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Abstract

Text watermarking technology aims to tag and001
identify content produced by large language002
models (LLMs) to prevent misuse. In this study,003
we introduce the concept of “cross-lingual con-004
sistency” in text watermarking, which assesses005
the ability of text watermarks to maintain their006
effectiveness across different languages. Pre-007
liminary empirical results from two LLMs and008
three watermarking methods reveal that cur-009
rent text watermarking technologies lack con-010
sistency when texts are translated into various011
languages. Based on this observation, we pro-012
pose a Cross-lingual Watermark Removal At-013
tack (CWRA) to bypass watermarking by first014
obtaining a response from an LLM in a pivot015
language, which is then translated into the tar-016
get language. CWRA can effectively remove017
watermarks by reducing the Area Under the018
Curve (AUC) from 0.95 to 0.67 without per-019
formance loss. Furthermore, we analyze two020
key factors that contribute to the cross-lingual021
consistency in text watermarking and propose022
a defense method that increases the AUC from023
0.67 to 0.88 under CWRA.024

1 Introduction025

Large language models (LLMs) like GPT-4 (Ope-026

nAI, 2023) and Gemini (Team, 2023) have demon-027

strated remarkable content generation capabilities,028

producing texts that are hard to distinguish from029

human-written ones. This progress has led to con-030

cerns regarding the misuse of LLMs, such as the031

risks of generating misleading information, imper-032

sonating individuals, and compromising academic033

integrity (Chen and Shu, 2023a,b). As a counter-034

measure, text watermarking technology for LLMs035

has been developed, aiming at tagging and identify-036

ing the content produced by LLMs (Kirchenbauer037

et al., 2023a; Liu et al., 2023b,c). Generally, a text038

watermarking algorithm embeds a message within039

LLM-generated content that is imperceptible to hu-040

man readers, but can be detected algorithmically.041

The powerful 
generative 
capabilities of 
language models 
pose risks, such as
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Figure 1: Illustration of watermark dilution in a cross-
lingual environment. Best viewed in color.

By tracking and detecting text watermarks, it be- 042

comes possible to mitigate the abuse of LLMs by 043

tracing the origin of texts and ascertaining their 044

authenticity. 045

The robustness of watermarking algorithms, i.e., 046

the ability to detect watermarked text even after 047

it has been modified, is important. Recent works 048

have shown strong robustness under text rewriting 049

and copy-paste attacks (Liu et al., 2023b; Yang 050

et al., 2023). However, these watermarking tech- 051

niques have been tested solely within monolingual 052

contexts. In practical scenarios, watermarked texts 053

might be translated, raising questions about the 054

efficacy of text watermarks across languages (see 055

Figure 1). For example, a malicious user could 056

use a watermarked LLM to produce fake news in 057

English and then translate it into Chinese. Obvi- 058

ously, the deceptive impact persists regardless of 059

the language, but it is uncertain whether the water- 060

mark would still be detectable after such a trans- 061
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lation. To explore this question, we introduce the062

