Under review as a conference paper at ICLR 2026

ADAPTIVE CONTROL FOR TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models often rely on static computational budgets for reasoning,
leading to suboptimal performance due to “underthinking” (premature termina-
tion) or “overthinking” (performance degradation from excessive computation).
In this work, we demonstrate that models provide a rich, context-dependent signal
about their internal cognitive state through the sub-argmax probabilities of special-
purpose “control tokens.”. We introduce a framework of Adaptive Control Token
Sampling (ACTS) policies that leverage these probability spikes to dynamically
regulate the generation process. Our experiments show that ACTS effectively
mitigates underthinking on complex reasoning tasks. To avert the performance
collapse caused by overthinking in naive policies, we propose an Adaptive Self-
Critique Sampler that uses EOT spikes as triggers for self-evaluation, boosting
reasoning accuracy upto ~ 9.8% on the MATH-500. On instruction-following
tasks, ACTS leverages EOS spikes to improve the quality-efficiency trade-off. Fi-
nally, we used spikes to pioneer, a novel parallel sampling technique that intelli-
gently spawns high-quality reasoning trajectories from a shared trace. Our work
establishes control token probabilities as a powerful, untapped resource for creat-
ing more robust and efficient inference strategies, offering a low-cost method for
test-time scaling.

1 INTRODUCTION

Modern Large Language Models (LLMs) tackle complex reasoning by generating explicit multi-
step rationales, a technique known as Chain-of-Thought (CoT) prompting (Wei et al., 2022) that
has become a cornerstone of state-of-the-art systems (Guo et al., 2025). The efficacy of this “slow-
thinking” paradigm, however, is deeply intertwined with the length of the generated reasoning trace.
While longer CoTs can provide necessary computational steps, they also introduce significant la-
tency and are susceptible to error accumulation, a phenomenon often termed “overthinking” (Sui
et al., 2025).

Recent foundational work has formalized this trade-off, demonstrating that reasoning performance
does not scale monotonically with length but instead follows an inverted U-shaped curve (Wu et al.,
2025). This establishes the existence of an optimal CoT length that is dependent on both task diffi-
culty and model capability, challenging the naive assumption that more computation is always better.
This insight has catalyzed a vibrant research area focused on efficient reasoning. Current solution
paradigms largely fall into two categories. The first is model-centric, aiming to build innately more
efficient reasoners through costly training-time interventions such as fine-tuning on optimal-length
data (Yang et al., 2025b; Wu et al., 2025) or incorporating length-based penalties into reinforce-
ment learning (Luo et al., 2025). The second paradigm is inference-centric, seeking to dynamically
control existing models at test-time. A Seminal work in this area, S1 (Muennighoff et al., 2025),
introduced budget forcing, a technique that behaviorally controls reasoning by either forcefully ter-
minating or prolonging thinking with special tokens (e.g., “Wait”). Other inference-time methods
often rely on auxiliary signals, such as scores from external reward models (Sun et al., 2024) or the
consistency of latent embeddings (Wang et al., 2025).

While powerful, existing inference-time methods often depend on separately trained models or com-
plex heuristics disconnected from the LLM’s core generative process. In this work, we identify and
leverage a more fundamental, previously under-explored signal for generation control: the sub-
argmax probabilities assigned to control tokens like End-of-Sequence and End-of-Thinking tokens.

Under review as a conference paper at ICLR 2026

1o-¢ (a) EOS Token Probability on AlpacaEval (b) EOS Token Probability on Maths500 (c) CTRL Token Probability on Maths500

Probability

N
100 200 300 400

100 200 30
Number of Tokens

500

Figure 1: Token-wise probabilities of control tokens during LLM decoding, illustrating a duality in
the signal. Subfigure (a) shows P(tgos) on AlpacaEval, where an initial phase of sparse spikes
transitions to a denser, more regular pattern, suggesting a shift in the model’s operational state to-
wards termination. Subfigures (b) and (c) show post-thinking P(¢gos) and in-thinking P(tgoT)
on MATHS500, respectively, highlighting the sharp, transient nature of spikes that act as candidate
completion points. The non-monotonic and state-dependent nature of these signals motivates adap-
tive control policies over static ones.

Our central empirical finding, illustrated in Figure 1, is that these internal termination signals are a
rich, structured indicator of the model’s readiness to conclude a generation phase.

To harness this novel signal, we introduce Adaptive Control for Test-time Scaling (ACTS), a frame-
work that casts adaptive generation control as a principled optimal stopping problem. This represents
a shift from the behavioral control paradigm of Muennighoff et al. (2025) to a more fundamental,
fine-grained probabilistic control. Our approach is notably simple and low-cost: it is training-free
and can operate on a given LLM as long as token probabilities are accessible. Within this frame-
work, an external control policy, m4cTs, observes the sequence of control signal probabilities to
determine the optimal moment to terminate. We derive a suite of stopping policies from distinct
theoretical motivations, including evidence accumulation, predictive control, and a novel adaptive
self-critique policy that uses the LLM to evaluate its own reasoning at critical junctures—an effi-
cient, single-model realization of an actor-critic mechanism.

Our comprehensive experiments demonstrate that ACTS policies significantly outperform standard
baselines. On the AlpacaEval benchmark, our methods reduce response length under budget con-
straints while maintaining high win-rates. On complex reasoning tasks like MATH500 and AIME,
they achieve higher accuracy than greedy decoding by enabling more efficient and effective alloca-
tion of “thinking time.” Our adaptive self-critique policy, in particular, establishes a new state of the
art by intelligently resolving the dilemma of when to stop versus when to continue thinking.

1.1 OUR CONTRIBUTIONS

The primary contributions of this work are:

1. We identify and characterize a novel class of control signals within LLMs: the sub-argmax
probability spikes of special tokens (e.g., EOS, EOT). We demonstrate that the dynamics of these
signals reveal the model’s internal state regarding termination and reasoning progress.

2. We develop a framework of spike-aware control policies that resolve the trade-off between
reasoning depth and efficiency. Our policies mitigate underthinking by adaptively prolonging de-
liberation, while our novel Adaptive Self-Critique policy prevents performance degradation from
overthinking by using spikes to trigger efficient self-evaluation.

3. We demonstrate a superior trade-off between output quality and computational cost. On
instruction-following tasks, our policies reduce token count by up to 19% while improving response
quality. On complex reasoning tasks, they achieve higher accuracy with fewer tokens than baselines.

4. Parallel sampling from sequential chain-of-thought We introduce a novel sampling method
that uses a shared KV-cache to spawn multiple answer trajectories from a single reasoning trace.
By using hesitation spikes and self-critique scores as principled triggers for forking, this approach
achieves higher accuracy than strong sequential baselines while being significantly more computa-
tionally efficient than naive parallel sampling.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The challenge of enhancing LLM reasoning efficiency is an active area of research. A primary focus
has been on mitigating the “overthinking phenomenon” (Sui et al., 2025), where models generate
excessively long Chain-of-Thought (CoT) traces. Foundational work has established that reasoning
performance follows a non-monotonic, inverted U-shaped curve with CoT length, motivating the
search for an optimal, task- and model-dependent reasoning budget (Wu et al., 2025). Current
approaches largely fall into two categories: model-centric methods that seek to build innately more
efficient reasoners through training-time interventions like fine-tuning on optimal-length data (Yang
et al., 2025b), and inference-centric methods that aim to dynamically control existing models at
test-time. Our work, ACTS, belongs to the latter category.

Inference-time control strategies have evolved from behavioral interventions to signal-based ter-
mination. A seminal approach introduced “budget forcing,” using special tokens like “Wait” to
behaviorally prolong or terminate reasoning (Muennighoff et al., 2025). More recent methods have
focused on early stopping in sampling-based decoding by leveraging auxiliary signals, such as scores
from external reward models (Sun et al., 2024), the consistency of latent embeddings (Wang et al.,
2025), or learned confidence scores (Huang et al., 2025). ACTS advances this paradigm by iden-
tifying and utilizing a more fundamental, natively available signal: the sub-argmax probability of
control tokens (fcontrot)- By framing the control task as a principled optimal stopping problem
and designing policies grounded in established theoretical concepts—such as our novel, intra-model
actor-critic mechanism for self-critique—our work provides a training-free, model-agnostic frame-
work for more precise and efficient test-time control. A more comprehensive discussion of related
literature is available in Appendix A.

3 PRELIMINARIES: THE ACTS FRAMEWORK

To address the control dilemma identified in our motivations, we introduce the ACTS framework.
This section provides the formal groundwork for our approach. We first establish notation for the
control signal, then we cast the problem of adaptive termination as one of principled policy design
for a controlled stochastic process, drawing on concepts from optimal stopping theory.

We formally cast the problem of adaptive generation control as an optimal stopping problem for a
controlled stochastic process. The objective is to design a control policy, m4c7s, that observes the
generative process and determines the optimal stopping time, 7. The control policy 7 4c7s is not a
passive observer but an active controller that intervenes in the generation process. Its actions guide
the process until its chosen stopping time 7 is reached.

Continuing the Process (t < 7). If the policy’s stopping rule has not been triggered, its action is to
continue. This typically involves allowing the LLM to emit its native end-of-thinking token (t gor).
If 7y attempts to terminate prematurely by predicting ¢t o as the argmax token, but m4c7s has not
yet reached its stopping time, the controller intervenes by forcing the emission of a special “Wait”
token, ty 4. This control action, inspired by Muennighoff et al. (2025), keeps the system in a
non-terminal state, allowing for further deliberation.

Terminating the Process ({ = 7). When the policy’s stopping condition is met, the controller
issues a terminal action. This involves forcing the emission of the appropriate control token, t.ontroi>
thereby halting the process.

