3 for details). The similarity between two func-
tions defined by GNNs at clients i and j is then defined as
follows: S(i, j) = h̃i·h̃j

∥h̃i∥∥h̃j∥
, where h̃ is the averaged output

of all node embeddings for input G̃ with average operation,
AVG: h̃i = AVG(f(G̃;θi)). Note that this functional simi-
larity is effective and efficient, compared to parameter and
gradient similarities (See Figure 3). Also, it uses only pa-
rameters sent to the server, which does not compromise data
privacy. For more discussions on variants of random graphs
and similarity estimations, see Appendix C.6 and C.7.

Personalized Weight Aggregation With the similarity
measure, S(i, j), we now aim to share parameters between
GNNs working on similar subgraphs, by using the weighted
sum of model parameters across different clients (Chen et al.,
2022; Jeong & Hwang, 2022). Note that entirely ignoring
the model parameters from different communities may re-
sult in exploiting only the local objective while ignoring
the globally useful weights, which results in suboptimal
performance (See Appendix C.8). Therefore, we perform
weighted averaging of local GNNs from all clients based on
their functional similarities, as follows (Figure 2 (B)):

θ̄i ←
K∑
j=1

αij · θj , αij =
exp(τ · S(i, j))∑
k exp(τ · S(i, k))

, (3)

where αij is a normalized similarity between clients i and j,
and τ is a hyperparameter for scaling the unnormalized simi-
larity score. Notably, increasing the value of τ (e.g., 10) will
result in model averaging done almost exclusively among
subgraphs detected as belonging to the same community.

This personalized scheme handles two challenges in sub-
graph FL. First, unlike the global weight aggregation which
collapses the knowledge from heterogeneous communities,
our subgraph FL allows the models belonging to different
communities to obtain individual parameters that are ben-
eficial for each of both communities. Also, missing edges
(i.e., a lack of information sharing) between interconnected

subgraphs, which are explicitly dealt with by expanding
local subgraphs in existing works (Wu et al., 2021a; Zhang
et al., 2021), could be implicitly handled by largely sharing
the knowledge among GNNs of probably linked subgraphs
within the same community (See Figure 6, Figure 9, and
Appendix C.9 for results). This enhances data privacy while
minimizing communication costs between subgraphs.

4.2. Adaptive Weight Masking

Based on the previous similarity matching scheme, we can
effectively group GNNs that belong to the same community;
therefore, preventing the collapsing of irrelevant knowledge
from opposite communities. However, the heterogeneity in
subgraph FL is extremely severe due to the community struc-
tures (See Appendix C.4 for more discussions). Therefore,
the previous scalar weighting scheme might be insufficient,
since it considers only how much each local model from
other clients is relevant, but not which parameters are rele-
vant. Thus we propose to select only the relevant parameters
from the aggregated GNN weights transmitted from a server,
similar to the existing weight masking literature (Li et al.,
2021a; Dai et al., 2022; Huang et al., 2022).

Personalized Parameter Masking We aim to perform
selective training and updating of models by modulating and
masking their aggregated parameters using the sparse local
masks (Figure 2 (C)). To realize this on GNNs, we apply the
local mask to the GNN weights, and their resulting weights
are used for updating features of neighboring nodes during
the message passing in Equation 1. Formally, let µi be a lo-
cal mask for client i, which is a free variable and not shared.
Then, our local GNN weight is obtained by modulating the
weight from the server, as follows: θi = θ̄i ⊙ µi, where
⊙ is an element-wise multiplication operation between the
globally given weight θ̄i and the local mask µi. Also, we
initialize µi as ones, in order to start training with the glob-
ally initialized GNNs without modification. We then further
promote sparsity on the mask µ, to take two advantages.
First, we can transmit only the partial parameters, that have
not been sparsified at the client, to the server rather than
sending all parameters, thus reducing communication costs.
Also, if local masks are sufficiently sparse, local models can
run faster, when zero-skipping operations are supported. To
take these benefits from sparsity, we use L1 regularizer on
µi when performing local optimization (See Appendix B.3
for details on sparsification), formalized in equation 4.

Preventing Local Divergence with Proximal Term As
masks are trained only with limited local data without pa-
rameter sharing, they may be easily overfitted to the training
instances in each client. To alleviate this issue, we adopt the
proximal term proposed in Li et al. (2020) that regularizes
the locally updated model θi to be closer to the globally
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Table 1: Results on the overlapping node scenario. The reported results are mean and standard deviation over three different runs. The
statistically significant performances (p > 0.05) are emphasized in bold.

Cora CiteSeer Pubmed -

Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients -

Local 73.98 ± 0.25 71.65 ± 0.12 76.63 ± 0.10 65.12 ± 0.08 64.54 ± 0.42 66.68 ± 0.44 82.32 ± 0.07 80.72 ± 0.16 80.54 ± 0.11 -

FedAvg 76.48 ± 0.36 53.99 ± 0.98 53.99 ± 4.53 69.48 ± 0.15 66.15 ± 0.64 66.51 ± 1.00 82.67 ± 0.11 82.05 ± 0.12 80.24 ± 0.35 -
FedProx 77.85 ± 0.50 51.38 ± 1.74 56.27 ± 9.04 69.39 ± 0.35 66.11 ± 0.75 66.53 ± 0.43 82.63 ± 0.17 82.13 ± 0.13 80.50 ± 0.46 -
FedPer 78.73 ± 0.31 74.18 ± 0.24 74.42 ± 0.37 69.81 ± 0.28 65.19 ± 0.81 67.64 ± 0.44 85.31 ± 0.06 84.35 ± 0.38 83.94 ± 0.10 -
GCFL 78.84 ± 0.26 73.41 ± 0.27 76.63 ± 0.16 69.48 ± 0.39 64.92 ± 0.18 65.98 ± 0.30 83.59 ± 0.25 80.77 ± 0.12 81.36 ± 0.11 -
FedGNN 70.63 ± 0.83 61.38 ± 2.33 56.91 ± 0.82 68.72 ± 0.39 59.98 ± 1.52 58.98 ± 0.98 84.25 ± 0.07 82.02 ± 0.22 81.85 ± 0.10 -
FedSage+ 77.52 ± 0.46 51.99 ± 0.42 55.48 ± 11.5 68.75 ± 0.48 65.97 ± 0.02 65.93 ± 0.30 82.77 ± 0.08 82.14 ± 0.11 80.31 ± 0.68 -

FED-PUB (Ours) 79.60 ± 0.12 75.40 ± 0.54 77.84 ± 0.23 70.58 ± 0.20 68.33 ± 0.45 69.21 ± 0.30 85.70 ± 0.08 85.16 ± 0.10 84.84 ± 0.12 -

Amazon-Computer Amazon-Photo ogbn-arxiv All

Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients Avg.

Local 88.50 ± 0.20 86.66 ± 0.00 87.04 ± 0.02 92.17 ± 0.12 90.16 ± 0.12 90.42 ± 0.15 62.52 ± 0.07 61.32 ± 0.04 60.04 ± 0.04 76.72

FedAvg 88.99 ± 0.19 83.37 ± 0.47 76.34 ± 0.12 92.91 ± 0.07 89.30 ± 0.22 74.19 ± 0.57 63.56 ± 0.02 59.72 ± 0.06 60.94 ± 0.24 73.38
FedProx 88.84 ± 0.20 83.84 ± 0.89 76.60 ± 0.47 92.67 ± 0.19 89.17 ± 0.40 72.36 ± 2.06 63.52 ± 0.11 59.86 ± 0.16 61.12 ± 0.04 73.38
FedPer 89.30 ± 0.04 87.99 ± 0.23 88.22 ± 0.27 92.88 ± 0.24 91.23 ± 0.16 90.92 ± 0.38 63.97 ± 0.08 62.29 ± 0.04 61.24 ± 0.11 78.42
GCFL 89.01 ± 0.22 87.24 ± 0.09 87.02 ± 0.22 92.45 ± 0.10 90.58 ± 0.11 90.54 ± 0.08 63.24 ± 0.02 61.66 ± 0.10 60.32 ± 0.01 77.61
FedGNN 88.15 ± 0.09 87.00 ± 0.10 83.96 ± 0.88 91.47 ± 0.11 87.91 ± 1.34 78.90 ± 6.46 63.08 ± 0.19 60.09 ± 0.04 60.51 ± 0.11 73.66
FedSage+ 89.24 ± 0.15 81.33 ± 1.20 76.72 ± 0.39 92.76 ± 0.05 88.69 ± 0.99 72.41 ± 1.36 63.24 ± 0.02 59.90 ± 0.12 60.95 ± 0.09 73.12

FED-PUB (Ours) 89.98 ± 0.08 89.15 ± 0.06 88.76 ± 0.14 93.22 ± 0.07 92.01 ± 0.07 91.71 ± 0.11 64.18 ± 0.04 63.34 ± 0.12 62.55 ± 0.12 79.53
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(f) ogbn-arxiv
Figure 4: Convergence plots for the overlapping node scenario. We visualize accuracies on 100 communication rounds with 30 clients.

given model θ̄i, therefore, preventing the local model from
extremely drifting to the local data distribution. To sum up,
at i-th client, our objective function including sparsity and
proximal terms with L1 and L2 losses is denoted as follows:

min
(θi,µi)

L(Gi;θi,µi) + λ1∥µi∥1 + λ2∥θi − θ̄i∥22. (4)

L is a certain loss function with hyperparameters λ1, λ2.