concept of cross-lingual consistency in text water-063

marking, aiming to characterize the ability of text064

watermarks to preserve their strength across lan-065

guages. Our preliminary results on 2 LLMs × 3066

watermarks reveal that current text watermarking067

technologies lack consistency across languages.068

In light of this finding, we propose the Cross-069

lingual Watermark Removal Attack (CWRA) to070

highlight the practical implications arising from de-071

ficient cross-lingual consistency. When performing072

CWRA, the attacker begins by translating the origi-073

nal language prompt into a pivot language, which is074

fed to the LLM to generate a response in the pivot075

language. Finally, the response is translated back076

into the original language. In this way, the attacker077

obtains the response in the original language and078

bypasses the watermark with the second transla-079

tion step. CWRA outperforms re-writing attacks,080

such as re-translation and paraphrasing (Liu et al.,081

2023c), as it achieves the lowest AUC (reducing it082

from 0.95 to 0.67) and the highest text quality.083

To resist CWRA, we propose a defense method084

that improves the cross-lingual consistency of cur-085

rent LLM watermarking. Our method is based on086

two critical factors. The first is the cross-lingual087

semantic clustering of the vocabulary. Instead088

of treating each token in the vocabulary as the089

smallest unit when ironing watermarks, as done090

by KGW (Kirchenbauer et al., 2023a), our method091

considers a cluster of tokens that share the same se-092

mantics across different languages as the smallest093

unit of processing. In this way, the post-translated094

token will still carry the watermark as it would fall095

in the same cluster as before translation. The sec-096

ond is cross-lingual semantic robust vocabulary097

partition. Inspired by Liu et al. (2023b), we ensure098

that the partition of the vocabulary are similar for099

semantically similar contexts in different languages.100

Despite its limitations, our approach elevates the101

AUC from 0.67 to 0.88 under the CWRA, paving102

the way for future research.103

Our contributions are summarized as follows:104

• We reveal the deficiency of current text wa-105

termarking technologies in maintaining cross-106

lingual consistency (§ 3).107

• Based on this finding, we propose CWRA that108

successfully bypasses watermarks without de-109

grading the text quality (§ 4).110

• Based on our analysis of the two key factors for111

improving cross-lingual consistency, we propose112

a defense method against CWRA (§ 5).113

2 Background 114

2.1 Language Model 115

A language model (LM) M has a defined set of 116

tokens known as its vocabulary V . Given a se- 117

quence of tokens x1:n = (x1, x2, . . . , xn), which 118

we refer to as the prompt, the model M computes 119

the conditional probability of the next token over 120

V as PM (xn+1|x1:n). Therefore, text generation 121

can be achieved through an autoregressive decod- 122

ing process, where M sequentially predicts one 123

token at a time, forming a response. Such an LM 124

can be parameterized by a neural network, such as 125

Transformer (Vaswani et al., 2017), which is called 126

neural LM. Typically, a neural LM computes a vec- 127

tor of logits zn+1 = M(x1:n) ∈ R|V| for the next 128

token based on the current sequence x1:n via a neu- 129

ral network. The probability of the next token is 130

then obtained by applying the softmax function to 131

these logits: PM (xn+1|x1:n) = softmax(zn+1). 132

2.2 Watermarking for LMs 133

In this work, we consider the following watermark- 134

ing methods. All of them embed the watermark by 135

modifying logits during text generation and detect 136

the presence of the watermark for any given text. 137

KGW (Kirchenbauer et al., 2023a) sets the 138

groundwork for LM watermarking. Ironing a wa- 139

termark is delineated as the following steps: 140

(1) compute a hash of x1:n: hn+1 = H(x1:n), 141

(2) seed a random number generator with hn+1 142

and randomly partitions V into two disjoint 143

lists: the green list Vg and the red list Vr, 144

(3) adjust the logits zn+1 by adding a constant 145

bias δ (δ > 0) for tokens in the green list: 146

∀i ∈ {1, 2, . . . , |V|},

z̃n+1
i =

{
zn+1
i + δ, if vi ∈ Vg,

zn+1
i , if vi ∈ Vr.

(1) 147

As a result, watermarked text will statistically 148

contain more green tokens, an attribute unlikely to 149

occur in human-written text. When detecting, one 150

can apply step (1) and (2), and calculate the z-score 151

as the watermark strength of x: 152

s = (|x|g − γ|V|)/
√

|V|γ(1− γ), (2) 153

where |x|g is the number of green tokens in x and 154

γ =
|Vg |
|V| . The presence of the watermark can be 155

determined by comparing s with a threshold. 156

Unbiased watermark (UW) views the process 157

of adjusting the logits as applying a ∆ function: 158
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z̃n+1 = zn+1 +∆, and designs a ∆ function that159

