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Abstract
D-Adaptation is an approach to automatically
setting the learning rate which asymptotically
achieves the optimal rate of convergence for
minimizing convex Lipschitz functions, with
no back-tracking or line searches, and no
additional function value or gradient evaluations
per step. Our approach is the first hyper-parameter
free method for this class without additional
multiplicative log factors in the convergence
rate. We present extensive experiments for
SGD and Adam variants of our method, where
the method automatically matches hand-tuned
learning rates across more than a dozen diverse
machine learning problems, including large-scale
vision and language problems. An open-source
implementation is available1.

1. Introduction
We consider the problem of unconstrained convex
minimization,

min
x∈Rp

f(x),

where f has Lipschitz constant G and a non-empty set of
minimizers. The standard approach to solving it is the
subgradient method that, starting at a point x0, produces
new iterates following the update rule:

xk+1 = xk − γkgk,

where gk ∈ ∂f(xk) is a subgradient of f . After running for
n steps, the average iterate x̂n = 1

n+1

∑n
k=0 xk is returned.

The learning rate γk, also known as the step size, is the main
quantity controlling if and how fast the method converges.
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Algorithm 1 Dual Averaging with D-Adaptation
Input: x0, d0 > 0,
s0 = 0, g0 ∈ ∂f(x0), γ0 = 1/ ∥g0∥
If g0 = 0, exit with x̂n = x0

for k = 0 to n do
gk ∈ ∂f(xk)
sk+1 = sk + dkgk

γk+1 =
1√∑k

i=0 ∥gi∥
2

d̂k+1 =
γk+1 ∥sk+1∥2 −

∑k
i=0 γid

2
i ∥gi∥

2

2 ∥sk+1∥

Option II: d̂k+1 =

∑k
i=0 diγi ⟨gi, si⟩

∥sk+1∥
dk+1 = max

(
dk, d̂k+1

)
xk+1 = x0 − γk+1sk+1

end for
Return x̂n = 1∑n

k=0 dk

∑n
k=0 dkxk

If the learning rate sequence is chosen too large, the method
might oscillate around the solution, whereas small values
lead to very slow progress. Setting γk optimally requires
knowledge of the distance to a solution. In particular, denote
x∗ to be any minimizer of f , D to be the associated distance
D = ∥x0 − x∗∥, and f∗ to be the optimal value, f∗ =
f(x∗). Then, using the fixed step size:

γk =
D

G
√
n
,

the average iterate x̂n converges in terms of function value
at an inverse square-root rate:

f(x̂n)− f∗ = O(DG/
√
n).

This rate is worst-case optimal for this complexity class
(Nesterov, 2018). Setting this step size requires knowledge
of two problem constants, D and G. Adaptivity to G can be
achieved using a number of approaches, the most practical
of which is the use of AdaGrad-Norm step sizes (Streeter &
McMahan, 2010; Duchi et al., 2011; Ward et al., 2019):

γk =
D√∑k

i=0 ∥gi∥
2
,
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together with projection onto the D-ball around the origin.
AdaGrad-Norm step sizes still require knowledge of D, and
they perform poorly when it is estimated wrong. In the
(typical) case where we don’t have knowledge of D, we
can start with loose lower and upper bounds d0 and dmax,
and perform a hyper-parameter grid search on a log-spaced
scale. In most machine learning applications a grid search
is the current standard practice.

In this work we take a different approach. We describe
a method that achieves the optimal rate, for sufficiently
large n, by maintaining and updating a lower bound on D
(Algorithm 1). Using this lower bound is provably sufficient
to achieve the optimal rate of convergence:

f(x̂n)− f(x∗) = O
(

DG√
n+ 1

)
,

with no additional log factors, avoiding the need for a hyper-
parameter grid search.

Our method is highly effective across a broad range
of practical problems, matching a carefully hand-tuned
baseline learning rate across a broad range of machine
learning problems within computer vision, Natural language
processing and recommendation systems.

2. Algorithm
Our proposed approach is a simple modification of the
AdaGrad step size applied to weighted dual averaging,
together with our key innovation: D lower bounding. At
each step, we construct a lower bound d̂k on D using
empirical quantities. If this bound is better (i.e. larger)
than our current best bound dk of D, we use dk = d̂k in
subsequent steps. There are two options to estimate d̂k, but
since they have exactly the same theoretical properties, we
only discuss the first option below.

To construct the lower bound, we show that a weighted sum
of the function values is bounded above as:

n∑
k=0

dk (f(xk)− f∗)

≤ D ∥sn+1∥+
n∑

k=0

γk
2
d2k ∥gk∥

2 − γn+1

2
∥sn+1∥2 .

There are two key differences from the classical bound
(Orabona, 2019):

n∑
k=0

dk (f(xk)− f∗) ≤
1

2
γ−1
n+1D

2 +

n∑
k=0

γk
2
d2k ∥gk∥

2
.

Firstly, we are able to gain an additional negative term
− 1

2γn+1 ∥sn+1∥2. Secondly, we replace the typical D2

error term with D ∥sn+1∥, following the idea of Carmon

& Hinder (2022). This bound is tighter than the classical
bound, and equivalent when D = ∥x0 − xn+1∥, since:

D ∥sn+1∥ −
1

2
γn+1 ∥sn+1∥2

=
1

2
γ−1
n+1

(
D2 − (D − ∥x0 − xn+1∥)2

)
≤ 1

2
γ−1
n+1D

2

From our bound, using the fact that

n∑
k=0

dk (f(xk)− f∗) ≥ 0,

we have:

0 ≤ D ∥sn+1∥+
n∑

k=0

γk
2
d2k ∥gk∥

2 − γn+1

2
∥sn+1∥2 ,

which can be rearranged to yield a lower bound on D,
involving only known quantities:

D ≥ d̂n+1 =
γn+1 ∥sn+1∥2 −

∑n
k=0 γkd

2
k ∥gk∥

2

2 ∥sn+1∥
.

This bound is potentially vacuous if ∥sn+1∥2 is small in
comparison to

∑n
k=0 γkd

2
k ∥gk∥

2. This only occurs once
the algorithm is making fast-enough progress that bound
adjustment is not necessary at that time. The maximum over
seen bounds can not be negative since our algorithm begins
with a user-specified positive lower bound d0, which sets
the scale of the initial steps.

Theorem 2.1. For a convex G-Lipschitz function f ,
Algorithm 1 returns a point x̂n such that:

f(x̂n)− f(x∗) = O
(

DG√
n+ 1

)
,

as n → ∞, where D = ∥x0 − x∗∥ for any x∗ in the set of
minimizers of f , as long as d0 ≤ D.

The above result is asymptotic due to the existence of
worst-case functions when n is fixed in advance. For
any fixed choice of n, a function can be constructed such
that Algorithm 1 run for n steps has a dependence on d0.
Despite this, we are able to show that the non-asymptotic
convergence rate is only worse by a log factor.

Theorem 2.2. Consider Algorithm 1 run for n ≥
2 log2(D/d0) iterations with the step size modified to be

γk+1 =
1√

G2 +
∑k

i=0 ∥gi∥
2
. (1)

If we return the point x̂t = 1∑t
k=0 dk

∑t
k=0 dkxk where t
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is chosen to be t = argmink≤n
dk+1∑k
i=0 di

, then using the

notation log2+(x) = max(1, log2 (x)):

f(x̂t)− f∗ ≤ 16
log2+(dn+1/d0)

n+ 1
D

√√√√ t∑
k=0

∥gk∥2

The modification to the step size can be avoided at the cost of
having an extra term, namely we would have the following
guarantee for the same iterate x̂t:

f(x̂t)− f∗ ≤
16DG log2+(

D
d0
)

√
n+ 1

+
8DG2 log2+(

D
d0
)

(n+ 1)∥g0∥
.

Notice that, unlike the bound in the theorem above, it also
depends on the initial gradient norm ∥g0∥.

Our algorithm returns a weighted average iterate x̂n rather
than the last iterate xn+1. This is standard practice when
AdaGrad Norm schedules approaches are used, both for
dual averaging and gradient descent. Techniques are known
to obtain guarantees on the last-iterate either by the use of
momentum (Defazio & Gower, 2021) or modified step-size
sequences (Jain et al., 2019), although we have no explored
if these approaches are compatible with D-Adaptation.

2.1. Why Dual Averaging?

The new bound we develop is actually general enough to
apply to both gradient descent and dual averaging. Using the
same proof techniques, D-Adaptation can also be applied on
top of a gradient descent step. However, we do not use the
gradient descent version above for a technical reason: the
asymptotic convergence rate has an additional log factor.
The practical performance of the two methods is very
similar.

Theorem 2.3. Gradient Descent with D-Adaptation
(Algorithm 2), under the assumptions of Theorem 2.1,
returns a point x̂n such that:

f(x̂n)− f = O
(

DG√
n+ 2

log (n+ 2)

)
.

This log factor arises whenever any-time step sizes are
used on top of gradient descent when applied to unbounded
domains, and is not specific to our method (Beck, 2014).

