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ABSTRACT

The production of high-fidelity images by generative models has been transforma-
tive to the space of artificial intelligence. Yet, while the generated images are of
high quality, the images tend to mirror biases present in the dataset they are trained
on. While there has been an influx of work to tackle fair ML broadly, existing
works on fair image generation typically rely on modifying the model architec-
ture or fine-tuning an existing generative model which requires costly retraining
time. In this paper, we use a family of tractable probabilistic models called prob-
abilistic circuits (PCs), which can be equipped to a pre-trained generative model
to produce fair images without retraining. We show that for a given pre-trained
generative model, our method only requires a small fair reference dataset to train
the PC, removing the need to collect a large (fair) dataset to retrain the generative
model. Our experimental results show that our proposed method can achieve a
balance between training resources and ensuring fairness and quality of generated
images.

1 INTRODUCTION

In recent years, generative models have seen an explosion of interest and advancements and are
being applied in a wide range of real-world domains. They have broad applications, including but
not limited to image, text, audio, video, and medical data. Some popular examples of image-based
generative models are variational autoencoders (Kingma, 2013), generative adversarial networks
(GAN) (Goodfellow et al., 2020), flow-based generative models (Dinh et al., 2014), and diffusion
models (Sohl-Dickstein et al., 2015). Similarly, text-based generative models such as ChatGPT
and LLAMA (Touvron et al., 2023) have rapidly gained the interest of academia, industry, and the
broader public.

However, while generative models have demonstrated success across many domains in producing
realistic samples, fair generation has been a relatively less explored area. Fair generation is a difficult
challenge as it is a direct consequence of using biased data in training generative models. Yet, as
generative models become integrated into everyday life, techniques to ensure fair generation must
be established. They are also being used to generate simulated data to train downstream ML models,
again with fairness implications.

One of the first challenges to address in fairness-aware machine learning is determining the appro-
priate notion of fairness for the domain. For example, for fair classification, there exist numerous
types of technical formulations of fairness, often concerning the output (prediction) of the classifier
and sensitive/protected attributes such as race, gender, or other demographic features. On the other
hand, for image generation, there is no particular output/target variable with respect to which to de-
fine fairness. Rather, the users and ML practitioners for downstream tasks may be interested in the
distribution of the generated samples and ensuring that it is not biased with respect to some sensitive
attributes. Furthermore, this notion of fairness could simply enforce that the sensitive attributes of
the generated images follow a uniform distribution (e.g., equal probability of generating a female
or male image); however, it may be more appropriate in certain domains to rather enforce that the
generated distribution matches the population distribution. As such, this work focuses on ensuring
that the distribution of generated images follows a given reference fair distribution.

This paper makes the following key contributions:
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• We use probabilistic circuits (PCs) to learn the distribution of a reference fair dataset. We
also show that if the reference dataset includes sensitive attribute information, we can lever-
age this to learn the fair distribution.

• We show that both proposed methods have much shorter training times while generating
fairer images than the base generative model.

• Our method can be integrated with a variety of pre-trained generative models, given that
there exists an encoder to map fair images to some latent representations.

2 RELATED WORK

Discussions regarding fair image generation have grown in the machine-learning community due
to the increased utilization of generative models. Previous approaches to fair image generation
involved transfer learning (Teo et al., 2023), generating fair synthetic data (Van Breugel et al., 2021),
and learning without sensitive labels (Um & Suh, 2023; Jalal et al., 2021). Pioneering work in this
area includes (Choi et al., 2020a), which uses a weakly-supervised approach to learn a generative
model based on an importance reweighing scheme. Tan et al. (2020) also tackles the problem of fair
image generation, specifically focusing on generative adversarial networks (GANs) (Goodfellow
et al., 2020) after first seeing empirically that bias within training data is amplified by the GAN
model. They propose the use of “latent distribution shifting” by learning a Gaussian mixture model
(GMM) over a set of fair latent codes conditioned on a specific attribute value.

We differ from these ideas in that we utilize a more expressive model (Probabilistic Circuit) to learn
the distribution of a reference fair dataset. This allows us to integrate directly into a variety of pre-
trained generative models similar to (Tan et al., 2020); however, the increase of expressivity allows
us to more easily represent complex latent distributions over the fair subset of attributes.