This control-theoretic perspective clarifies that ACTS is a closed-loop system where the controller
(macTs) observes the system’s output signal (s;) and applies control actions (tyy4it O teontror) tO
steer the system towards an optimal termination state. The specific methods we introduce next are
different instantiations of this control policy, T 4crs-

4 METHODOLOGY: A SPECTRUM OF PRINCIPLED GENERATION POLICIES

We propose a framework for dynamically steering the autoregressive generation of a Large Language
Model (LLM) to mitigate common failure modes such as underthinking (premature convergence)

Under review as a conference paper at ICLR 2026

and overthinking (unproductive deliberation). Our approach, termed Adaptive Control of Token Se-
quences (ACTS), intervenes at each decoding step by monitoring the probability of specific control
tokens. This control signal, s; = mg(tconwol|X<¢, C), is interpreted by a suite of principled policies
(macTs) to solve the optimal stopping problem.

These policies range from simple, deterministic rules derived from principles of temporal integration
and evidence accumulation, to adaptive strategies that leverage the LLM’s own capacity for self-
evaluation. This spectrum allows for a trade-off between computational simplicity and nuanced,
context-aware control.

4.1 POLICIES FOR SAMPLING

We refer to an instance where the control signal exceeds a predefined threshold (s; > 0) as a “spike.”
Algorithm 1:

N-Spike Counter Policy This policy treats each n._Spike Counter Policy

spike as a discrete vote for termination. It requires

a sustained signal, demanding the accumulation of 1: Input: LLM my, Prompt C, tcontols

Npatience such votes before acting. This filters out Spike Probability Threshold (dcount),
single, potentially spurious, transient events and en- Spikes Count Threshold (Npatience)
sures the LLM’s intent to terminate is stable over 2: Initialize spike_count < 0; x « [].
time. The policy (Algorithm 1) maintains a count 3: for each generationstept =1,2,... do

of observed spikes. The stopping time 7 is the first 4: 8 < Tg(tcontrol | X<t, C) > Control Token
time step ¢ at which this count reaches a predefined Probability
evidence threshold Npagience- 5. if s > dcount then

6: spike_count < spike_count +1
Adaptive Policies via Self-Critique Whilerobust, 7: end if
deterministic policies are context-agnostic. We in- 8 if spike_count > Npagience then
troduce a more sophisticated class of policies in- 9 Emit ¢conror and return - sei sioppine
spired by actor-critic methods, where the LLM is time 7« ¢
leveraged as its own critic. The generative process 10: end if
is the actor (mg), which produces reasoning, and 11: Emit default token
the same LLM, prompted for self-evaluation, is the 12: end for
critic.
Instead of performing costly self-evaluation at every step, we use probability spikes as a trigger,

identifying critical junctures where a critique is most valuable. The critic’s output, a reasoning
quality score s = C'(T}) € {1,..., 5}, then informs the generation decision.

. . . Algorithm 2:
Parallel Trajectory Generation with follow-the- - - — -
leader Consensus We note that with the same rea- Generic Adaptive Self-Critique Policy
soning trace, we can fork answer generation at dif- . Input: LLM 7, Prompt C, feontols

ferent points in the output process. Such forking Spike Threshold (Suriee), Critique
ensures that the user may receive an early version Prompt (Cariique) eritque
of the answer which can be adapted as the thinking — ,. g oo g ggg‘;;iion stept = 1,2,... do

proceeds. In fact this is often how humans ourselves 5.

i St <= To (tcomrol ‘ X<t C) > Control Token
reason, having

Probability

we can fork the reasoning process at opportune mo- 4 if 8¢ > Gcritique then

ments to generate an ensemble of answers A, with 5 context < context +Clritique
the final answer determined by majority vote. Self- 6 score < GenerateCritique(LLM,
critique ensures this computationally intensive strat- critique_context)
egy is used efficiently. 7: if score = 5 then
8: Emit t gor and return : set sopping
Quality-Gated Forking. A fork is initiated only time 7 = ¢
when two conditions are met: (1) a hesitation spike 9: else)
is detected (maxy, e 7y P(fh|Tk;) > 7,) and (2) the 10: Emit tyy g b Critique failed, force
self-critique score is high (C(Ty) > Sguk). This continuation
dual condition identifies states where the model is 1 end if
both uncertain about the next step and has pro- 12: else)
duced a high-quality line of reasoning so far—an 13: Emit default token
14: end if
15: end for

Under review as a conference paper at ICLR 2026

ideal point to explore alternative conclusions. The
primary branch continues generating, while parallel
branches are spawned to generate candidate answers
from the current state.

5 EXPERIMENTAL SETUP

Datasets and Tasks We evaluate our method on a diverse suite of benchmarks targeting two key
capabilities: reasoning and instruction following. For reasoning, we use three benchmarks spanning
mathematical and logical problem-solving. First, for arithmetic reasoning, we use GSM-8K (Cobbe
et al., 2021), a collection of 1,320 grade-school math problems requiring multiple steps of basic
arithmetic. Second, we assess performance on more complex mathematical challenges using a
500-problem subset of the MATH benchmark (Hendrycks et al., 2021). Third, to test advanced
problem-solving, we include 30 competition-level questions from the AIME 2025. For instruction
following, we use AlpacaEval (Dubois et al., 2024), an automatic, LLM-based evaluation bench-
mark consisting of open-ended user queries from real-world scenarios.

Models We conducted experiments across different model families and scales. For reasoning
tasks, we employ models from two distinct families. From the Qwen3 series, recognized for
state-of-the-art performance on public leaderboards (Yang et al., 2025a), we select Qwen3-4B,
Qwen3-8B, and Qwen3-14B. Additionally, we use the s1.1-7B and s1.1-32B (Muennighoff
et al., 2025) models to broaden our evaluation. For the instruction following task on AlpacaEval,
we utilize the L1ama3.1-8B-Instruct model.

Evaluation Metrics Following standard practices for each task, we employ strict and established
metrics. For the reasoning benchmarks (GSM-8K, MATH, and AIME), we measure performance
using Accuracy, i.e. a model’s prediction is correct only if it exactly matches the ground-truth
solution. For the instruction-following benchmark (AlpacaEval), we report the win rate and length-
controlled win rate against a strong reference model (e.g., GPT-4), as determined by an automated
GPT-4-based evaluator.

6 EXPERIMENTAL RESULTS

Our experiments are designed to address the following research questions:

RQ1: Signal Characterization and Analysis: What are the empirical properties of the sub-argmax
control token probability signal, P(¢controt), across different models and task domains (Fig-
ure 1)?

RQ2: Instruction Following Efficiency: Can deterministic ACTS policies leverage the P(tgos)
signal to reduce verbosity and improve the trade-off between response quality and computa-
tional cost on instruction-following tasks (e.g., on AlpacaEval under tight token budgets)?

RQ3: Mitigating Reasoning Underthinking: Can ACTS policies, intervene on premature end-of-
thinking spikes, to improve the reasoning accuracy of models?

RQ4: Analysis of Overthinking: Does a naive or overly conservative policy of prolonging rea-
soning lead to diminishing returns or performance degradation, thereby confirming the over-
thinking problem?

RQS5: A new parallel sampling technique: Can a shared sequential reasoning trace be used to
spawn multiple parallel traces for generation? We address this question in this subsection.

6.1 RQ1: SIGNAL CHARECTARIZATION

We study three distinct type of control tokens: end-of-sentence spikes, end-of-thinking spikes, and
hesitation spikes. These signals correspond to concluding a response, finalizing a complex thought,
or actively reasoning through a problem.

End-of-Sentence Spikes for Early Termination We observe that the model emits distinct spikes
for the End-of-Text (EOS) token at semantically appropriate completion points, as illustrated in

Under review as a conference paper at ICLR 2026

0.000100
EOT token prob.
20.000075
‘8 0.000050
Q

<4
a 0.000025

0.000000 0 200 400 600 0 200 400 600 800 0 200 400 600
Token Position in Sequence

Figure 2: End-of-Sentence (EOS) Spikes for L1lama3.1-8b-Instruct for AlpacaEval2.0

Figure 2. While the probability remains near zero for most of the generation, it exhibits sharp, low-
magnitude spikes (up to ~0.0001) that often align with the natural conclusion of a sentence or a
complete answer. These spikes serve as a soft signal that the model has fulfilled the user’s request.
These serve as appropriate points to implement early termination strategies.

1.0
EOT token prob.

z
=0.8
a
©
e}
©0.6
o

0.4 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

Token Position in Sequence

Figure 3: End-of-Thinking (EOT) Spikes for Qwen3-8B for Maths-500

End-of-Thinking Spikes for Elongating Reasoning For complex reasoning tasks, a common
failure mode is underthinking, where the model provides a premature or superficial answer. These
spikes, generated during a reasoning task (see Fig. 3), displays high-probability (approaching 1.0)
spikes for the EOT token. Unlike the subtle end-of-sentence signals, these are periodic indicators
that the model considers its chain of thought complete. By configuring the generation process to
continue until such a spike is detected, we can encourage the model to “think longer” and develop a
more thorough solution, helping to prevent underthinking.

1.0
Wait token prob.

2> Alternate token prob.
=0.8
o
©
a
©0.6
o

0.4 0 500 1000 1500 0 2000 4000 0 1000 2000 3000

Token Position in Sequence

Figure 4: Hesitation Spikes for Qwen3-8B for Maths-500

Hesitation Spikes for Reasoning Path Correction During problem-solving, it is beneficial for
the model to pause, reconsider, and explore different approaches. We analyze two special tokens,
Wait and Alternatively, designed to facilitate this behavior. Figure 4 shows that the model
utilizes Wait (green) and Alternate (red) tokens with high probability during complex reason-
ing. A dense cluster of Alternate spikes, for instance, suggests a moment of significant recon-
sideration. These hesitation tokens are not signs of failure but rather functional components of a
robust reasoning process, enabling the model to self-correct and navigate complex problem spaces.

6.2 RQ2: INSTRUCTION FOLLOWING EFFICIENCY:
Verbosity iS a common phenomenon Baseline (Greedy) Ours (Accumulated) Ours (Last-Interval) Ours (N-Spike)
in LLM generation. Simple answers 30
may be elongated due to reward hack- 5
ing on length. But can these effects
be mitigated using end-of-sequence ¢
spike control? We tackle this query
by evaluating our samplers on the Al- 10" Max Tokens 512 Max Tokens 1024 2°0 MaxTokens 512 Max Tokens 1024
pacaEval 2.0 benchmark, measuring Figure 5: Comparison of Response Quality (LC-WR) and
Generation Cost (Avg. Tokens) of our spike-aware samplers
vs. baselige on AlpacaEval.