satisfies:160

E
[
P̃M

]
= PM , (3)161

where P̃M is the probability distribution of the next162

token after logits adjustment (Hu et al., 2023).163

Semantic invariant robust watermark (SIR)164

shows the robustness under re-translation and para-165

phrasing attack (Liu et al., 2023b). Its core idea166

is to assign similar ∆ for semantically similar pre-167

fixes. Given prefix sequences x and y, SIR adopts168

an embedding model E to characterize their se-169

mantic similarity and trains a watermark model170

that yields ∆ with the main objective:171

L = |Sim(E(x), E(y))− Sim(∆(x),∆(y))|,
(4)172

where Sim(·, ·) denotes similarity function. Fur-173

thermore, ∀i ∈ {1, 2, . . . , |V|}, ∆i is trained to be174

close to +1 or −1. Therefore, SIR can be seen as175

an improvement based on KGW, where ∆i > 0176

indicating that vi is a green token. The original177

implementation of SIR uses C-BERT (Chanchani178

and Huang, 2023) as the embedding model, which179

is English-only. To adopt SIR in the cross-lingual180

scenario, we use a multilingual S-BERT (Reimers181

and Gurevych, 2019)1instead.182

3 Cross-lingual Consistency of Text183

Watermark184

In this section, we define the concept of cross-185

lingual consistency in text watermarking and an-186

swer three research questions (RQ):187

• RQ1: To what extent are current watermarking188

algorithms consistent across different languages?189

• RQ2: Do watermarks exhibit better consistency190

between similar languages than between distant191

languages?192

• RQ3: Does semantic invariant watermark (SIR)193

exhibit better cross-lingual consistency than oth-194

ers (KGW and UW)?195

3.1 Definition196

We define cross-lingual consistency as the ability197

of a watermark, embedded in a text produced by198

an LLM, to retain its strength after the text is trans-199

lated into another language. We represent the origi-200

nal strength of the watermark as a random variable,201

denoted by S (Appendix A.1), and its strength af-202

ter translation as Ŝ. To quantitatively assess this203

consistency, we employ the following two metrics.204

1paraphrase-multilingual-mpnet-base-v2

Pearson Correlation Coefficient (PCC) We use 205

PCC to assess linear correlation between S and Ŝ: 206

PCC(S, Ŝ) =
cov(S, Ŝ)
σSσŜ

, (5) 207

where cov(S, Ŝ) is the covariance and σS and σŜ 208

are the standard deviations. A PCC value close to 209

1 suggests consistent trends in watermark strengths 210

across languages. 211

Relative Error (RE) Unlike PCC, which cap- 212

tures consistency in trends, RE is used to assess the 213

magnitude of deviation between S and Ŝ: 214

RE(S, Ŝ) = E

[
|Ŝ − S|
|S|

]
× 100%. (6) 215

A lower RE indicates that the watermark retains 216

strength close to its original value after translation, 217

signifying great cross-lingual consistency. To avoid 218

the instability caused by values of S that are close 219

to 0, we first aggregate the data by text length and 220

replace the original values of S and Ŝ with their 221

respective mean values within each group. We 222

also apply min-max normalization to ensure that 223

all values are non-negative. 224

3.2 Experimental Setup 225

Setup We sampled a subset of 1,000 prompts 226

from the UltraChat test set (Ding et al., 2023)2, 227

and generated responses from the LLM using the 228

text watermarking methods described in § 2.2. 229

The default decoding method was multinomial 230

sampling, and both the prompts and the LLM- 231

generated responses were in English. To evaluate 232

the cross-lingual consistency, these watermarked 233

responses were translated into four languages using 234

gpt-3.5-turbo-06133: Chinese (Zh), Japanese 235

(Ja), French (Fr), and German (De). Notably, En- 236

glish shares greater similarities with French and 237

German, in contrast to its significant differences 238

from Chinese and Japanese. 239

Models For the LLMs, we adopt: 240

• BAICHUAN-7B (Baichuan., 2023): an LLM 241

trained on 1.2 trillion tokens. It offers bilingual 242

support for both Chinese and English. 243

• LLAMA-2-7B-CHAT (Touvron et al., 2023): 244

trained on 2 trillion tokens and only provides 245

support for English. 246

2https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k

3https://platform.openai.com/docs/models
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Method PCC ↑ RE (%) ↓

En→Zh En→Ja En→Fr En→De Avg. En→Zh En→Ja En→Fr En→De Avg.

BAICHUAN-7B
KGW 0.108 -0.257 0.059 0.144 0.013 75.62 88.50 76.37 73.65 78.54
UW 0.190 0.087 0.166 0.183 0.156 97.57 98.82 97.22 97.89 97.88
SIR 0.283 0.380 0.348 0.234 0.311 84.16 68.28 76.07 93.41 80.41

LLAMA-2-7B-CHAT

KGW 0.056 0.177 0.276 0.080 0.147 85.57 79.55 86.58 92.54 86.06
UW 0.076 0.092 0.116 0.109 0.098 92.85 95.40 95.32 96.14 94.93
SIR -0.106 -0.159 0.146 0.323 0.051 69.52 92.80 59.76 68.57 72.48

Table 1: Comparison of cross-lingual consistency between different text watermarking methods (KGW, UW, and
SIR). Bold entries denote the best result among the three methods.
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Figure 2: Trends of watermark strengths with text length before and after translation. This is the average result of
BAICHUAN-7B and LLAMA-2-7B-CHAT. Figure 7 displays results for each model. Given the distinct calculations
for watermark strengths of the three methods, the y-axis scales vary accordingly.