5. Experiments
We validate our FED-PUB on six datasets under both the
overlapping and disjoint subgraph scenarios mainly on node
classification and additionally on link prediction tasks.

5.1. Experimental Setups

Datasets Following the experimental setup from Zhang
et al. (2021), we construct distributed subgraphs by dividing
the dataset into a certain number of participants, as each FL
participant has a subgraph that is a part of an original graph.
Specifically, we use six datasets: Cora, CiteSeer, Pubmed
and ogbn-arxiv for citation graphs (Sen et al., 2008; Hu et al.,
2020); Computer and Photo for product graphs (McAuley
et al., 2015; Shchur et al., 2018). We then divide their graphs
using the METIS graph partitioning algorithm (Karypis,
1997). Note that, unlike the Louvain algorithm (Blondel
et al., 2008), used in Zhang et al. (2021), that requires to
further merge partitioned subgraphs into particular numbers

of subgraphs since it cannot specify the number of subsets
(i.e., clients for FL), the METIS algorithm can specify the
number of subsets, thus making more reasonable experimen-
tal settings (See Appendix C.2). For the non-overlapping
node scenario where there are no duplicate nodes between
subgraphs, we use the output from the METIS as it provides
non-overlapping partitions. For the overlapping scenario
where nodes are duplicated among subgraphs, we randomly
sample the subsets (i.e., subgraphs) of the partitioned graph
multiple times. See Appendix B.1 for more details.

Baselines and Our Model 1) FedAvg (McMahan et al.,
2017) and 2) FedProx (Li et al., 2020): The most popular
FL baselines. 3) FedPer (Arivazhagan et al., 2019): A per-
sonalized FL baseline without sharing personalized layers.
4) FedGNN (FedPerGNN)1 (Wu et al., 2021a; 2022) and
5) FedSage+ (Zhang et al., 2021): Subgraph FL baselines
which we mainly target. 6) GCFL (Xie et al., 2021): A
graph FL baseline which targets completely disjoint graphs
for graph-level FL as in clustered FL (Sattler et al., 2020),
adopted for subgraph FL. 7) Local: A baseline that locally
trains models without weight sharing. 8) FED-PUB: Our
personalized subgraph FL, which includes similarity match-
ing and weight masking. See Appendix B.2 for details.

Implementation Details We use two layer GCNs (Kipf &
Welling, 2017) as the base GNN for all models. We perform

1FedGNN is extended to FedPerGNN, and their core algorithms
of averaging gradients of all clients are exactly the same.
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Table 2: Results on the non-overlapping node scenario. The reported results are mean and standard deviation over three different runs.
The statistically significant performances (p > 0.05) are emphasized in bold.

Cora CiteSeer Pubmed -

Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -

Local 81.30 ± 0.21 79.94 ± 0.24 80.30 ± 0.25 69.02 ± 0.05 67.82 ± 0.13 65.98 ± 0.17 84.04 ± 0.18 82.81 ± 0.39 82.65 ± 0.03 -

FedAvg 74.45 ± 5.64 69.19 ± 0.67 69.50 ± 3.58 71.06 ± 0.60 63.61 ± 3.59 64.68 ± 1.83 79.40 ± 0.11 82.71 ± 0.29 80.97 ± 0.26 -
FedProx 72.03 ± 4.56 60.18 ± 7.04 48.22 ± 6.81 71.73 ± 1.11 63.33 ± 3.25 64.85 ± 1.35 79.45 ± 0.25 82.55 ± 0.24 80.50 ± 0.25 -
FedPer 81.68 ± 0.40 79.35 ± 0.04 78.01 ± 0.32 70.41 ± 0.32 70.53 ± 0.28 66.64 ± 0.27 85.80 ± 0.21 84.20 ± 0.28 84.72 ± 0.31 -
GCFL 81.47 ± 0.65 78.66 ± 0.27 79.21 ± 0.70 70.34 ± 0.57 69.01 ± 0.12 66.33 ± 0.05 85.14 ± 0.33 84.18 ± 0.19 83.94 ± 0.36 -
FedGNN 81.51 ± 0.68 70.12 ± 0.99 70.10 ± 3.52 69.06 ± 0.92 55.52 ± 3.17 52.23 ± 6.00 79.52 ± 0.23 83.25 ± 0.45 81.61 ± 0.59 -
FedSage+ 72.97 ± 5.94 69.05 ± 1.59 57.97 ± 12.6 70.74 ± 0.69 65.63 ± 3.10 65.46 ± 0.74 79.57 ± 0.24 82.62 ± 0.31 80.82 ± 0.25 -

FED-PUB (Ours) 83.70 ± 0.19 81.54 ± 0.12 81.75 ± 0.56 72.68 ± 0.44 72.35 ± 0.53 67.62 ± 0.12 86.79 ± 0.09 86.28 ± 0.18 85.53 ± 0.30 -

Amazon-Computer Amazon-Photo ogbn-arxiv All

Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.

Local 89.22 ± 0.13 88.91 ± 0.17 89.52 ± 0.20 91.67 ± 0.09 91.80 ± 0.02 90.47 ± 0.15 66.76 ± 0.07 64.92 ± 0.09 65.06 ± 0.05 79.57

FedAvg 84.88 ± 1.96 79.54 ± 0.23 74.79 ± 0.24 89.89 ± 0.83 83.15 ± 3.71 81.35 ± 1.04 65.54 ± 0.07 64.44 ± 0.10 63.24 ± 0.13 74.58
FedProx 85.25 ± 1.27 83.81 ± 1.09 73.05 ± 1.30 90.38 ± 0.48 80.92 ± 4.64 82.32 ± 0.29 65.21 ± 0.20 64.37 ± 0.18 63.03 ± 0.04 72.84
FedPer 89.67 ± 0.34 89.73 ± 0.04 87.86 ± 0.43 91.44 ± 0.37 91.76 ± 0.23 90.59 ± 0.06 66.87 ± 0.05 64.99 ± 0.18 64.66 ± 0.11 79.94
GCFL 89.07 ± 0.91 90.03 ± 0.16 89.08 ± 0.25 91.99 ± 0.29 92.06 ± 0.25 90.79 ± 0.17 66.80 ± 0.12 65.09 ± 0.08 65.08 ± 0.04 79.90
FedGNN 88.08 ± 0.15 88.18 ± 0.41 83.16 ± 0.13 90.25 ± 0.70 87.12 ± 2.01 81.00 ± 4.48 65.47 ± 0.22 64.21 ± 0.32 63.80 ± 0.05 75.23
FedSage+ 85.04 ± 0.61 80.50 ± 1.30 70.42 ± 0.85 90.77 ± 0.44 76.81 ± 8.24 80.58 ± 1.15 65.69 ± 0.09 64.52 ± 0.14 63.31 ± 0.20 73.47

FED-PUB (Ours) 90.74 ± 0.05 90.55 ± 0.13 90.12 ± 0.09 93.29 ± 0.19 92.73 ± 0.18 91.92 ± 0.12 67.77 ± 0.09 66.58 ± 0.08 66.64 ± 0.12 81.59
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Figure 5: Convergence plots for the non-overlapping node scenario. We visualize accuracies on 100 FL rounds with 10 clients.

