
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE CONTROL FOR TEST-TIME SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models often rely on static computational budgets for reasoning,
leading to suboptimal performance due to “underthinking” (premature termina-
tion) or “overthinking” (performance degradation from excessive computation).
In this work, we demonstrate that models provide a rich, context-dependent signal
about their internal cognitive state through the sub-argmax probabilities of special-
purpose “control tokens.”. We introduce a framework of Adaptive Control Token
Sampling (ACTS) policies that leverage these probability spikes to dynamically
regulate the generation process. Our experiments show that ACTS effectively
mitigates underthinking on complex reasoning tasks. To avert the performance
collapse caused by overthinking in naive policies, we propose an Adaptive Self-
Critique Sampler that uses EOT spikes as triggers for self-evaluation, boosting
reasoning accuracy upto ∼ 9.8% on the MATH-500. On instruction-following
tasks, ACTS leverages EOS spikes to improve the quality-efficiency trade-off. Fi-
nally, we used spikes to pioneer, a novel parallel sampling technique that intelli-
gently spawns high-quality reasoning trajectories from a shared trace. Our work
establishes control token probabilities as a powerful, untapped resource for creat-
ing more robust and efficient inference strategies, offering a low-cost method for
test-time scaling.

1 INTRODUCTION

Modern Large Language Models (LLMs) tackle complex reasoning by generating explicit multi-
step rationales, a technique known as Chain-of-Thought (CoT) prompting (Wei et al., 2022) that
has become a cornerstone of state-of-the-art systems (Guo et al., 2025). The efficacy of this “slow-
thinking” paradigm, however, is deeply intertwined with the length of the generated reasoning trace.
While longer CoTs can provide necessary computational steps, they also introduce significant la-
tency and are susceptible to error accumulation, a phenomenon often termed “overthinking” (Sui
et al., 2025).

Recent foundational work has formalized this trade-off, demonstrating that reasoning performance
does not scale monotonically with length but instead follows an inverted U-shaped curve (Wu et al.,
2025). This establishes the existence of an optimal CoT length that is dependent on both task diffi-
culty and model capability, challenging the naive assumption that more computation is always better.
This insight has catalyzed a vibrant research area focused on efficient reasoning. Current solution
paradigms largely fall into two categories. The first is model-centric, aiming to build innately more
efficient reasoners through costly training-time interventions such as fine-tuning on optimal-length
data (Yang et al., 2025b; Wu et al., 2025) or incorporating length-based penalties into reinforce-
ment learning (Luo et al., 2025). The second paradigm is inference-centric, seeking to dynamically
control existing models at test-time. A Seminal work in this area, S1 (Muennighoff et al., 2025),
introduced budget forcing, a technique that behaviorally controls reasoning by either forcefully ter-
minating or prolonging thinking with special tokens (e.g., “Wait”). Other inference-time methods
often rely on auxiliary signals, such as scores from external reward models (Sun et al., 2024) or the
consistency of latent embeddings (Wang et al., 2025).

While powerful, existing inference-time methods often depend on separately trained models or com-
plex heuristics disconnected from the LLM’s core generative process. In this work, we identify and
leverage a more fundamental, previously under-explored signal for generation control: the sub-
argmax probabilities assigned to control tokens like End-of-Sequence and End-of-Thinking tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
0

10 4

Pr
ob

ab
ili

ty

(a) EOS Token Probability on AlpacaEval

0 100 200 300 400
Number of Tokens

(b) EOS Token Probability on Maths500

0 100 200 300 400

(c) CTRL Token Probability on Maths500

Figure 1: Token-wise probabilities of control tokens during LLM decoding, illustrating a duality in
the signal. Subfigure (a) shows P (tEOS) on AlpacaEval, where an initial phase of sparse spikes
transitions to a denser, more regular pattern, suggesting a shift in the model’s operational state to-
wards termination. Subfigures (b) and (c) show post-thinking P (tEOS) and in-thinking P (tEOT)
on MATH500, respectively, highlighting the sharp, transient nature of spikes that act as candidate
completion points. The non-monotonic and state-dependent nature of these signals motivates adap-
tive control policies over static ones.

Our central empirical finding, illustrated in Figure 1, is that these internal termination signals are a
rich, structured indicator of the model’s readiness to conclude a generation phase.

To harness this novel signal, we introduce Adaptive Control for Test-time Scaling (ACTS), a frame-
work that casts adaptive generation control as a principled optimal stopping problem. This represents
a shift from the behavioral control paradigm of Muennighoff et al. (2025) to a more fundamental,
fine-grained probabilistic control. Our approach is notably simple and low-cost: it is training-free
and can operate on a given LLM as long as token probabilities are accessible. Within this frame-
work, an external control policy, πACTS , observes the sequence of control signal probabilities to
determine the optimal moment to terminate. We derive a suite of stopping policies from distinct
theoretical motivations, including evidence accumulation, predictive control, and a novel adaptive
self-critique policy that uses the LLM to evaluate its own reasoning at critical junctures—an effi-
cient, single-model realization of an actor-critic mechanism.

Our comprehensive experiments demonstrate that ACTS policies significantly outperform standard
baselines. On the AlpacaEval benchmark, our methods reduce response length under budget con-
straints while maintaining high win-rates. On complex reasoning tasks like MATH500 and AIME,
they achieve higher accuracy than greedy decoding by enabling more efficient and effective alloca-
tion of “thinking time.” Our adaptive self-critique policy, in particular, establishes a new state of the
art by intelligently resolving the dilemma of when to stop versus when to continue thinking.

1.1 OUR CONTRIBUTIONS

The primary contributions of this work are:

1. We identify and characterize a novel class of control signals within LLMs: the sub-argmax
probability spikes of special tokens (e.g., EOS, EOT). We demonstrate that the dynamics of these
signals reveal the model’s internal state regarding termination and reasoning progress.

2. We develop a framework of spike-aware control policies that resolve the trade-off between
reasoning depth and efficiency. Our policies mitigate underthinking by adaptively prolonging de-
liberation, while our novel Adaptive Self-Critique policy prevents performance degradation from
overthinking by using spikes to trigger efficient self-evaluation.

3. We demonstrate a superior trade-off between output quality and computational cost. On
instruction-following tasks, our policies reduce token count by up to 19% while improving response
quality. On complex reasoning tasks, they achieve higher accuracy with fewer tokens than baselines.

4. Parallel sampling from sequential chain-of-thought We introduce a novel sampling method
that uses a shared KV-cache to spawn multiple answer trajectories from a single reasoning trace.
By using hesitation spikes and self-critique scores as principled triggers for forking, this approach
achieves higher accuracy than strong sequential baselines while being significantly more computa-
tionally efficient than naive parallel sampling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The challenge of enhancing LLM reasoning efficiency is an active area of research. A primary focus
has been on mitigating the “overthinking phenomenon” (Sui et al., 2025), where models generate
excessively long Chain-of-Thought (CoT) traces. Foundational work has established that reasoning
performance follows a non-monotonic, inverted U-shaped curve with CoT length, motivating the
search for an optimal, task- and model-dependent reasoning budget (Wu et al., 2025). Current
approaches largely fall into two categories: model-centric methods that seek to build innately more
efficient reasoners through training-time interventions like fine-tuning on optimal-length data (Yang
et al., 2025b), and inference-centric methods that aim to dynamically control existing models at
test-time. Our work, ACTS, belongs to the latter category.