3.3 Results247

Table 1 presents the results, and Figure 2 illustrates248

the trend of watermark strengths with text length.249

Results for RQ1 We reveal a notable deficiency250

in the cross-lingual consistency of current water-251

marking methods. Among all the settings, the252

PCCs are generally less than 0.3, and the REs are253

predominantly above 80%. Furthermore, Figure 2254

visually demonstrates that the watermark strengths255

of the three methods exhibit a significant decrease256

after translation. These results suggest that cur-257

rent watermarking algorithms struggle to maintain258

effectiveness across language translations.259

Results for RQ2 Only SIR exhibits such a char-260

acteristic: when using LLAMA-2-7B-CHAT, its261

cross-lingual consistency performs notably better262

among similar languages compared to distant ones,263

especially in terms of PCC. This can be attributed264

to its semantic invariance and shared words among265

similar languages. However, this characteristic is266

not shown on BAICHUAN-7B, which might be re-267

lated to tokenization. In contrast, this property is268

less evident in the case of KGW and UW.269

Results for RQ3 Overall, SIR indeed exhibits su- 270

perior cross-lingual consistency compared to KGW 271

and UW. Particularly when using BAICHUAN-7B, 272

SIR achieves the best PCCs for all target languages. 273

When using LLAMA-2-7B-CHAT, SIR still per- 274

forms well in languages similar to English. This 275

finding highlights the importance of semantic in- 276

variance in preserving watermark strength across 277

languages, which we will explore more in § 5. De- 278

spite its superiority, SIR still presents a notable 279

reduction in watermark strength in cross-lingual 280

scenarios, as evidenced by Figure 2e. 281

4 Cross-lingual Watermark Removal 282

Attack 283

In the previous section, we focus on scenarios 284

where the response of LLM is translated into other 285

languages. However, an attacker typically expects 286

a response from the LLM in the same language 287

as the prompt while removing watermarks. To 288

bridge this gap, we introduce the Cross-lingual Wa- 289

termark Removal Attack (CWRA) in this section, 290

constituting a complete attack process and posing 291

a more significant challenge to text watermarking 292

than paraphrasing and re-translation attacks. 293
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Figure 3: An example pipeline of CWRA with English (En) as the original language and Chinese (Zh) as the pivot
language. When performing CWRA, the attacker not only wants to remove the watermark, but also gets a response
in the original language with high quality. Its core idea is to wrap the query to the LLM into the pivot language.

Figure 3 shows the process of CWRA. Instead294

of feeding the original prompt into the LLM, the at-295

tacker initiates the attack by translating the prompt296

into a pivot language named the pivot prompt. The297

LLM receives the pivot prompt and provides a wa-298

termarked response in the pivot language. The299

attacker then translates the pivot response back into300

the original language. This approach allows the301

attacker to obtain the response in the original lan-302

guage. Due to the inherent challenges in main-303

taining cross-lingual consistency, the watermark304

would be effectively eliminated during the second305

translation step.306

4.1 Setup307

To assess the practicality of attack methods, we308

consider two downstream tasks: text summariza-309

tion and question answering. We adopt Multi-310

News (Fabbri et al., 2019) and ELI5 (Fan et al.,311

2019) as test sets, respectively. Both datasets are312

in English and require long text output with an av-313

erage output length of 198 tokens. We selected314

500 samples for each test set that do not exceed315

the maximum context length of the model and per-316

formed zero-shot prompting on BAICHUAN-7B.317

For CWRA, we select Chinese as the pivot lan-318

guage and compare the following two methods:319

• Paraphrase: rephrasing the response into differ-320

ent wording while retaining the same meaning.321

• Re-translation: translating the response into the322

pivot language and back to the original language.323

The paraphraser and translator used in all attack324

methods are gpt-3.5-turbo-0613 to ensure con-325

sistency across the different attack methods.326

4.2 Results327

Figure 4 exhibits ROC curves of three watermark-328

ing methods under different attack methods.329

CWRA vs Other Attack Methods CWRA 330

demonstrates the most effective attack performance, 331

significantly diminishing the AUC and the TPR. 332

For one thing, existing watermarking techniques 333

are not designed for cross-lingual contexts, lead- 334

ing to weak cross-lingual consistency. For an- 335

other thing, strategies such as Re-translation and 336

Paraphrase are essentially semantic-preserving text 337

rewriting. Such strategies tend to preserve some 338

n-grams from the original response, which may 339

still be identifiable by the watermark detection al- 340

gorithm. In contrast, CWRA reduces such n-grams 341

due to language switching. 342

SIR vs Other Watermarking Methods Under 343

the CWRA, SIR exhibits superior robustness com- 344

pared to other watermarking methods. The AUCs 345

for KGW and UW under CWRA plummet to 0.61 346

and 0.54, respectively, approaching the level of 347

random guessing. In stark contrast, the AUC for 348

the SIR method stands significantly higher at 0.67, 349

aligning with our earlier observations regarding 350

cross-lingual consistency in the RQ3 of § 3.3. 351

Text Quality As shown in Table 2, these attack 352

methods not only preserve text quality, but also 353

bring slight improvements in most cases due to the 354

good translator and paraphraser. Among the com- 355

pared methods, CWRA stands out for its superior 356

performance. Considering that the same transla- 357

tor and paraphraser were used across all methods, 358

we speculate that this is because the BAICHUAN- 359

7B model used in our experiments performs even 360

better in the pivot language (Chinese) than in the 361

original language (English). This finding implies 362

that a potential attacker could strategically choose 363

a pivot language at which the LLM excels to per- 364

form CWRA, thereby achieving the best text qual- 365

ity while removing the watermark. 366
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Figure 4: ROC curves for KGW, UW, and SIR under various attack methods: Re-translation, Paraphrase and CWRA.
We also present TPR values at a fixed FPR of 0.1. This is the overall result of text summarization and question
answering. Figure 8 and Figure 9 display results for each task.