FL over 100 communication rounds for Cora, CiteSeer and
Pubmed datasets, while 200 rounds for Computer, Photo and
arxiv, considering the dataset size. The local training epoch
is selected in the range of {1, 2, 3} depending on the dataset
size (e.g., Computer is three while CiteSeer is one)2. We use
the Adam optimizer (Kingma & Ba, 2015) for optimization.
We measure the node classification accuracy on subgraphs
on the client-side, and then average the performances across
all clients. We provide more details in Appendix B.3.

5.2. Experimental Results

Main Results Table 1 shows node classification results
on the overlapping subgraph scenario, in which our FED-
PUB outperforms all baselines with statistical significance
(p > 0.05). Specifically, while FedGNN and FedSage+ are
two pioneer works for subgraph FL, they are inferior to
personalized FL methods including ours, especially at the
larger number of clients. This is surprising as they share
node information between clients for handling the missing
edge problem, yet we suppose such inferior performance
comes from naive averaging of local weights without con-
sideration of community structures. While personalized FL
baselines including FedPer and GCFL show decent perfor-
mance by alleviating the knowledge collapse issue between
subgraphs with local parameterization or clustering, they

2We found that communication rounds and local epochs are
important factors to prevent overfitting of models.

still underperform ours as they are not concerned with ag-
gregation between similar subgraphs that form a community
(i.e., GCFL uses a bi-partitioning scheme, which iteratively
divides a group of subgraphs within the same community
into two disjoint sets). We then further conduct experiments
on the disjoint subgraph scenario (i.e., non-overlapping sce-
nario), which makes the subgraph FL problem more het-
erogeneous. As shown in Table 2, the proposed FED-PUB
consistently outperforms all existing baselines in such a
challenging scenario, demonstrating the efficacy of ours.

Fast Convergence As shown in Figure 4 and 5, our FED-
PUB converges rapidly, compared against baselines. We
conjecture that this is because ours can accurately identify
subgraphs forming the community and then share weights
substantially across them for promoting the joint improve-
ment. Also, ours can mask out subgraph-irrelevant weights
received from the server for localization to local subgraphs.
We demonstrate those two points in the next two paragraphs.

Community Detection We aim to show whether FED-
PUB can group subgraphs comprising a community during
personalized weight aggregation. Note that, if two different
subgraphs have many missing edges or have similar label
distributions, we usually consider those two as within the
same community (Girvan & Newman, 2002; Radicchi et al.,
2004; Porter et al., 2009). Thereby, as shown in Figure 6 (a)
and (b), there are four different communities by the interval
of five, and the last two communities further comprise a
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(a) Missing edges
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(b) Label similarity
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(c) Round at 5

1 2 3 4 5 6 7 8 91011121314151617181920

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

C
lie

nt
s

(d) Round at 30

Figure 6: Heatmaps of community structures on overlapping node scenario with
Cora (20 clients). Darker color indicates many missing edges between subgraphs (a)
or high similarities in labels (b). (c) and (d) are functional similarities by FED-PUB.
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Figure 7: Ablation studies of the proposed FED-
PUB on both overlapping (a) and non-overlapping
(b) subgraph scenarios, on the Cora dataset.

Model Acc. [%] Model Size [%] Cost [%]

FedAvg 76.48 ± 0.36 100.00 ± 0.00 100.00 ± 0.00

FedGNN 70.63 ± 0.83 100.00 ± 0.00 214.94 ± 0.00
FedSage+ 77.52 ± 0.46 100.00 ± 0.00 276.84 ± 0.00
GCFL 78.84 ± 0.26 100.00 ± 0.00 100.00 ± 0.00

Ours (λ1=9e-1) 77.36 ± 0.99 25.13 ± 0.34 37.70 ± 0.56
Ours (λ1=7e-1) 79.46 ± 0.41 42.59 ± 1.33 63.89 ± 1.99
Ours (λ1=5e-1) 79.89 ± 0.12 57.07 ± 0.52 85.61 ± 0.78

Table 3: Analyses on efficiencies of communication costs
and model sizes with sparse masks on Cora with 10 clients.
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Figure 8: Performances by varying
the local epochs.
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Figure 9: Performances on interre-
lated neighboring subgraphs.

larger community. Then, as shown in Figure 6 (c) and (d),
our FED-PUB detects obvious four communities at the first
few rounds, and then captures the larger yet somewhat less-
obvious community consisting of two smaller communities.

Ablation Study To analyze the contribution of each com-
ponent, we conduct ablation studies. As shown in Figure 7,
we observe that each of our similarity matching and weight
masking schemes significantly improves the performance
from the naive FedAvg, while the performance is much im-
proved when using both together. However, the benefit from
each component is different between overlapping and non-
overlapping scenarios. In particular, in the former scenario
where a group of densely overlapped subgraphs comprises
an obvious community, similarity matching for discovering
community structures is more beneficial since capturing the
community would promote the joint improvement of sub-
graphs belonging to the same community. However, in the
non-overlapping scenario, two individual subgraphs become
more heterogeneous, thus selectively using the aggregated
parameters from the server with personalized weight masks
improves the performance substantially. See Appendix C.4
for more discussions on heterogeneity with local masks.

Communication Efficiency Another notable advantage
of using sparse masks is that we can reduce the communi-
cation costs at every FL round, as well as the model size
for faster runtime. In particular, as reported in Table 3, ex-
isting subgraph FL methods require more than two times
larger communications costs, measured by adding both the
client-to-server and server-to-client costs, compared against
the naive FedAvg. This is because they require to transfer
additional node information between clients for estimating
the probable nodes on each subgraph. In contrast, our FED-

PUB has significantly lower communication costs and lower
model sizes by using sparse masks on model weights: trans-
mitting and running with only the partial parameters not
sparsified at the client. Further, we can manage the trade-off
between the model sparsity and the performance by control-
ling the hyperparameter for sparsity regularization, λ1 (See
Appendix C.1 for more results on hyperparameters).

Varying Local Epochs As shown in Figure 8, when we
increase the number of communication rounds and the local
steps, local models diverge to their local subgraphs (i.e.,
overfitting), due to the small number of training instances
and the direct connection between training and test nodes:
struggling to generalize to the test instances. However, our
FED-PUB with a proximal term in equation 4 alleviates this
issue, therefore, maintaining the highest local performance.
Notably, the performance with five local epochs is inferior
to the performance of one epoch, which indicates that in-
creasing the local epochs does not always bring advantages,
and properly tuning them is important for subgraph FL.

Handling Missing Edges The missing edge problem,
where two interconnected subgraphs cannot directly share
the knowledge between them due to a lack of edges, is a
unique challenge in subgraph FL (See Appendix C.9 for
more discussions). To tackle this, existing subgraph FL
explicitly augments nodes and edges to enable the informa-
tion flow between interconnected subgraphs. Meanwhile,
our FED-PUB implicitly shares weights across similar sub-
graphs within the same community. To measure their ef-
ficacies, we evaluate the performance on the neighboring
subgraph, which has the most missing edges to the local
subgraph for each client, based on its local model weight.
Specifically, in Figure 9, (Neighbor) denotes the subgraph
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Methods 5 Clients 10 Clients

Local 90.49 89.58

FedAvg 86.04 82.76
FedProx 84.75 82.20
FedPer 91.33 89.06
FedSage+ 84.25 84.38
GCFL 90.36 83.10

FED-PUB (Ours) 91.76 91.04

Figure 10: Link prediction results on
ogbn-arxiv with clients of 5 and 10.
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Figure 11: Convergence plots for link
prediction with 5 clients.