3. D-Adapted AdaGrad
The D-Adaptation technique can be applied on top of the
coordinate-wise scaling variant of AdaGrad with appropriate
modifications. Algorithm 3 presents this method. This
variant estimates the distance to the solution in the ℓ∞-
norm instead of the Euclidean norm, D∞ = ∥x0 − x∗∥∞.
The theory for AdaGrad without D-Adaptation also uses

Algorithm 2 Gradient Descent with D-Adaptation
Input: d0, x0

s0 = 0
If g0 = 0, exit with x̂n = x0

for k = 0 to n do
gk ∈ ∂f(xk)

λk =
dk√

G2 +
∑k

i=0 ∥gi∥
2

sk+1 = sk + λkgk

d̂k+1 =
∥sk+1∥2 −

∑k
i=0 λ

2
i ∥gi∥

2

2 ∥sk+1∥

dk+1 = max
(
dk, d̂k+1

)
xk+1 = xk − λkgk

end for
Return x̂n = 1∑n

k=0 λk

∑n
k=0 λkxk

Algorithm 3 D-Adapted AdaGrad
Input: x0, d0 (default 10−6), G∞
s0 = 0, a0 = [G∞, . . . , G∞]
for k = 0 to n do
gk ∈ ∂f(xk, ξk)
sk+1 = sk + dkgk
a2k+1 = a2k + g2k
Ak+1 = diag(ak+1)

d̂k+1 =
∥sk+1∥2A−1

k+1
−
∑k

i=0 d
2
i ∥gi∥

2
A−1

i

2 ∥sk+1∥1
dk+1 = max

(
dk, d̂k+1

)
xk+1 = x0 −A−1

k+1sk+1

end for
Return x̂n = 1∑n

k=0 dk

∑n
k=0 dkxk

the same norm to measure the distance to solution, so this
modification is natural, and results in the same adaptive
convergence rate as AdaGrad up to constant factors without
requiring knowledge of D∞.

Theorem 3.1. For a convex p-dimensional function
with G∞ = maxx ∥∇f(x)∥∞, D-Adapted AdaGrad
(Algorithm 3) returns a point x̂n such that

f(x̂n)− f∗ = O
(
∥an+1∥1 D∞

n+ 1

)
= O

(
pG∞D∞√

n+ 1

)
,

as n → ∞, where D∞ = ∥x0 − x∗∥∞ for any x∗ in the set
of minimizers of f , as long as d0 ≤ D∞.

Similarly to Theorem 2.2, we could achieve the same
result up to higher order terms without using G∞ in the
initialization of a0. Following the standard approach for
AdaGrad, Algorithm 3 maintains a vector a to track the

3
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coordinate-wise denominator. We introduce a diagonal
matrix Ak+1 which allows us to avoid using coordinate-
wise notation.

4. Discussion
Figure 1 depicts the behavior of D-Adaptation on a toy
problem - minimizing an absolute value function starting
at x0 = 1.0. Here d0 is started at 0.1, below the known
D value of 1.0. This example illustrates the growth of dk
towards D. The value of dk typically doesn’t asymptotically
approach D, as this is not guaranteed nor required by our
theory. Instead, we show in Theorem F.1 that under a
mild assumption, dk is asymptotically greater than or equal
to D/(1 +

√
3). The lower bound d̂k will often start to

decrease, and even go negative, once dk is large enough.
Negative values of d̂k were seen in most of the experiments
in Section 7.

4.1. Different ways to estimate D

Algorithm 3 is presented with two options for estimating d̂k,
where the numerator of the second option is provably larger
or equal to that of the first option:

n∑
k=0

γkdk ⟨gk, sk⟩ ≥
γn+1

2
∥sn+1∥2 −

n∑
k=0

γk
2
d2k ∥gk∥

2
.

We found the two options worked equally well in practice.
The inner product between the step direction sk and the
gradient gk, which shows up in the second option, is a
quantity known as the (negative) hyper-gradient (Bengio,
2000; Domke, 2012; Pedregosa, 2016; Feurer & Hutter,
2019; Chandra et al., 2022; Wang et al., 2021). In classical
applications of the hyper-gradient, the learning rate is
increased when the gradient points in the same direction
as the previous step, and it is decreased otherwise. In
essence, the hyper-gradient indicates if the current learning
rate is too large or to small. In works that use hyper-
gradient to estimate learning rate, an additional hyper-
learning rate parameter is needed to control the rate of
change of the learning rate, whereas our approach requires
no extra parameters.

In our approach, the hyper-gradient quantity is used to
provide an actual estimate of the magnitude of the optimal
learning rate (or more precisely a lower bound), which is far
more information than just a directional signal of too-large
or too-small. This is important for instance when a learning
rate schedule is being used, as we can anneal the learning
rate down over time, without the hyper-gradient responding
by pushing the learning rate back up. This is also useful
during learning rate warmup, as we are able to build an
estimate of D during the warmup, which is not possible
when using a classical hyper-gradient approach.

5. Related Work
We are not aware of any existing approach for convex
Lipschitz (potentially non-smooth) optimization that avoids
the need for knowledge of any hyper-parameters while
still achieving the optimal rate asymptotically. Drori &
Taylor (2020); Goujaud et al. (2022) give an algorithm
for non-smooth convex problems which has no-tunable
parameters, but requires an exact line-search. The Polyak
step size (Polyak, 1987) is one approach that avoids
requiring knowledge of D, instead, knowledge of f∗ is
required. Using estimates or approximations of f∗ tend to
result in unstable convergence, however a restarting scheme
that maintains lower bounds on f∗ can be shown to converge
within a multiplicative log factor of the optimal rate (Hazan
& Kakade, 2019).

Instead of running sub-gradient descent on every grid-point
on a log spaced grid from d0 to dmax, a bisection algorithm
can be run instead on the same grid, resulting in a double-
logarithmic term (Carmon & Hinder, 2022).

Approaches from Online Learning can be applied here such
as coin-betting (Orabona, 2019; Orabona & Tommasi, 2017;
McMahan & Orabona, 2014; Zhang et al., 2022; Orabona &
Pál, 2021). Asymptotic rates for these methods in the Offline
Lipschitz setting are not currently known. In terms of non-
asymptotic rates, their theoretical convergence rate is better
by a factor

√
log(1 +D/d0) than our non-asymptotic rate.

Another approach in the Online Learning setting is Streeter
& McMahan (2012)’s reward-doubling technique, which
tracks similar norm quantities to our approach, although
they estimate a different quantity than D.

Like our work, the DoG (Distance Over Gradients) approach
of Ivgi et al. (2023) builds upon Carmon & Hinder (2022).
They estimate D by

r̄k = max
i≤k

∥xi − x0∥ .

This estimator is not necessarily bounded; they show
a convex counter-example where r̄k goes to infinity.
Nevertheless, by adding additional dampening in the
denominator of the step-size, they are able to show learning-
rate free convergence in the stochastic setting. Their result
is more general than ours, as we only prove convergence
in the non-stochastic setting, although their rate contains
additional multiplicative log-factors compared to our rate.
Their work is concurrent with ours, and appears in the same
venue.

6. Machine Learning Applications
It is straightforward to adapt the D-Adaptation technique
to stochastic optimization, although the theory no longer
directly supports this case. Algorithm 4 and 5 are versions
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Figure 1. Toy problem illustrating the estimate of D over time, f(x) = |x|. x0 = 1.0 is shown as a blue dot on the left plot, and the
following iterates are shown in purple.

Algorithm 4 SGD with D-Adaptation
Input: x0,
d0 (default 10−6),
γk (default 1),
β = 0.9,
G (default ∥g0∥)
s0 = 0, z0 = x0

for k = 0 to n do
gk ∈ ∂f(xk, ξk)

λk =
dkγk
G

sk+1 = sk + λkgk
zk+1 = zk − λkgk
xk+1 = βxk + (1− β)zk+1

d̂k+1 =
2
∑k

i=0 λi ⟨gi, si⟩
∥sk+1∥

dk+1 = max
(
dk, d̂k+1

)
end for

of D-Adaptation for SGD and Adam respectively. Both of
the two methods solve the stochastic optimization problem,

min
x∈Rp

E[f(x, ξ)]

using stochastic subgradients gk ∈ ∂f(xk, ξk).

For the SGD variant (Algorithm 1), we multiply the D
bound by a factor of two compared to Algorithm 4. This
improves the practical performance of the method. Our
theoretical rate is still valid up to constant factors, for any
constant multiplier applied to the step-size, so this change is
still covered by our theory. For the denominator of the step
size, we use G = ∥g0∥, which is a crude approximation to
the true G but appears to work very well in practice.

We include momentum (β) implemented using the primal
averaging technique, following the approach of Defazio
(2020) and Defazio & Gower (2021). For Adam, we make
the following modifications:

Algorithm 5 Adam with D-Adaptation
Input: x0,
d0 (default 10−6),
γk (default 1),
β1, β2, ϵ (default 0.9, 0.999, 10−8).
s0 = 0, m0 = 0, v0 = 0, r0 = 0
for k = 0 to n do
gk ∈ ∂f(xk, ξk)
mk+1 = β1mk + (1− β1)dkγkgk
vk+1 = β2vk + (1− β2)g

2
k

Ak+1 = diag(
√
vk+1 + ϵ)

xk+1 = xk −A−1
k+1mk+1

Learning rate update
sk+1 =

√
β2sk + (1−

√
β2)dkγkgk

rk+1 =
√
β2rk + (1−

√
β2)dkγk ⟨gk, sk⟩A−1

k+1

d̂k+1 =
rk+1

(1−
√
β2) ∥sk+1∥1

dk+1 = max
(
dk, d̂k+1

)
end for

• The norms are now weighted instead of unweighted.