Attack
WM KGW UW SIR

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Text Summarization
No attack 14.24 2.68 12.99 13.65 1.68 12.38 13.34 1.79 12.43
Re-translation 14.11 2.43 12.89 13.89 1.77 12.63 13.63 1.98 12.61
Paraphrase 15.10 2.49 13.69 14.72 1.95 13.31 15.56 2.11 14.14
CWRA (Ours) 18.98 3.63 17.33 15.88 2.31 14.25 17.38 2.67 15.79

Question Answering
No attack 19.00 2.18 16.09 11.70 0.49 9.57 16.95 1.35 14.91
Re-translation 18.62 2.32 16.39 12.98 1.30 11.16 16.90 1.80 15.12
Paraphrase 18.45 2.24 16.47 14.38 1.37 13.07 17.17 1.79 15.54
CWRA (Ours) 18.23 2.56 16.27 15.20 1.88 13.45 17.47 2.22 15.53

Table 2: Comparative analysis of text quality impacted by different watermark removal attacks.

5 Improving Cross-lingual Consistency367

Up to this point, we have observed the challenges368

associated with text watermarking in cross-lingual369

scenarios. In this section, we first analyze two370

key factors essential for achieving cross-lingual371

consistency. Based on our analysis, we propose a372

defense method against CWRA.373

5.1 Two Key Factors of Cross-lingual374

Consistency375

KGW-based watermarking methods fundamentally376

depend on the partition of the vocabulary, i.e., the377

red and green lists, as discussed in § 2.2. Therefore,378

cross-lingual consistency aims to ensure that the379

green tokens in the watermarked text will still be380

recognized as green tokens after being translated381

into other languages.382

With this goal in mind, we start our analysis with383

a simple English-Chinese case in Figure 5:384

1. Given “I watch” as the prefix, a watermarked385

LM predicts “movies” as the next token. Due386

to watermarking, “movies” is a green token.387

All candidate tokens are [movies, birds,电影,388

鸟], where “movies” and “电影” are semanti- 389

cally equivalent, as are “birds” and “鸟”. 390

2. A machine translator (MT) then translates the 391

entire sentence “I watch movies” into Chi- 392

nese: “我看电影”. 393

The question of interest is: what conditions must 394

the vocabulary partition meets so that the token “电 395

影”, the Chinese equivalent of “movies”, also falls 396

within the green list? 397

Figure 5(a) illustrates a successful case, where 398

two key factors exists: 399

1. Cross-lingual semantic clustering of the vo- 400

cabulary: semantically similar tokens must be 401

in the same partition, either green or red lists. 402

2. Cross-lingual semantic robust vocabulary 403

partition: for semantically similar prefixes in 404

different languages: “I watch” and “我 看”, 405

the partitions of the vocabulary are the same. 406

Both Figure 5(b) and Figure 5(c) satisfy only one of 407

the two factors, thus failing to recognize “电影” as 408

a green token and losing cross-lingual consistency. 409
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我 看

I watch movies 电影 birds ⻦

birds ⻦movies 电影

我 看

I watch movies ⻦ birds 电影

movies ⻦ birds 电影我 看

I watch movies 电影 birds ⻦

birds ⻦movies 电影

I=我 watch=看 movies=电影 birds=⻦

Dictionary

English 
Prefix

Vocab partition based on 
English prefix

Chinese 
Prefix

Vocab partition based on 
Chinese prefix

Green List
Red List token after translation

token before translation

Legend

(a) Factor 1 ✔ | Factor 2 ✔

(b) Factor 1 ✔ | Factor 2 ✘

(c) Factor 1 ✘ | Factor 2 ✔

Figure 5: Cases in English-Chinese to maintain cross-lingual consistency: only when both the circle (⃝) and the
triangle (△) symbols are in the green list can cross-lingual consistency be achieved. Factor 1: semantically similar
tokens should be in the same list (either red or green). In these cases, “movies” and “电影” are semantically
equivalent, as are “birds” and “鸟”. Factor 2: the vocabulary partitions for semantically similar prefixes should be
the same. In these cases, all prefixes are semantically equivalent.