3 BACKGROUND

3.1 NOTATION

Throughout this paper, random variables are denoted by uppercase letters (X) and their assignments
by lowercase letters (x). We use bold uppercase (X) and lowercase letters (x) for sets of variables
and their assignments, respectively. Pr represents probability, p and q represent probability mass
functions, and E[.] represents expected value.

3.2 FAIR GENERATION

In fair generation, the goal is to have a model capable of generating samples with distribution pfair(x)
where pfair(x) = Es∼Sfair

Pr(X = x|s) and Sfair is the distribution of the sensitive attributes
according to a usually small reference dataset, called Dfair. The reference dataset may (but not
necessarily will) follow a uniform distribution with respect to the sensitive attributes. For example, in
terms of gender equality, usually z ∼ Bernoulli(0.5), meaning that the gender has equal probability
for female and male. Generative models need a large dataset (called Dbias) to produce high-quality
images that mirror the inductive biases of the dataset. However, the learned inductive biases usually
lead to biases against minority groups. So, they tend not to follow the Sfair distribution. The goal
is to use Dfair and Dbias to train a generative model that is both expressive and fair.

3.3 PROBABILISTIC CIRCUITS

Probabilistic Circuits (PCs) (Choi et al., 2020b) are a class of tractable probabilistic models (TPMs)
such as sum-product networks (Poon & Domingos, 2011), Einsum networks (Einets) (Peharz et al.,
2020), Cutset networks (Rahman et al., 2014), and arithmetic circuits (Darwiche, 2002). With
tractability defined as the ability to compute marginal probabilities in polynomial time. Probabilistic
circuits can also be seen as deep mixtures of probability distributions (Darwiche, 2003). We will
define PCs as the following,
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Definition 1 (Probabilistic Circuits) (Dang et al., 2022) A PC, C := (G, θ), represents a joint proba-
bility distribution p(X) over random variables X through a directed acyclic graph (DAG), G, which
is parameterized by θ. The DAG is composed of 3 types of nodes: leaf, product ⊗, and sum nodes
⊕. Every leaf node in G is an input, and every inner node receives inputs from its children in(n).
These inner nodes compute an encoding of a probability density function p(X) with their outputs.
This is defined recursively as follows:

p(X) :=


fn(x), n is a leaf∏
c∈in(n) pc(x), n = ⊗∑
c∈in(n) θc|npc(x), n = ⊕

(1)

where fn(x) is some univariate input distribution, θc|n is the parameter associated with the edge
connecting nodes (n, c) in the graph G and

∑
c∈in(n) θc|n = 1. For the duration of this paper, we

will default using categorical random variables at the leaves with inputs x ∈ {0, . . . ,K − 1} where
K is the number of categories.

The computation of log-likelihoods can easily be evaluated from the circuit using a single “feed-
forward” pass through the circuit from leaf to root. However, to ensure tractable computation of
marginals (Choi et al., 2020b) we must ensure the circuit is “smooth and decomposable”,

Definition 2 (Smoothness and Decomposability) The scope of a node in a PC, n, is the set of input
variables to n. We refer to a product node as decomposable if its children have disjoint scope, and
refer to a sum node as smooth if its children have identical scope. A PC is only referred to as “smooth
and decomposable” if all of its sum units are smooth and all of its product nodes are decomposable.

Throughout this paper, we will assume that all PCs used are smooth and decomposable with alter-
nating sum and product nodes, giving us the ability to compute not just marginals in linear time,
but also to conditionally sample from a PC in linear time. An example of a simplified PC structure
which we will use throughout this work can be seen in Figure 2.

4 PROPOSED METHOD

Assuming that there exists a pre-trained generative model having some kind of encoder-decoder
pair—e.g., an autoencoder or a flow-based model, etc.—we use a probabilistic model to intervene
on its latent distribution. That is, we will guide the latent variables, such that the images generated by
decoding those latent variables will follow a fairer distribution with respect to a reference dataset.
In different image generation paradigms, one may also work with a generator such as a GAN, as
seen in (Tan et al., 2020). The details regarding specific choice of model for our implementation
is provided in Section 5. According to Figure 1, the encoder can be modeled by qϕ(z|x) where x
is the input image, z is the latent vector, aka embedding, and ϕ represents all the parameters in the
encoder. Similarly, the decoder is modeled by pθ(x̃|z) where x̃ denotes the reconstructed image,
and θ the decoder parameters.