• Since sk is now updated by an exponential moving
average, a correction factor of 1−

√
β2 in the D bound

is needed to keep everything at the same scale.

• The Adam variant adapts quicker than the SGD variant
and we found no constant multiplier was needed for d̂.

A derivation of the weights of this Adam variant is included
in Appendix G. We use d̂ Option II for both methods, which
only makes a practical difference for the Adam variant; for
the SGD case it is exactly equivalent to Option I.

We include an optional γk constant sequence as input to the
algorithms. This sequence should be set following a learning
rate schedule if one is needed for the problem. This schedule
should consider 1.0 as the base value, increase towards 1.0
during warm-up (if needed), and decrease from 1 during
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learning rate annealing. Typically the same schedule can be
used as would normally be used without D-Adaptation.

7. Experimental Results
We compared our D-Adapted variants of Adam and SGD on
a range of machine learning problems to demonstrate their
effectiveness in practice. Unless otherwise mentioned, we
used the standard learning rate schedule typically used for
the problem, with the base learning rate set by D-Adaptation.
Full hyper-parameter settings for each problem are included
in the Appendix.

Convex Problems For our convex experiments, we
considered logistic regression applied to 12 commonly used
benchmark problems from the LIBSVM repository. In each
case, we consider 100 epochs of training, with a stage-wise
schedule with 10-fold decreases at 60, 80, and 95 epochs.
The learning rate for Adam was chosen as the value that gave
the highest final accuracy using a grid search. D-Adaptation
matches or exceeds the performance of the grid-search based
learning rate on all 12 problems, to within 0.5% accuracy
(Figure 4, in the Appendix).

Convolutional Image Classification For a convolutional
image classification benchmark, we used the three most
common datasets used for optimization method testing:
CIFAR10, CIFAR100 (Krizhevsky, 2009) and ImageNet
2012 (Russakovsky et al., 2015). We varied the architectures
to show the flexibility of D-Adaptation, using a Wide
ResNet (Zagoruyko & Komodakis, 2016), a DenseNet
(Huang et al., 2017) and a vanilla ResNet model (He et al.,
2016) respectively. D-Adaptation matches or exceeds the
baseline learning rates on each problem.

LSTM Recurrent Neural Networks The IWSLT14
German-to-English dataset (Cettolo et al., 2014) is a
standard choice for benchmarking machine translation
models. We trained an LSTM model (Wiseman & Rush,
2016) commonly used for this problem. The standard
training procedure includes an inverse-square-root learning
rate schedule, which we used for both the baseline and for D-
Adaptation. Our model achieves comparable performance
to the baseline training regimen without any need to tune
the learning rate.

Masked Language Modelling Bidirectional Encoder
Representations from Transformers (BERT) is a popular
approach to pretraining transformer models (Devlin et al.,
2019). We use the 110M parameter RoBERTA variant
(Liu et al., 2019) of BERT for our experiments. This
model size provides a large and realistic test problem
for D-Adaptation. We train on the Book-Wiki corpus
(combining books from Zhu et al. (2015) and a snapshot

of Wikipedia). D-Adaptation again matches the baseline in
test-set perplexity.

Auto-regressive Language Modelling For our
experiments on auto-regressive language modelling,
we used the original GPT decoder-only transformer
architecture (Radford et al., 2019). This model is small
enough to train on a single machine, unlike the larger
GPT-2/3 models. Its architecture is representative of other
large language models. We trained on the large Book-Wiki
corpus. D-Adaptation is comparable to the baseline with
only a negligible perplexity difference.

Object Detection The COCO 2017 object detection task
is a popular benchmark in computer vision. We trained as
Faster-RCNN (Ren et al., 2015) model as implemented in
Detectron2 (Wu et al., 2019). For the backbone model, we
used a pretrained ResNeXt-101-32x8d (Xie et al., 2017), the
largest model available in Detectron2 for this purpose. Our
initial experiments showed D-Adaptation overfitting. We
identified that the default decay of 0.0001 in the code-base
was not optimized for this backbone model, and increasing
it to 0.00015 improved the test set accuracy for both the
baseline (42.67 to 42.99) and D-adapted versions (41.92 to
43.07), matching the published result of 43 for this problem.

Vision Transformers Vision transformers (Dosovitskiy
et al., 2021) are a recently developed approach to image
classification that differ significantly from the image
classification approaches in Section 7. They are closer
to the state-of-the-art than ResNet models, and require
significantly more resources to train to high accuracy. We
use the vit_tiny_patch16_224 model in the PyTorch
Image Models framework (Wightman, 2019) as it is small
enough to train on 8 GPUs. The standard training pipeline
uses a cosine learning rate schedule. This is an example of a
situation where D-Adaptation under-performs the baseline
learning rate. This problem appears to be highly sensitive
to the initial learning rate, which may explain the observed
differences.

fastMRI The fastMRI Knee Dataset (Zbontar et al., 2018)
is a large-scale release of raw MRI data. The reconstruction
task consists of producing a 2-dimensional, grey-scale
image of the anatomy from the raw sensor data, under
varying under-sampling regimes. We trained a VarNet 2.0
(Sriram et al., 2020) model, a strong baseline model on this
dataset, using the code and training setup released by Meta
(Knoll et al., 2020; Defazio, 2019). We again match the
highly tuned baseline learning rate with D-Adaptation.

Recommendation Systems The Criteo Kaggle Display
Advertising dataset is a large, sparse dataset of user click-
through events. The DLRM (Naumov et al., 2019) model
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Problem Baseline LR D-Adapted LR Std. Dev.
CIFAR10 1.0 2.085 0.078
CIFAR100 0.5 0.4544 0.029
ImageNet 1.0 0.9227 0.084
IWSLT 0.01 0.003945 0.000086
GPT 0.001 0.0009218 0.000014
RoBERTa 0.001 0.0009331 0.000011
COCO 0.2 0.2004 0.0026
ViT 0.001 0.0073 0.00085
fastMRI 0.0003 0.0007596 0.00022
DLRM 0.0001 0.0001282 0.000056

Table 1. Comparison of baseline learning rates against final D-
Adapted learning rates for the deep learning experiments, with
average and standard deviation shown over multiple seeds.

is a common benchmark for this problem, representative
of personalization and recommendation systems used in
industry. Our method closely matches the performance of
the tuned baseline learning rate.

7.1. Sensitivity to d0

According to our theory, as long as each training run reaches
the asymptotic regime the resulting final loss should be
independent of the choice of d0, as long as d0 ≤ D. We
tested this hypothesis by running each of the 12 convex
logistic regression problems using values of d0 ranging
from 10−16 to 10−2. Figure 5 (Appendix E) shows that
across every dataset, there is no dependence on the initial
value of d0. Given these results, we do not consider d0 a
hyper-parameter. There is no indication that d0 should be
tuned in practice.

7.2. Observed learning rates

Table 1 shows the learning rates obtained by D-Adaptation
for each of our deep learning experiments. The adapted
values show remarkable similarity to the hand-tuned values.
The hand-tuned learning rates are given by either the paper
or the public source code for each problem; It’s unclear
to what granularity they were tuned. In some cases D-
Adaptation gives notably higher learning rates, such as
for CIFAR-10. For SGD experiments, we used PyTorch’s
dampening parameter for implementation consistency with
Adam. This requires the learning rate to be multiplied by
1/(1− β1) compared to the undampened values, which is
reflected in the baseline learning rates in this table.

We observed that in cases where there is a wide range of
good learning rates that give equal final test results, D-
Adaptation has a tendency to choose values at the higher
end of the range. For instance, on CIFAR10, using learning
rate 2.0 instead of the baseline 1.0 gives equal final test
accuracy. The default of 1.0 is likely used in practice just
for simplicity.

8. Conclusion
We have presented a simple approach to achieving parameter
free learning of convex Lipshitz functions, by constructing
successively better lower bounds on the key unknown
quantity: the distance to solution ∥x0 − x∗∥. Our approach
for constructing these lower bounds may be of independent
interest. Our method is also highly practical, demonstrating
excellent performance across a range of large and diverse
machine learning problems.
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A. Core Theory
Here, we are going to consider a more general form of Algorithm 1 with arbitrary positive weights λk that do not have to be
equal to dk. In particular, we will study the update rule

sn+1 = sn + λngn and d̂n+1 =
γn+1∥sn+1∥2 −

∑n
k=0 γkλ

2
k∥gk∥2

2∥sn+1∥
.

Later in the proofs, we will set λk = dk, but most intermediate results are applicable with other choices of λk as well.

Lemma A.1. The inner product γkλk ⟨gk, sk⟩ is a key quantity that occurs in our theory. We can bound the sum of these
inner products over time by considering the following expansion:

−
n∑

k=0

γkλk ⟨gk, sk⟩ = −γn+1

2
∥sn+1∥2 +

n∑
k=0

γk
2
λ2
k ∥gk∥

2
+

1

2

n∑
k=0

(γk+1 − γk) ∥sk+1∥2 .