Methods Cora CiteSeer PubMed

Local 83.19 ± 0.53 69.68 ± 0.38 83.88 ± 0.17

FedAvg 68.18 ± 0.66 66.71 ± 1.54 83.08 ± 0.21
FedProx 65.70 ± 1.89 68.17 ± 1.74 83.07 ± 0.28
FedPer 82.06 ± 1.34 70.20 ± 0.60 85.85 ± 0.18
FedGNN 72.72 ± 0.56 65.03 ± 1.18 81.60 ± 0.38
FedSage+ 68.42 ± 0.80 66.22 ± 0.47 83.17 ± 0.13
GCFL 82.72 ± 0.40 69.82 ± 0.87 84.82 ± 0.28

FED-PUB (Ours) 85.41 ± 0.19 73.30 ± 0.13 86.44 ± 0.45

Figure 12: Results of the imbalance node scenario
on the non-overlapping node setting with 10 clients.

performance evaluated by its neighbor model, while (Local)
denotes the performance by its own local model. Therefore,
high performances on the (Neighbor) measure indicate two
associated subgraphs share meaningful knowledge despite
not having actual edges between them, thereby alleviating
the missing edge problem. As shown in Figure 9, FED-PUB
achieves superior performance on neighboring subgraphs
against subgraph FL baselines. This result verifies that our
FED-PUB has an advantage on the missing edge problem by
sharing meaningful knowledge between subgraphs having
potential missing edges without explicitly augmenting them.

Imbalanced Subgraphs As explained in Appendix B.1
and reported in Table 4, each subgraph is of similar size
in our main experiments. However, real-world subgraphs
might have variances in size; therefore, in Table 12, we fur-
ther conduct experiments on the imbalance node scenarios
where different subgraphs have different numbers of nodes.
To do this, we create the imbalanced dataset by equally
dividing the entire graph into several subgraphs and then
merging some of them for making imbalanced subgraphs.
More specifically, for our ten client setting in Table 12, we
first partition an original graph into 20 subgraphs. Then,
we merge each of the five, three, two, two, and two sub-
graphs into one larger subgraph. As shown in Table 12, our
FED-PUB outperforms all baselines, which demonstrates
the advantages of FED-PUB in the more realistic setting.

Link Prediction Results In addition to the extensive ex-
periments on the node classification task, we further perform
experiments on the link prediction task. In this link predic-
tion task, we use the cross-entropy loss in Equation 4, which
is the same as the loss function for the node classification
task yet the target value is binary. Further, during training,
we sample negative edges with random sampling whose
sizes are the same as the number of positive edges in the
same batch. For evaluation, we measure the link prediction
performance with ROC-AUC as a metric on all subgraphs,
and then report their averaged result. Note that, for the other
experimental setups, we follow the experimental settings
of node classification tasks described in Section B.3. First
of all, as shown in Figure 10, our FED-PUB consistently
outperforms all baselines on the link prediction task similar
to node classification results. We further visualize the con-

vergence plots in Figure 11, to see whether our FED-PUB
can still rapidly converge over the link prediction task. In
Figure 11, we observe that FED-PUB converges rapidly,
compared to baselines. These two results further demon-
strate the applicability of FED-PUB to other subgraph tasks.

6. Conclusion
In this work, we introduced a novel problem of personalized
subgraph FL, which focuses on the joint improvement of lo-
cal GNNs working on interrelated subgraphs (e.g. subgraphs
belonging to the same community) by selectively utilizing
knowledge from other models. The proposed personalized
subgraph FL is highly challenging due to 1) the difficulty in
computing similarities between local subgraphs that are only
locally accessible, and 2) the problem of knowledge collapse
among local GNNs that work on heterogeneous subgraphs
during weight aggregation. To this end, we proposed a novel
personalized subgraph FL framework, called FEDerated Per-
sonalized sUBgraph learning (FED-PUB), which estimates
similarities between subgraphs using functional embeddings
of their GNN models on random graphs, and uses them to
perform a weighted average of the local models for each
client. Further, we mask out globally given weights to fo-
cus on only the relevant subnetwork for each community
and client. We extensively validated our FED-PUB frame-
work on multiple benchmark datasets with overlapping and
non-overlapping subgraphs, on which our FED-PUB sig-
nificantly outperforms relevant baselines. Further analyses
show the effectiveness of our similarity matching method
for capturing the community structures, and also our weight
masking strategy for tackling the subgraph heterogeneity.
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S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Tan, Y., Liu, Y., Long, G., Jiang, J., Lu, Q., and Zhang,
C. Federated learning on non-iid graphs via structural
knowledge sharing. arXiv preprint arXiv:2211.13009,
2022.

Wang, Z., Kuang, W., Xie, Y., Yao, L., Li, Y., Ding, B.,
and Zhou, J. Federatedscope-gnn: Towards a unified,
comprehensive and efficient package for federated graph
learning. In Zhang, A. and Rangwala, H. (eds.), KDD ’22:
The 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, Washington, DC, USA, August
14 - 18, 2022, pp. 4110–4120. ACM, 2022.

11



Personalized Subgraph Federated Learning

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q. S., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. IEEE Trans. Inf. Forensics Secur., 15:3454–
3469, 2020.

Wu, C., Wu, F., Cao, Y., Huang, Y., and Xie, X. Fedgnn:
Federated graph neural network for privacy-preserving
recommendation. KDD, 2021a.

Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., and Xie, X. A
federated graph neural network framework for privacy-
preserving personalization. Nature Communications, 13
(1):1–10, 2022.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Trans. Neural Networks Learn. Syst., 32(1):4–24, 2021b.

Xie, H., Ma, J., Xiong, L., and Yang, C. Federated graph
classification over non-iid graphs. In Advances in Neural
Information Processing Systems, volume 34, pp. 18839–
18852. Curran Associates, Inc., 2021.

Yao, Y. and Joe-Wong, C. Fedgcn: Convergence and com-
munication tradeoffs in federated training of graph con-
volutional networks. arXiv preprint arXiv:2201.12433,
2022.

Zhang, K., Yang, C., Li, X., Sun, L., and Yiu, S. M. Sub-
graph federated learning with missing neighbor gener-
ation. In Advances in Neural Information Processing
Systems, volume 34, pp. 6671–6682. Curran Associates,
Inc., 2021.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge dis-
tillation for heterogeneous federated learning. In Inter-
national Conference on Machine Learning, pp. 12878–
12889. PMLR, 2021.

12



Personalized Subgraph Federated Learning

Table 4: Dataset statistics. We report the number of nodes, edges, classes, clustering coefficient, and heterogeneity for the original graph
and its split subgraphs on overlapping and disjoint node scenarios. Ori denotes the original graph, and Cli denotes the number of clients.

Overlapping node scenario
Cora CiteSeer Pubmed

Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli
# Classes 7 6 3
# Nodes 2,485 621 207 124 2,120 530 177 106 19,717 4,929 1,643 986
# Edges 10,138 1,249 379 215 7,358 889 293 170 88,648 10,675 3,374 1,903
Clustering Coefficient 0.238 0.133 0.129 0.125 0.170 0.088 0.087 0.096 0.060 0.035 0.034 0.035
Heterogeneity N/A 0.297 0.567 0.613 N/A 0.278 0.494 0.547 N/A 0.210 0.383 0.394

ogbn-arxiv Amazon-Computer Amazon-Photo
Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli

# Classes 40 10 8
# Nodes 169,343 42,336 14,112 8,467 13,381 3,345 1,115 669 7,487 1,872 624 374
# Edges 2,315,598 282,083 83,770 44,712 491,556 59,236 16,684 8,969 238,086 29,223 8,735 4,840
Clustering Coefficient 0.226 0.177 0.185 0.191 0.351 0.337 0.348 0.359 0.410 0.380 0.391 0.410
Heterogeneity N/A 0.315 0.606 0.615 N/A 0.327 0.577 0.614 N/A 0.306 0.696 0.684

Non-overlapping node scenario
Cora CiteSeer Pubmed

Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli
# Classes 7 6 3
# Nodes 2,485 497 249 124 2,120 424 212 106 19,717 3,943 1,972 986
# Edges 10,138 1,866 891 422 7,358 1,410 675 326 88,648 16,374 7,671 3,607
Clustering Coefficient 0.238 0.250 0.259 0.263 0.170 0.175 0.178 0.180 0.060 0.063 0.066 0.067
Heterogeneity N/A 0.590 0.606 0.665 N/A 0.517 0.541 0.568 N/A 0.362 0.392 0.424

ogbn-arxiv Amazon-Computer Amazon-Photo
Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli

# Classes 40 10 8
# Nodes 169,343 33,869 16,934 8,467 13,381 2,676 1,338 669 7,487 1,497 749 374
# Edges 2,315,598 410,948 182,226 86,755 491,556 84,480 36,136 15,632 238,086 43,138 19,322 8,547
Clustering Coefficient 0.226 0.247 0.259 0.269 0.351 0.385 0.398 0.418 0.410 0.437 0.457 0.477
Heterogeneity N/A 0.593 0.615 0.637 N/A 0.604 0.612 0.647 N/A 0.684 0.681 0.751

A. Algorithms

Algorithm 1 FED-PUB Client Algorithm
1: R: the number of rounds, E: the number of epochs, K: the num-

ber of clients, Gi: local subgraph for client i, fi: model function
for client i, θi: model parameters for client i, µi: weight mask-
ing parameters for client i, S(·): similarity matching function,
and τ : scaling factor for similarity matching.