Inference-time control strategies have evolved from behavioral interventions to signal-based ter-
mination. A seminal approach introduced “budget forcing,” using special tokens like “Wait” to
behaviorally prolong or terminate reasoning (Muennighoff et al., 2025). More recent methods have
focused on early stopping in sampling-based decoding by leveraging auxiliary signals, such as scores
from external reward models (Sun et al., 2024), the consistency of latent embeddings (Wang et al.,
2025), or learned confidence scores (Huang et al., 2025). ACTS advances this paradigm by iden-
tifying and utilizing a more fundamental, natively available signal: the sub-argmax probability of
control tokens (tcontrol). By framing the control task as a principled optimal stopping problem
and designing policies grounded in established theoretical concepts—such as our novel, intra-model
actor-critic mechanism for self-critique—our work provides a training-free, model-agnostic frame-
work for more precise and efficient test-time control. A more comprehensive discussion of related
literature is available in Appendix A.

3 PRELIMINARIES: THE ACTS FRAMEWORK

To address the control dilemma identified in our motivations, we introduce the ACTS framework.
This section provides the formal groundwork for our approach. We first establish notation for the
control signal, then we cast the problem of adaptive termination as one of principled policy design
for a controlled stochastic process, drawing on concepts from optimal stopping theory.

We formally cast the problem of adaptive generation control as an optimal stopping problem for a
controlled stochastic process. The objective is to design a control policy, πACTS , that observes the
generative process and determines the optimal stopping time, τ . The control policy πACTS is not a
passive observer but an active controller that intervenes in the generation process. Its actions guide
the process until its chosen stopping time τ is reached.

Continuing the Process (t < τ). If the policy’s stopping rule has not been triggered, its action is to
continue. This typically involves allowing the LLM to emit its native end-of-thinking token (tEOT).
If πθ attempts to terminate prematurely by predicting tEOT as the argmax token, but πACTS has not
yet reached its stopping time, the controller intervenes by forcing the emission of a special “Wait”
token, tWait. This control action, inspired by Muennighoff et al. (2025), keeps the system in a
non-terminal state, allowing for further deliberation.

Terminating the Process (t = τ). When the policy’s stopping condition is met, the controller
issues a terminal action. This involves forcing the emission of the appropriate control token, tcontrol,
thereby halting the process.

This control-theoretic perspective clarifies that ACTS is a closed-loop system where the controller
(πACTS) observes the system’s output signal (st) and applies control actions (tWait or tcontrol) to
steer the system towards an optimal termination state. The specific methods we introduce next are
different instantiations of this control policy, πACTS .

4 METHODOLOGY: A SPECTRUM OF PRINCIPLED GENERATION POLICIES

We propose a framework for dynamically steering the autoregressive generation of a Large Language
Model (LLM) to mitigate common failure modes such as underthinking (premature convergence)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and overthinking (unproductive deliberation). Our approach, termed Adaptive Control of Token Se-
quences (ACTS), intervenes at each decoding step by monitoring the probability of specific control
tokens. This control signal, st = πθ(tcontrol|x<t, C), is interpreted by a suite of principled policies
(πACTS) to solve the optimal stopping problem.

These policies range from simple, deterministic rules derived from principles of temporal integration
and evidence accumulation, to adaptive strategies that leverage the LLM’s own capacity for self-
evaluation. This spectrum allows for a trade-off between computational simplicity and nuanced,
context-aware control.

4.1 POLICIES FOR SAMPLING

We refer to an instance where the control signal exceeds a predefined threshold (st > δ) as a “spike.”
Algorithm 1:

N-Spike Counter Policy

1: Input: LLM πθ, Prompt C, tcontrol,
Spike Probability Threshold (δcount),
Spikes Count Threshold (Npatience)

2: Initialize spike count← 0; x← [].
3: for each generation step t = 1, 2, . . . do
4: st ← πθ(tcontrol | x<t, C) ▷ Control Token

Probability

5: if st > δcount then
6: spike count← spike count +1
7: end if
8: if spike count ≥ Npatience then
9: Emit tcontrol and return ▷ Sets stopping

time τ ← t

10: end if
11: Emit default token
12: end for

N-Spike Counter Policy This policy treats each
spike as a discrete vote for termination. It requires
a sustained signal, demanding the accumulation of
Npatience such votes before acting. This filters out
single, potentially spurious, transient events and en-
sures the LLM’s intent to terminate is stable over
time. The policy (Algorithm 1) maintains a count
of observed spikes. The stopping time τ is the first
time step t at which this count reaches a predefined
evidence threshold Npatience.

Adaptive Policies via Self-Critique While robust,
deterministic policies are context-agnostic. We in-
troduce a more sophisticated class of policies in-
spired by actor-critic methods, where the LLM is
leveraged as its own critic. The generative process
is the actor (πθ), which produces reasoning, and
the same LLM, prompted for self-evaluation, is the
critic.

Instead of performing costly self-evaluation at every step, we use probability spikes as a trigger,
identifying critical junctures where a critique is most valuable. The critic’s output, a reasoning
quality score s = C(Tk) ∈ {1, . . . , 5}, then informs the generation decision.

Algorithm 2:
Generic Adaptive Self-Critique Policy

1: Input: LLM πθ, Prompt C, tcontrol,
Spike Threshold (δcritique), Critique
Prompt (Ccritique)

2: for each generation step t = 1, 2, . . . do
3: st ← πθ(tcontrol | x<t, C) ▷ Control Token

Probability

4: if st > δcritique then
5: context← context +Ccritique
6: score ← GenerateCritique(LLM,

critique context)
7: if score = 5 then
8: Emit tEOT and return ▷ Set stopping

time τ ← t

9: else
10: Emit tWait ▷ Critique failed, force

continuation

11: end if
12: else
13: Emit default token
14: end if
15: end for

Parallel Trajectory Generation with follow-the-
leader Consensus We note that with the same rea-
soning trace, we can fork answer generation at dif-
ferent points in the output process. Such forking
ensures that the user may receive an early version
of the answer which can be adapted as the thinking
proceeds. In fact this is often how humans ourselves
reason, having

we can fork the reasoning process at opportune mo-
ments to generate an ensemble of answers A, with
the final answer determined by majority vote. Self-
critique ensures this computationally intensive strat-
egy is used efficiently.

Quality-Gated Forking. A fork is initiated only
when two conditions are met: (1) a hesitation spike
is detected (maxth∈Thesitate p(th|Tk) > τp) and (2) the
self-critique score is high (C(Tk) ≥ sfork). This
dual condition identifies states where the model is
both uncertain about the next step and has pro-
duced a high-quality line of reasoning so far—an

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ideal point to explore alternative conclusions. The
primary branch continues generating, while parallel
branches are spawned to generate candidate answers
from the current state.

5 EXPERIMENTAL SETUP

Datasets and Tasks We evaluate our method on a diverse suite of benchmarks targeting two key
capabilities: reasoning and instruction following. For reasoning, we use three benchmarks spanning
mathematical and logical problem-solving. First, for arithmetic reasoning, we use GSM-8K (Cobbe
et al., 2021), a collection of 1,320 grade-school math problems requiring multiple steps of basic
arithmetic. Second, we assess performance on more complex mathematical challenges using a
500-problem subset of the MATH benchmark (Hendrycks et al., 2021). Third, to test advanced
problem-solving, we include 30 competition-level questions from the AIME 2025. For instruction
following, we use AlpacaEval (Dubois et al., 2024), an automatic, LLM-based evaluation bench-
mark consisting of open-ended user queries from real-world scenarios.

Models We conducted experiments across different model families and scales. For reasoning
tasks, we employ models from two distinct families. From the Qwen3 series, recognized for
state-of-the-art performance on public leaderboards (Yang et al., 2025a), we select Qwen3-4B,
Qwen3-8B, and Qwen3-14B. Additionally, we use the s1.1-7B and s1.1-32B (Muennighoff
et al., 2025) models to broaden our evaluation. For the instruction following task on AlpacaEval,
we utilize the Llama3.1-8B-Instruct model.