This simplifies when γk = γn+1 and the weighting sequence is flat, i.e., if λk = 1 for all k:

−γn+1

n∑
k=0

⟨gk, sk⟩ = −γn+1

2
∥sn+1∥2 +

γn+1

2

n∑
k=0

∥gk∥2 ,

with λ weights:

−γn+1

n∑
k=0

λk ⟨gk, sk⟩ = −γn+1

2
∥sn+1∥2 +

γn+1

2

n∑
k=0

λ2
k ∥gk∥

2
.

Proof. This is straightforward to show by induction (it’s a consequence of standard DA proof techniques, where ∥sn∥2 is
expanded).

γn+1

2
∥sn+1∥2 =

γn
2

∥sn+1∥2 +
1

2
(γn+1 − γn) ∥sn+1∥2

=
γn
2

∥sn∥2 + γnλn ⟨gn, sn⟩+
γn
2
λ2
n ∥gn∥

2
+

1

2
(γn+1 − γn) ∥sn+1∥2 .

Therefore

−γnλn ⟨gn, sn⟩ =
γn
2

∥sn∥2 −
γn+1

2
∥sn+1∥2 +

γn
2
λ2
n ∥gn∥

2
+

1

2
(γn+1 − γn) ∥sn+1∥2 .

Telescoping

−
n∑

k=0

γkλk ⟨gk, sk⟩ = −γn+1

2
∥sn+1∥2 +

n∑
k=0

γk
2
λ2
k ∥gk∥

2
+

1

2

n∑
k=0

(γk+1 − γk) ∥sk+1∥2 .

Lemma A.2. The iterates of Algorithm 1 satisfy

n∑
k=0

λk (f(xk)− f∗) ≤ ∥x0 − x∗∥ ∥sn+1∥+
n∑

k=0

γk
2
λ2
k ∥gk∥

2 − γn+1

2
∥sn+1∥2 .
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Proof. Starting from convexity:

n∑
k=0

λk (f(xk)− f∗) ≤
n∑

k=0

λk ⟨gk, xk − x∗⟩

=

n∑
k=0

λk ⟨gk, xk − x0 + x0 − x∗⟩

= ⟨sn+1, x0 − x∗⟩+
n∑

k=0

λk ⟨gk, xk − x0⟩

= ⟨sn+1, x0 − x∗⟩ −
n∑

k=0

λkγk ⟨gk, sk⟩

≤ ∥sn+1∥ ∥x0 − x∗∥ −
n∑

k=0

λkγk ⟨gk, sk⟩ .

We can further simplify with:

−
n∑

k=0

γkλk ⟨gk, sk⟩ = −γn+1

2
∥sn+1∥2 +

n∑
k=0

γk
2
λ2
k ∥gk∥

2
+

1

2

n∑
k=0

(γk+1 − γk) ∥sk+1∥2 .

Using the fact that γk+1 − γk ≤ 0 we have:

n∑
k=0

λk (f(xk)− f∗) ≤ ∥x0 − x∗∥ ∥sn+1∥ −
n∑

k=0

γkλk ⟨gk, sk⟩

≤ ∥x0 − x∗∥ ∥sn+1∥+
n∑

k=0

γk
2
λ2
k ∥gk∥

2 − γn+1

2
∥sn+1∥2 .

Theorem A.3. For Algorithm 1, the initial distance to solution, D = ∥x0 − x∗∥, can be lower bounded as follows

D ≥ d̂n+1 =
γn+1 ∥sn+1∥2 −

∑n
k=0 γkλ

2
k ∥gk∥

2

2 ∥sn+1∥
.

Proof. The key idea is that the bound in Lemma A.2,

n∑
k=0

λk (f(xk)− f∗) ≤ D ∥sn+1∥+
n∑

k=0

γk
2
λ2
k ∥gk∥

2 − γn+1

2
∥sn+1∥2 ,

gives some indication as to the magnitude of D in the case when the other terms on the right are negative. To proceed, we
use

∑n
k=0 λk (f(xk)− f∗) ≥ 0, giving:

0 ≤ D ∥sn+1∥+
n∑

k=0

γk
2
λ2
k ∥gk∥

2 − γn+1

2
∥sn+1∥2 ,

which we can rearrange to:

D ∥sn+1∥ ≥ γn+1

2
∥sn+1∥2 −

n∑
k=0

γk
2
λ2
k ∥gk∥

2
.

Therefore:

D ≥
γn+1

2 ∥sn+1∥2 −
∑n

k=0
γk

2 λ2
k ∥gk∥

2

∥sn+1∥
.
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Lemma A.4. In Algorithm 1, the norm of sn+1 is bounded by:

∥sn+1∥ ≤ 2dn+1

γn+1
+

∑n
k=0 γkλ

2
k∥gk∥2

2dn+1
. (2)

Proof. Using the definition of d̂n+1 from Theorem A.3, and the property d̂n+1 ≤ dn+1, we derive

γn+1

2
∥sn+1∥2 −

n∑
k=0

γk
2
λ2
k ∥gk∥

2
= d̂n+1 ∥sn+1∥ ≤ dn+1 ∥sn+1∥ .

Using inequality 2αβ ≤ α2 + β2 with α2 =
2d2

n+1

γn+1
and β2 = γn+1

2 ∥sn+1∥2 and then the bound above, we establish

2αβ = 2dn+1∥sn+1∥ ≤
2d2n+1

γn+1
+

γn+1

2
∥sn+1∥2 ≤

2d2n+1

γn+1
+ dn+1∥sn+1∥+

n∑
k=0

γk
2
λ2
k∥gk∥2.

Rearranging the terms, we obtain

dn+1∥sn+1∥ ≤
2d2n+1

γn+1
+

n∑
k=0

γk
2
λ2
k∥gk∥2.

It remains to divide this inequality by dn+1 to get the desired claim.

Proposition A.5. (From Streeter & McMahan (2010)) The gradient error term can be bounded as:

n∑
k=0

∥gk∥2√
G2 +

∑k−1
i=0 ∥gi∥2

≤ 2

√√√√ n∑
k=0

∥gk∥2. (3)

Moreover, if γk = 1√
G2+

∑k−1
i=0 ∥gi∥2

, then

n∑
k=0

γk
2

∥gk∥2 ≤ γn+1

(
G2 +

n∑
k=0

∥gk∥2
)
. (4)

Lemma A.6. Setting λk = dk, it holds for Algorithm 1:

n∑
k=0

dk (f(xk)− f∗) ≤ 2Ddn+1

√√√√ n∑
k=0

∥gk∥2 +Ddn+1

n∑
k=0

γk∥gk∥2.

Proof. First, recall the key bound from Lemma A.2:

n∑
k=0

λk (f(xk)− f∗) ≤ D ∥sn+1∥ −
γn+1

2
∥sn+1∥2 +

n∑
k=0

γk
2
λ2
k ∥gk∥

2

≤ D ∥sn+1∥+
n∑

k=0

γk
2
λ2
k ∥gk∥

2
.

Now let us apply the bound from Lemma A.4:

∥sn+1∥ ≤ 2dn+1

γn+1
+

∑n
k=0 γkλ

2
k∥gk∥2

2dn+1
,

which gives

n∑
k=0

λk (f(xk)− f∗) ≤
2Ddn+1

γn+1
+

D
∑n

k=0 γkλ
2
k∥gk∥2

2dn+1
+

n∑
k=0

γk
2
λ2
k ∥gk∥

2
.
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Using λk = dk ≤ dn+1 ≤ D and plugging in the step size, we obtain

n∑
k=0

dk (f(xk)− f∗) ≤
2Ddn+1

γn+1
+

D
∑n

k=0 γkd
2
n+1∥gk∥2

2dn+1
+

n∑
k=0

γk
2
d2n+1 ∥gk∥

2

≤ 2Ddn+1

√√√√ n∑
k=0

∥gk∥2 +
1

2
Ddn+1

n∑
k=0

γk∥gk∥2 +
1

2
Ddn+1

n∑
k=0

γk ∥gk∥2

= 2Ddn+1

√√√√ n∑
k=0

∥gk∥2 +Ddn+1

n∑
k=0

γk∥gk∥2.

This is exactly our result.

A.1. Asymptotic analysis

Theorem. (Theorem 2.1) The average iterate x̂n returned by Algorithm 1 satisfies:

f(x̂n)− f∗ = O
(

DG√
n+ 1

)
.

Proof. In the case where g0 = 0, f(x0) = f(x∗) and the theorem is trivially true, so we assume that ∥g0∥2 > 0. We will
show the result holds for some n, where we choose n sufficiently large so that a number of criteria are met:

Criterion 1: since dk is a non-decreasing sequence upper bounded by D, there must exist some n̂ such that after n̂ steps,
dk ≥ 1

2dn+1 for all k, n ≥ n̂. We take n ≥ 2n̂.

Criterion 2: since we assume the bound ∥gk∥2 ≤ G2, there must exist some r such that ∥gn∥2 ≤
∑n−1

k=0 ∥gk∥
2 for all n ≥ r.