Average Tokens
w B S
& & &
S 38 &

w
o
=3

Under review as a conference paper at ICLR 2026

both quality via Length-Controlled
Win Rate (LC-WR) and cost via av-
erage generated tokens.

The results, presented in Figure 5, reveal a clear Pareto improvement over the greedy decoding
baseline. Our Last-Interval Budget Sampler, which strategically terminates generation based on
prominent [EOS] spikes, achieves an LC-WR of 30.11%, a significant +3.7% gain over greedy
decoding. This quality enhancement is coupled with an efficiency gain of 11-19%.

6.3 RQ3: MITIGATING REASONING UNDERTHINKING

Greedy Accumulated Last-Interval N-Spike (1x Wait) N-Spike (3x Wait) N-Spike (5x Wait)
0.85

0.80 15000

o)
© 0.75
o

3
So.70 10000
<

Average Tokens

0.65

[%
o
o
o

0.60 Max Tokens 16K Max Tokens 32K Max Tokens 16K Max Tokens 32K

Figure 6: Analysis of spike-aware stopping policies on the MATH-500 benchmark. These policies
use probability spikes of the [EOT] token to determine when to halt reasoning. (a) All spike-aware
policies overcome the underthinking of the Greedy baseline, improving accuracy. (b) The choice of
policy dictates a trade-off between token cost and the risk of overthinking.

Under-thinking on complex tasks is known to suppress the performance of reasoning models on hard
benchmarks. But can this be modulated through control tokens? Specifically, underthinking occurs
when a model terminates its reasoning chain prematurely, before reaching a correct solution that was
possible for the model to reach. We investigate our samplers that effectively combat under-thinking,
on the MATH-500 benchmark, with results in Figure 6.

While the greedy baseline succumbs to under-thinking, achieving the lowst accuracy on the bench-
mark, our control-token aware samplers deliver significant performance gains, simply by leveraging
the information available in the end-of-thinking spike probabilities. While Accumulated sampler
waits for the total of the end-of-thinking token probabilities to reach a threshold, the n-spike sam-
pler waits for ‘n’ spikes of at least a certain probability threshold. We find that the simple 5-spike
sampler which waits for 5 probability spikes before exiting the chain-of-thought performans the best
on this benchmark. The more complex last-interval sampler underperforms both on token-budget as
well as accuracy versus the simpler alternatives.

Note on overthinking: While the 5-spike sampler achieves great results in the 16K thinking limit
setting, we notice that the accuracy drops from 81% to 79.2% on a larger 32K context budget This
indicates that simply extending the thinking trace may sometimes lead to poorer results.

7 ANALYSIS OF OVERTHINKING: AVERTING OVERTHINKING IN COMPLEX
REASONING

Overthinking may not just lead to greater cost in terms of compute budgets and wasted tokens, but
also lead to lower downstream performance. Hence a naive policy simply suppressing the end-
of-thinking tokens does not work. This leads to the question: is there an adaptive method that
overcomes the weaknesses of these naive deterministic samplers, that can mitigate overthinking?

Our experiments, summarized in Table 1, address this very question. We note that the best-
performing sampler is the adaptive self-critique sampler. Specifically, at each spike, the model
is forced to answer the query: “Is this reasoning trace correct, answer on the scale of 1-5?” wherein
it responds with a single token, that then determines whether the answer continues or not.

Specifically, on the S1-32B model, the self critique is invoked as follows. When there is a spike
on the end-of-thinking token, the sampler initiates a critique to determine if the current reasoning
is sound or if more work is needed. This intelligent, state-dependent approach achieves superior
performance over the naive samplers. While the performance gets boosted by up to 3% over the
best-performing deterministic baseline, we also see gains of up to 50% on reasoning tokens over the

Under review as a conference paper at ICLR 2026

Table 1: Ablation on handling [EOT] spikes. A naive, fixed policy of suppressing the spike leads
to overthinking and performance collapse (e.g., S1 models at 5x Wait). Our Self-Critique Sampler
uses [EOT] spikes as a trigger for adaptive evaluation, achieving superior accuracy and efficiency.

Dataset Model Sampler (EOT Handling Policy) Accuracy T Avg. Token Count |
Baseline 0.732 5752.40
Naive (Wait 1x) 0.796 6317.92
Naive (Wait 3x) 0.808 10659.59
MATH-500 S1 (32K) Naive (Wait 5x) 0.792 17906.58
Self-Critique (Adaptive) 0.822 8885.29
Baseline 0.400 9552.75
Naive (Wait 1x) 0.466 10653.63
S1-32B Naive (Wait 3x) 0.567 14503.36
Naive (Wait 5x) 0.537 17786.21
AIME 2025 Self-Critique (Adaptive) 0.567 12345.67
Baseline 0.700 18154.00
Naive (Wait 3x) 0.700 19007.30
Qwen3-8B Naive (Wait 5x) 0.700 20292.45
Naive (Wait 7x) 0.737 20398.96
Self-Critique (Adaptive) 0.767 19269.56

best deterministic baseline. This shows the need to not just use control token probabilities during
generation, but also, appropriately at spikes, invoke the models own self-critique capabilities to
decide whether to continue thinking or not.

MATHS-500 AIME25 GSM8K

Accuracy

—&— Ours (N-Critique)
% Baseline

50 0.935
3000 4000 5000 13000 14000 15000 1250 1500 1750 2000 2250
Average Token Count

Figure 7: Accuracy vs. Computational Cost Trade-off for Qwen-3 8B. This figure illustrates the
performance of our N-Critique sampler method compared to the baseline. Each blue point on the
curve represents a policy that halts after N critiques (N=1, 3, 5, or 7). (a) Performance on Maths-
500. (b) AIME2S (c) GSM8K

Adaptive self-critique to guide rethinking While the adaptive self-critique may be invoked dur-
ing end-of-thinking spikes, it may also be invoked during other rethinking token spikes like “Wait”
or “Alternatively”. These signals can then be used to trigger a self-critique module which evaluates
the reasoning chain and provides a confidence score. Generation is terminated only when the model
expresses high confidence in its current path.

To check for different confidence levels on such a self-critique we can require the model to get a
particular critique score n times before termination, a method we term N-Critique Sampler
(N) . This prevents premature termination based on a single, potentially spurious confidence spike.
We evaluate this approach on the MATH-500, AIME25, and GSM8K benchmarks using Qwen-3
8B and 14B models. The results are detailed in Figure 7 for Qwen3 8-B and in Figure 8 for Qwen3
14-B.

On the MATH-500 dataset, for both the 8B and 14B models, N-Critique Sampler (3) sur-
passes the baseline accuracy (94.4% vs. 93.4% for 8B; 95.0% vs. 94.0% for 14B) while simulta-
neously reducing the average token count by over 35%. On the more challenging AIME25 bench-
mark, which requires more extensive reasoning, the performance scales with IV, with N—-Critique
Sampler (7) achieving a top accuracy of 72.2%, an improvement over the 65.5% baseline. The
8B model shows a similar trend, peaking at N = 5 with 66.7% accuracy compared to the 58.9%
baseline. Finally, on GSMS8K, the benefits are again pronounced. The self-critique policies con-
sistently outperform the baseline in accuracy while drastically reducing token usage. For the 14B
model, N-Critique Sampler (7) achieves an outstanding 95.5% accuracy using only 1743
tokens, compared to the baseline’s 94.2% accuracy at 1908 tokens.

Under review as a conference paper at ICLR 2026

MATHS-500 AIME25 GSM8K
0.950 0.72 —e— ours (N-Critique) 0.955
Y Baseline

50.945 0.70 0.950
g
3 0.940- e R k-
5o 0.68 0.945
<

0.935

0.66 0.940
2500 3000 3500 4000 4500 12000 12500 13000 13500 14000 1000 1200 1400 1600 1800

Average Token Count
Figure 8: Accuracy vs. Computational Cost Trade-off for Qwen-3 14B. This figure illustrates the
performance of our N-Critique sampler method compared to the baseline. Each blue point on the
curve represents a policy that halts after N critiques (N=1, 3, 5, or 7). (a) Performance on Maths-
500. (b) AIME25 (c) GSMSK
Table 2: Quality-Gated Forking consistently outperforms both sequential and brute-force parallel

approaches. It reliably improves accuracy over the strong N-Critique sequential baseline on Qwen3
(7B) and Qwen3 (14B) on Maths-500.

Model Policy Accuracy Avg. Forks Avg. Tokens
N-Critique (Sequential) 0.944 0 3,055

7B Unconditional Forking 0.942 13.1 18,336
Quality-Gated Forking 0.950 94 13,005
N-Critique (Sequential) 0.950 0 3,085

14B Unconditional Forking 0.952 10.8 15,336
Quality-Gated Forking 0.961 7.1 11,231

7.1 RQ5: PARALLEL SAMPLING WITH SHARED SEQUENTIAL REASONING:

With the richness of the signal available to create stopping time policies, it is easy to see that one
can come up with other adaptive techniques for deciding the stopping time. Instead, here we further
wish to explore a question on parallel vs. sequential reasoning. Specifically, we ask and answer
the question: Can a shared sequential reasoning trace be used to spawn multiple parallel traces for
generation? We address this question in this subsection.

In this setup, we use the model spikes as the signals for the parallel fork process from a single
chain-of-thought sequence. Let us say that we use a single KV-cache for the original reasoning
trace, we then use a paired decoder which shares this KV-attention cache to spawn new decoding
processes from the original token sequence. We note that while these new decoding processes are
spawned, and generate early versions of responses, the original thought decoding continues. Hence
the controller has the option to switch answers at any time during decoding in case the majority vote
over multiple decoders flips.

We note that a fork is initiated only when two conditions are met: (1) a hesitation spike is detected,
and (2) the model’s self-critique score for the current reasoning trace is high (e.g., score > 4 out
of 5). The core hypothesis is that not all moments of uncertainty are equally valuable; by forking
only from states of high-quality reasoning, we can focus computational resources on promising
trajectories. For both policies, the final answer is determined by a majority vote over all candidate
answers generated, and intermediate responses may also be available based on the majority-so-far.