2: Function RunClient(θ̄i)
3: θi ← θ̄i ⊙ µi

4: for each local epoch e from 1 to E do
5: θi ← θi − η∇L(Gi;θi,µi)
6: end for
7: return θi

Algorithm 2 FED-PUB Server Algorithm
1: Function RunServer()
2: initialize θ̄(1)

3: for each round r = 1, 2, . . . , R do
4: for ∀i in parallel do
5: if r = 1 then
6: θ

(r+1)
i ← RunClient(θ̄(r))

7: else
8: θ̄

(r)
i ←

∑K
j=0

exp(τ ·S(i,j))∑K
k=0

exp(τ ·S(i,k))
θj

9: θ
(r+1)
i ← RunClient(θ̄(r)

i )
10: end if
11: end for
12: end for

In this section, we provide algorithms for the proposed subgraph similarity estimation and adaptive weight masking methods
in our FED-PUB framework. In particular, weight masking, performed in the client, is shown in Algorithm 1. Also,
similarity matching, performed in the server, is shown in Algorithm 2.

B. Experimental Setups
In this section, we first provide the descriptions of six different benchmark datasets that we use, along with their preprocessing
setups for federated learning and their statistics in Subsection B.1. Then, we explain the baselines and our proposed FED-
PUB in detail in Subsection B.2. Lastly, we further describe the implementation details for experiments on synthetic and
real-world graphs, as well as additional experimental details on functional similarities and sparse masks in Subsection B.3.
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B.1. Datasets

We report statistics of six different benchmark datasets (Sen et al., 2008; Hu et al., 2020; McAuley et al., 2015; Shchur et al.,
2018), such as Cora, CiteSeer, Pubmed, and ogbn-arxiv for citation graphs; Computer and Photo for amazon product graphs,
which we use in our experiments, for both the overlapping and non-overlapping node scenarios in Table 4. Specifically,
in Table 4, we report the number of nodes, edges, classes, and clustering coefficient for each subgraph, but also the
heterogeneity between the subgraphs. Note that, to measure the clustering coefficient, which indicates how much nodes are
clustered together, for the individual subgraph, we first calculate the clustering coefficient (Watts & Strogatz, 1998) for all
nodes, and then average them. On the other hand, to measure the heterogeneity, which indicates how disjointed subgraphs
are dissimilar, we calculate the median Jenson-Shannon divergence of label distributions between all pairs of subgraphs.

For dataset splits, we randomly sample 20% nodes for training, 35% for validation, and 35% for testing, for all datasets
except for the arxiv dataset. This is because the arxiv dataset has a relatively larger number of nodes compared to the other
datasets, as reported in Table 4. Therefore, for this dataset, we randomly sample 5% nodes for training, the remaining half
of the nodes for validation, and the other nodes for testing.

We then describe how to partition the original graph into multiple subgraphs, whose number is the same as the number of
clients (i.e., FL participants). In general, we use the METIS graph partitioning algorithm (Karypis, 1997) to divide the
original graph into multiple subgraphs, which can control the number of disjoint subgraphs as parameters. Consequently, in
the non-overlapping node scenario, the disjoint subgraph for each client is directly obtained by the output of the METIS
algorithm (i.e., if we set the parameter value for METIS as 10, then we can obtain 10 different disjoint subgraphs, each
of which is given to each client). On the other hand, in the overlapping node scenario where nodes are duplicated across
different subgraphs, we first divide the original graph into 2, 6, and 10 disjoint subgraphs for 10 clients, 30 clients, and 50
clients, respectively, with the METIS algorithm. After that, in each split subgraph, we randomly sample half of the nodes
and their associated edges, and then use them as the subgraph for one particular client. This procedure is performed five
times to generate five different yet overlapped subgraphs, per one split subgraph obtained from METIS.

B.2. Baselines and Our Model

1. FedAvg: This method (McMahan et al., 2017) is the FL baseline, where each client locally updates a model and sends it
to a server, while the server aggregates the locally updated models with respect to their numbers of training samples and
transmits the aggregated model back to the clients.

2. FedProx: This method (Li et al., 2020) is the FL baseline, which prevents the local model from drifting to the local data
by minimizing weight differences between local and global models.

3. FedPer: This method (Arivazhagan et al., 2019) is the personalized FL baseline, which shares only the base layers, while
keeping the personalized classification layers in the local side.

4. FedGNN: This method (Wu et al., 2021a) is the subgraph FL baseline, which expands local subgraphs by augmenting
the relevant nodes from other clients. In the original paper, if two nodes in two different clients have exactly the same
neighboring nodes, this method transmits and augments the nodes having the same neighborhoods in other clients with
nodes in the original client. In our non-overlapping node scenario, since nodes are disjoint across clients, we measure the
similarities between nodes of different clients and augment them having the similarity above the threshold (e.g., 0.5).

5. FedSage+: This method (Zhang et al., 2021) is the subgraph FL baseline, which expands local subgraphs by generating
additional nodes with the local graph generator. To train the graph generator, each client first receives node representations
from other clients, and then calculates the gradient of distances between the local node features and the other client’s
node representations. Then, the gradient is sent back to other clients, which is then used to train the graph generator.

6. GCFL: This method (Xie et al., 2021) is the graph FL baseline, which targets completely disjoint graphs (e.g., molecular
graphs) as in image tasks. In particular, it uses the bi-partitioning scheme, which divides a set of clients into two disjoint
client groups based on their gradient similarities. Then, the model weights are only shared between grouped clients
having similar gradients, after partitioning. Note that this bi-partitioning mechanism is similar to the mechanism proposed
in clustered-FL (Sattler et al., 2020) for image classification, and we adopt this for our subgraph FL.

7. Local: This method is the non-FL baseline, which only locally trains the model for each client without weight sharing.

8. FED-PUB: This is our FEDerated Personalized sUBgraph learning (FED-PUB) framework, which not only estimates the
similarities between subgraphs based on their models’ functional embeddings for discovering community structures, but
also adaptively masks the received weights from the server to filter irrelevant weights from heterogeneous communities.
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B.3. Implementation Details

Implementation Details on Functional Embeddings The functional embeddings are key ingredients in the proposed
FED-PUB framework, to capture community structures of interconnected subgraphs leveraged in personalized weight
aggregation (See Section 4.1). To obtain such functional embeddings, the input of GNNs is important, which we randomly
generates via a stochastic block model (Holland et al., 1983). Specifically, we first sample five individual subgraphs, each of
which has 100 nodes, in which the probability of edges within the single graph is 0.1, while the probability of edges between
different graphs is 0.01. Also, we initialize the node features with the normal distribution of 0.0 mean and 1.0 variance.
Note that, in practice, this randomly sampled graph is initialized on the server-side at once, and the server distributes it to all
clients. Then, the client calculates its model’s functional embedding, and then transmits it to the server. However, the effect
is the same even if we calculate the functional embeddings on the server-side, which is up to the FL system design.

Implementation Details on Sparse Masks As described in Section 4.2, we propose to sparsify the local personalized
mask µi for each client i, for taking the benefits in communication and prediction costs. In this paragraph, we additionally
provide the detailed implementation specifications on sparse masks during training and test phases of our FED-PUB. First,
in training, we regularize the local mask µk to be sparse by minimizing the L1 Norm of it along with its scaling parameter
λ2 to the local loss L, represented in equation 4. However, this regularization scheme might not be enough to exactly make
a subset of local masks zero. Therefore, in the test phase, we use the threshold scheme, where elements (neurons) of µk

below a certain threshold (i.e., λ2) are set to zero. By doing so, we can transmit only the partial parameters to the server, but
also can predict with only the partial parameters; therefore, effectively reducing both communication and prediction costs.