Let us choose the smallest r that satisfies this condition, in which case ∥gr−1∥2 ≥
∑r−2

k=0 ∥gk∥2, otherwise we could have
chosen r − 1. Moreover, we have by definition γk ≤ 1

∥g0∥ for all k ≤ r − 1. Combining this with the first bound from
Proposition A.5, we derive

n∑
k=0

γk ∥gk∥2 =

n∑
k=r

γk ∥gk∥2 +
r−1∑
k=0

γk ∥gk∥2

≤ 2

√√√√ n∑
k=r

∥gk∥2 +
1

∥g0∥

r−1∑
k=0

∥gk∥2

≤ 2

√√√√ n∑
k=0

∥gk∥2 +
2

∥g0∥
∥gr−1∥2

≤ 2

√√√√ n∑
k=0

∥gk∥2 + 2
G2

∥g0∥
.

We continue with the bound from Lemma A.6:

n∑
k=0

dk (f(xk)− f∗) ≤ 2Ddn+1

√√√√ n∑
k=0

∥gk∥2 +Ddn+1

n∑
k=0

γk∥gk∥2.

From Criterion 1, we have that:

n∑
k=0

dk ≥
n∑

k=n̂

dk ≥
n∑

k=n̂

1

2
dn+1 =

1

2
(n− n̂+ 1)dn+1 ≥ 1

4
(n+ 1)dn+1,
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hence
1∑n

k=0 dk
≤ 4

(n+ 1)dn+1
.

Plugging this back yields

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
8D

(n+ 1)

√√√√ n∑
k=0

∥gk∥2 +
4D

n+ 1

n∑
k=0

γk∥gk∥2.

Using the bound obtained from Criterion 2, we further get

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
8D

(n+ 1)

√√√√ n∑
k=0

∥gk∥2 +
4D

n+ 1

2

√√√√ n∑
k=0

∥gk∥2 + 2
G2

∥g0∥

 .

Using ∥gk∥2 ≤ G2, we simplify this to

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
16DG√
n+ 1

+
8DG2

(n+ 1)∥g0∥
.

Using Jensen’s inequality, we can convert this to a bound on the average iterate defined as

x̂n =
1∑n

k=0 dk

n∑
k=0

dkxk,

implying

f(x̂n)− f∗ ≤ 12DG√
n+ 1

+
8DG2

(n+ 1)∥g0∥
.

Note that the second term on the right decreases faster than the first term with respect to n, so

f(x̂n)− f∗ = O
(

DG√
n+ 1

)
.

A.2. Non-asymptotic analysis

Lemma A.7. Consider a sequence d0, . . . dN+1, where for each k, dk+1 ≥ dk and assume N + 1 ≥ 2 log2(dN+1/d0).
Then

min
n≤N

dn+1∑n
k=0 dk

≤ 4
log2+(dN+1/d0)

N + 1
, (5)

where log2+(x) = max(1, log2 (x)).

Proof. Let r =
⌈
log2+(dN+1/d0)

⌉
. We proceed by an inductive argument on r. In the base case, if r ≤ 2, then dn+1 ≤ 4d0

and the result follows immediately:

min
n≤N

dn+1∑n
k=0 dk

≤ dN+1∑N
k=0 d0

≤ 4d0
(N + 1)d0

=
4

N + 1
≤ 4

log2+(dN+1/d0)

N + 1
.

So assume that r > 2 and define n′ =
⌈
N + 1− N+1

log2+(dN+1/d0)

⌉
. First we show that no induction is needed, and we may

take n = N, if dn′ ≥ 1
2dN+1. In that case, since the sequence dk is monotonic, it also holds

dk ≥ 1

2
dN+1, for all k ≥ n′.
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Then, it is easy to see that

N∑
k=0

dk ≥
N∑

k=n′

dk ≥ 1

2
(N + 1− n′) dN+1 ≥ 1

2

(
N + 1−

(
N + 2− N + 1

log2+(dN+1/d0)

))
dN+1

=
1

2

(
N + 1

log2+(dN+1/d0)
− 1

)
dN+1.

Since we assume that N+1
log2+(dN+1/d0)

≥ 2, we can reduce this bound to the following:

N∑
k=0

dk ≥ 1

2

(
(N + 1)

log2+(dN+1/d0)
− 1

)
dN+1 ≥ (N + 1) dN+1

4 log2+(dN+1/d0)
.

Rearranging this bound gives:
dN+1∑N
k=0 dk

≤ 2
log2+(dN+1/d0)

N + 1
,

and therefore

min
n≤N

dn+1∑n
k=0 dk

≤ 4
log2+(dN+1/d0)

N + 1
.

Thus, the claim holds if dn′ ≥ 1
2dN+1.

Now, suppose that dn′ ≤ 1
2dN+1. In that case,

⌈
log2+(dn′/d0)

⌉
≤
⌈
log2+(

1
2dN+1/d0)

⌉
= r − 1 and by definition

n′ ≥ (N + 1)

(
1− 1

log2+(dN+1/d0)

)
≥ 2 log2(dN+1/d0)

(
1− 1

log2+(dN+1/d0)

)
= 2 log2(dN+1/d0)− 1 = 2 log2

(
1

2
dN+1/d0

)
≥ 2 log2(dn′/d0).

Therefore, we can apply the inductive hypothesis to the sequence d0, . . . , dn′ :

min
n≤n′−1

dn+1∑n
k=0 dk

≤ 4
log2+(dn′/d0)

n′ .

Under this inductive hypothesis, we note that:

log2+(dn′/d0)

n′ =
1⌈

N + 1− N+1
log2+(dN+1/d0)

⌉ log2+(dn′/d0)

≤ 1

N + 1− N+1
log2+(dN+1/d0)

log2+(dn′/d0)

=
log2+(dN+1/d0)

(N + 1)
(
log2+(dN+1/d0)− 1

) log2+(dn′/d0)

=
log2+(dN+1/d0)

N + 1
·

log2+(dn′/d0)

log2+(dN+1/d0)− 1
.

Let us now bound the last fraction. Since r > 2, we have log2(dN+1/d0) ≥ r − 1 ≥ 2, so log2+(
1
2dN+1/d0) =

log2(
1
2dN+1/d0), and, therefore,

log2+(dn′/d0) ≤ log2+

(
1

2
dN+1/d0

)
= log2+(dN+1/d0)− 1.

Plugging this back in yields:

log2+(dn′/d0)

n′ ≤
log2+(dN+1/d0)

N + 1
.
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Putting it all together, we have that:

min
n≤N

dn+1∑n
k=0 dk

≤ min
n≤n′

dn+1∑n
k=0 dk

≤ 4
log2+(dN+1/d0)

N + 1
.

Theorem. (Theorem 2.2) Consider Algorithm 1 run for n steps, where n ≥ 2 log2(D/d0), if we return the point x̂t =
1∑t

k=0 dk

∑t
k=0 dkxk where t is chosen to be:

t = argmin
k≤n

dk+1∑k
i=0 di

,

Then:

f(x̂t)− f∗ ≤ 16
log2+(dn+1/d0)

n+ 1
D

√√√√ t∑
k=0

∥gk∥2.

Proof. Consider the bound from Lemma A.6:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
2Ddn+1∑n

k=0 dk

√√√√ n∑
k=0

∥gk∥2 +
Ddn+1∑n
k=0 dk

n∑
k=0

γk∥gk∥2

(3)
≤ 2Ddn+1∑n

k=0 dk

√√√√ n∑
k=0

∥gk∥2 +
Ddn+1∑n
k=0 dk

2

√√√√ n∑
k=0

∥gk∥2

=
4Ddn+1∑n

k=0 dk

√√√√ n∑
k=0

∥gk∥2.

Now using Lemma A.7, we can return the point x̂t and at time t = argmink≤n
dk+1∑k
i=0 di

, ensuring that

dt+1∑t
k=0 dk

= min
k≤n

dk+1∑k
i=0 di

(5)
≤ 4

log2+(dn+1/d0)

n+ 1
,

giving us an upper bound:

f(x̂t)− f∗ ≤ 16
log2+(dn+1/d0)

n+ 1
D

√√√√ t∑
k=0

∥gk∥2.

We note that a similar proof can be used to remove the G2 term from the numerator of γk. To this end, we could reuse the
bound obtained in the proof of Theorem 2.1:

n∑
k=0

γk ∥gk∥2 ≤ 2

√√√√ n∑
k=0

∥gk∥2 + 2
G2

∥g0∥
,

which holds for γk = 1√∑k−1
i=0 ∥gi∥2

. In the proof of Theorem 2.1, this bound was stated for n ≥ r, where r is the smallest

number such that ∥gk∥2 ≤
∑k−1

i=0 ∥gi∥2 for all k ≥ r. However, the bound itself does not require n ≥ r, since for n < r
it holds even without the first term in the right-hand side. The second term in that bound does not increase with n, and it
would result in the following bound for the same iterate x̂t as in Theorem 2.2:

f(x̂t)− f∗ ≤
16DG log2+(D/d0)√

n+ 1
+

8DG2 log2+(D/d0)

(n+ 1)∥g0∥
.

Since the leading term in the bound above is of order O
(

1√
n+1

)
, the extra term for not using G is negligible.
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B. Gradient Descent Variant
The gradient descent variant (Algorithm 2) results in the following specializations of earlier theorems resulting from plugging
in γk = 1:

Theorem B.1. It holds for the iterates of Algorithm 2,

n∑
k=0

λk [f(xk)− f∗] ≤ ∥sn+1∥ ∥x0 − x∗∥ −
n∑

k=0

λk ⟨gk, sk⟩ .