In Table 2, we evaluate these policies on the Qwen3 (8B) and Qwen3 (14B) model on a challenging
reasoning dataset, comparing them against our best sequential policy (N-Critique) to measure the
benefit of parallelization itself. As demonstrated across both model scales, forking is useful, but
only when initiated by an adaptive critique. In this setting, we outperform even the best performing
adaptive critique sampler.

Discussion Our results highlights a powerful new direction for LLM inference. The signals of
entropy over control tokens, can be repurposed as valuable triggers for both sequential and parallel
exploration. By combining low-level probability signals with high-level semantic self-awareness
(critique), one can create inference strategies that are not only more accurate but also highly compu-
tationally efficient. ACTS is therefore a highly effective and low-cost inference time scaling method
that can be adapted for stopping signals across a wide range of inference tasks.

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682—-17690, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science & Business
Media, 2012.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Daniele Paliotta, Junxiong Wang, Matteo Pagliardini, Kevin Y Li, Aviv Bick, J Zico Kolter, Albert
Gu, Francois Fleuret, and Tri Dao. Thinking slow, fast: Scaling inference compute with distilled
reasoners. arXiv preprint arXiv:2502.20339, 2025.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476-483. IEEE, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. Advances in
Neural Information Processing Systems, 37:32630-32652, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui

Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025.

10

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-
time compute for 1lm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

11

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

These supplementary materials provide additional details, derivations, and proofs for our paper. The
appendix is organized as follows:

» Section A: Extended Related Work. A detailed overview of related literature.

* Section B: A Reader’s Guide to the Theoretical Analysis. An intuitive roadmap for the formal
proofs.

* Section C: Proof of Spike Correctness (Lemma 1). Establishes the reliability of the control
signal.

* Section D: Proof for N-Spike Counter Policy (Proposition 2). Bounds the probability of
spurious termination.

* Section E: Proof for Accumulated Probability Policy (Proposition 3). Guarantees the relia-
bility of evidence accumulation.

* Section F: Proofs for Last-Interval Budget Policy (Theorems 2 and 3). Provides regret and
prophet-inequality bounds.

* Section G: Proof of Self-Critique Superiority (Theorem 1). Demonstrates the benefit of the
adaptive self-critique policy.

* Section H: Proof of Robustness to Misspecification (Proposition 4). Shows the framework’s
stability under model mismatch.

* Section J: Model Performance on AlpacaEval, AIME, and Maths-500 Under ACTS Policies

A EXTENDED RELATED WORK

A.1 TEST-TIME SCALING AND DYNAMIC INFERENCE

A significant line of research has demonstrated that the performance of Large Language Models can
be substantially improved by allocating more computational resources at inference time, a paradigm
known as test-time scaling (Muennighoff et al., 2025). This approach, however, introduces a critical
challenge of efficiency. Our work, ACTS, contributes to the growing body of literature on making
this scaling more intelligent and resource-efficient.

Foundational Test-Time Scaling Methods. The canonical methods for test-time scaling involve
generating multiple candidate sequences and aggregating them. Best-of-N (BoN) sampling gener-
ates N independent sequences and uses a verifier or a trained reward model to select the highest-
scoring output (Lightman et al., 2023). This approach is general-purpose but often relies on the
availability of a high-quality, and potentially costly, external verifier. A popular variant, Self-
Consistency, is designed for tasks with deterministic answers, such as mathematical reasoning
(Wang et al., 2022). It generates /N sequences and selects the final answer via a majority vote,
eliminating the need for an external reward model but limiting its applicability. Both BoN and Self-
Consistency are computationally expensive as they require the full generation of all N candidate
sequences, creating a linear increase in cost with the number of samples.

Efficient Test-Time Scaling via Early Termination. Recent work has focused on mitigating the
high cost of BoN and Self-Consistency by introducing mechanisms for the early termination of
unpromising generation paths. These methods differ primarily in the type of signal they use to make
termination decisions.

12

Under review as a conference paper at ICLR 2026

One prominent approach leverages external verifiers to score partial sequences. For instance, Spec-
ulative Rejection (Sun et al., 2024) periodically queries an external reward model on the partially
generated sequences. Trajectories with low partial scores, which are unlikely to yield a high final
reward, are pruned, allowing computational resources to be focused on the more promising candi-
dates. While effective, this strategy’s performance is contingent on the quality and calibration of the
external reward model, which itself can be costly to train and serve.

A second approach utilizes signals from the model’s own latent representations. Self-Truncation
Best-of-N (ST-BON) (Wang et al., 2025) operates on the hypothesis that sequences leading to the
same correct answer will have similar latent embeddings. It monitors the consistency of hidden
states across parallel generations and truncates paths that diverge from the main cluster, thereby
avoiding the need for an external reward model. This uses a truly internal signal, but one that is
high-dimensional and less directly interpretable than the explicit probabilistic outputs of the model.

A third approach uses more general model confidence scores. Self-Calibration (Huang et al., 2025)
proposes fine-tuning a model to produce a calibrated confidence score for its own generations, often
by distilling confidence from Self-Consistency statistics. This learned confidence can then be used
to implement early-stopping rules for sampling. This method also uses an internal signal, but it
requires a separate training phase to create the calibrated confidence predictor.

Our ACTS framework contributes to this line of research by proposing the use of a novel signal that
is both internal to the model and natively available without requiring additional training or complex
analysis of latent states: the explicit probability of control tokens, P (tcontrol)-

Orthogonal Approaches. Other methods seek efficiency through different means. Structured
Search methods, such as Tree-of-Thought (Yao et al., 2023) and Graph-of-Thoughts (Besta et al.,
2024), replace unstructured sampling with a more organized exploration of the reasoning space, of-
ten involving backtracking and planning. While powerful, these methods typically introduce signif-
icant algorithmic complexity and overhead. Concurrently, architectural approaches aim to build
faster models from the ground up, for example by using subquadratic architectures like Mamba
(Paliotta et al., 2025). These architectural innovations are largely complementary to our work; the
principled stopping policies developed within the ACTS framework could potentially be applied on
top of these faster models to achieve even greater efficiency gains.

A.2 CONTROLLING REASONING BEHAVIOR AT TEST-TIME

Beyond general-purpose sampling efficiency, a specific line of work has focused on directly control-
ling the behavior of the reasoning process itself at inference time. This is particularly relevant for
our work on managing the thinking phase via the t o7 token. A seminal contribution in this area is
the s1 model’s “budget forcing” mechanism (Muennighoff et al., 2025). This approach introduced
direct, behavioral interventions to control reasoning length: it could forcefully terminate a thinking
process that exceeded a token budget, or, crucially, it could prolong a thinking process by appending
a special “Wait” token when the model attempted to conclude prematurely. This demonstrated the
viability of active, external control over the deliberation process.

Other approaches have used prompt engineering to influence reasoning style. For example, Chain-
of-Draft (Xu et al., 2025) instructs models to produce concise, draft-like intermediate steps to reduce
verbosity. Similarly, works like Renze & Guven (2024) have shown that simply instructing a model
to “be concise” can effectively shorten reasoning paths. These methods, while often effective, rely
on the model’s instruction-following capabilities and may not offer the same level of fine-grained
control as algorithmic interventions. ACTS builds directly on the legacy of Muennighoff et al.
(2025), advancing the paradigm from reactive, behavioral interventions to a predictive, signal-driven
control policy. By grounding the decision of when to apply interventions like the “Wait” token in
the model’s underlying probability distribution, ACTS offers a more fundamental and fine-grained
control mechanism.

A.3 THEORETICAL FOUNDATIONS FOR POLICY DESIGN

The design of each ACTS stopping policy is a principled application of a concept from established
theoretical domains. We ground our methods in optimal stopping theory, stochastic process analysis,

13

Under review as a conference paper at ICLR 2026

and reinforcement learning, allowing us to derive policies from first principles rather than ad-hoc
heuristics.

Policies Derived from Optimal Stopping Theory. This field addresses the problem of choosing
an optimal time to take an action based on sequential observations. The classic Secretary Problem,
with its renowned 1/e observe-then-commit solution, directly inspires our Adaptive Peak-Threshold
Sampler. Similarly, the Prophet Inequality setting, which bounds the performance of online al-
gorithms against a “prophet” with full hindsight, motivates the retrospective logic of our Prophet
Lookback policy.

Policies Derived from Stochastic Process Models. We model the control signal {s;} as a time
series, allowing us to draw from relevant analytical tools. A Martingale is a process where the con-
ditional expectation of the next value is the present value. Modeling the inter-spike interval process
as a martingale yields the simple predictive rule in our Last-Interval Budget Sampler. Change-Point
Detection, which aims to identify shifts in a process’s statistical properties, provides the formal basis
for our Phase-Shift Sampler, which is designed to detect a change in the rate of spike generation.

A Policy Derived from the Actor-Critic Paradigm. The Actor-Critic framework in reinforce-
ment learning uses a critic to estimate the value of an actor’s policy. Our Adaptive Self-Critique
policy introduces a novel, intra-model instantiation of this concept. The LLM’s generative process
acts as the actor, and the same LLM, when prompted for self-evaluation, serves as an efficient, on-
demand critic, providing a principled, feedback-driven approach to the optimal stopping problem.

B A READER’S GUIDE TO THE THEORETICAL ANALYSIS

This section serves as a roadmap to the formal results that underpin the ACTS framework. Our goal
is to provide the intuition behind our theoretical claims, clarify the key assumptions, and explain
how these results collectively build a rigorous case for our approach. We begin by centralizing the
notation used throughout our analysis.

B.1 NOTATION REFERENCE

Table 3 provides a comprehensive reference for the symbols used in our theoretical proofs and
discussions.

B.2 THE NARRATIVE AND INTUITION OF OUR THEORETICAL RESULTS

Our theoretical analysis is structured to tell a coherent story in several parts. First, we establish
the fundamental properties of the problem and the signal. Second, we provide performance guar-
antees for our specific policies under different analytical lenses (robustness, regret, and competitive
analysis). Finally, we prove the superiority of our most novel adaptive method.