Common Implementation Details for Experiments For all experiments, we stack two layers of Graph Convolutional
Network (GCN) (Kipf & Welling, 2017) and one linear classifier layer on top of them. Regarding hyperparameters, the
number of hidden dimensions is set to 128, and the learning rate is set to 0.001. All models are optimized with Adam
optimizer (Kingma & Ba, 2015). Also, all clients participate in the federated learning at every round. For all experiments
about our FED-PUB framework, we set λ1 and λ2 values for L1 and L2 losses in equation 4 for sparsity and proximal terms
as 0.001. While we can tune such two scaling hyperparameters, we observe that those default values show satisfactory
performances across all datasets without specific tuning to each dataset (See Appendix C.1 for more analyses).

Implementation Details on Synthetic Graph Experiments We perform two experiments on synthetic graphs, which are
shown in Figure 1 and Figure 3. In particular, in the experiment of Figure 1, there are three communities that have different
label distributions (e.g., nodes in the first community have label 0, whereas nodes in the last community have label 2), and
three communities consist of 5/5/40 non-overlapped subgraphs with 50 clients. In communities, each subgraph consists of
30 nodes, and the edges between two nodes in the same community are sampled from the probability of 0.5. Meanwhile, the
edges between two nodes in different communities are sampled from the probability of 0.1. Similarly, in the experiment of
Figure 3, there are two communities that have different label distributions, and two communities have 5/15 non-overlapped
subgraphs with 20 clients. In communities, each subgraph consists of 30 nodes, and the edges between two subgraphs within
the same community are sampled from the probability of 0.7. Meanwhile, the edges between two subgraphs from different
communities are sampled from the probability of 0.01. For all experiments, the number of local epochs is set to 3, and the
number of total FL rounds is set to 100. In our FED-PER including its variants of using parameter and gradient for subgraph
similarity estimation, the scaling hyperparameter (i.e., τ ) for the similarity in equation 3 is set to 10.

Implementation Details on Real-World Graph Experiments Regarding relatively small datasets, namely Cora, CiteSeer
and PubMed, we set the number of local training epoch as 1, and the number of total rounds as 100. For larger datasets, such
as Computer, Photo and arxiv, we set the number of total rounds as 200, while the number of local epochs is set to 2 for
Photo and arxiv, and set to 3 for Computer. In the overlapping node scenario, we set the similarity scaling hyperparameter
(i.e., τ ) as 5 for all our models. Meanwhile, we set the similarity scaling hyperparameter (i.e., τ ) as 3 in the non-overlapping
node scenario for all our models. We observe that, the larger τ value performs better for the overlapping node scenario, in
which different subgraphs are easily grouped together, compared to the disjoint node scenario. Finally, we report the test
performance of all models at the best validation epoch, and the performance is measured by the node classification accuracy.

Computing Resources For all experiments, we use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen,
2019) as deep learning libraries. We use two types of GPUs: GeForce RTX 2080 Ti and TITAN XP, for training models.
Note that the runtime of our framework depends on the number of workers for processing clients’ jobs in parallel. In general,
we use 10 or 20 workers (i.e., simultaneously training 10 or 20 local models for 10 or 20 clients), and, based on 10 workers,
the single run of our FED-PUB for training 50 clients with 1 local epoch and 100 total rounds takes less than 2 hours.
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λ1 λ2 Accuracy [%] Sparsity [%]

3e-1 1e-3 79.62 ± 0.23 28.93 ± 0.52
5e-1 1e-3 79.42 ± 0.37 42.38 ± 0.35
7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
9e-1 1e-3 77.36 ± 0.99 74.87 ± 0.34

λ1 λ2 Accuracy [%] Sparsity [%]

7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
7e-1 1e-2 78.56 ± 0.05 56.61 ± 0.32
7e-1 1e-1 79.46 ± 0.41 57.41 ± 1.33
7e-1 1e-0 79.31 ± 0.45 57.28 ± 0.16

Table 5: Sensitivity analyses on hyperparameters λ1 and λ2 by varying their values. We report the model performance and sparsity.

C. Additional Experimental Results
In this section, we provide additional experimental results on the sensitivity analyses of hyperparameters in Section C.1;
varying the graph partitioning schemes in Section C.2 and C.3; varying the random graph inputs in Section C.6; and varying
the similarity estimation schemes in Section C.7. In addition to them, we also analyze the heterogeneity in subgraph FL
in Section C.4 and its relationship to the graph size in Section C.5, as well as the impact of missing edges to the task
performance in Section C.9.

C.1. Results on Varying Scaling Hyperparameters in Loss Function

In Table 5, we explore the effects of hyperparameters λ1 and λ2 on the Cora dataset with the overlapping node scenario,
where the number of local epochs is set as 2 and the number of clients is set as 10. In particular, λ1 value can control
the degree of the model sparsity; therefore, to see its efficacy, we fix λ2 value while varying λ1, and then measure both
the model sparsity and performance. As shown in Table 5 left, higher λ1 values significantly increase the model sparsity,
meanwhile, the model performance is slightly decreased. This result indicates that we should consider the trade-off between
the sparsity and the model performance when selecting λ1 value. On the other hand, λ2 value is designed to prevent the
excessive knowledge drift to the local subgraph distribution, and, to verify its effectiveness, we fix λ1 value while varying
λ2. As shown in Table 5 right, small lambda values lead to performance degeneration, meanwhile, choosing the sufficiently
large λ2 values (e.g., 1e-1) would yield high performance. Further, we observe that the sparsity does not depend on λ2 value
in Table 5 right, which suggests that the effects of λ1 and λ2 are orthogonal and complementary.

C.2. Results on Louvain Graph Partitioning Algorithm

Table 6: Results on experimental settings of Louvain graph
partitioning algorithms, following Zhang et al. (2021).

Methods Cora CiteSeer PubMed

Local 78.56 ± 0.27 64.06 ± 0.09 84.07 ± 0.17

FedAvg 71.83 ± 0.40 69.23 ± 0.71 82.47 ± 0.32
FedProx 72.09 ± 0.29 67.66 ± 0.97 82.68 ± 0.34
FedPer 80.13 ± 0.50 66.28 ± 1.22 85.02 ± 0.23
FedGNN 76.59 ± 0.66 61.21 ± 1.46 82.67 ± 0.26
FedSage+ 72.20 ± 0.60 68.40 ± 0.61 82.76 ± 0.09
GCFL 78.55 ± 0.38 64.20 ± 0.31 84.62 ± 0.31

FED-PUB (Ours) 82.68 ± 0.13 69.45 ± 0.75 86.20 ± 0.11

To validate our FED-PUB framework on different graph par-
titioning settings for subgraph FL, we use another experimen-
tal setup from Zhang et al. (2021), which uses Louvain algo-
rithm (Blondel et al., 2008) to partition the entire graph into
several subgraphs for FL clients. Before explaining experimen-
tal results, we would like to point out that there is a drawback in
the Louvain algorithm presented in Zhang et al. (2021), unlike
the METIS algorithm (Karypis, 1997) that we use, for subgraph
FL scenarios. Specifically, since the Louvain algorithm cannot
specify the number of graph partitions, the number of subgraphs
on the CiteSeer dataset is 38, where three of them have less
than ten nodes. Then, based on those 38 disjoint subgraphs, to generate the particular number of clients (e.g., 10), Zhang
et al. (2021) randomly merge the different subgraphs without considering their graph properties. Therefore, even though
each partitioned subgraph has its unique structural role/characteristic, the reconstructed 10 subgraphs from the original 38
subgraphs have mixed properties (i.e., two incompatible subgraphs could be merged), which is suboptimal and might be
unrealistic. However, as described in the Datasets paragraph of Section 5.1, the METIS that we use can specify the number
of subgraph partitions; therefore, METIS is more appropriate when making the experimental settings for subgraph FL.

As shown in Table 6, we conduct experiments with the Louvain graph partitioning algorithm (Blondel et al., 2008; Zhang
et al., 2021), on Cora, CiteSeer, and PubMed datasets with the number of clients as 10. The results show that our FED-PUB
consistently outperforms all the other baselines on this different graph partitioning setting, which further concretizes the
effectiveness of our FED-PUB framework.
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C.3. Results on Random Graph Partitioning Algorithm

Table 7: Results on experimental settings of
the random graph partitioning.