5.2 Defense Method against CWRA410

We now improve the SIR so that it satisfies the two411

factors described above. As discussed in § 2.2, SIR412

uses the ∆ function to represent vocabulary parti-413

tion (∆ ∈ R|V|), where ∆i > 0 indicating that vi414

is a green token. Based on Eq. 4, SIR has already415

optimized for Factor 2 when using a multilingual416

embedding model. For prefixes x and y, the sim-417

ilarity of their vocabulary partitions for the next418

token should be close to their semantic similarity:419

Sim(∆(x),∆(y)) ≈ Sim(E(x), E(y)), (7)420

where E is a multilingual embedding model.421

Based on SIR, we focus on Factor 1, i.e., cross-422

lingual semantic clustering of the vocabulary. For-423

mally, we define semantic clustering as a parti-424

tion C of the vocabulary V: C = {C1, C2, . . . , C|C|}425

, where each cluster Ci consists of semantically426

equivalent tokens. Instead of assigning biases for427

each token in V , we adapt the ∆ function so that428

it yields biases to each cluster in C, i.e., ∆ ∈ R|C|.429

Thus, the process of adjusting the logits should be:430

∀i ∈ {1, 2, . . . , |V|},
z̃n+1
i = zn+1

i +∆C(i),
(8)431

where C(i) indicates the index of vi’s cluster432

within C. By doing so, if token vi and vj are se-433

mantically equivalent, they will receive the same434

bias on logits:435

C(i) = C(j) =⇒ ∆C(i) = ∆C(j), (9)436

i.e., if vi and vj are translations of each other, they 437

will fall into the same list. To obtain such a se- 438

mantic clustering C, we treat each token in V as 439

a node, and add an edge (vi, vj) whenever (vi, vj) 440

corresponds to an entry in a bilingual dictionary. 441

Therefore, C is all the connected components of 442

this graph. 443

We name this method as X-SIR and evaluated 444

it under the same setting as § 4. We also detail its 445

limitations in § 8.

Method Text Summ. Question Ans.

PCC↑ RE (%) ↓ PCC↑ RE (%) ↓

SIR 0.431 66.18 0.321 71.42
X-SIR 0.554 43.49 0.507 34.98

Table 3: Cross-lingual consistencies in terms of PCC
and RE under CWRA.

446

Cross-lingual consistency & ROC curvers Ta- 447

ble 3 shows the cross-lingual consistency of 448

SIR and X-SIR when confronted CWRA. X-SIR 449

achieves significant improvements in terms of PPC 450

and RE in both tasks. Consequently, as depicted in 451

Figure 6, X-SIR substantially enhances the AUC 452

under CWRA, with an increase in TPRs by ~0.4. 453

Furthermore, X-SIR delivers performance on par 454

with SIR in the absence of any attacks. These find- 455

ings validate the two key factors of cross-lingual 456

consistency that we identified in § 5.1. 457
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Figure 6: ROC curves of X-SIR and SIR.

Method ROUGE-1 ROUGE-2 ROUGE-L

Text Summarization
SIR 13.34 1.79 12.43

X-SIR 15.65 2.04 14.29

Question Answering
SIR 16.95 1.35 14.91

X-SIR 16.77 1.39 14.07

Table 4: Effects of X-SIR and SIR on text quality.