Lemma B.2. Gradient descent iterates satisfy

−
n∑

k=0

λk ⟨gk, sk⟩ =
1

2

n∑
k=0

λ2
k ∥gk∥

2 − 1

2
∥sn+1∥2

≤ 1

2

n∑
k=0

λ2
k ∥gk∥

2
.

Lemma B.3. Algorithm 2 satisfies

∥sn+1∥ ≤ 2dn+1 +

∑n
k=0 λ

2
k ∥gk∥

2

2dn+1
.

The logarithmic terms in the convergence rate of gradient descent arise from the use of the following standard lemma:

Lemma B.4. (Lemma 4.13 from Orabona (2019)) Let at be a sequence with a0 ≥ 0 and ϕ be non-increasing for non-negative
values, then:

n∑
k=1

akϕ

(
k∑

i=0

ai

)
≤
∫ ∑n

k=0 ak

a0

ϕ(x)dx.

Corollary B.5. For any vectors g0, . . . , gn such that ∥gk∥ ≤ G for all k, it holds

n∑
k=0

∥gk∥2

G2 +
∑k

i=0 ∥gi∥
2
≤ log (n+ 2) .

Proof. Applying Lemma B.4 with a0 = G2 and ak = ∥gk−1∥2 up to an+1 = ∥gn∥2 to the function ϕ(x) = 1/x gives:

n+1∑
k=1

akϕ

(
k∑

i=0

ai

)
≤
∫ ∑n+1

k=0 ak

a0

ϕ(x)dx

= log

(
n+1∑
k=0

ak

)
− log(a0)

= log

(
1

G2

n+1∑
k=0

ak

)

= log

(
1

G2

(
G2 +

n∑
k=0

∥gk∥2
))

≤ log (n+ 2) .

Lemma B.6. For Algorithm 2, we have

n∑
k=0

λk [f(xk)− f∗] ≤ 4dn+1D log (n+ 2) .
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Proof. Consider the result of Theorem B.1:
n∑

k=0

λk [f(xk)− f∗] ≤ ∥sn+1∥D −
n∑

k=0

λk ⟨gk, sk⟩ .

We may simplify this by substituting Lemmas B.2 and B.3:
n∑

k=0

λk [f(xk)− f∗] ≤

(
2dn+1 +

∑n
k=0 λ

2
k ∥gk∥

2

2dn+1

)
D +

1

2

n∑
k=0

λ2
k ∥gk∥

2

= 2dn+1D +
1

2

(
D

dn+1
+ 1

) n∑
k=0

λ2
k ∥gk∥

2
.

Now apply Corollary B.5:
n∑

k=0

λk [f(xk)− f∗] ≤ 2dn+1D +
1

2

(
D

dn+1
+ 1

)
d2n+1 log (n+ 2)

= 2dn+1

[
D +

1

2

(
D
dn+1

dn+1
+ dn+1

)
log (n+ 2)

]
≤ 2dn+1D [1 + log (n+ 2)]

≤ 4dn+1D log (n+ 2) .

B.1. Asymptotic case

Theorem. (Theorem 2.3) It holds for Algorithm 2:

f(x̂n)− f = O
(

DG√
n+ 2

log (n+ 2)

)
.

Proof. Following the same logic as for the proof of Theorem 2.1, we may we take n large enough such that
n∑

k=0

dk ≥ 1

4
(n+ 2)dn+1. (6)

Then from Jensen’s inequality:
1∑n

k=0 λk

n∑
k=0

λk [f(xk)− f∗] ≥ f(x̂n)− f.

Applying Lemma B.6, we get

f(x̂n)− f ≤ 4dn+1D log (n+ 2)∑n
k=0 λk

.

Consider the denominator:
n∑

k=0

λk =

n∑
k=0

dk√
G2 +

∑k
i=0 ∥gi∥

2
≥ 1

G

n∑
k=0

dk√
1 + (k + 1)

≥ 1

G
√
n+ 2

n∑
k=0

dk

(6)
≥

√
n+ 2

4G
dn+1.

So:
f(x̂n)− f ≤ 16DG√

n+ 2
log (n+ 2) .
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B.2. Non-asymptotic case

Theorem B.7. For Algorithm 2 run for n ≥ 2 log2(D/d0) iterations, with t chosen as:

t = argmin
k≤n

dk+1∑k
i=0 di

,

we have:
f(x̂t)− f ≤ 12DG√

n+ 1
log (n+ 2) log2+(dn+1/d0).

Proof. Firstly, since f is convex, we can apply Jensen’s inequality:

f(x̂t)− f ≤ 1∑t
k=0 λk

t∑
k=0

λk [f(xk)− f∗] .

Applying Lemma B.6 to the right-hand side, we get

f(x̂t)− f ≤ 4dn+1D log (n+ 2)∑t
k=0 λk

.

Plugging-in the definition of λk, we obtain

t∑
k=0

λk =

t∑
k=0

dk√
G2 +

∑k
i=0 ∥gi∥

2
≥ 1

G

t∑
k=0

dk√
1 + (k + 1)

≥ 1

G
√
t+ 2

t∑
k=0

dk

≥ (n+ 1) dn+1

2G
√
t+ 2 log2+(dn+1/d0)

.

So:

f(x̂t)− f ≤ 8DG
√
t+ 2

n+ 1
log (n+ 2) log2+(dn+1/d0)

≤ 12DG√
n+ 1

log (n+ 2) log2+(dn+1/d0).

C. Coordinate-wise setting
In the coordinate-wise setting we define the matrices An+1 as diagonal matrices with diagonal elements ai at step n defined
as

a(n+1)i =

√√√√G2
∞ +

n∑
k=0

g2ki.

Let p be the number of dimensions. Define:
D∞ = ∥x0 − x∗∥∞

and:

d̂n+1 =
∥sn+1∥2A−1

n+1
−
∑n

k=0 λ
2
k ∥gk∥

2
A−1

k

2 ∥sn+1∥1
.

The following lemma applies to Algorithm 3 with general weights λk.
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Lemma C.1. The inner product λk

〈
gk, A

−1
k sk

〉
is a key quantity that occurs in our theory. Suppose that An+1 ⪰ An for

all n, then we can bound the sum of these inner products as follows:

−
n∑

k=0

λk

〈
gk, A

−1
k sk

〉
≤ −1

2
∥sn+1∥2A−1

n+1
+

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

Proof. We start by expanding 1
2 ∥sn+1∥2A−1

n+1

1

2
∥sn+1∥2A−1

n+1
≤ 1

2
∥sn+1∥2A−1

n

=
1

2
∥sn∥2A−1

n
+ λn

〈
gn, A

−1
n sn

〉
+

1

2
λ2
n ∥gn∥

2
A−1

n
.

Therefore
−λn

〈
gn, A

−1
n sn

〉
≤ 1

2
∥sn∥2A−1

n
− 1

2
∥sn+1∥2A−1

n+1
+

1

2
λ2
n ∥gn∥

2
A−1

n
.

Telescoping over time gives:

−
n∑

k=0

λk

〈
gk, A

−1
k sk

〉
≤ −1

2
∥sn+1∥2A−1

n+1
+

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

Below, we provide the analogue of Proposition A.5 for the coordinate-wise setting.
Proposition C.2. (From Duchi et al. (2011)) The gradient error term can be bounded as:

p∑
j=1

n∑
k=0

g2kj√
G2 +

∑k−1
i=0 g2ij

≤ 2

p∑
j=1

√√√√G2 +

n−1∑
k=0

g2kj , (7)

as long as G ≥ gij for all i, j.
Lemma C.3. It holds for the iterates of Algorithm 3

n∑
k=0

λk (f(xk)− f∗) ≤ ∥sn+1∥1 D∞ − 1

2
∥sn+1∥2A−1

n+1
+

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

Proof. We start by applying convexity:
n∑

k=0

λk (f(xk)− f∗) ≤
n∑

k=1

λk ⟨gk, xk − x∗⟩

=

n∑
k=1

λk ⟨gk, xk − x0 + x0 − x∗⟩

= ⟨sn+1, x0 − x∗⟩+
n∑

k=1

λk ⟨gk, xk − x0⟩

= ⟨sn+1, x0 − x∗⟩ −
n∑

k=1

λk

〈
gk, A

−1
k sk

〉
≤ ∥sn+1∥1 ∥x0 − x∗∥∞ −

n∑
k=1

λk

〈
gk, A

−1
k sk

〉
.

Applying Lemma C.1 we have:
n∑

k=0

λk (f(xk)− f∗) ≤ ∥sn+1∥1 ∥x0 − x∗∥∞ − 1

2
∥sn+1∥2A−1

n+1
+

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.
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Theorem C.4. Consider the iterates of Algorithm 3. The initial ℓ∞-distance D∞ = ∥x0 − x∗∥∞ satisfies

D∞ ≥ d̂n+1 =
∥sn+1∥2A−1

n+1
−
∑n

k=0 λ
2
k ∥gk∥

2
A−1

k

2 ∥sn+1∥1
.