Probabilistic circuits have shown excellent capabilities in expressively learning a distribution while
maintaining tractability. It gives them the ability to perform marginal and conditional queries in
polynomial time with respect to the circuit size. Probabilistic circuits are also data and model ef-
ficient; thus there is no need for a large dataset for their training. In this work, a PC learns the
distribution of latent variables for Dfair. In other words, pψ(z) = Pr(Z = z;ψ) is learned and
with the help of the decoder, the distribution of the output, x̃, is fair. We only manipulate the distri-
bution of z and do not fine-tune the generative model. As shown in the experiments, the proposed
method is fast due to only manipulating the latent variables.

Given an ideal encoder and decoder pair, meaning that they are not affected by the biases in Dbias,
one tempting procedure is to learn the distributions of the latent variables when the fair dataset
(Dbias) is fed to the encoder (see Figure 1). Considering this scenario, a PC learns the latent space
distribution i.e. pfair(z). In our learning procedure, we use SGD-based negative likelihood loss
defined as NLL = −

∑
z∈Batch log(p(z)). The algorithm for learning with negative likelihood is

left in Appendix 2.

While this approach seems to be promising, we will show in the experiments (Section 5) that this
method does not generate samples with a satisfactory level of fairness. Note that in this case, the PC
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x qϕ(z|x) pθ(x̃|z)

pψ(z)

s

x̃
z

Figure 1: The latent variable distribution is learned by a PC having parameters ψ

Algorithm 1 Learning a PC and sampling images according to it

1: Input: Trained encoder En and decoder De pair, PC C, Large biased dataset Dbias, Reference
fair dataset Dfair.

2: Output: Fair image samples X̃gen

3: Encode Dfair training split to Zfair with En;
4: Train C with input=concat(Zfair,S) according to Algorithm 2
5: Sample new latent variables Zgen from C according to Algorithm 3
6: Decode Zgen to X̃gen by De
7: return X̃gen

does not have access to the sensitive attributes S. The problem with this approach is that the latent
variables (z) do not follow the fair distribution even when x ∼ Xfair because the encoder tends
to skew their output distributions toward the majority group, i.e., pencoder(z) = Ex∼Xfair

Pr(Z =
z|x;ϕ) ̸= pfair(z). This issue is magnified when the decoder similarly skews towards the majority
group, even if it is over a set of fair latent variables, that is, pdecoder(x̃) = Ez∼Zfair

Pr(X̃ =
x̃|z; θ) ̸= pfair(x̃).

So, we propose a better way to resolve the mentioned issue. Resolving the decoder’s bias will be a
subject of future work. In case we also have access to the sensitive attributes of the fair dataset, we
can train the PC on the joint distribution of S and Z; that is, the PC can learn pfair(z, s). We can
call the new approach guided learning as opposed to the previous unguided method. To do this, we
construct a PC with two identical sub-circuits. They are connected to a sum node by conditioning on
S. A simplified version of the proposed structure with only two latent variables is shown in Fig. 2.
The training algorithm is the same as the previous case (see algorithm 2) using concat(Z,S) instead
of Z. You can see an overview of the proposed method in Algorithm 1.

This can be viewed from another perspective. With a noisy latent variable for the minority group, say
Z +n, the distribution has more variance and, therefore, less density. So, the overall circuit assigns
a higher relative weight (wS and w¬S) to compensate for its lack of probability density. In sam-
pling time, each subcircuit can contribute to the sampling process based on its relative weight (the
sampling algorithm is provided in the Appendix). All in all, the subcircuit for the under-represented
group will contribute more to the sampling process. Note that we do not specify the sensitive at-
tribute in sampling time, and it is determined by the sampling algorithm itself.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Each experiment setting was repeated 10 times, and the average result is reported. For each run,
10,000 samples are generated. Tolerance ϵ (see Algorithm 2) is set to 1, and the maximum number
of epochs and batch size were set to 2000 and 2048, respectively. We used an NVIDIA L40S GPU
with 48GB of memory for the experiments.