Text quality As shown in Table 4, X-SIR458

achieves better text quality than SIR in text summa-459

rization, and comparable performance on question460

answering, meaning the semantic partition of vo-461

cabulary will not negatively affect text quality.462

6 Related Work463

6.1 LLM Watermarking464

Text watermarking aims to embed a watermark into465

a text and detect the watermark for any given text.466

Currently, text watermark method can be classi-467

fied into two categories (Liu et al., 2023c): wa-468

termarking for exsiting text and watermarking for469

generated text. In this work, we focus on the latter,470

which is more challenging and has more practical471

applications.472

This type of watermark method usually can be473

illustrated as the watermark ironing process (mod-474

ifying the logits of the LLM during text genera-475

tion) and watermark detection process (assess the476

presence of watermark by a calculated watermark477

strength score). Kirchenbauer et al. (2023a) in-478

troduces KGW, the first watermarking method for479

LLMs. Hu et al. (2023) proposes UW without480

affecting the output probability distribution com-481

pared to KGW. Liu et al. (2023b) introduces SIR,482

a watermarking method taking into account the483

semantic information of the text, which shows ro- 484

bustness to paraphrase attacks. Liu et al. (2023a) 485

proposes the first unforgeable publicly verifiable 486

watermarking algorithm for large language models. 487

SemStamp (Hou et al., 2023) is another semantic- 488

related watermarking method and it generate wa- 489

termarked text at sentence granularity instead of 490

token granularity. Tu et al. (2023) introduces 491

WaterBench, the first comprehensive benchmark 492

for LLM watermarks. We introduce the details of 493

KGW, UW and SIR in § 2.2. 494

6.2 Watermark Robustness 495

A good watermarking method should be robust 496

to various watermarking removal attacks. How- 497

ever, current works on watermarking robustness 498

mainly focus on single-language attacks, such as 499

paraphrase attacks. For example, Kirchenbauer 500

et al. (2023b) evaluates the robustness of KGW 501

against paraphrase attacks as well as copy-paste 502

attacks and proposes a detect trick to improve the 503

robustness to copy-paste attacks. Zhao et al. (2023) 504

employs a fixed green list to improve the robust- 505

ness of KGW against paraphrase attacks and edit- 506

ing attacks. Chen et al. (2023) proposes a new 507

paraphrase robust watermarking method “XMark” 508

based on “text redundancy” of text watermark. 509

7 Conclusion 510

This work aims to investigate the cross-lingual con- 511

sistency of watermarking methods for LLMs. We 512

first characterize and evaluate the cross-lingual con- 513

sistency of current watermarking techniques for 514

LLMs, revealing that current watermarking meth- 515

ods struggle to maintain their watermark strengths 516

across different languages. Based on this obser- 517

vation, we propose the cross-lingual watermark 518

removal attack (CWRA), which significantly chal- 519

lenges watermark robustness by efficiently elimi- 520

nating watermarks without compromising perfor- 521

mance. Through the analysis of two primary factors 522

that influence cross-lingual consistency, we pro- 523

pose X-SIR as a defense strategy against CWRA. 524

Despite its limitations, this approach greatly im- 525

proves the AUC and paves the way for future re- 526

search. Overall, this work completes a closed loop 527

in the study of cross-lingual consistency in water- 528

marking, including: evaluation, attacking, analysis, 529

and defensing. 530
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8 Limitations531

While X-SIR has demonstrated promising capabil-532

ities in enhancing cross-lingual consistency and533

defending against CWRA, it also faces certain lim-534

itations. A key limitation is its narrow scope of535

applicability. This limitation stems from the re-536

liance on an external bilingual dictionary for se-537

mantic clustering of the vocabulary, which means538

X-SIR focuses solely on whole words and neglects539

smaller word units. Consequently, its effective-540

ness is closely tied to the tokenization. X-SIR’s541

performance may be compromised if the tokenizer542

favors finer-grained token segmentation. Moreover,543

X-SIR could face difficulties in scenarios with a544

significant difference in word order between the545

original and pivot languages. This aspect is cru-546

cial, as attackers can exploit these differences in547

any language pair to conduct CWRA. Therefore,548

X-SIR does not solve the issue of cross-lingual549

consistency but sets the stage for future research.550
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A Watermark Method Detail656

In this section, we provide more details about the657

watermarking methods we use in our experiments.658

A.1 Watermark Strength Score659

As we discussed in Section 6.1, we focus on the660

watermarking methods for LLMs. And we illus-661

trated that a watermarking method can be divided662

into two parts: watermark ironing process and wa-663

termark detection process. In ironing process, the664

watermark is embedded into the text by modifying665

the logits of the LLM during text generation. In666

detection process, the watermark detector calcu-667

lates the watermark strength score S to assess668

the presence of watermark. S is a scalar value to669

indicate the strength of the watermark in the text.670

For any given text, we can calculate its watermark671

strength score S based on detection process of the672

watermarking method. A higher S indicates that673

the text is more likely to contain watermark. In the674

opposite, a lower S indicates that the text is less675

likely to contain watermark. Every watermarking676

method has its own way to ironing the watermark677

and calculate the watermark strength score S. We678

provide the details of watermark ironing process679

and watermark detection process for KGW, UW680

and SIR in the following sections.681

A.2 KGW 682

In Section 2.2, we introduce the watermark ironing 683

process and watermark detection process of KGW. 684

Here we provide the details of experiment settings 685

for KGW. KGW uses a hash function H to compute 686

a hash of the previous k tokens. In this work, we 687

follow the experiment settings of (Kirchenbauer 688

et al., 2023a), using the minhash with k = 4. The 689

proportion of green token lists Vg to the total word 690

list V is set to γ = 0.25. The constant bias δ is set 691

to 2.0. 692

A.3 UW 693

In this section, we introduce the detail watermark- 694

ing ironing process and watermark detection pro- 695

cess of UW. The ironing process of UW is similar 696

to KGW. The difference between UW and KGW is 697

the way to modify the logits: 698

(1) compute a hash of x1:n: hn+1 = H(x1:n), 699

and use hn+1 as seed generating a random 700

number p ∈ [0, 1). 701

(2) determine the token t satisfies: 702

p ∈

[
t−1∑
i=1

PMi(x
n+1|x1:n), 703

t∑
i=1

PMi(x
n+1|x1:n)

)
(10) 704

(3) set PMi(x
n+1|x1:n) = 0 for i ̸= t and 705

PMt(x
n+1|x1:n) = 1. 706

Then we get the adjusted logits P̃M (xn+1|x1:n). 707

The detection process calculates a maximin vari- 708

ant Log Likelihood Ratio (LLR) of the detected 709

text to assess the watermark strength score. Log 710

Likelihood Ratio (LLR) is defined as: 711

ri =
P̃M (xi|x1:i−1)

PM (xi|x1:i−1)
(11) 712

The total score is defined as: 713

R =
P̃M (xa+1:n|x1:a)