Evaluation Metrics Following standard practices for each task, we employ strict and established
metrics. For the reasoning benchmarks (GSM-8K, MATH, and AIME), we measure performance
using Accuracy, i.e. a model’s prediction is correct only if it exactly matches the ground-truth
solution. For the instruction-following benchmark (AlpacaEval), we report the win rate and length-
controlled win rate against a strong reference model (e.g., GPT-4), as determined by an automated
GPT-4-based evaluator.

6 EXPERIMENTAL RESULTS

Our experiments are designed to address the following research questions:

RQ1: Signal Characterization and Analysis: What are the empirical properties of the sub-argmax
control token probability signal, P (tcontrol), across different models and task domains (Fig-
ure 1)?

RQ2: Instruction Following Efficiency: Can deterministic ACTS policies leverage the P (tEOS)
signal to reduce verbosity and improve the trade-off between response quality and computa-
tional cost on instruction-following tasks (e.g., on AlpacaEval under tight token budgets)?

RQ3: Mitigating Reasoning Underthinking: Can ACTS policies, intervene on premature end-of-
thinking spikes, to improve the reasoning accuracy of models?

RQ4: Analysis of Overthinking: Does a naive or overly conservative policy of prolonging rea-
soning lead to diminishing returns or performance degradation, thereby confirming the over-
thinking problem?

RQ5: A new parallel sampling technique: Can a shared sequential reasoning trace be used to
spawn multiple parallel traces for generation? We address this question in this subsection.

6.1 RQ1: SIGNAL CHARECTARIZATION

We study three distinct type of control tokens: end-of-sentence spikes, end-of-thinking spikes, and
hesitation spikes. These signals correspond to concluding a response, finalizing a complex thought,
or actively reasoning through a problem.

End-of-Sentence Spikes for Early Termination We observe that the model emits distinct spikes
for the End-of-Text (EOS) token at semantically appropriate completion points, as illustrated in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 200 400 6000.000000

0.000025

0.000050

0.000075

0.000100

Pr
ob

ab
ilit

y

0 200 400 600 800
Token Position in Sequence

EOT token prob.

0 200 400 600

Figure 2: End-of-Sentence (EOS) Spikes for Llama3.1-8b-Instruct for AlpacaEval2.0

Figure 2. While the probability remains near zero for most of the generation, it exhibits sharp, low-
magnitude spikes (up to ∼0.0001) that often align with the natural conclusion of a sentence or a
complete answer. These spikes serve as a soft signal that the model has fulfilled the user’s request.
These serve as appropriate points to implement early termination strategies.

0 2000 4000 6000 80000.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

0 2000 4000 6000 8000
Token Position in Sequence

EOT token prob.

0 2000 4000 6000 8000

Figure 3: End-of-Thinking (EOT) Spikes for Qwen3-8B for Maths-500

End-of-Thinking Spikes for Elongating Reasoning For complex reasoning tasks, a common
failure mode is underthinking, where the model provides a premature or superficial answer. These
spikes, generated during a reasoning task (see Fig. 3), displays high-probability (approaching 1.0)
spikes for the EOT token. Unlike the subtle end-of-sentence signals, these are periodic indicators
that the model considers its chain of thought complete. By configuring the generation process to
continue until such a spike is detected, we can encourage the model to “think longer” and develop a
more thorough solution, helping to prevent underthinking.

0 500 1000 15000.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Wait token prob.
Alternate token prob.

0 2000 4000
Token Position in Sequence

0 1000 2000 3000

Figure 4: Hesitation Spikes for Qwen3-8B for Maths-500

Hesitation Spikes for Reasoning Path Correction During problem-solving, it is beneficial for
the model to pause, reconsider, and explore different approaches. We analyze two special tokens,
Wait and Alternatively, designed to facilitate this behavior. Figure 4 shows that the model
utilizes Wait (green) and Alternate (red) tokens with high probability during complex reason-
ing. A dense cluster of Alternate spikes, for instance, suggests a moment of significant recon-
sideration. These hesitation tokens are not signs of failure but rather functional components of a
robust reasoning process, enabling the model to self-correct and navigate complex problem spaces.

6.2 RQ2: INSTRUCTION FOLLOWING EFFICIENCY:

Max Tokens 512 Max Tokens 102410

15

20

25

30

LC
-W

R
(%

)

Max Tokens 512 Max Tokens 1024250

300

350

400

450

Av
er

ag
e

To
ke

ns

Baseline (Greedy) Ours (Accumulated) Ours (Last-Interval) Ours (N-Spike)

Figure 5: Comparison of Response Quality (LC-WR) and
Generation Cost (Avg. Tokens) of our spike-aware samplers
vs. baseline on AlpacaEval.

Verbosity is a common phenomenon
in LLM generation. Simple answers
may be elongated due to reward hack-
ing on length. But can these effects
be mitigated using end-of-sequence
spike control? We tackle this query
by evaluating our samplers on the Al-
pacaEval 2.0 benchmark, measuring

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

both quality via Length-Controlled
Win Rate (LC-WR) and cost via av-
erage generated tokens.

The results, presented in Figure 5, reveal a clear Pareto improvement over the greedy decoding
baseline. Our Last-Interval Budget Sampler, which strategically terminates generation based on
prominent [EOS] spikes, achieves an LC-WR of 30.11%, a significant +3.7% gain over greedy
decoding. This quality enhancement is coupled with an efficiency gain of 11–19%.

6.3 RQ3: MITIGATING REASONING UNDERTHINKING

Max Tokens 16K Max Tokens 32K0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Max Tokens 16K Max Tokens 32K
5000

10000

15000

Av
er

ag
e

To
ke

ns

Greedy Accumulated Last-Interval N-Spike (1x Wait) N-Spike (3x Wait) N-Spike (5x Wait)

Figure 6: Analysis of spike-aware stopping policies on the MATH-500 benchmark. These policies
use probability spikes of the [EOT] token to determine when to halt reasoning. (a) All spike-aware
policies overcome the underthinking of the Greedy baseline, improving accuracy. (b) The choice of
policy dictates a trade-off between token cost and the risk of overthinking.
Under-thinking on complex tasks is known to suppress the performance of reasoning models on hard
benchmarks. But can this be modulated through control tokens? Specifically, underthinking occurs
when a model terminates its reasoning chain prematurely, before reaching a correct solution that was
possible for the model to reach. We investigate our samplers that effectively combat under-thinking,
on the MATH-500 benchmark, with results in Figure 6.

While the greedy baseline succumbs to under-thinking, achieving the lowst accuracy on the bench-
mark, our control-token aware samplers deliver significant performance gains, simply by leveraging
the information available in the end-of-thinking spike probabilities. While Accumulated sampler
waits for the total of the end-of-thinking token probabilities to reach a threshold, the n-spike sam-
pler waits for ‘n’ spikes of at least a certain probability threshold. We find that the simple 5-spike
sampler which waits for 5 probability spikes before exiting the chain-of-thought performans the best
on this benchmark. The more complex last-interval sampler underperforms both on token-budget as
well as accuracy versus the simpler alternatives.

Note on overthinking: While the 5-spike sampler achieves great results in the 16K thinking limit
setting, we notice that the accuracy drops from 81% to 79.2% on a larger 32K context budget This
indicates that simply extending the thinking trace may sometimes lead to poorer results.

7 ANALYSIS OF OVERTHINKING: AVERTING OVERTHINKING IN COMPLEX
REASONING

Overthinking may not just lead to greater cost in terms of compute budgets and wasted tokens, but
also lead to lower downstream performance. Hence a naive policy simply suppressing the end-
of-thinking tokens does not work. This leads to the question: is there an adaptive method that
overcomes the weaknesses of these naive deterministic samplers, that can mitigate overthinking?