B.2.1 WHY IS BUDGET MANAGEMENT A NON-TRIVIAL PROBLEM? (PROPOSITION ??)

Intuition: The first question a skeptic might ask is, “Why not just always use the maximum bud-
get?” Our first theorem formally establishes the economic principle of diminishing returns. It
proves that the utility gained from each additional token of “thinking time” is non-increasing. This
means the 10th token is likely more valuable than the 1000th. This result establishes that a non-
trivial optimal stopping problem exists: there is a ”sweet spot” for termination that intelligent poli-
cies should seek.

Key Assumption: To prove this, we assume that the utility of a generated sequence is discrete-
concave at the per-trajectory level. This is a formal way of saying that the “aha!” moments or key
insights tend to happen earlier in a productive reasoning process.

14

Under review as a conference paper at ICLR 2026

Table 3: Key notation used in our theoretical analysis.

Symbol Description

t Discrete time step / token index

T Maximum generation length (horizon)

bg Fixed token budget for a policy

Sy Control signal (i.e., P(tcontror)) at time ¢

1) Generic spike threshold: a spike occurs if s; > ¢

o Probability of a spurious spike during content generation

Npatience ~ Spike count threshold for the N-Spike policy

T A random stopping time determined by a policy

T An offline-optimal stopping time

U(x¢,t) Utility obtained by stopping at time ¢ with sequence x;

Umnax Uniform upper bound on utility: 0 < U(+) < Upax

Us, U, Utility of stopping (Us) or continuing (U.) at a spike

AU Net utility gain from correct continuation: U, — Us; > 0

q Prior probability that an observed spike is premature

n Accuracy of the self-critique policy (> 0.5)

PP True and approximate distributions over trajectories

€ Upper bound on total variation distance, TV(P, P)

2t Logit of the control token at time ¢

4, i— Mean of z; at completion vs. non-completion indices
Logit mean gap: p4 — p—

o2 Variance proxy for sub-Gaussian variables

I, I, True and predicted inter-spike intervals

B.2.2 WHY TRUST THE SIGNAL? (LEMMA 1)

Intuition: Our entire framework depends on the P (contro1) spikes being meaningful. This lemma
provides the formal justification. It proves that if there is any statistical difference in the model’s
logits between completion and non-completion steps, then spikes in the probability signal will be
exponentially more likely to occur at true completion points than at random, noisy steps. This
result assures us that we are building our policies on a foundation of a reliable, high signal-to-noise
ratio indicator.

Key Assumption: We model the control token’s logit as a sub-Gaussian random variable whose
mean shifts depending on whether the current step is a true completion point. This is a standard and
flexible way to model a “’signal-plus-noise” process.

B.2.3 How ROBUST ARE SIMPLE POLICIES TO NOISE? (PROPOSITIONS 1 & 2)

Intuition: Given a reliable signal, how can we design simple, robust rules to act on it? We provide
guarantees for two of our deterministic policies. For the N-Spike Counter, we prove that its prob-
ability of a false termination (stopping due to random noise) decays exponentially with the number
of spikes, Npasience, it Waits for. This formally captures its role as a robust temporal filter. For the
Accumulated Probability policy, we use concentration inequalities to show that it can reliably dis-
tinguish between a “content generation” phase and a “conclusion seeking” phase with a probability
of error that also decays exponentially.

Key Assumptions: These proofs rely on standard statistical assumptions: that spurious spikes
occur as independent events (for the N-Spike bound) and that the signal’s mean value is different in
the two generation phases (for the Accumulation bound).

B.2.4 How Do OUR POLICIES PERFORM OVER TIME? (THEOREM 1)

Intuition: This theorem analyzes the long-term performance of our simple threshold-based poli-
cies using the lens of online learning. It proves that the regret of the policy—the difference between

15

Under review as a conference paper at ICLR 2026

its utility and that of a hypothetical optimal offline policy—grows only sublinearly with the gener-
ation length (O(\/T)). This is a powerful result, as it means the *average* regret per token goes to
zero. It formally shows that our simple policies are ”good learners” that do not fall too far behind
the optimal solution over long horizons.

Key Assumptions: This result relies on the utility function being reasonably smooth (L-Lipschitz)
and the signal’s noise forming a martingale difference sequence, a standard model for noise in time-
series analysis.

B.2.5 How Do OUR POLICIES COMPARE TO AN ORACLE? (THEOREM 2)

Intuition: This theorem provides a powerful worst-case guarantee for our simple threshold-based
policies, comparing them to a ”prophet” that knows all future utility values in advance. It proves that
a simple threshold policy can guarantee an expected utility of at least half that of the all-knowing
prophet. This is a classic result from prophet inequality theory and provides a strong, constant-
factor approximation guarantee for our methods under minimal assumptions about the utility distri-
bution. It demonstrates that even simple ACTS policies are robustly competitive against an impos-
sibly strong baseline.

Key Assumption: The only assumption is that the utilities are non-negative. This is a very general
and powerful guarantee.

B.2.6 WHY IS SELF-CRITIQUE THE SUPERIOR POLICY? (THEOREMS 3 AND 4)

Intuition: This is the capstone of our theoretical argument. If spikes are reliable but sometimes
premature, what is the best way to decide? This theorem proves that asking the model to critique
itself is provably better than any fixed rule. The intuition is simple: as long as the model’s self-
critique is even slightly better than a random coin flip (n > 0.5), the expected utility gain from
making a more informed decision will outweigh the cases where the critique is wrong. It formally
shows why transitioning from passive signal interpretation to active, targeted information-gathering
(via critique) is the optimal strategy.

Key Assumption: We assume the critic’s accuracy, 7, is symmetric and greater than 0.5.

B.2.7 HoOW ROBUST IS THE ENTIRE FRAMEWORK? (PROPOSITION 3)

Intuition: Finally, what if our statistical models of the signal are not perfectly accurate? This
proposition proves that the entire ACTS framework is robust to such misspecification. It shows that
if the true generative process is only slightly different (measured by total variation distance €) from
our assumed model, then the performance of any ACTS policy will also only be slightly different
(bounded by € - Upax)- This provides a crucial guarantee of stability and reliability.

Key Assumption: The only assumption is that the utility function is bounded.

This roadmap should equip the reader with the necessary context to understand not just what our
theorems state, but why we chose to prove them and how they fit together to form a theoretical
argument for the ACTS framework.

C WHY TRUST THE SIGNAL? (LEMMA 1): ANALYSIS OF SPIKE
CORRECTNESS

Lemma 1 (Spike-Completion Alignment, Single-Index Version). Let {z;}7_, be random variables
satisfying the following for some o > 0 and means g, p_:

. /J'Jrv te 7;0mp7
2 ~ subGaussian(c?), E[z]= {
() [} H—, t ¢ 7—compa
with gap A = uy — p— > 0. Fix the midpoint threshold
L
0="—"———.
2

16

Under review as a conference paper at ICLR 2026

Then for any single time ¢,

1. If t ¢ Teomps
A2
Pr(zt > 9) < exp(—@).
2. If t € Teomps

Pr(zt < 9) < exp(—%).

Proof. By definition, a random variable X is o2-sub-Gaussian if for all \ € R,

E [eA(XAE[X])] < eXp< A2 g2) _

2

A standard Chernoff/Hoeffding-type tail bound then gives, for any a > 0,

2

Pr(X —E[X] >a) < exp(—%), Pr(X —E[X] < —a) < exp(—za&z).

(1) False-alarm bound. If ¢ ¢ Tiomp, then E[2;] = . We compute
Pr(zt > 9) = Pr(zt —p- > 06— ,u_).

Butf —pu_ = (puy+p_)/2—pu_ = %. Hence by the sub-Gaussian tail bound,

Pr(z >0) < exp(_(ggV) _ exp(—gA;).

(2) Miss-detection bound. If ¢ € Teomp, then E[z;] = u4. We have
Pr(zt < 9) = Pr(,uJr — 2z >y — 9).

Since 4+ — 6 = A/2, the sub-Gaussian lower-tail bound gives

Pr(z <0) < exp(f(%{ff) = exp<78A022).

Thus both the false-alarm probability and the miss-detection probability are bounded by
exp(—A?/(80?)), as claimed. O

D How ROBUST IS N-SPIKE COUNTER POLICY TO NOISE?
(PROPOSITION 1): SPURIOUS TERMINATION BOUND

Setup for Theoretical Analysis. Let T be the number of tokens generated during a (true) con-
tent—generation phase, i.e., before any semantic completion occurs. At each stept = 1,...,T,
the model emits a control signal s, € [0, 1] and we declare a spike if s; > ¢ for a fixed threshold
d € (0,1). During content generation, spikes are spurious: we assume they occur independently
with probability

o = Pi(s; > & | non-completion).

Fix an integer Npatience = 1. The Nyaience-Spike counter policy stops as soon as the total number of

observed spikes (not necessarily consecutive) reaches Npagience-

Intuition for the Theoretical Result. Let S = Zthl 1{s; > ¢} count the spurious spikes in
the first T" tokens. Because S7 ~ Binomial(T, «) under our independence assumption, the policy
stops incorrectly iff S7 > Npagence- Thus the exact error probability is the upper tail of a binomial
distribution. Standard Chernoff (or KL) bounds give exponentially small tails, and a simple closed-

form upper bound is (eaT /Npatience) Npalience‘

17

Under review as a conference paper at ICLR 2026

Proposition 1 (Spurious Termination Bound (Non-consecutive Spikes)). Let S = Zthl 1{s; >
d} be the number of spurious spikes in 7" independent trials with rate «.. Then the probability that
the Npagience-spike counter policy terminates prematurely during content generation is

T

T .
Pr(ST > Npatience) = Z k) Oék(l — a)T k.
k:Npulience

Moreover, the following upper bounds hold:

Pr(ST Z Npatience) g exp(fT D(%

)

;)

T Nz\licncc
PT(ST > Npatience) < (_—) !

patience

where D(pllg) = pIn 2 + (1 —p)In };72 is the binary Kullback-Leibler divergence.