In this paper, we use a variation of GANs called vector-quantized GAN, or simply VQ-GAN (Esser
et al., 2020), as it is shown to be able to generate high-quality samples. We work only with its
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× ×

wS w¬S

S ¬S

× × × ×

Z2 Z2 Z2 Z2

Z1 Z1 Z1 Z1

Figure 2: A simplified sketch of the proposed PC structure for a distribution with one binary sensitive
attribute S

encoder and decoder and not its transformer on the discriminator. The idea underlying these models
is to quantize the latent vectors to their nearest code-book vector, resulting in an integer number
(code-book index). More accurately, an M ×N ×R float embedding tensor will be converted to an
M ×N × 1 integer tensor, where M and N are the spatial and R is the channel dimensions.

We use Einsum networks (Peharz et al., 2020) in this work as the building block of the proposed
PC structure. The network has a depth of 3, with the number of sums, leaves, and repetitions all set
to 10. The number of categories in the VQ-GAN code book is set to 1024, so we use the Einsum
network with categorical leaf nodes of the same size.

All experiments were performed on the CelebA dataset (Liu et al., 2015). The images have dimen-
sion 64×64, resulting in latent variable dimensions of |Z| = 8×8 = 64 after encoding. The selected
sensitive attribute for all the experiments is the gender of the face image, and the fair female-male
ratio is selected to be 50-50. Note that the gender of the images is only used in the experiments with
guided learning (shown in figures and tables by “Ours + S”.)

Instead of using two different datasets, CelebA is divided into Dbias and Dfair. The unfair dataset
(Dbias) can have different degrees of bias/unfairness (we refer to it as F-M Ratio.) In addition, the
relative size of these two datasets is important and is referred to as γ. The generative model is trained
on the unfair dataset. However, the PC is trained on the fair subset’s latent variables passed to that
trained generative model.

5.2 RESULTS

The proposed method is evaluated by different metrics measuring the quality and fairness of the
samples. The first metric is the total variation distance (TVD) between the sensitive attribute dis-
tributions of the generated images and the reference dataset. We refer to it as fairness discrepancy
(FD). It is computed by:

FD = TVD(pout, pfair) =
1

2

∑
s

|pout(s)− pfair(s)| (2)

where pout is the distribution of sensitive attributes for the generated images and pfair is its distribu-
tion in the reference fair dataset (Dfair). We use a classifier trained on the original CelebA images
to predict the sensitive attributes of the generated images. We use the same ResNet-18 (He et al.,
2016) classifier as used in (Choi et al., 2020a). Note that this classifier is only for metric purposes
and is not used during training or sampling.

You can see the samples generated by sampling from VQ-GAN (Esser et al., 2020) transformer for
one set of dataset configurations, i.e., bias = 90-10, and the dataset ratio γ = 0.25. in Fig. 3. In this
case, we utilized the VQ-GAN transformer to produce the latent variables. We set the temperature to
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Figure 3: Generated samples using VQ-GAN (Esser et al., 2020) transformer when female-male
ratio in Dbias is 90-10, and γ = 0.25. For this set of generated samples, the proportion of females
is 0.86 and males is 0.14

Figure 4: Generated samples by the first proposed method, i.e., unguided learning when the female-
male ratio in Dbias is 90-10, and γ = 0.25. For this set of generated samples, the proportion of
females is 0.64 and males is 0.36

1.0 and k in top-k sampling to 600. The results for the same dataset configurations when sampling
from our proposed structure first methodare presented in Fig. 4. As can be seen, there are more male
samples in our method than using just VQ-GAN. Similarly, the results for second method (Z+S)are
presented in Fig. 5. According to the results, the samples are fairer than the first method.