Our experiments, summarized in Table 1, address this very question. We note that the best-
performing sampler is the adaptive self-critique sampler. Specifically, at each spike, the model
is forced to answer the query: “Is this reasoning trace correct, answer on the scale of 1-5?” wherein
it responds with a single token, that then determines whether the answer continues or not.

Specifically, on the S1-32B model, the self critique is invoked as follows. When there is a spike
on the end-of-thinking token, the sampler initiates a critique to determine if the current reasoning
is sound or if more work is needed. This intelligent, state-dependent approach achieves superior
performance over the naive samplers. While the performance gets boosted by up to 3% over the
best-performing deterministic baseline, we also see gains of up to 50% on reasoning tokens over the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Ablation on handling [EOT] spikes. A naive, fixed policy of suppressing the spike leads
to overthinking and performance collapse (e.g., S1 models at 5x Wait). Our Self-Critique Sampler
uses [EOT] spikes as a trigger for adaptive evaluation, achieving superior accuracy and efficiency.

Dataset Model Sampler (EOT Handling Policy) Accuracy ↑ Avg. Token Count ↓

MATH-500 S1 (32K)

Baseline 0.732 5752.40
Naive (Wait 1x) 0.796 6317.92
Naive (Wait 3x) 0.808 10659.59
Naive (Wait 5x) 0.792 17906.58
Self-Critique (Adaptive) 0.822 8885.29

AIME 2025

S1-32B

Baseline 0.400 9552.75
Naive (Wait 1x) 0.466 10653.63
Naive (Wait 3x) 0.567 14503.36
Naive (Wait 5x) 0.537 17786.21
Self-Critique (Adaptive) 0.567 12345.67

Qwen3-8B

Baseline 0.700 18154.00
Naive (Wait 3x) 0.700 19007.30
Naive (Wait 5x) 0.700 20292.45
Naive (Wait 7x) 0.737 20398.96
Self-Critique (Adaptive) 0.767 19269.56

best deterministic baseline. This shows the need to not just use control token probabilities during
generation, but also, appropriately at spikes, invoke the models own self-critique capabilities to
decide whether to continue thinking or not.

3000 4000 5000

0.92

0.93

0.94

A
cc

ur
ac

y

MATHS­500

13000 14000 15000
Average Token Count

0.50

0.55

0.60

0.65

AIME25

Ours (N­Critique)
Baseline

1250 1500 1750 2000 2250
0.935

0.940

0.945

0.950

GSM8K

Figure 7: Accuracy vs. Computational Cost Trade-off for Qwen-3 8B. This figure illustrates the
performance of our N-Critique sampler method compared to the baseline. Each blue point on the
curve represents a policy that halts after N critiques (N=1, 3, 5, or 7). (a) Performance on Maths-
500. (b) AIME25 (c) GSM8K
Adaptive self-critique to guide rethinking While the adaptive self-critique may be invoked dur-
ing end-of-thinking spikes, it may also be invoked during other rethinking token spikes like “Wait”
or “Alternatively”. These signals can then be used to trigger a self-critique module which evaluates
the reasoning chain and provides a confidence score. Generation is terminated only when the model
expresses high confidence in its current path.

To check for different confidence levels on such a self-critique we can require the model to get a
particular critique score n times before termination, a method we term N-Critique Sampler
(N). This prevents premature termination based on a single, potentially spurious confidence spike.
We evaluate this approach on the MATH-500, AIME25, and GSM8K benchmarks using Qwen-3
8B and 14B models. The results are detailed in Figure 7 for Qwen3 8-B and in Figure 8 for Qwen3
14-B.

On the MATH-500 dataset, for both the 8B and 14B models, N-Critique Sampler (3) sur-
passes the baseline accuracy (94.4% vs. 93.4% for 8B; 95.0% vs. 94.0% for 14B) while simulta-
neously reducing the average token count by over 35%. On the more challenging AIME25 bench-
mark, which requires more extensive reasoning, the performance scales with N , with N-Critique
Sampler (7) achieving a top accuracy of 72.2%, an improvement over the 65.5% baseline. The
8B model shows a similar trend, peaking at N = 5 with 66.7% accuracy compared to the 58.9%
baseline. Finally, on GSM8K, the benefits are again pronounced. The self-critique policies con-
sistently outperform the baseline in accuracy while drastically reducing token usage. For the 14B
model, N-Critique Sampler (7) achieves an outstanding 95.5% accuracy using only 1743
tokens, compared to the baseline’s 94.2% accuracy at 1908 tokens.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2500 3000 3500 4000 4500

0.935

0.940

0.945

0.950

A
cc

ur
ac

y

MATHS­500

12000 12500 13000 13500 14000
Average Token Count

0.66

0.68

0.70

0.72
AIME25

Ours (N­Critique)
Baseline

1000 1200 1400 1600 1800

0.940

0.945

0.950

0.955
GSM8K

Figure 8: Accuracy vs. Computational Cost Trade-off for Qwen-3 14B. This figure illustrates the
performance of our N-Critique sampler method compared to the baseline. Each blue point on the
curve represents a policy that halts after N critiques (N=1, 3, 5, or 7). (a) Performance on Maths-
500. (b) AIME25 (c) GSM8K
Table 2: Quality-Gated Forking consistently outperforms both sequential and brute-force parallel
approaches. It reliably improves accuracy over the strong N-Critique sequential baseline on Qwen3
(7B) and Qwen3 (14B) on Maths-500.

Model Policy Accuracy Avg. Forks Avg. Tokens

7B
N-Critique (Sequential) 0.944 0 3,055
Unconditional Forking 0.942 13.1 18,336
Quality-Gated Forking 0.950 9.4 13,005

14B
N-Critique (Sequential) 0.950 0 3,085
Unconditional Forking 0.952 10.8 15,336
Quality-Gated Forking 0.961 7.1 11,231

7.1 RQ5: PARALLEL SAMPLING WITH SHARED SEQUENTIAL REASONING:

With the richness of the signal available to create stopping time policies, it is easy to see that one
can come up with other adaptive techniques for deciding the stopping time. Instead, here we further
wish to explore a question on parallel vs. sequential reasoning. Specifically, we ask and answer
the question: Can a shared sequential reasoning trace be used to spawn multiple parallel traces for
generation? We address this question in this subsection.

In this setup, we use the model spikes as the signals for the parallel fork process from a single
chain-of-thought sequence. Let us say that we use a single KV-cache for the original reasoning
trace, we then use a paired decoder which shares this KV-attention cache to spawn new decoding
processes from the original token sequence. We note that while these new decoding processes are
spawned, and generate early versions of responses, the original thought decoding continues. Hence
the controller has the option to switch answers at any time during decoding in case the majority vote
over multiple decoders flips.

We note that a fork is initiated only when two conditions are met: (1) a hesitation spike is detected,
and (2) the model’s self-critique score for the current reasoning trace is high (e.g., score ≥ 4 out
of 5). The core hypothesis is that not all moments of uncertainty are equally valuable; by forking
only from states of high-quality reasoning, we can focus computational resources on promising
trajectories. For both policies, the final answer is determined by a majority vote over all candidate
answers generated, and intermediate responses may also be available based on the majority-so-far.

In Table 2, we evaluate these policies on the Qwen3 (8B) and Qwen3 (14B) model on a challenging
reasoning dataset, comparing them against our best sequential policy (N-Critique) to measure the
benefit of parallelization itself. As demonstrated across both model scales, forking is useful, but
only when initiated by an adaptive critique. In this setting, we outperform even the best performing
adaptive critique sampler.