Methods CiteSeer with 10 Clients

Local 44.27 ± 1.05

FedAvg 60.84 ± 0.80
FedProx 59.38 ± 1.66
FedPer 60.04 ± 0.93
FedGNN 54.64 ± 1.67
FedSage+ 61.03 ± 0.11
GCFL 53.15 ± 1.82

FED-PUB (Ours) 63.63 ± 0.86

One might be curious about experimental results on the uniform partitions of
graphs, instead of splitting the graph with sophisticated partitioning algorithms
(e.g., METIS and Louvain algorithms). Therefore, in this subsection, we explain
why the random graph partitioning setting is unrealistic, and further show the
performances on this random setting. To be specific, if we partition the entire
graph of the CiteSeer dataset into different subgraphs uniformly at random, the
number of nodes of each subgraph is larger than the number of edges (e.g.,
211 nodes yet 72 edges per subgraph, thus some nodes do not have any edges),
which is uncommon in practice. Nonetheless, we further perform experiments
on the random split setting with 10 different clients on the CiteSeer dataset. As
shown in Table 7, the gap between baselines and our model is reduced compared
to the non-overlapping and overlapping scenarios in Table 1 and Table 2. This is because there are no specific community
structures in this random graph partitioning setting; however, our FED-PUB still consistently outperforms all baselines.

C.4. Analyses on Distribution Shifts Between Subgraphs with Sparse Masks

To see the distributional shifts between subgraphs in the subgraph FL task, we measure distributional differences of labels
between subgraphs with the Jenson-Shannon divergence on the Cora dataset with 20 different clients over the overlapping and
non-overlapping scenarios. Then, the experimental results show that the distance (i.e., divergence value) among subgraphs
within the same community is 0.384, meanwhile, the distance between subgraphs belonging to different communities is 0.639
for the non-overlapping node scenario. On the other hand, for the overlapping node scenario, the distance among subgraphs
within the same community is 0.047, meanwhile, the distance between subgraphs belonging to different communities is
0.528. Thus, these results confirm that the heterogeneity of subgraphs even within the same community is extremely larger
in the non-overlapping setup (0.384) compared to the overlapping setup (0.047).

Then, from the above results, we can further argue that personalized weight aggregation based on similarity matching
for discovering community structures is not sufficient in disjoint subgraph FL problems, since the model weight received
from the completely heterogeneous subgraphs might not be meaningful to the local subgraph task, especially in the non-
overlapping setting. However, in this extremely heterogeneous scenario, a personalized weight masking scheme is obviously
helpful, since it can filter out irrelevant information transmitted from the other heterogeneous subgraphs, while allowing the
model to maintain the locally helpful information in its parameters with sparse local masks. This claim and result on the
heterogeneity are also aligned with the results in Figure 7: ablation study, which shows that the personalized weight masking
scheme brings huge performance improvements in the non-overlapping setting (i.e., high heterogeneity between subgraphs),
whereas the personalized weight aggregation scheme is more beneficial in the overlapping setting with low heterogeneity.

Lastly, to more closely look at the efficacy of sparse masks in subgraph FL, we empirically analyze whether they can indeed
filter out irrelevant weights received from the heterogeneous communities and subgraphs. To do so, we measure how many
parameters are shared between the two most dissimilar (i.e., heterogeneous) subgraphs, as well as between the two most
similar subgraphs, for the Cora dataset with 20 clients on the non-overlapping node scenario. For the two most similar
subgraphs within the same community, 75% parameters are shared. Meanwhile, for the two heterogeneous subgraphs from
two opposite communities, 73% parameters are filtered by sparse masks (i.e., only 27% parameters are shared). These
results demonstrate that sparse masks can prevent the knowledge collapse from subgraphs of heterogeneous communities.

C.5. Analyses on Local Graph Size vs Heterogeneity Table 8: Results on Cora, CiteSeer, and PubMed datasets on the
non-overlapping scenario, with the number of clients of 3.

Methods Cora CiteSeer PubMed
Local 81.73 ± 0.44 68.16 ± 0.25 84.81 ± 0.40
FedAvg 78.77 ± 0.13 69.34 ± 0.23 85.29 ± 0.20
FedProx 78.91 ± 0.21 69.54 ± 0.27 85.59 ± 0.18
FedPer 82.29 ± 0.13 69.80 ± 0.33 85.34 ± 0.16
FedGNN 82.36 ± 0.62 67.79 ± 0.49 85.57 ± 0.13
FedSage+ 77.79 ± 1.96 69.35 ± 0.12 85.63 ± 0.22
GCFL 82.67 ± 0.74 68.85 ± 0.58 86.20 ± 0.15
FED-PUB (Ours) 84.45 ± 0.23 70.66 ± 0.34 86.74 ± 0.16

To see how much severe the heterogeneity issues are in terms
of the number of clients, we first analyze the exact amount
of heterogeneities with respect to the client numbers. In
particular, following the reported statistics in Table 4, when
we increase the number of clients in both the overlapping
and non-overlapping node scenarios, the heterogeneity across
subgraphs becomes more severe and problematic for subgraph
FL, and thus this becomes an important issue to tackle. Note
that, in this work, we address this problem with the sparse local masks described in Section 4.2 and Appendix C.4.
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Note that one might be further curious about whether our FED-PUB is still effective when the heterogeneity issue is less
significant. To analyze this, we further conduct the experiment in the setting where the number of clients is 3 on Cora,
CiteSeer, and PubMed datasets with the non-overlapping node scenario. As shown in Table 8, compared to the results in
Table 2 with client numbers of 5, 10, and 20, the performance gaps between our FED-PUB and baselines are much reduced.
However, we can clearly observe that our FED-PUB consistently outperforms all baselines with large margins even when
the number of clients is small, since there still exists incompatible knowledge across clients, which our FED-PUB effectively
handles with personalized weight aggregation and local weight masking schemes.

C.6. Results on Varying Graph Inputs for Functional Embeddings

Table 9: Results on varying the graph inputs for
functional embeddings, over overlapping and non-
overlapping node scenarios with 20 clients on Cora.

Graphs Overlapping Non-Overlapping

SBM 0.937 0.810
ER 0.920 0.712
One 0.822 0.656
Feature 0.897 0.632

As described in Section B.3, to obtain the functional embedding of GNNs,
we use the same random graphs for all clients, where random graphs are
initialized by the stochastic block model (Holland et al., 1983) with node
features initialized by the normal distribution. We note the underlying
assumption on using random graphs is that such randomness may not
yield any bias on the functional space, unlike existing node features of the
certain subgraph. In other words, we expect that our random graphs are
helpful for effectively capturing the similarities and community structures
among subgraphs without having bias on any particular graph structures.

In this subsection, to experimentally validate the above statement, we further compare various graph inputs used for
calculating the functional embeddings, listed as follows: 1) SBM denotes the random graphs generated by the Stochastic
Block Model (SBM) like ours; 2) ER denotes the random graphs generated by the Erdos-Renyi (ER) model (Erdős &
Rényi, 1960); 3) One denotes the random graph having only one node; 4) Feature denotes the graph where node features
are initialized by the existing ones in the client. We then measure the performances of those four schemes by calculating
the correlation coefficient between label distributions and estimated similarities of subgraphs (i.e., the high correlation
coefficient means that the estimated similarities from functional embeddings are similar to the actual label distributions)
on the Cora dataset of non-overlapping and overlapping node scenarios with 20 clients, which are reported in Table 9.
Specifically, as shown in Table 9, compared to the One scheme that uses only one node for calculating the functional
embeddings, SBM and ER schemes that use more large numbers of randomly initialized nodes can accurately capture the
similarities between subgraphs. This result demonstrates that a sufficient amount of randomness is required to capture the
model’s functional space. Also, compared to the Feature scheme that uses existing node representations to calculate the
functional embeddings, SBM and ER random models show superiority in capturing similarities among subgraphs, which
verifies that randomness indeed helps obtain accurate functional embeddings of models without incurring bias.

C.7. Results on Varying Similarity Estimation Mechanisms

Table 10: Results on varying the similarity calcu-
lation schemes: parameter, gradient, label, and
our functional embedding, on the overlapping
node scenario with 30 clients of the Cora dataset.