According to the experiments, when having a more biased dataset, the work for PC becomes harder.
This is because the generative model is biased, so its latent variables tend to be more skewed toward
the majority group. One experiment we did was to encode and decode the original images in Dbias
(having uniform distribution for females and males) and then classify them. The female-male ratio
of the reconstructed images was 57.46-42.53 when the autoencoder was trained with a bias of 90-10,
and it was 56.45-43.54 when trained with a bias of 80-20. It is obvious from the numbers that even
encoding and decoding the original images with the learned generative model tends to be classified
toward the majority group, thus having a higher fairness discrepancy (FD). The FD scores for the
proposed method versus the one for (Choi et al., 2020a) are presented in Table 1. As can be seen,
the proposed method has a better FD score for both of our implementations.

The quality of the generated images is measured by Fréchet inception distance (FID) (Heusel et al.,
2017) and inception score (Salimans et al., 2016). The FID and inception scores for the proposed
method and (Choi et al., 2020a) are also presented in Table 1. The results show that both the
proposed methods are robust to changes inDfair toDbias ratios (γ). It also means that the proposed
method is very data-efficient and can work with smaller reference dataset sizes.

The average training times can be found in Table 2. According to this table, the proposed method is
one order of magnitude faster than the baseline.

6 CONCLUSION

In this work, we utilize the capabilities of probabilistic models to ensure the generation of fair im-
ages. More exactly, by using probabilistic circuits, the latent distribution of a fair reference data
was learned without any need to fine-tune the generative model. We showed that the generated im-
ages have sufficient fidelity while following a fair distribution. We show that the proposed method
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Figure 5: Generated samples by the second proposed method, i.e. guided learning, when female-
male bias in Dbias is 90-10, and γ = 0.25. For this set of generated samples, the proportion of
females is 0.42 and males is 0.58

Table 1: FD, FID, and inception scores (IS) for the proposed method and (Choi et al., 2020a) and
(Esser et al., 2020). The results are presented for different configurations of Dbias.

F-M ratio 80-20 90-10

γ FD(↓) FID(↓) IS(↑) FD(↓) FID(↓) IS(↑)
(Esser et al., 2020) - 0.273 24.13 2.024 0.354 22.03 2.005

(Choi et al., 2020a) 0.1 0.500 414.48 1.033 0.077 307.39 1.381
0.25 0.385 25.68 1.825 0.298 27.05 1.923
0.5 0.316 20.98 2.028 0.350 23.26 1.960
1.0 0.270 17.54 2.123 0.321 17.45 2.019

Ours 0.1 0.151 26.91 1.953 0.223 28.57 1.893
0.25 0.147 26.19 1.939 0.164 24.46 1.939
0.5 0.146 26.05 1.938 0.217 27.83 1.881
1.0 0.144 26.08 1.938 0.214 27.30 1.873

Ours +S 0.1 0.082 33.25 2.020 0.020 32.40 1.968
0.25 0.133 34.98 1.970 0.119 32.38 1.951
0.5 0.143 35.23 1.948 0.070 33.33 1.902
1.0 0.150 36.12 1.954 0.070 33.45 1.901

is much faster and more data-efficient than the existing methods, as this method only requires an
encoder to map from fair images to their latent variables. While our current implementation worked
with VQ-GAN, the proposed method can in theory be used with other generative models such as
flow-based models. We found that while methodologically unguided distribution learning is possi-
ble, it can result in the encoder skewing the latent variables to the majority group. To correct this
issue, we shifted towards guided distribution learning, resulting in a fairer learned distribution. One
limitation of our approach is that the quality of generated images as well as the resulting distribution
depend on the performance of the pre-trained model. As we only “intervene” on the latent distribu-
tion of a given encoder, our performance may be limited by a noisy generator (e.g., encoding and
decoding an image of a male could generate that of a female, or vice versa).

Table 2: Average training time (in minutes) for the proposed method and (Choi et al., 2020a)

F-M Ratio 80-20 90-10

γ 0.1 0.25 0.5 1.0 0.1 0.25 0.5 1.0

(Choi et al., 2020a) 109.13 242.48 285.97 371.65 216.00 239.25 285.62 372.35
Ours 3.35 6.03 8.36 11.27 3.50 6.75 8.67 12.63
Ours +S 5.13 10.88 14.41 18.66 5.12 11.28 15.27 22.50
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Table 3: Average number of epochs to converge for the proposed method.