Discussion Our results highlights a powerful new direction for LLM inference. The signals of
entropy over control tokens, can be repurposed as valuable triggers for both sequential and parallel
exploration. By combining low-level probability signals with high-level semantic self-awareness
(critique), one can create inference strategies that are not only more accurate but also highly compu-
tationally efficient. ACTS is therefore a highly effective and low-cost inference time scaling method
that can be adapted for stopping signals across a wide range of inference tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science & Business
Media, 2012.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Daniele Paliotta, Junxiong Wang, Matteo Pagliardini, Kevin Y Li, Aviv Bick, J Zico Kolter, Albert
Gu, François Fleuret, and Tri Dao. Thinking slow, fast: Scaling inference compute with distilled
reasoners. arXiv preprint arXiv:2502.20339, 2025.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476–483. IEEE, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. Advances in
Neural Information Processing Systems, 37:32630–32652, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-
time compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

These supplementary materials provide additional details, derivations, and proofs for our paper. The
appendix is organized as follows:

• Section A: Extended Related Work. A detailed overview of related literature.

• Section B: A Reader’s Guide to the Theoretical Analysis. An intuitive roadmap for the formal
proofs.

• Section C: Proof of Spike Correctness (Lemma 1). Establishes the reliability of the control
signal.

• Section D: Proof for N-Spike Counter Policy (Proposition 2). Bounds the probability of
spurious termination.

• Section E: Proof for Accumulated Probability Policy (Proposition 3). Guarantees the relia-
bility of evidence accumulation.

• Section F: Proofs for Last-Interval Budget Policy (Theorems 2 and 3). Provides regret and
prophet-inequality bounds.

• Section G: Proof of Self-Critique Superiority (Theorem 1). Demonstrates the benefit of the
adaptive self-critique policy.

• Section H: Proof of Robustness to Misspecification (Proposition 4). Shows the framework’s
stability under model mismatch.

• Section J: Model Performance on AlpacaEval, AIME, and Maths-500 Under ACTS Policies

A EXTENDED RELATED WORK

A.1 TEST-TIME SCALING AND DYNAMIC INFERENCE

A significant line of research has demonstrated that the performance of Large Language Models can
be substantially improved by allocating more computational resources at inference time, a paradigm
known as test-time scaling (Muennighoff et al., 2025). This approach, however, introduces a critical
challenge of efficiency. Our work, ACTS, contributes to the growing body of literature on making
this scaling more intelligent and resource-efficient.

Foundational Test-Time Scaling Methods. The canonical methods for test-time scaling involve
generating multiple candidate sequences and aggregating them. Best-of-N (BoN) sampling gener-
ates N independent sequences and uses a verifier or a trained reward model to select the highest-
scoring output (Lightman et al., 2023). This approach is general-purpose but often relies on the
availability of a high-quality, and potentially costly, external verifier. A popular variant, Self-
Consistency, is designed for tasks with deterministic answers, such as mathematical reasoning
(Wang et al., 2022). It generates N sequences and selects the final answer via a majority vote,
eliminating the need for an external reward model but limiting its applicability. Both BoN and Self-
Consistency are computationally expensive as they require the full generation of all N candidate
sequences, creating a linear increase in cost with the number of samples.

Efficient Test-Time Scaling via Early Termination. Recent work has focused on mitigating the
high cost of BoN and Self-Consistency by introducing mechanisms for the early termination of
unpromising generation paths. These methods differ primarily in the type of signal they use to make
termination decisions.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

One prominent approach leverages external verifiers to score partial sequences. For instance, Spec-
ulative Rejection (Sun et al., 2024) periodically queries an external reward model on the partially
generated sequences. Trajectories with low partial scores, which are unlikely to yield a high final
reward, are pruned, allowing computational resources to be focused on the more promising candi-
dates. While effective, this strategy’s performance is contingent on the quality and calibration of the
external reward model, which itself can be costly to train and serve.

A second approach utilizes signals from the model’s own latent representations. Self-Truncation
Best-of-N (ST-BON) (Wang et al., 2025) operates on the hypothesis that sequences leading to the
same correct answer will have similar latent embeddings. It monitors the consistency of hidden
states across parallel generations and truncates paths that diverge from the main cluster, thereby
avoiding the need for an external reward model. This uses a truly internal signal, but one that is
high-dimensional and less directly interpretable than the explicit probabilistic outputs of the model.

A third approach uses more general model confidence scores. Self-Calibration (Huang et al., 2025)
proposes fine-tuning a model to produce a calibrated confidence score for its own generations, often
by distilling confidence from Self-Consistency statistics. This learned confidence can then be used
to implement early-stopping rules for sampling. This method also uses an internal signal, but it
requires a separate training phase to create the calibrated confidence predictor.

Our ACTS framework contributes to this line of research by proposing the use of a novel signal that
is both internal to the model and natively available without requiring additional training or complex
analysis of latent states: the explicit probability of control tokens, P (tcontrol).

Orthogonal Approaches. Other methods seek efficiency through different means. Structured
Search methods, such as Tree-of-Thought (Yao et al., 2023) and Graph-of-Thoughts (Besta et al.,
2024), replace unstructured sampling with a more organized exploration of the reasoning space, of-
ten involving backtracking and planning. While powerful, these methods typically introduce signif-
icant algorithmic complexity and overhead. Concurrently, architectural approaches aim to build
faster models from the ground up, for example by using subquadratic architectures like Mamba
(Paliotta et al., 2025). These architectural innovations are largely complementary to our work; the
principled stopping policies developed within the ACTS framework could potentially be applied on
top of these faster models to achieve even greater efficiency gains.

A.2 CONTROLLING REASONING BEHAVIOR AT TEST-TIME

Beyond general-purpose sampling efficiency, a specific line of work has focused on directly control-
ling the behavior of the reasoning process itself at inference time. This is particularly relevant for
our work on managing the thinking phase via the tEOT token. A seminal contribution in this area is
the s1 model’s “budget forcing” mechanism (Muennighoff et al., 2025). This approach introduced
direct, behavioral interventions to control reasoning length: it could forcefully terminate a thinking
process that exceeded a token budget, or, crucially, it could prolong a thinking process by appending
a special “Wait” token when the model attempted to conclude prematurely. This demonstrated the
viability of active, external control over the deliberation process.

Other approaches have used prompt engineering to influence reasoning style. For example, Chain-
of-Draft (Xu et al., 2025) instructs models to produce concise, draft-like intermediate steps to reduce
verbosity. Similarly, works like Renze & Guven (2024) have shown that simply instructing a model
to “be concise” can effectively shorten reasoning paths. These methods, while often effective, rely
on the model’s instruction-following capabilities and may not offer the same level of fine-grained
control as algorithmic interventions. ACTS builds directly on the legacy of Muennighoff et al.
(2025), advancing the paradigm from reactive, behavioral interventions to a predictive, signal-driven
control policy. By grounding the decision of when to apply interventions like the “Wait” token in
the model’s underlying probability distribution, ACTS offers a more fundamental and fine-grained
control mechanism.

A.3 THEORETICAL FOUNDATIONS FOR POLICY DESIGN

The design of each ACTS stopping policy is a principled application of a concept from established
theoretical domains. We ground our methods in optimal stopping theory, stochastic process analysis,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and reinforcement learning, allowing us to derive policies from first principles rather than ad-hoc
heuristics.

Policies Derived from Optimal Stopping Theory. This field addresses the problem of choosing
an optimal time to take an action based on sequential observations. The classic Secretary Problem,
with its renowned 1/e observe-then-commit solution, directly inspires our Adaptive Peak-Threshold
Sampler. Similarly, the Prophet Inequality setting, which bounds the performance of online al-
gorithms against a ”prophet” with full hindsight, motivates the retrospective logic of our Prophet
Lookback policy.