PM (xa+1:n|x1:a)
(12) 714

Where x1:a is prompt and xa+1:n is the detected 715

text. Let 716

Pi = PM (xi|x1:i−1) (13) 717

Qi = P̃M (xi|x1:i−1) (14) 718

Ri = (ri(x1), ri(x2), · · · , ri(x|V|)) (15) 719

Where ri(xk) is the LLR of token xk at position i. 720

To avoid the limitation of the original LLR, (Hu 721
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et al., 2023) proposes a maximin variant LLR. The722

calculating process of maximin variant LLR can be723

illustrated as follows:724

max
Ri

min
Q

′
i∈∆V ,TV (Q

′
i,Qi)≤d

〈
Q′

i, Ri

〉
,725

s.t. ⟨Pi, exp (Ri)⟩ ≤ 1 (16)726

Where ∆V is the set of all probability distributions727

over the symbol set V , and TV is the total variation728

distance, d is a hyperparameter to control TV , and729

⟨·, ·⟩ is the inner product. UW utilizes the maximin730

variant LLR to calculate the watermark strength731

score.732

In the experiments, we follow the experiment set-733

tings of original paper, using the previous 5 tokens734

to compute the hash and set d = 0.735

A.4 SIR736

In this section, we introduce the watermark iron-737

ing process and watermark detection process of738

SIR. Given a language model M , a text embedding739

language model E, a trained watermark model T ,740

previous generated text t =
[
t0, · · · , tl−1

]
. The741

watermark ironing process of SIR can be illustrated742

as follows:743

(1) Generate the next token logits: PM (tl|t).744

(2) Generate the semantic embedding of the pre-745

vious tokens: el = E(t).746

(3) Generate the watermark logit bias: ∆ =747

T (el) ∈ R|V|.748

(4) Adjust the logits: P̃M (tl|t) = PM (tl|t)+ δ×749

∆.750

Where δ is a hyperparameter (a small positive num-751

ber) to control the strength of the watermark.752

The detection process calculates the mean of the753

watermark bias of the detected text to assess the754

watermark strength score. Given the detected text755

x =
[
x1, · · · , xN

]
.756

s =

∑N
n=1∆I(xn)(x

1:n−1)

N
, (17)757

where I(xn) is the index of token xn within the758

vocabulary V . ∆I(xn)(x
1:n−1) is the watermark759

bias of token xn at position n. Since the watermark760

bias satisfies the unbiased property:
∑

t∈V ∆I(t) =761

0, the expected detection score for the text without762

watermark is 0. The detection score of the text with763

watermark should over 0.764

In this work, we follow the origin experiment set- 765

tings for the watermark model T . The watermark 766

model uses a four-layer fully connected residual 767

network with rectified linear unit activations, with 768

the hyperparameter k1 = 20, k2 = 1000, λ1 = 769

10, λ2 = 0.1. And we use Adam optimizer with 770

learning rate 1e− 5 to train the watermark model 771

T . The watermark strength parameter δ is set to 772

4.0. 773

B Result of Cross-lingual Consistency 774

In this section, we provide the detail result of our 775

cross-lingual consistency experiment. We perform 776

our experiment on three watermarking methods: 777

KGW, UW and SIR and two large language mod- 778

els: BAICHUAN-7B and LLAMA-2-7B-CHAT. Fig- 779

ure 7 shows the result of cross-lingual consistency 780

experiment. 781

All watermarking methods show that the water- 782

mark strength score of raw text is positively cor- 783

related with the text length. After translation, the 784

watermark strength score significantly decreases. 785

The result indicates that the watermarking meth- 786

ods we use in our experiments exhibit a lack of 787

cross-lingual consistency. 788

C Result of Watermark Removal Attack 789

In this section, we provide the detail result of text 790

watermark removal attack experiment. We perform 791

the experiment on three watermarking methods: 792

KGW, UW and SIR and two tasks: text summariza- 793

tion and question answering. The large language 794

model we use in the experiment is BAICHUAN-7B. 795

Figure 8 shows the ROC curves result of text sum- 796

marization task under various attack methods: Re- 797

translation, Paraphrase and CWRA for KGW, UW 798

and SIR. While Figure 9 shows the ROC curves re- 799

sult of question answering task under various attack 800

methods: Re-translation, Paraphrase and CWRA 801

for KGW, UW and SIR. We also report the TPR 802

values at a fixed FPR of 0.1 in each subfigure. 803

All the results show that CWRA can effectively 804

remove the watermark from the watermarked text 805

which is more effective than Re-translation and 806

Paraphrase attack. 807
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Figure 7: Trends of watermark strengths with text length before and after translation. Top three subfigures show
the trends of watermark strengths with text length before and after translation for BAICHUAN-7B. Bottom three
subfigures show the trends of watermark strengths with text length before and after translation for LLAMA-2-7B-
CHAT.
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Figure 8: ROC curves for KGW, UW and SIR under various attack methods: Re-translation, Paraphrase and CWRA.
We also present TPR values at a fixed FPR of 0.1. This is the result of text summarization task.
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Figure 9: ROC curves for KGW, UW and SIR under various attack methods: Re-translation, Paraphrase and CWRA.
We also present TPR values at a fixed FPR of 0.1. This is the result of question answering task.
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