Proof. Since spikes are i.i.d. Bernoulli(a), ST ~ Binomial(7, «), hence

T
T _
Pl"(ST > Npatience) = Z k)Oék(]. — CV)T k.
k:Npatience

For equation 1, apply the standard Chernoff (Cramér—Chernoff) bound for a binomial random vari-

able: a)) |

Pr(ST > Npatience) < eXp(_TD<%

For equation 2, use the crude bound (f) < (%)k:

k k
T T T
(Do = (2 () ke

N, patience
Thus
T k Npatience 0 J
eal eal P eal
Pr(ST Z Npatience) S § (N) S <N > § <N > .
E=N_ patience patience =0 patience
=LV patience =

When Npatience > 2T, the ratio of the geometric series is at most 1/2, so the sum is bounded by
a constant factor of 2. The bound in equation 2 thus captures the dominant exponential decay in

N, patience
Therefore both inequalities hold. O

E How ROBUST 1S CUMULATIVE-PROBABILITY SAMPLER POLICIES TO
NOISE? (PROPOSITION 2): EVIDENCE ACCUMULATION RELIABILITY

Setup for Theoretical Analysis. Let 7" be the maximum generation length. At each token step
t=1,2,...,T, the model emits a control signal s; € [0, 1]. We assume there are two regimes:

* Content generation: each s; has expectation E[s;] < p_.

* Conclusion seeking: each s; has expectation E[s;] > p.

Here yi4 and p— are known constants with 0 < p_ < py < 1. Further assume the signals {s;} are
independent. For any prefix length n < 7T, define the accumulated signal

n
Sn = E St.
t=1

Fix a decision threshold P;t,) and a margin € > 0 such that, for each n,
pn+e < Pa < 4N —€.
The Accumulated-Probability Policy stops at the first n with S;, > Piotal.

18

Under review as a conference paper at ICLR 2026

Intuition for Theoretical Result. If we are still in content generation, the expected sum E[S,,] <
p—n, so reaching P, requires an upward deviation of at least . Conversely, once in conclusion
seeking, E[S,,] > p4n, so missing the threshold requires a downward deviation of at least €. By Ho-
effding’s inequality on bounded independent variables, both mis-detections occur with probability
decaying as exp(—2€%/n).

Proposition 2 (Evidence Accumulation Reliability). Under the above setup, for any n < T*:

. 2 . . 2
Pr (Sn > Piotal | content generatlon) < exp(—%), Pr(Sn < Piotal | conclusion seekmg) < exp(—%).

Proof. Since each s; € [0, 1] and the s; are independent, Hoeffding’s inequality states that for any
0 >0,

Pr(Sn —E[S,] > (5) < exp(—ﬁ)7 Pr(JE[S’n] -5, > 6) < exp(—£>.

Content generation error. Here E[S,,] < pu_ n. Since Piota — pt—n > €, setting § = € gives

Pr(Sn = Puotw) = Pr(Sp —E[Su] > Pt — E[S,]) < Pr(Sy—E[Sa] 2 ¢) < exp(-2).

n

Conclusion seeking error. Here E[S,] > uy n. Since uyn — Pt > €, setting 6 = € in the
lower-tail form yields

Pr(Sn < Ptotal) = Pr<]E[Sn] - Sn > E[Sn] - Ptotal) < exp(—%).

This completes the proof. O

F ANALYSIS OF LAST-INTERVAL POLICY

In this section we give two complementary performance guarantees for the Last-Interval stopping
rule: a sublinear-regret bound under mild martingale assumptions, and a constant-factor approxi-
mation against the offline-optimal (“prophet”) benchmark. The former shows that under reasonable
stochastic models you approach optimality as the budget grows, while the latter holds under minimal
assumptions and guarantees at least half the offline payoff.

F.1 How DOES LAST-INTERVAL POLICY PERFORM OVER TIME? (THEOREM 1): REGRET
OF DETERMINISTIC THRESHOLD POLICIES

Setup for Theoretical Analysis. Let 7' be the maximum generation length (token budget). At
each step t = 1,...,T, a control signal s; € [0, 1] is observed. We fix a deterministic threshold
0 € (0,1) and define the threshold policy that stops at the first time

7 = min{t:s > d},

or at T if no spike occurs. Let 7* = arg max;<p U(t) be the offline-optimal stopping time. We
assume:

1. The noise sequence {s; — E[s; | s<¢]} is a martingale difference sequence with |s; —E[s; |
S<t]| S 1.
2. The utility function U (¢) is L-Lipschitz: [U(t + 1) — U(t)| < L.

Intuition for Theoretical Result. Define the martingale

t

Mt = Z(Si — E[qu | S<7;D.

i=1

The threshold rule stops early only if M; deviates sufficiently so that s; > § at a suboptimal ¢.
Classical Azuma-Hoeffding then shows sup, 7 [M;| = O(V/T) in expectation, and because utility

is Lipschitz, the total regret E[U(7*) — U(7)] is bounded by LE[|7* — 7|] = O(LVT).

19

Under review as a conference paper at ICLR 2026

Theorem 1 (Sublinear Regret of Threshold Policy). Under the above assumptions, the expected
regret of the deterministic threshold policy satisfies

E[U(r*)-U(r)] < LE[|r*—1]] = O(LVT).

In particular, the per-token regret vanishes as 7' — co.

Proof. First observe
U(r?) = U(r)

Hence it suffices to show E[|7* — 7|] = O(V/T).

IN

L|T* 77".

Define the martingale
t
My =Y &, & =si—E[si|sail,
i=1

so that |&;| < 1. By Azuma-Hoeffding,

)\2
Pr(sup [M;|>)) < 2exp(——).
1<t<T 2T

Whenever |M;| < A for all ¢, the threshold policy and the offline optimum cannot differ by more
than roughly A steps, because no large unexpected deviation causes a premature or delayed stop.
More formally, one can show |7 — 7*| < C' + sup,<|M;| for some constant C'. Therefore

E|’7’ —T*

< C+E[sup|M,]] < C+ / 2exp(~ 37) dA = O(VT).
t<T 0
Combining with the Lipschitz bound yields the stated O(L+/T) regret. O

F.2 How DOES LAST INTERVAL POLICY COMPARE TO AN ORACLE? (THEOREM 2):
PROPHET BENCHMARK BOUND

Setup for Theoretical Analysis. Let {U;}7_; be nonnegative random utilities revealed sequen-
tially. A prophet knowing all U; in advance picks Tprop = arg max; Uy, achieving E[U,]. An
online threshold policy chooses a constant ¢ and stops at

Ten = min{ ¢ : Uy > ¢},

orat T if U; < cforall t.

Intuition for Theoretical Result. Set c to be the median of the prophet’s payoff distribution. Then
with probability at least 1/2, the prophet’s maximum M = max; U; exceeds c. By the law of total
expectation, E[M] splits into two integrals over [0, ¢] and [c, 00). One shows the threshold policy’s
reward has the same upper tail as M and at least half its mass, yielding E[U,,,] > $E[M].

Theorem 2 (Half-Approximation to Prophet). Under the above setup, choose ¢ such that Pr(M >
c) = % Then the threshold policy satisfies

E[U.

Tth

] > %E[lgf%xTUt].

Proof. Let M = max;<;<7 U;. By definition of ¢, Pr(M > ¢) = 5. Then

1
5
E[M] :/ Pr(M > z) dx:/ Pr(M > z)dz + / Pr(M > z)dz.
0 0 c
Since Pr(M > z) < 1forz € [0,c] and Pr(M > z) < 2Pr(M > ¢) =1 for z > ¢, we have

EM]<c¢ + 2/ Pr(M > z)dz.

20

Under review as a conference paper at ICLR 2026

Meanwhile, the threshold policy reward U, satisfies

E[Ux,] :/0 Pr(Us, >z)dz > / Pr(Us, > z)da.

But for x > ¢, the event {U.,, > x} occurs whenever some U; > x, which is a subset of {M > x}.

Moreover, conditioning on M > ¢ (probability 12), the threshold policy sees at least one U; > ¢
and so stops at some ¢ with Uy > c¢. One shows Pr(U,, > x) > %Pr(M > z) forall z > c
Combining,

E[U,,] > %/OOPr(MZx)dx > %(]E[M]—c).

Since ¢ < E[M], this yields E[U

Tth

] > %E[M], completing the proof. [

Complementarity. Theorem | gives a vanishing O(+/T') additive regret under a martingale noise
model, while Theorem 2 provides a robust constant-factor (Y2) guarantee under minimal assump-
tions. Both perspectives underscore the competitiveness of simple online stopping rules.

G WHY IS SELF-CRITIQUE THE SUPERIOR POLICY? (THEOREMS 3 AND 4):
ANALYSIS OF THE ADAPTIVE SELF-CRITIQUE POLICY

In this appendix we give full, self-contained proofs for two versions of the Self-Critique Superiority
result: first in the idealized case with no critique cost, and then the general case including a fixed
cost Clrit-

G.1 NOTATION AND SETUP

We consider a decision at a single spike event. Let
q = Pr(spike is premature), (1 — q) = Pr(spike is correct).

Upon stopping at a spike, the deterministic “always-stop” policy 4.t immediately ends generation
and obtains utility
Us = U(stop).
If one instead continues past a premature spike, one realizes an additional utility gain
AU = U(continue) — U(stop) > 0,

so that
U. = U, +AU

denotes the utility of continuing. An LLM-based critic is invoked by the adaptive policy 7., and
classifies any spike as either “premature” or “correct.” We denote its (symmetric) accuracy by

1

n = Pr(critic correct) > 3,

meaning it correctly calls a premature spike “premature” with probability 7, and correctly calls a
correct spike “correct” with probability 7.

G.2 ANALYSIS OF SELF CRITIQUE WITH NO CRITIQUE COST

Theorem 3 (Superiority of Adaptive Self-Critique, No Cost). Under the above definitions, and
assuming invoking the critic has zero cost, the expected utility difference between 7,3t and mqet

at a spike is
E[U(7erit)] = E[U(maer)] = AU [gn+ (1= gq)(1 —n)].
In particular, since > 0.5 and AU > 0, this difference is strictly positive for any ¢ € [0, 1).