Policies Derived from Stochastic Process Models. We model the control signal {st} as a time
series, allowing us to draw from relevant analytical tools. A Martingale is a process where the con-
ditional expectation of the next value is the present value. Modeling the inter-spike interval process
as a martingale yields the simple predictive rule in our Last-Interval Budget Sampler. Change-Point
Detection, which aims to identify shifts in a process’s statistical properties, provides the formal basis
for our Phase-Shift Sampler, which is designed to detect a change in the rate of spike generation.

A Policy Derived from the Actor-Critic Paradigm. The Actor-Critic framework in reinforce-
ment learning uses a critic to estimate the value of an actor’s policy. Our Adaptive Self-Critique
policy introduces a novel, intra-model instantiation of this concept. The LLM’s generative process
acts as the actor, and the same LLM, when prompted for self-evaluation, serves as an efficient, on-
demand critic, providing a principled, feedback-driven approach to the optimal stopping problem.

B A READER’S GUIDE TO THE THEORETICAL ANALYSIS

This section serves as a roadmap to the formal results that underpin the ACTS framework. Our goal
is to provide the intuition behind our theoretical claims, clarify the key assumptions, and explain
how these results collectively build a rigorous case for our approach. We begin by centralizing the
notation used throughout our analysis.

B.1 NOTATION REFERENCE

Table 3 provides a comprehensive reference for the symbols used in our theoretical proofs and
discussions.

B.2 THE NARRATIVE AND INTUITION OF OUR THEORETICAL RESULTS

Our theoretical analysis is structured to tell a coherent story in several parts. First, we establish
the fundamental properties of the problem and the signal. Second, we provide performance guar-
antees for our specific policies under different analytical lenses (robustness, regret, and competitive
analysis). Finally, we prove the superiority of our most novel adaptive method.

B.2.1 WHY IS BUDGET MANAGEMENT A NON-TRIVIAL PROBLEM? (PROPOSITION ??)

Intuition: The first question a skeptic might ask is, “Why not just always use the maximum bud-
get?” Our first theorem formally establishes the economic principle of diminishing returns. It
proves that the utility gained from each additional token of ”thinking time” is non-increasing. This
means the 10th token is likely more valuable than the 1000th. This result establishes that a non-
trivial optimal stopping problem exists: there is a ”sweet spot” for termination that intelligent poli-
cies should seek.

Key Assumption: To prove this, we assume that the utility of a generated sequence is discrete-
concave at the per-trajectory level. This is a formal way of saying that the ”aha!” moments or key
insights tend to happen earlier in a productive reasoning process.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Key notation used in our theoretical analysis.

Symbol Description
t Discrete time step / token index
T Maximum generation length (horizon)
bq Fixed token budget for a policy
st Control signal (i.e., P (tcontrol)) at time t
δ Generic spike threshold: a spike occurs if st > δ
α Probability of a spurious spike during content generation
Npatience Spike count threshold for the N-Spike policy
τ A random stopping time determined by a policy
τ∗ An offline-optimal stopping time
U(xt, t) Utility obtained by stopping at time t with sequence xt

Umax Uniform upper bound on utility: 0 ≤ U(·) ≤ Umax

Us, Uc Utility of stopping (Us) or continuing (Uc) at a spike
∆U Net utility gain from correct continuation: Uc − Us > 0
q Prior probability that an observed spike is premature
η Accuracy of the self-critique policy (> 0.5)
P, P̂ True and approximate distributions over trajectories
ϵ Upper bound on total variation distance, TV(P, P̂)
zt Logit of the control token at time t
µ+, µ− Mean of zt at completion vs. non-completion indices
∆ Logit mean gap: µ+ − µ−
σ2 Variance proxy for sub-Gaussian variables
Ik, Îk True and predicted inter-spike intervals

B.2.2 WHY TRUST THE SIGNAL? (LEMMA 1)

Intuition: Our entire framework depends on the P (tcontrol) spikes being meaningful. This lemma
provides the formal justification. It proves that if there is any statistical difference in the model’s
logits between completion and non-completion steps, then spikes in the probability signal will be
exponentially more likely to occur at true completion points than at random, noisy steps. This
result assures us that we are building our policies on a foundation of a reliable, high signal-to-noise
ratio indicator.

Key Assumption: We model the control token’s logit as a sub-Gaussian random variable whose
mean shifts depending on whether the current step is a true completion point. This is a standard and
flexible way to model a ”signal-plus-noise” process.

B.2.3 HOW ROBUST ARE SIMPLE POLICIES TO NOISE? (PROPOSITIONS 1 & 2)

Intuition: Given a reliable signal, how can we design simple, robust rules to act on it? We provide
guarantees for two of our deterministic policies. For the N-Spike Counter, we prove that its prob-
ability of a false termination (stopping due to random noise) decays exponentially with the number
of spikes, Npatience, it waits for. This formally captures its role as a robust temporal filter. For the
Accumulated Probability policy, we use concentration inequalities to show that it can reliably dis-
tinguish between a “content generation” phase and a “conclusion seeking” phase with a probability
of error that also decays exponentially.

Key Assumptions: These proofs rely on standard statistical assumptions: that spurious spikes
occur as independent events (for the N-Spike bound) and that the signal’s mean value is different in
the two generation phases (for the Accumulation bound).

B.2.4 HOW DO OUR POLICIES PERFORM OVER TIME? (THEOREM 1)

Intuition: This theorem analyzes the long-term performance of our simple threshold-based poli-
cies using the lens of online learning. It proves that the regret of the policy—the difference between

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

its utility and that of a hypothetical optimal offline policy—grows only sublinearly with the gener-
ation length (O(

√
T)). This is a powerful result, as it means the *average* regret per token goes to

zero. It formally shows that our simple policies are ”good learners” that do not fall too far behind
the optimal solution over long horizons.

Key Assumptions: This result relies on the utility function being reasonably smooth (L-Lipschitz)
and the signal’s noise forming a martingale difference sequence, a standard model for noise in time-
series analysis.

B.2.5 HOW DO OUR POLICIES COMPARE TO AN ORACLE? (THEOREM 2)

Intuition: This theorem provides a powerful worst-case guarantee for our simple threshold-based
policies, comparing them to a ”prophet” that knows all future utility values in advance. It proves that
a simple threshold policy can guarantee an expected utility of at least half that of the all-knowing
prophet. This is a classic result from prophet inequality theory and provides a strong, constant-
factor approximation guarantee for our methods under minimal assumptions about the utility distri-
bution. It demonstrates that even simple ACTS policies are robustly competitive against an impos-
sibly strong baseline.

Key Assumption: The only assumption is that the utilities are non-negative. This is a very general
and powerful guarantee.

B.2.6 WHY IS SELF-CRITIQUE THE SUPERIOR POLICY? (THEOREMS 3 AND 4)

Intuition: This is the capstone of our theoretical argument. If spikes are reliable but sometimes
premature, what is the best way to decide? This theorem proves that asking the model to critique
itself is provably better than any fixed rule. The intuition is simple: as long as the model’s self-
critique is even slightly better than a random coin flip (η > 0.5), the expected utility gain from
making a more informed decision will outweigh the cases where the critique is wrong. It formally
shows why transitioning from passive signal interpretation to active, targeted information-gathering
(via critique) is the optimal strategy.

Key Assumption: We assume the critic’s accuracy, η, is symmetric and greater than 0.5.