F-M Ratio 80-20 90-10

γ 0.1 0.25 0.5 1.0 0.1 0.25 0.5 1.0

Ours 1365.0 1037.8 724.4 491.9 1375.6 1142.9 746.1 551.8
Ours +S 1103.5 955.4 636.8 435.8 1098.1 997.2 678.2 500.9

A APPENDIX

A.1 TIMING

The average number of epochs to converge is provided in Table 3. For the baseline method (Choi
et al., 2020a), the number of epochs is 150, and each experiment was done once.

A.2 COMMON ALGORITHMS

The common algorithm for learning a PC with SGD-based negative likelihood is given in 2. Accord-
ing to the algorithm, the circuit parameters ψ are updated in every iteration so that it has a greater
likelihood for the input variable. You can also see how PCs generate samples in Algorithm 3.

Algorithm 2 Training the PC on Z with negative log-likelihood loss

1: Input: train set Dval, validation set Dval, number of epochs Ne, tolerance ϵ
2: Output: PC C with weights and leaf node parameters ψ
3: for batch b in Dtrain do
4: LL = PC(b)
5: NLL = −LL
6: Back-propagate NLL to PC
7: Update ψ
8: repeat
9: V alLoss = Compute Loss on Dval

10: until V alLoss reduced less than ϵ or epoch = Ne
11: return C

Algorithm 3 Sampling from Probabilistic Circuits (Dang et al., 2022)

1: Input: A PC, C representing a distribution p(X).
2: Output: An instance X from C.
3: function SAMPLE(n)
4: if n is a leaf node then
5: fn(x)← univariate distribution of n; return x ∼ fn(x)
6: else if n is a product node then
7: xc ←Sample(c) for each c ∈ in(n); return Concat({xc}c∈in(n))
8: else n is a sum node
9: sample a child unit c proportional to {θc|n}c∈in(n); return Sample(c)

10: return Sample(r) where r is the root node

A.3 MORE GENERATED SAMPLES

In this section, the generated samples are provided for different Dbias configurations. Figure 6
shows some samples from the VQ-GAN (Esser et al., 2020) transformer. The rest of the figures
show samples of the proposed method for both guided and unguided settings.
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Figure 6: The generated images using VQ-GAN (Esser et al., 2020) transformer when female-male
ratio in Dbias is 80-20, and γ = 0.25. For this set of generated samples, the proportion of females
is 0.79 and males is 0.21

Figure 7: Generated samples by first method. (F-M Ratio 80-20, γ = 0.1)

Figure 8: Generated samples by first method. (F-M Ratio 80-20, γ = 0.25)

Figure 9: Generated samples by first method. (F-M Ratio 80-20, γ = 0.5)
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Figure 10: Generated samples by first method. (F-M Ratio 80-20, γ = 1.0)

Figure 11: Generated samples by first method. (F-M Ratio 90-10, γ = 0.1)

Figure 12: Generated samples by first method. (F-M Ratio 90-10, γ = 0.25)

Figure 13: Generated samples by first method. (F-M Ratio 90-10, γ = 0.5)

Figure 14: Generated samples by first method. (F-M Ratio 90-10, γ = 1.0)
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Figure 15: Generated samples by second method (Z + S). (F-M Ratio 80-20, γ = 0.1)

Figure 16: Generated samples by second method (Z + S). (F-M Ratio 80-20, γ = 0.25)

Figure 17: Generated samples by second method (Z + S). (F-M Ratio 80-20, γ = 0.5)

Figure 18: Generated samples by second method (Z + S). (F-M Ratio 80-20, γ = 1.0)

Figure 19: Generated samples by second method (Z + S). (F-M Ratio 90-10, γ = 0.1)
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Figure 20: Generated samples by second method (Z + S). (F-M Ratio 90-10, γ = 0.25)

Figure 21: Generated samples by second method (Z + S). (F-M Ratio 90-10, γ = 0.5)

Figure 22: Generated samples by second method (Z + S). (F-M Ratio 90-10, γ = 1.0)
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