Proof. Applying f(xk)− f∗ ≥ 0 to the bound from Lemma C.3 gives:

0 ≤ ∥sn+1∥1 D∞ − 1

2
∥sn+1∥2A−1

n+1
+

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

Rearranging this inequality, we obtain

∥sn+1∥1 D∞ ≥ 1

2
∥sn+1∥2A−1

n+1
− 1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

and, therefore,

D∞ ≥
∥sn+1∥2A−1

n+1
−
∑n

k=0 λ
2
k ∥gk∥

2
A−1

k

2 ∥sn+1∥1
.

Lemma C.5. The ℓ1-norm of sn+1 is bounded by:

∥sn+1∥1 ≤ 3dn+1 ∥an+1∥1 .

Proof. By the definition of d̂n+1 we have:

1

2
∥sn+1∥2A−1

n+1
= d̂n+1 ∥sn+1∥1 +

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

and since d̂n+1 ≤ dn+1,
1

2
∥sn+1∥2A−1

n+1
≤ dn+1 ∥sn+1∥1 +

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
.

Furthermore, using λk = dk ≤ dn+1 and Proposition C.2, we obtain

1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k
≤ 1

2
d2n+1

n∑
k=0

∥gk∥2A−1
k

(7)
≤ d2n+1

p∑
i=1

√√√√G2
∞ +

n−1∑
k=0

g2ki

= d2n+1 ∥an+1∥1 .

Therefore, using inequality 2αβ ≤ α2 + β2 with α2 = 2d2n+1a(n+1)i and β2 =
s2(n+1)i

2a(n+1)i
, we get

2dn+1 ∥sn+1∥1 =

p∑
i=1

2dn+1|s(n+1)i| ≤
p∑

i=1

(
2d2n+1a(n+1)i +

s2(n+1)i

2a(n+1)i

)

= 2d2n+1∥an+1∥1 +
1

2
∥sn+1∥2A−1

n+1

≤ 2d2n+1∥an+1∥1 + dn+1 ∥sn+1∥1 +
1

2

n∑
k=0

λ2
k ∥gk∥

2
A−1

k

≤ 2d2n+1∥an+1∥1 + dn+1 ∥sn+1∥1 + d2n+1∥an+1∥1.
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Rearranging, we get
dn+1∥sn+1∥1 ≤ 3d2n+1∥an+1∥1.

Theorem. (Theorem 3.1) For a convex function with G∞ = maxx ∥∇f(x)∥∞, D-Adapted AdaGrad returns a point x̂n such
that

f(x̂n)− f∗ = O
(
∥an+1∥1 D∞

n+ 1

)
= O

(
pG∞D∞√

n+ 1

)
as n → ∞, where D = ∥x0 − x∗∥∞ for any x∗ in the set of minimizers of f , as long as d0 ≤ D∞.

Proof. As in the proof of Theorem 2.1, we will show the result holds for some sufficiently n. Since dk is a non-decreasing
sequence upper bounded by D, there must exist some n̂ such that after n̂ steps, dk ≥ 1

2dn+1 for all k, n ≥ n̂. We take
n ≥ 2n̂.

Then:
n∑

k=0

dk ≥
n∑

k=n̂

dk ≥
n∑

k=n̂

1

2
dn+1 =

1

2
(n− n̂+ 1)dn+1 ≥ 1

4
(n+ 1)dn+1,

and, therefore,
1∑n

k=0 dk
≤ 4

(n+ 1)dn+1
.

Combining this with Lemma C.3 yields

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
4

(n+ 1)dn+1

(
∥sn+1∥1 D∞ +

1

2

n∑
k=0

d2k ∥gk∥
2
A−1

k

)
.

From Proposition C.2 we have:

1

2

n∑
k=0

d2k ∥gk∥
2
A−1

k
≤ 1

2
d2n+1

n∑
k=0

∥gk∥2A−1
k

≤ d2n+1 ∥an+1∥1 .

Plugging this in together with Lemma C.5 gives:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
4

(n+ 1)dn+1

(
3dn+1 ∥an+1∥1 D∞ + d2n+1 ∥an+1∥1

)
=

4

n+ 1
(3 ∥an+1∥1 D∞ + dn+1 ∥an+1∥1) .

So using dn+1 ≤ D∞ we have:

1∑n
k=0 dk

n∑
k=0

dk (f(xk)− f∗) ≤
16

n+ 1
∥an+1∥1 D∞.

Using Jensen’s inequality on the left:

f(x̂n)− f∗ ≤ 16

n+ 1
∥an+1∥1 D∞.

We can further simplify using ∥an+1∥1 =
∑p

j=1

√
G2

∞ +
∑n

k=0 g
2
kj ≤ p

√
n+ 1G∞:

f(x̂n)− f∗ ≤ 16pG∞D∞√
n+ 1

,

which yields the result.

D. Parameter settings
In this section, we list the parameters, architectures and hardware that we used for the experiments. The information is
collected in Tables 2–12.
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Table 2. Logistic regression experiment. The problems are part
of the LIBSVM repository. Since there are no standard train/test
splits, and due to the small sizes of the datasets, we present
training accuracy curves only.

Hyper-parameter Value
Epochs 100
GPUs 1×V100

Batch size 16
Epochs 100

LR schedule 60,80,95 tenthing
Seeds 10
Decay 0.0

Momentum 0.0
Baseline LR grid search

Table 3. CIFAR10 experiment. Our data augmentation pipeline
followed standard practice: random horizontal flipping, then random
cropping to 32×32 (padding 4), then normalization by centering
around (0.5, 0.5, 0.5).

Hyper-parameter Value
Architecture Wide ResNet 16-8

Epochs 300
GPUs 1×V100

Batch size per GPU 128
LR schedule 150-225 tenthing

Seeds 10
decay 0.0001

Momentum 0.9
SGD LR 0.1

Table 4. CIFAR100 experiment. Following standard practice, we
normalized the channels by subtracting ((0.5074,0.4867,0.4411) and
dividing by (0.2011,0.1987,0.2025)). Augmentations used at training
time were: random horizontal flips, random crop (32, padding=4,
reflect).

Hyper-parameter Value

Architecture DenseNet [6,12,24,16],
growth rate 12

Epochs 300
GPUs 1×V100

Batch size per GPU 64
LR schedule 150-225 tenthing

Seeds 10
Decay 0.0002

Momentum 0.9
SGD LR 0.05

Table 5. ImageNet experiment. Normalization of the color
channels involved subtracting (0.485, 0.456, 0.406), and
dividing by (0.229, 0.224, 0.225). For data augmentation at
training we used PyTorch’s RandomResizedCrop to 224, then
random horizontal flips. At test time images were resized to
256 then center cropped to 224.

Hyper-parameter Value
Architecture ResNet50

Epochs 100
GPUs 8×V100

Batch size per GPU 32
LR schedule 30-60-90 tenthing

Seeds 5
Decay 0.0001

Momentum 0.9
SGD LR 0.1

Table 6. fastMRI experiment. We used the
implementation from https://github.com/
facebookresearch/fastMRI.

Hyper-parameter Value
Architecture 12 layer VarNet 2.0

Epochs 50
GPUs 8×V100

Batch size per GPU 1
Acceleration factor 4
Low frequency lines 16

Mask type Offset-1
LR schedule flat

Seeds 5
Decay 0.0

Adam LR 0.0003
β1, β2 0.9, 0.999

Table 7. IWSLT14 experiment. Our implementation used FairSeq
https://github.com/facebookresearch/fairseq
defaults except for the parameters listed below. Note that the default
Adam optimizer uses decoupled weight decay.

Hyper-parameter Value
Architecture lstm_wiseman_iwslt_de_en
Max Epoch 55

GPUs 1×V100
Max tokens per batch 4096

Warmup steps 4000
Dropout 0.3

Label smoothing 0.1
Share decoder, input,

output embed True

Float16 True
Update Frequency 1

LR schedule Inverse square-root
Seeds 10
Decay 0.05

Adam LR 0.01
β1, β2 0.9, 0.98
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Table 8. RoBERTa BookWiki experiment. Our
implementation used FairSeq defaults except for the
parameters listed below.

Hyper-parameter Value
Architecture roberta_base

Task masked_lm
Max updates 23,000

GPUs 8×V100
Max tokens per sample 512

Dropout 0.1
Attention Dropout 0.1

Max sentences 16
Warmup 10,000

Sample Break Mode Complete
Float16 True

Update Frequency 16
LR schedule Polynomial decay

Seeds 5
Decay 0.0

Adam LR 0.001
β1, β2 0.9, 0.98

Table 9. GPT BookWiki experiment. Our implementation used FairSeq
defaults except for the parameters listed below.

Hyper-parameter Value
Architecture transformer_lm_gpt

Task language_modeling
Max updates 65,000

GPUs 8×V100
Max tokens per sample 512

Dropout 0.1
Attention Dropout 0.1

Max sentences 1
Warmup 10,000

Sample Break Mode Complete
Share decoder, input,

output embed True

Float16 True
Update Frequency 16

LR schedule Polynomial decay
Seeds 5
Decay 0.005

Adam LR 0.001
β1, β2 0.9, 0.98

Table 10. COCO Object Detection experiment. We
used the Detectron2 codebase https://github.
com/facebookresearch/detectron2, with the
faster_rcnn_X_101_32x8d_FPN_3x configuration.
We list its key parameters below.