B.2.7 HOW ROBUST IS THE ENTIRE FRAMEWORK? (PROPOSITION 3)

Intuition: Finally, what if our statistical models of the signal are not perfectly accurate? This
proposition proves that the entire ACTS framework is robust to such misspecification. It shows that
if the true generative process is only slightly different (measured by total variation distance ϵ) from
our assumed model, then the performance of any ACTS policy will also only be slightly different
(bounded by ϵ · Umax). This provides a crucial guarantee of stability and reliability.

Key Assumption: The only assumption is that the utility function is bounded.

This roadmap should equip the reader with the necessary context to understand not just what our
theorems state, but why we chose to prove them and how they fit together to form a theoretical
argument for the ACTS framework.

C WHY TRUST THE SIGNAL? (LEMMA 1): ANALYSIS OF SPIKE
CORRECTNESS

Lemma 1 (Spike-Completion Alignment, Single-Index Version). Let {zt}Tt=1 be random variables
satisfying the following for some σ > 0 and means µ+, µ−:

zt ∼ subGaussian(σ2), E[zt] =
{
µ+, t ∈ Tcomp,

µ−, t /∈ Tcomp,

with gap ∆ = µ+ − µ− > 0. Fix the midpoint threshold

θ =
µ+ + µ−

2
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Then for any single time t,

1. If t /∈ Tcomp,

Pr
(
zt > θ

)
≤ exp

(
− ∆2

8σ2

)
.

2. If t ∈ Tcomp,

Pr
(
zt ≤ θ

)
≤ exp

(
− ∆2

8σ2

)
.

Proof. By definition, a random variable X is σ2-sub-Gaussian if for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ exp

(
λ2 σ2

2

)
.

A standard Chernoff/Hoeffding-type tail bound then gives, for any a > 0,

Pr
(
X − E[X] ≥ a

)
≤ exp

(
− a2

2σ2

)
, Pr

(
X − E[X] ≤ −a

)
≤ exp

(
− a2

2σ2

)
.

(1) False-alarm bound. If t /∈ Tcomp, then E[zt] = µ−. We compute

Pr
(
zt > θ

)
= Pr

(
zt − µ− ≥ θ − µ−

)
.

But θ − µ− = (µ+ + µ−)/2− µ− = ∆
2 . Hence by the sub-Gaussian tail bound,

Pr(zt > θ) ≤ exp
(
− (∆/2)2

2σ2

)
= exp

(
− ∆2

8σ2

)
.

(2) Miss-detection bound. If t ∈ Tcomp, then E[zt] = µ+. We have

Pr
(
zt ≤ θ

)
= Pr

(
µ+ − zt ≥ µ+ − θ

)
.

Since µ+ − θ = ∆/2, the sub-Gaussian lower-tail bound gives

Pr(zt ≤ θ) ≤ exp
(
− (∆/2)2

2σ2

)
= exp

(
− ∆2

8σ2

)
.

Thus both the false-alarm probability and the miss-detection probability are bounded by
exp(−∆2/(8σ2)), as claimed.

D HOW ROBUST IS N-SPIKE COUNTER POLICY TO NOISE?
(PROPOSITION 1): SPURIOUS TERMINATION BOUND

Setup for Theoretical Analysis. Let T be the number of tokens generated during a (true) con-
tent–generation phase, i.e., before any semantic completion occurs. At each step t = 1, . . . , T ,
the model emits a control signal st ∈ [0, 1] and we declare a spike if st > δ for a fixed threshold
δ ∈ (0, 1). During content generation, spikes are spurious: we assume they occur independently
with probability

α = Pr
(
st > δ | non-completion

)
.

Fix an integer Npatience ≥ 1. The Npatience-spike counter policy stops as soon as the total number of
observed spikes (not necessarily consecutive) reaches Npatience.

Intuition for the Theoretical Result. Let ST =
∑T

t=1 1{st > δ} count the spurious spikes in
the first T tokens. Because ST ∼ Binomial(T, α) under our independence assumption, the policy
stops incorrectly iff ST ≥ Npatience. Thus the exact error probability is the upper tail of a binomial
distribution. Standard Chernoff (or KL) bounds give exponentially small tails, and a simple closed-
form upper bound is

(
eαT/Npatience

)Npatience .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposition 1 (Spurious Termination Bound (Non-consecutive Spikes)). Let ST =
∑T

t=1 1{st >
δ} be the number of spurious spikes in T independent trials with rate α. Then the probability that
the Npatience-spike counter policy terminates prematurely during content generation is

Pr
(
ST ≥ Npatience

)
=

T∑
k=Npatience

(
T

k

)
α k(1− α)T−k.

Moreover, the following upper bounds hold:

Pr
(
ST ≥ Npatience

)
≤ exp

(
−T D

(
Npatience

T

∥∥∥α)), (1)

Pr
(
ST ≥ Npatience

)
≤

(e αT

Npatience

)Npatience

, (2)

where D(p∥q) = p ln p
q + (1− p) ln 1−p

1−q is the binary Kullback–Leibler divergence.

Proof. Since spikes are i.i.d. Bernoulli(α), ST ∼ Binomial(T, α), hence

Pr(ST ≥ Npatience) =

T∑
k=Npatience

(
T

k

)
αk(1− α)T−k.

For equation 1, apply the standard Chernoff (Cramér–Chernoff) bound for a binomial random vari-
able:

Pr(ST ≥ Npatience) ≤ exp
(
−T D

(
Npatience

T

∥∥∥α)).
For equation 2, use the crude bound

(
T
k

)
≤

(
eT
k

)k
:(

T

k

)
αk(1− α)T−k ≤

(
eT

k

)k

αk ≤
(

eT

Npatience

)k

αk, for k ≥ Npatience.

Thus

Pr(ST ≥ Npatience) ≤
T∑

k=Npatience

(
e αT

Npatience

)k

≤
(

e αT

Npatience

)Npatience ∞∑
j=0

(
e αT

Npatience

)j

.

When Npatience ≥ 2αT , the ratio of the geometric series is at most 1/2, so the sum is bounded by
a constant factor of 2. The bound in equation 2 thus captures the dominant exponential decay in
Npatience.

Therefore both inequalities hold.

E HOW ROBUST IS CUMULATIVE-PROBABILITY SAMPLER POLICIES TO
NOISE? (PROPOSITION 2): EVIDENCE ACCUMULATION RELIABILITY

Setup for Theoretical Analysis. Let T be the maximum generation length. At each token step
t = 1, 2, . . . , T , the model emits a control signal st ∈ [0, 1]. We assume there are two regimes:

• Content generation: each st has expectation E[st] ≤ µ−.
• Conclusion seeking: each st has expectation E[st] ≥ µ+.

Here µ+ and µ− are known constants with 0 ≤ µ− < µ+ ≤ 1. Further assume the signals {st} are
independent. For any prefix length n ≤ T , define the accumulated signal

Sn =

n∑
t=1

st.

Fix a decision threshold Ptotal and a margin ϵ > 0 such that, for each n,
µ− n+ ϵ < Ptotal < µ+ n− ϵ.

The Accumulated-Probability Policy stops at the first n with Sn ≥ Ptotal.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Intuition for Theoretical Result. If we are still in content generation, the expected sum E[Sn] ≤
µ−n, so reaching Ptotal requires an upward deviation of at least ϵ. Conversely, once in conclusion
seeking, E[Sn] ≥ µ+n, so missing the threshold requires a downward deviation of at least ϵ. By Ho-
effding’s inequality on bounded independent variables, both mis-detections occur with probability
decaying as exp

(
−2ϵ2/n

)
.

Proposition 2 (Evidence Accumulation Reliability). Under the above setup, for any n ≤ T :

Pr
(
Sn ≥ Ptotal | content generation

)
≤ exp

(
− 2ϵ2

n

)
, Pr

(
Sn < Ptotal | conclusion seeking

)
≤ exp

(
− 2ϵ2

n

)
.