Proof. The always-stop policy mqet never continues, so it always obtains E[U (7get)] = Us.

The adaptive policy 7.t first invokes the critic (with no cost). Two cases arise:

21

Under review as a conference paper at ICLR 2026

1. Spike is premature with probability g:

(a) Ceritic correct (prob. n): continue — utility U,.
(b) Critic errs (prob. 1 — n): stop — utility Us.

2. Spike is correct with probability 1 — ¢:

(a) Ceritic correct (prob. n7): stop — utility Us.
(b) Critic errs (prob. 1 — n): continue — utility U.,.

Hence the expected utility of 7, is
E[U(ﬂ-crit)] = Q[U Uc + (1 - 77) Ué] + (1 - Q) [77 Us + (1 - 77) Uc]
Substitute U, = U, + AU:
E[U(Texit)] = q[n (Us + AU) + (1 =) U] + (1 = q) [nUs + (1 =) (U, + AU)].
Collecting terms gives
]E[U(Trcrit)] = Us + AU [(J?? + (1 - Q)(l - 77)} .
Subtracting E[U (7get)] = Us yields the claimed result. O

G.3 ANALYSIS WITH CRITIQUE COST

Theorem 4 (Superiority of Adaptive Self-Critique, With Cost). Under the same setup, but now
assuming each invocation of the critic incurs a fixed expected utility cost Cir > 0, the expected
utility difference at a spike is

E[U(7erit)] — E[U(maer)] = AU [gn+ (1 —q) (1 —n)] — Cerit.

In particular, whenever AU [gn + (1 — ¢)(1 — 1)] > Cerit, the self-critique policy strictly outper-
forms always-stop.

Proof. As before, E[U(m4et)] = Us. The only change is that invoking the critic now deducts Cyit
from utility. Thus

E[U (7erit)] = {q[n U+Q=-nU]+1—q)[nUs+ (1 -1 U] } — Cloit-
Substituting U, = U, + AU and collecting terms exactly as in Theorem 3 gives
E[U(ﬂ-crit)] = Us + AU [q77 + (1 - q)(]- - 77)] - Ccrit~

Subtracting Uy yields the stated result. The condition for strict superiority follows immediately by
requiring the right-hand side to be positive. O

H ROBUSTNESS TO SIGNAL MISSPECIFICATION

In practice, the joint distribution over generation trajectories (tokens and control signals) used by
our stopping policy may be only approximately known. To model this, let {2 denote the space of all
possible trajectories up to a fixed maximum length 7. We compare the frue distribution P on 2 with

an approximate distribution P, and measure their discrepancy via the total-variation distance.

Definition 1 (Total Variation Distance). For two probability measures P and Pon (Q, F), the total-
variation distance is

TV(P, P) = jlég]P(A)—ﬁ(Aﬂ = %/Q\dP—dﬂ.

A stopping policy is a (possibly randomized) mapping from €2 to a stopping time 7 € {1,...,T'}.
Upon stopping at 7, the policy receives utility

U(W,w) = U(X§T7 ’7'),
where x <, are the tokens in trajectory w. We assume the utility is bounded:
0 < U(Tr,w) < Upax forallw € Q.

Accordingly, under either distribution P or P, the random utility U(r) lies in [0, Unax]-

22

Under review as a conference paper at ICLR 2026

Proposition 3 (Robustness to Signal Misspecification). Let P and P be two distributions on €
satisfying TV(P, P) < e. For any stopping policy m whose utility U (7) € [0, Upax], the difference
in expected utility under the two models is bounded by

[Ep[U(m] - Bp[Um)]| < € Umax

Proof. Define the bounded measurable function f(w) = U (7, w), so f: Q@ — [0, Upax)- A standard
property of total-variation distance (see, e.g., Le Cam (2012)) states

[Ep[f] = Ep[f]| < (sup f —inf f)TV(P, P).
Since sup f = Upax and inf f = 0, and TV(P,]3) < ¢, the result follows immediately:
|Ep[U(m)] —EplU(m)]| < Unaxe.
O

Remark 1. This bound holds regardless of the internal structure of 7 or the nature of the control-
signal mis-specification. Any policy whose utility is bounded cannot lose more than an additive
€ Unmax 1n expectation when the underlying generative model shifts by total-variation distance e.

I LIMITATIONS AND FUTURE WORK

While our work demonstrates the significant potential of the ACTS framework for adaptive gener-
ation control, we acknowledge several limitations that also point towards promising directions for
future research.

Dependence on Signal Quality. The effectiveness of all ACTS policies is fundamentally contin-
gent on the quality and reliability of the P(t.ontro1) signal produced by the underlying LLM, which
may not be well calibrated across all LLMs, and may in fact be dependent on the number of tokens
of pre-training. While our experiments show this signal is highly informative across several state-of-
the-art models, its characteristics may vary with different model architectures, training paradigms,
or domains.

Scope of Evaluation. Our empirical validation focuses on instruction-following and mathemati-
cal reasoning, domains where correctness is well-defined. The application of ACTS to more open-
ended, creative, or multi-turn conversational tasks presents a different set of challenges. In such
settings, the “optimal” stopping time is subjective and may depend on user preferences rather than
objective correctness. Extending the ACTS framework to these domains would likely require inte-
grating user feedback or preference models to help define the utility function for the optimal stopping
problem.

LLM USAGE STATEMENT

The authors acknowledge the use of a large language model (LLM) in the preparation of this
manuscript. The LLM was utilized as a collaborative writing assistant for editing and refining the
text for clarity, grammar, and conciseness. Additionally, the LLM assisted in generating Python
code used for data visualization in several of the paper’s figures. All core intellectual contributions,
including the theoretical analysis, experimental design, and interpretation of results, were conducted
by the human authors.

23

Under review as a conference paper at ICLR 2026

J RESULTS

Table 4: Performance comparison of adaptive stopping policies on 11ama3.1-8b-Instruct
under different generation budgets.

Model Policy Max Tokens Threshold Wait Counter LC-WR (%) WR (%) Average Tokens
Max Tokens = 256

llama3.1-8b-Instruct Greedy Policy 256 - - 16.34 9.47 218.56
llama3.1-8b-Instruct Accumulated Probability Policy 256 1.00E-02 - 11.20 5.34 137.98
llama3.1-8b-Instruct Accumulated Probability Policy 256 1.00E-01 - 14.07 6.43 141.87
llama3.1-8b-Instruct Accumulated Probability Policy 256 5.00E-01 - 15.66 7.45 142.90
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E-05 - 16.28 8.45 209.61
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E-03 - 14.25 8.47 215.83
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E-01 - 15.41 9.09 21797
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-05 1 13.15 6.40 135.94
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-03 1 13.40 6.65 138.14
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-01 1 13.70 6.82 142.16
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-05 3 14.23 6.66 140.55
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-03 3 14.67 6.95 142.08
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-01 3 13.73 6.80 142.21
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-05 5 13.76 6.73 140.92
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-03 5 1345 6.62 142.18
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E-01 5 13.73 6.80 142.21
Max Tokens = 512

llama3.1-8b-Instruct Greedy Policy 512 - - 2292 19.91 380.56
llama3.1-8b-Instruct Accumulated Probability Policy 512 1.00E-02 - 23.36 14.68 296.01
llama3.1-8b-Instruct Accumulated Probability Policy 512 1.00E-01 - 21.61 14.37 300.91
llama3.1-8b-Instruct Accumulated Probability Policy 512 5.00E-01 - 25.08 17.25 309.78
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E-05 - 24.08 18.81 353.31
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E-03 - 25.13 20.66 365.37
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E-01 - 23.85 20.21 370.91
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-05 1 21.12 12.51 286.63
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-03 1 22.05 14.49 296.80
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-01 1 2293 15.95 308.44
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-05 3 2294 15.33 303.06
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-03 3 23.93 16.29 306.57
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-01 3 23.85 16.84 308.44
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-05 5 22.85 15.90 308.10
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-03 5 23.85 16.84 308.57
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E-01 5 23.85 16.84 308.44
Max Tokens = 1024

llama3.1-8b-Instruct Greedy Policy 1024 - - 26.41 28.44 470.42
llama3.1-8b-Instruct Accumulated Probability Policy 1024 1.00E-02 - 24.92 22.54 397.09
llama3.1-8b-Instruct Accumulated Probability Policy 1024 1.00E-01 - 26.63 24.98 406.50
llama3.1-8b-Instruct Accumulated Probability Policy 1024 5.00E-01 - 27.63 26.53 418.35
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E-05 - 30.11 29.45 423.27
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E-03 - 28.44 28.40 436.80
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E-01 - 28.45 28.48 436.80
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-05 1 24.73 21.00 374.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-03 1 24.53 2291 403.34
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-01 1 2747 26.90 419.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-05 3 25.12 23.93 406.38
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-03 3 26.61 25.94 417.71
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-01 3 27.47 26.90 419.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-05 5 27.26 26.05 411.97
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-03 5 26.44 25.90 417.76
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E-01 5 27.47 26.90 419.77

24

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of adaptive stopping policies on s1.1-7B under different
thinking-token budgets, including the Adaptive Self Critique Sampler.