Hyper-parameter Value
Architecture X-101-32x8d

Solver Steps (Schedule) 210000, 250000
Max Iter 270000

IMS Per Batch 16
Momentum 0.9

Decay 0.0001
SGD LR 0.02

Table 11. Vision Transformer experiment. We used the
Pytorch Image Models codebase https://github.com/
rwightman/pytorch-image-models.

Hyper-parameter Value
Model vit_tiny_patch16_224
Epochs 300

Batch Size 512
Sched Cosine

Warmup Epochs 5
Hflip 0.5

aa rand-m6-mstd0.5
mixup 0.1
cutmix 1.0

Crop Pct 0.9
BCE Loss True

Seeds 5
Decay 0.1

Adam LR 0.001
β1, β2 0.9, 0.999

Table 12. Criteo Kaggle experiment. We used our own implementation
of DLRM, based on the codebase provided at https://github.com/
facebookresearch/dlrm.

Hyper-parameter Value
Iterations 300 000

Batch Size 128
Schedule Flat

Emb Dimension 16
Seeds 5
Decay 0.0

Adam LR 0.0001
β1, β2 0.9, 0.999
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E. Additional figures
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Figure 4. Logistic Regression experiments.
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Figure 5. Final accuracy as a function of d0. Setup described in Section 7. Error bars show a range of 2 standard errors above and below
the mean of the 10 seeds. For most problems error bars are too narrow to be visible.

F. Additional notes
Theorem F.1. If ∥xn − x∗∥ → 0, and the learning rate (1) is used, then:

lim
n→∞

dn ≥ D

1 +
√
3
.

Proof. By triangle inequality, we can bound the distance to x∗ as

D = ∥x0 − x∗∥ ≤ ∥xn − x∗∥+ ∥xn − x0∥ = ∥xn − x∗∥+ γn∥sn∥.
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We need to upper bound the last term γn∥sn∥. To this end, we use the same argument as in the proof of Lemma A.4, starting
with the definition of d̂n+1 and plugging-in λk = dk:

γn+1

2
∥sn+1∥2 −

n∑
k=0

γk
2
d2k ∥gk∥

2
= d̂n+1 ∥sn+1∥ ≤ dn+1 ∥sn+1∥ .

The main change from the proof of Lemma A.4 is that now we will use inequality 2αβ ≤ α2 + β2 with α2 = θ
d2
n+1

γn+1
and

β2 = γn+1

θ ∥sn+1∥2 with θ to be chosen later to make the bound optimal. Plugging this inequality into the previous bound,
we derive

2αβ = 2dn+1∥sn+1∥ ≤
θd2n+1

γn+1
+

γn+1

θ
∥sn+1∥2 ≤

θd2n+1

γn+1
+

2

θ
dn+1∥sn+1∥+

1

θ

n∑
k=0

γkd
2
k∥gk∥2.

Since the sequence dk is non-decreasing, we have dk ≤ dn+1, further giving us

1

θ

n∑
k=0

γkd
2
k∥gk∥2 ≤

d2n+1

θ

n∑
k=0

γk∥gk∥2
(4)
≤ 2

θ
γn+1d

2
n+1

(
G2 +

n−1∑
k=0

∥gk∥2
)

=
2d2n+1

θγn+1
.

Plugging this back and rearranging, we get

2

(
1− 1

θ

)
dn+1∥sn+1∥ ≤

θd2n+1

γn+1
+

2d2n+1

θγn+1
= (θ + 2/θ)

d2n+1

γn+1
.

Now it is time for us to choose θ. Clearly, the optimal value of θ is the one that minimizes the ratio θ+2/θ
2(1−1/θ) =

θ2+2
2(θ−1) . It

can be shown that the value of θ∗ = 1 +
√
3 is optimal and gives θ2

∗+2
2(θ∗−1) = 1 +

√
3. Thus, we have

γn+1∥sn+1∥ ≤ (1 +
√
3)dn+1.

Now, assume that xn → x∗ in norm, so ∥xn − x∗∥ → 0. In that case, the bounds combined yield

D ≤ lim
n
(∥xn − x∗∥+ γn∥sn∥) = lim

n→∞
γn∥sn∥ ≤ (1 +

√
3) lim

n→∞
dn.

Thus, the value of dn is asymptotically lower bounded by D
1+

√
3

.

F.1. A tighter lower bound on D

Using Lemma A.1, we can obtain a slightly tighter bound than in Theorem A.3. In particular, we have previously used the
following bound:

n∑
k=0

λk (f(xk)− f∗) ≤
n∑

k=0

λk ⟨gk, xk − x∗⟩

=

n∑
k=0

λk ⟨gk, xk − x0 + x0 − x∗⟩

= ⟨sn+1, x0 − x∗⟩+
n∑

k=0

λk ⟨gk, xk − x0⟩

= ⟨sn+1, x0 − x∗⟩ −
n∑

k=0

λkγk ⟨gk, sk⟩

≤ ∥sn+1∥ ∥x0 − x∗∥ −
n∑

k=0

λkγk ⟨gk, sk⟩ .
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From here, we can immediately conclude that

D = ∥x0 − x∗∥ ≥ d̃n+1 =

∑n
k=0 λkγk ⟨gk, sk⟩

∥sn+1∥
.

Notice that it always holds d̃n ≥ d̂n. The only complication that we can face is with Lemma A.4, where we used the
definition of d̂n to obtain the upper bound. Nevertheless, one can prove the same bound with d̂n replaced by d̃n by repeating
the same argument:

γn+1

2
∥sn+1∥2 −

n∑
k=0

γk
2
λ2
k ∥gk∥

2
= d̂n+1 ∥sn+1∥ ≤ d̃n+1 ∥sn+1∥ ≤ dn+1 ∥sn+1∥ .

From that place, the rest of the proof of Lemma A.4 follows in exactly the same way. The other proofs only use the
monotonicity of the sequence and its boundedness by D, dk ≤ dn+1 ≤ D, which would remain valid if replace d̂n with d̃n.

G. Adam Derivation
Lemma G.1. Consider a positive constant c. Define the two sequences:

uk+1 = uk +
1

ck
gk,

ûk+1 = cûk + (1− c) gk.

Then the following relationship holds between the two sequences:

ûk+1 = ck (1− c)uk+1,

assuming that û0 = (1− c)u0.

In this section, we use hat notation to denote the exponential moving averages of each quantity (other than d̂). We drop the
hat notation for simplicity when we present the method (Algorithm 5). We also treat each quantity as 1-dimensional, with
the understanding that the final result holds also when applied element-wise.

Our goal is to derive the EMA updates, given the following weighted updates:

λk =

√
β−k
2 ,

sk+1 = sk + λkgk,

vk+1 = vk + λ2
kg

2
k,

γk+1 =
1√

(1− β2) vk+1

,

rk+1 = rk + γk+1λk ⟨gk, sk⟩ ,

d̂n+1 =

∑n
k=0 γkλk ⟨gk, sk⟩

∥sn+1∥1
=

rk+1

∥sn+1∥1
.

Note that we normalized by γk+1 rather than γk for this implemented variant. We also introduce the Adam denominator
through gamma, in the style of DA method, rather than the step size as implemented in Algorithm 5. This is the only way
currently supported by our theory. However, we will still use the non-DA step:

xk+1 = xk − λkgk.

The denominator of γ is chosen to ensure that the step is properly normalized. To see that, note that:

v̂k+1 = βk
2 (1− β2) vk+1,
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and so:

γk+1 =
1√

(1− β2) vk+1

=

√
βk
2 (1− β2)√

(1− β2) v̂k+1

=

√
βk
2√

v̂k+1

,

therefore:

xk+1 = xk −
√
βk
2√

v̂k+1

1√
βk
2

gk = xk − 1√
v̂k+1

gk.

Note that:
ŝk+1 = β

k/2
2

(
1−

√
β2

)
sk+1,

and so:
ŝk+1 =

√
β2ŝk +

(
1−

√
β2

)
gk.

So we have:

rk+1 = rk + γk+1λk ⟨gk, sk⟩

= rk +
1√

βk
2

(
1−

√
β2

)γk+1
1√
βk
2

⟨gk, ŝk⟩

= rk +
1√

βk
2

(
1−

√
β2

) √βk
2√

v̂k+1

1√
βk
2

⟨gk, ŝk⟩

= rk +
1(

1−
√
β2

) 1√
βk
2

1√
v̂k+1

⟨gk, ŝk⟩

. Now define
r′k+1 = r′k +

1√
βk
2

1√
v̂k+1

⟨gk, ŝk⟩ ,

then r′k+1 =
(
1−

√
β2

)
rk+1. Now using

r̂k+1 =
√

β2r̂k +
(
1−

√
β2

) 1√
v̂k+1

⟨gk, ŝk⟩ ,

we get

r̂k+1 = β
k/2
2

(
1−

√
β2

)
r′k+1 = β

k/2
2

(
1−

√
β2

)2
rk+1.

Plugging this in gives:

d̂n+1 =
rk+1

∥sn∥1
=

r̂k+1

β
k/2
2

(
1−

√
β2

)2 ∥sn∥1
=

β
k/2
2

(
1−

√
β2

)
r̂k+1

β
k/2
2

(
1−

√
β2

)2 ∥ŝn∥1
=

r̂k+1(
1−

√
β2

)
∥ŝn∥1

.
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