Rounds

Model 20 40 60 80

FedAvg 29.94 32.69 47.84 52.42

Parameter 29.94 35.89 47.03 52.28
Gradient 33.93 51.09 52.77 58.14
Label 65.97 74.31 76.50 76.82

Function (FED-PUB) 67.82 73.51 74.66 75.90

As shown in Figure 3, our functional embeddings are not only effective but
also efficient in capturing similarities between subgraphs, compared against
using the parameter and gradient similarities. Additionally, one might
consider using label distributions as the proxy for similarity estimation
between local subgraphs; however, this scheme may violate the privacy
constraint of FL since subgraph labels are private local data stored in the
client. Nevertheless, to see its actual performances, we additionally conduct
experiments with the label similarities that are calculated by distributional
differences between subgraph labels, on the Cora dataset of the overlapping
node scenario with the number of clients as 30, and then compare the
results with our functional similarities at 20, 40, 60, and 80 rounds.

As reported in Table 10, we can observe that the models, which utilize the parameter and gradient for subgraph similarities,
are inferior to our functional and label similarity schemes. This is because they struggle to discover similar subgraphs within
the community due to the curse of dimensionality (Bellman, 1966) (See Figure 3). On the other hand, even though the
label similarity model uses privacy-sensitive local information (i.e., label distributions of clients), the performance of our
FED-PUB that utilizes the functional embeddings from the privacy-free random graphs is similar to the performance of the
label model. Therefore, along with the results in Figure 6, these comparison results on similarity schemes further verify the
effectiveness of our functional embedding in capturing similarities among subgraphs, for identifying their communities.
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Table 11: Results on the overlapping node scenario with 10 clients (top) and the non-overlapping node scenario with 30 clients (bottom),
where we report results with mean and standard deviation over three different runs.

Methods Cora CiteSeer PubMed Computer Photo obgn-arxiv

Overlapping Node Scenario

FED-PUB with Explicit Community 80.45 ± 0.73 69.50 ± 0.20 84.76 ± 0.14 90.31 ± 0.06 92.67 ± 0.08 64.56 ± 0.12
FED-PUB with Implicit Community 81.54 ± 0.12 72.35 ± 0.53 86.28 ± 0.18 90.55 ± 0.13 92.73 ± 0.18 66.58 ± 0.08

Non-Overlapping Node Scenario

FED-PUB with Explicit Community 76.59 ± 0.39 67.57 ± 0.51 83.20 ± 0.45 87.84 ± 0.42 91.26 ± 0.25 61.52 ± 0.06
FED-PUB with Implicit Community 75.40 ± 0.54 68.33 ± 0.45 85.16 ± 0.10 89.15 ± 0.06 92.01 ± 0.07 63.34 ± 0.12

C.8. Analyses on Implicit and Explicit Communities in Weight Aggregation

As formalized in Equation 3 and described in Section 4.1, we implicitly model the community structures by performing
weight aggregation over all available clients. However, one can alternatively perform the explicit weight aggregation, by
grouping similar subgraphs within the community first and then performing weight aggregation exclusively among clients
discovered within the same community. To see which strategy is superior, we compare the performances of our model
variants: implicit and explicit community detection, in personalized weight aggregation. Specifically, for the implicit setup,
we use the formulation defined in Equation 3 without any modification. Meanwhile, for the explicit setup, we exclusively
perform weight aggregation between clients, having a functional similarity score above 0.5, which we regard as forming
the community. Note that, for those two variants, we use the same normalization trick in Equation 3 after identifying
communities, and also the same random graph inputs for obtaining functional embeddings.

As shown in Table 11, we observe that the model, which implicitly captures the community structures during weight
aggregation, consistently outperforms the other explicit one, except for only one case: Cora with the overlapping node
scenario. We believe such an exceptional case on the Cora dataset with the overlapping node scenario might be because,
the information in the other communities is especially not useful for this particular setup (i.e., the model might capture
necessary knowledge only with subgraphs within the same community); therefore, completely ignoring the information
from other communities contributes to the improved performance. Except for this case, the results in Table 11 confirm that
implicit modeling of community structures is generally better for personalized weight aggregation in subgraph FL.

C.9. Impacts of Missing Edges to Performance Degeneration

Table 12: Results on Non-Overlapping and Overlapping node scenarios
with varying the number of clients on Cora. The Oracle model is not
comparable, which trains with the global graph including missing edges.

Non-overlapping Overlapping

Model 5 Clients 20 Clients 10 Clients 50 Clients

Oracle 85.07 85.47 85.08 85.28

Local 81.30 80.30 73.98 76.63
FedAvg 74.45 69.50 76.48 53.99
FedGNN 81.51 70.10 70.63 56.91
FedSage+ 72.97 57.97 77.52 55.48

FED-PUB (Ours) 83.70 81.75 79.60 77.84

In this subsection, we empirically demonstrate how
much the performance is degenerated due to the miss-
ing edge problem, and how much the performance gain
we obtain when we train with missing edges. In this
work, we mainly conjecture that, due to the crucial is-
sue of missing edges in subgraph FL, all FL methods
that observe edges only within each subgraph show
inferior performances to the Oracle method that trains
on the entire graph including missing edges. To vali-
date this claim, we first train the Oracle model on the
connected global graph, and then evaluate it on disjoint
subgraphs over all clients, on the Cora dataset of both
Non-overlapping and Overlapping node scenarios with varying the number of clients. Note that this Oracle method is
unrealistic in subgraph FL since it observes missing edges between subgraphs of distributed clients; therefore, this method is
designed only for revealing the degenerated performance from missing edges and is not comparable to other FL methods.

As shown in Table 12, the Oracle model outperforms all the other methods, while our FED-PUB achieves the closest
performance to the Oracle. The above results bring us to conclude that, due to the problem of missing edges, all FL methods,
which train with edges only within each subgraph, are inferior to the Oracle method. Also, this concluding result further
suggests that the missing edge problem negatively affects the incompatible knowledge issue. Specifically, since all client
models are trained on partial subgraphs, which are parts of the larger global graph, the trained parameters in the client and
the aggregated parameters in the server might not capture globally meaningful knowledge that is helpful to all the other
clients, while the Oracle model can capture. Therefore, the Oracle model can obtain superior performance to FL methods.
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D. Discussion on Limitations and Potential Societal Impacts
In this section, we discuss the limitations and potential societal impacts of our work.

Limitations While our personalized subgraph FL framework, namely FED-PUB, is generally applicable regardless of
subgraph types (e.g., unipartite graphs or bipartite graphs), our experiments are mainly done with unipartite graphs, since
they are the most popular setups. However, the efficacy of our FED-PUB on the other types of graphs, such as bipartite
graphs, would be interesting to investigate, which have not been explored much so far, and we leave this as future work.

Potential Societal Impacts The FL mechanism is important for preserving user’s privacy, and, while this mechanism
is actively studied in image and language domains, it gets little attention in graphs. However, we believe that our work
comprehensively investigates and sufficiently tackles unique challenges in subgraph FL, such as missing nodes, edges, and
their community structures, by proposing the novel approaches of using functional embeddings and local sparse masks.

The potential positive impact of our work on society is that, our FED-PUB can contribute to various domains that utilize graph-
structured data, such as social, recommendation, and patient networks. Here we would like to emphasize the importance of
our subgraph FL method, especially in social and recommendation networks. In current real-world applications, all user’s
interactions with other users in social networks and with other products in recommendation networks may be stored on the
server. However, this may not preserve the user’s privacy, but also has potential risks of user data leakage from the server,
such that storing user’s data in the server is not recommended by the existing data protection regularizations such as GDPR 3.
Yet, by applying our subgraph FL framework to this domain, we expect such problems could be alleviated by not storing
user’s interaction data in the server, but sharing only the locally trained machine learning models from client subgraphs.

However, the transmitted model parameters from the client to the server may hold privacy-sensitive information. While
addressing it is not the main focus of our work (i.e., we assume that model parameters are transmittable without compromising
privacy as in many FL works (McMahan et al., 2017; Arivazhagan et al., 2019; Li et al., 2020)), the research community
may need to put further effort on whether the model parameters are safe, and how to make them safer if they are not. Note
that if they are not safe to share, we may further use differential privacy techniques (Geyer et al., 2017; Wei et al., 2020).

3https://gdpr-info.eu/
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