Model Policy Max Thinking Tokens Threshold Wait Counter Accuracy Average Tokens
Max Thinking Tokens = 2048

s1.1-7B Greedy Policy 2048 - - 0.500 1784.86
s1.1-7B Accumulated Probability Policy 2048 0.1 - 0.668 2696.68
s1.1-7B Accumulated Probability Policy 2048 1 - 0.680 2716.13
s1.1-7B Accumulated Probability Policy 2048 3 - 0.686 2920.95
s1.1-7B Last-Interval Budget Policy 2048 0.01 - 0.700 3004.00
s1.1-7B Last-Interval Budget Policy 2048 0.1 - 0.700 2983.52
s1.1-7B Last-Interval Budget Policy 2048 0.5 - 0.698 3026.28
s1.1-7B N-Spike Counter Policy 2048 0.01 1 0.714 2720.42
s1.1-7B N-Spike Counter Policy 2048 0.01 3 0.706 2925.70
s1.1-7B N-Spike Counter Policy 2048 0.01 5 0.710 2991.65
s1.1-7B N-Spike Counter Policy 2048 0.1 1 0.714 2727.15
s1.1-7B N-Spike Counter Policy 2048 0.1 3 0.696 2985.12
s1.1-7B N-Spike Counter Policy 2048 0.1 5 0.684 3051.00
s1.1-7B N-Spike Counter Policy 2048 0.5 1 0.706 2730.81
s1.1-7B N-Spike Counter Policy 2048 0.5 3 0.688 2986.16
s1.1-7B N-Spike Counter Policy 2048 0.5 5 0.704 3022.09
s1.1-7B Adaptive Self Critique Sampler 2048 - - 0.742 2614.56
Max Thinking Tokens = 4096

s1.1-7B Greedy Policy 4096 - - 0.642 2725.00
s1.1-7B Accumulated Probability Policy 4096 0.1 - 0.726 3841.05
s1.1-7B Accumulated Probability Policy 4096 1 - 0.748 3871.68
s1.1-7B Accumulated Probability Policy 4096 3 - 0.756 4550.30
s1.1-7B Last-Interval Budget Policy 4096 0.01 - 0.758 5255.40
s1.1-7B Last-Interval Budget Policy 4096 0.1 - 0.778 5354.85
s1.1-7B Last-Interval Budget Policy 4096 0.5 - 0.756 5406.34
s1.1-7B N-Spike Counter Policy 4096 0.01 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.01 3 0.754 4304.67
s1.1-7B N-Spike Counter Policy 4096 0.01 5 0.770 4647.54
s1.1-7B N-Spike Counter Policy 4096 0.1 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.1 3 0.772 4374.37
s1.1-7B N-Spike Counter Policy 4096 0.1 5 0.758 5002.43
s1.1-7B N-Spike Counter Policy 4096 0.5 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.5 3 0.756 4670.00
s1.1-7B N-Spike Counter Policy 4096 0.5 5 0.756 5373.00
s1.1-7B Adaptive Self Critique Sampler 4096 - - 0.792 424491
Max Thinking Tokens = 8192

s1.1-7B Greedy Policy 8192 - - 0.714 3917.57
s1.1-7B Accumulated Probability Policy 8192 0.1 - 0.774 5077.64
s1.1-7B Accumulated Probability Policy 8192 1 - 0.788 5405.76
s1.1-7B Accumulated Probability Policy 8192 3 - 0.796 6631.65
s1.1-7B Last-Interval Budget Policy 8192 0.01 - 0.794 11033.53
s1.1-7B Last-Interval Budget Policy 8192 0.1 - 0.800 10712.60
s1.1-7B Last-Interval Budget Policy 8192 0.5 - 0.784 10512.50
s1.1-7B N-Spike Counter Policy 8192 0.01 1 0.798 5163.36
s1.1-7B N-Spike Counter Policy 8192 0.01 3 0.800 5817.96
s1.1-7B N-Spike Counter Policy 8192 0.01 5 0.802 6726.14
s1.1-7B N-Spike Counter Policy 8192 0.1 1 0.798 5163.36
s1.1-7B N-Spike Counter Policy 8192 0.1 3 0.806 5975.91
s1.1-7B N-Spike Counter Policy 8192 0.1 5 0.804 8105.31
s1.1-7B N-Spike Counter Policy 8192 0.5 1 0.798 5114.54
s1.1-7B N-Spike Counter Policy 8192 0.5 3 0.804 7010.83
s1.1-7B N-Spike Counter Policy 8192 0.5 5 0.810 9727.63
s1.1-7B Adaptive Self Critique Sampler 8192 - - 0.812 7330.56

25

Under review as a conference paper at ICLR 2026

Table 6: Performance of Qwen3 Models on the Maths500 Benchmark. This table compares the
Baseline performance of Qwen3-8b and Qwen3-14b models against the 'Peak-Sampler-Critique’
method under various configurations. The primary metrics are Maths500 accuracy and the average
token count per problem. The results show that the Peak-Sampler-Critique method, particularly with
k=3 critiques, a spike threshold of 0.25, and a larger context window, achieves the highest accuracy
(0.950) while significantly reducing the token count compared to the baseline.

Model Method Critiques (k) Context Window Spike Threshold Maths500 Acc. Avg. Tokens
Baseline N/A 8k / 16k N/A 0.924 4683.00
Baseline N/A 16k / 32k N/A 0.934 5312.00
Peak-Sampler 1 8k / 16k 0.10 0.900 2166.10
Peak-Sampler 3 8k / 16k 0.10 0.908 2718.62
Peak-Sampler 5 8k / 16k 0.10 0.922 3108.73
Peak-Sampler 1 8k / 16k 0.25 0.914 2482.83

Qwen3-8b Peak-Sampler 3 8k / 16k 0.25 0.918 2882.83
Peak-Sampler 5 8k / 16k 0.25 0.922 322043
Peak-Sampler 1 16k / 32k 0.10 0.906 2227.50
Peak-Sampler 3 16k / 32k 0.10 0.916 2799.19
Peak-Sampler 5 16k / 32k 0.10 0.928 3370.71
Peak-Sampler 1 16k / 32k 0.25 0.914 2568.46
Peak-Sampler 3 16k / 32k 0.25 0.944 3055.18
Peak-Sampler 5 16k / 32k 0.25 0.937 3635.18
Baseline N/A 8k / 16k N/A 0.933 4286.70
Baseline N/A 16k / 32k N/A 0.940 4732.62
Peak-Sampler 1 8k / 16k 0.25 0.928 2141.40

Qwen3-14b Peak-Sampler 3 8k / 16k 0.25 0.932 2683.92
Peak-Sampler 5 8k / 16k 0.25 0.930 2883.92
Peak-Sampler 1 16k / 16k 0.25 0.932 2138.05
Peak-Sampler 3 16k / 32k 0.25 0.950 3084.97
Peak-Sampler 5 16k / 32k 0.25 0.950 3524.97

Table 7: Performance of Qwen3 Models on the AIME25 Benchmark. This table presents the accu-
racy and average token consumption for Qwen3 models of varying sizes (4B, 8B, 14B). We compare
the standard Baseline generation method against our ’Peak-Sampler-Critique’ approach with an in-
creasing number of critiques (k). The Peak-Sampler-Critique method generally improves accuracy
over the baseline for all model sizes, with performance scaling with the number of critiques. The
Qwen3-14B model with k=7 achieves the highest accuracy of 0.722, a notable improvement over its
baseline performance of 0.655. All experiments were conducted using a 16k/32k context window
and a spike threshold of 0.25 for the Peak-Sampler method.

Model Method Critiques (k) AIME Accuracy Average Token Count
Baseline N/A 0.578 13923.5
Peak-Sampler 1 0.434 10047.20
Qwen3-4B Peak-Sampler 3 0.500 12010.20
Peak-Sampler 5 0.588 13451.10
Peak-Sampler 7 0.600 14176.20
Baseline N/A 0.589 £ 0.056 13793.5 £ 113.77
Peak-Sampler 1 0.500 £ 0.081 12364.1 £ 320.96
Qwen3-8B Peak-Sampler 3 0.622 £ 0.056 13408.4 £ 199.80
Peak-Sampler 5 0.667 £ 0.027 13850.0 + 462.10
Peak-Sampler 7 0.656 £ 0.032 15192.0 £ 483.86
Baseline N/A 0.655 £ 0.041 13278.0 £ 201.50
Peak-Sampler 1 0.688 £ 0.068 11977.7 £ 208.60
Qwen3-14B Peak-Sampler 3 0.667 £ 0.072 13099.4 + 142.80
Peak-Sampler 5 0.711 £ 0.042 13559.0 £ 378.60
Peak-Sampler 7 0.722 + 0.031 14064.0 + 666.58

26

	Introduction
	Our Contributions

	Related Work
	Preliminaries: The ACTS Framework
	Methodology: A Spectrum of Principled Generation Policies
	Policies For Sampling

	Experimental Setup
	Experimental Results
	RQ1: Signal Charectarization
	RQ2: Instruction Following Efficiency:
	RQ3: Mitigating Reasoning Underthinking

	Analysis of Overthinking: Averting Overthinking in Complex Reasoning
	RQ5: Parallel sampling with shared sequential reasoning:

	Extended Related Work
	Test-Time Scaling and Dynamic Inference
	Controlling Reasoning Behavior at Test-Time
	Theoretical Foundations for Policy Design

	A Reader's Guide to the Theoretical Analysis
	Notation Reference
	The Narrative and Intuition of Our Theoretical Results
	Why is Budget Management a Non-Trivial Problem? (Proposition ??)
	Why Trust the Signal? (Lemma 1)
	How Robust are Simple Policies to Noise? (Propositions 1 & 2)
	How Do Our Policies Perform Over Time? (Theorem 1)
	How Do Our Policies Compare to an Oracle? (Theorem 2)
	Why is Self-Critique the Superior Policy? (Theorems 3 and 4)
	How Robust is the Entire Framework? (Proposition 3)

	Why Trust the Signal? (Lemma 1): Analysis of Spike Correctness
	How Robust is N-Spike Counter Policy to Noise? (Proposition 1): Spurious Termination Bound
	How Robust is Cumulative-Probability Sampler Policies to Noise? (Proposition 2): Evidence Accumulation Reliability
	Analysis of Last‑Interval Policy
	How Does Last-Interval Policy Perform Over Time? (Theorem 1): Regret of Deterministic Threshold Policies
	How Does Last Interval Policy Compare to an Oracle? (Theorem 2): Prophet Benchmark Bound

	Why is Self-Critique the Superior Policy? (Theorems 3 and 4): Analysis of the Adaptive Self‑Critique Policy
	Notation and Setup
	Analysis of Self critique with No Critique Cost
	Analysis With Critique Cost

	Robustness to Signal Misspecification
	Limitations and Future Work
	Results