Proof. Since each st ∈ [0, 1] and the st are independent, Hoeffding’s inequality states that for any
δ > 0,

Pr
(
Sn − E[Sn] ≥ δ

)
≤ exp

(
− 2δ2

n

)
, Pr

(
E[Sn]− Sn ≥ δ

)
≤ exp

(
− 2δ2

n

)
.

Content generation error. Here E[Sn] ≤ µ− n. Since Ptotal − µ−n > ϵ, setting δ = ϵ gives

Pr
(
Sn ≥ Ptotal

)
= Pr

(
Sn −E[Sn] ≥ Ptotal −E[Sn]

)
≤ Pr

(
Sn −E[Sn] ≥ ϵ

)
≤ exp

(
− 2ϵ2

n

)
.

Conclusion seeking error. Here E[Sn] ≥ µ+ n. Since µ+n − Ptotal > ϵ, setting δ = ϵ in the
lower-tail form yields

Pr
(
Sn < Ptotal

)
= Pr

(
E[Sn]− Sn ≥ E[Sn]− Ptotal

)
≤ exp

(
− 2ϵ2

n

)
.

This completes the proof.

F ANALYSIS OF LAST-INTERVAL POLICY

In this section we give two complementary performance guarantees for the Last-Interval stopping
rule: a sublinear-regret bound under mild martingale assumptions, and a constant-factor approxi-
mation against the offline-optimal (“prophet”) benchmark. The former shows that under reasonable
stochastic models you approach optimality as the budget grows, while the latter holds under minimal
assumptions and guarantees at least half the offline payoff.

F.1 HOW DOES LAST-INTERVAL POLICY PERFORM OVER TIME? (THEOREM 1): REGRET
OF DETERMINISTIC THRESHOLD POLICIES

Setup for Theoretical Analysis. Let T be the maximum generation length (token budget). At
each step t = 1, . . . , T , a control signal st ∈ [0, 1] is observed. We fix a deterministic threshold
δ ∈ (0, 1) and define the threshold policy that stops at the first time

τ = min{ t : st > δ},

or at T if no spike occurs. Let τ∗ = argmaxt≤T U(t) be the offline-optimal stopping time. We
assume:

1. The noise sequence {st−E[st | s<t]} is a martingale difference sequence with |st−E[st |
s<t]| ≤ 1.

2. The utility function U(t) is L-Lipschitz: |U(t+ 1)− U(t)| ≤ L.

Intuition for Theoretical Result. Define the martingale

Mt =

t∑
i=1

(
si − E[si | s<i]

)
.

The threshold rule stops early only if Mt deviates sufficiently so that st > δ at a suboptimal t.
Classical Azuma–Hoeffding then shows supt≤T |Mt| = O(

√
T) in expectation, and because utility

is Lipschitz, the total regret E[U(τ∗)− U(τ)] is bounded by LE[|τ∗ − τ |] = O(L
√
T).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem 1 (Sublinear Regret of Threshold Policy). Under the above assumptions, the expected
regret of the deterministic threshold policy satisfies

E
[
U(τ∗)− U(τ)

]
≤ L E

[
|τ∗ − τ |

]
= O

(
L
√
T
)
.

In particular, the per-token regret vanishes as T →∞.

Proof. First observe
U(τ∗)− U(τ) ≤ L

∣∣τ∗ − τ
∣∣.

Hence it suffices to show E[|τ∗ − τ |] = O(
√
T).

Define the martingale

Mt =

t∑
i=1

ξi, ξi = si − E[si | s<i],

so that |ξi| ≤ 1. By Azuma–Hoeffding,

Pr
(
sup

1≤t≤T
|Mt| ≥ λ

)
≤ 2 exp

(
− λ2

2T

)
.

Whenever |Mt| < λ for all t, the threshold policy and the offline optimum cannot differ by more
than roughly λ steps, because no large unexpected deviation causes a premature or delayed stop.
More formally, one can show |τ − τ∗| ≤ C + supt≤T |Mt| for some constant C. Therefore

E
∣∣τ − τ∗

∣∣ ≤ C + E
[
sup
t≤T
|Mt|

]
≤ C +

∫ ∞

0

2 exp
(
− λ2

2T

)
dλ = O

(√
T
)
.

Combining with the Lipschitz bound yields the stated O(L
√
T) regret.

F.2 HOW DOES LAST INTERVAL POLICY COMPARE TO AN ORACLE? (THEOREM 2):
PROPHET BENCHMARK BOUND

Setup for Theoretical Analysis. Let {Ut}Tt=1 be nonnegative random utilities revealed sequen-
tially. A prophet knowing all Ut in advance picks τprop = argmaxt Ut, achieving E[Uτprop]. An
online threshold policy chooses a constant c and stops at

τth = min{ t : Ut ≥ c},

or at T if Ut < c for all t.

Intuition for Theoretical Result. Set c to be the median of the prophet’s payoff distribution. Then
with probability at least 1/2, the prophet’s maximum M = maxt Ut exceeds c. By the law of total
expectation, E[M] splits into two integrals over [0, c] and [c,∞). One shows the threshold policy’s
reward has the same upper tail as M and at least half its mass, yielding E[Uτth] ≥ 1

2E[M].

Theorem 2 (Half-Approximation to Prophet). Under the above setup, choose c such that Pr(M ≥
c) = 1

2 . Then the threshold policy satisfies

E
[
Uτth

]
≥ 1

2 E
[
max
1≤t≤T

Ut

]
.

Proof. Let M = max1≤t≤T Ut. By definition of c, Pr(M ≥ c) = 1
2 . Then

E[M] =

∫ ∞

0

Pr(M ≥ x) dx =

∫ c

0

Pr(M ≥ x) dx +

∫ ∞

c

Pr(M ≥ x) dx.

Since Pr(M ≥ x) ≤ 1 for x ∈ [0, c] and Pr(M ≥ x) ≤ 2Pr(M ≥ c) = 1 for x ≥ c, we have

E[M] ≤ c + 2

∫ ∞

c

Pr(M ≥ x) dx.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Meanwhile, the threshold policy reward Uτth satisfies

E
[
Uτth

]
=

∫ ∞

0

Pr
(
Uτth ≥ x

)
dx ≥

∫ ∞

c

Pr
(
Uτth ≥ x

)
dx.

But for x ≥ c, the event {Uτth ≥ x} occurs whenever some Ut ≥ x, which is a subset of {M ≥ x}.
Moreover, conditioning on M ≥ c (probability ½), the threshold policy sees at least one Ut ≥ c
and so stops at some t with Ut ≥ c. One shows Pr(Uτth ≥ x) ≥ 1

2 Pr(M ≥ x) for all x ≥ c.
Combining,

E[Uτth] ≥ 1
2

∫ ∞

c

Pr(M ≥ x) dx ≥ 1
2

(
E[M]− c

)
.

Since c ≤ E[M], this yields E[Uτth] ≥ 1
2E[M], completing the proof.

Complementarity. Theorem 1 gives a vanishing O(
√
T) additive regret under a martingale noise

model, while Theorem 2 provides a robust constant-factor (½) guarantee under minimal assump-
tions. Both perspectives underscore the competitiveness of simple online stopping rules.

G WHY IS SELF-CRITIQUE THE SUPERIOR POLICY? (THEOREMS 3 AND 4):
ANALYSIS OF THE ADAPTIVE SELF-CRITIQUE POLICY

In this appendix we give full, self-contained proofs for two versions of the Self-Critique Superiority
result: first in the idealized case with no critique cost, and then the general case including a fixed
cost Ccrit.

G.1 NOTATION AND SETUP

We consider a decision at a single spike event. Let

q = Pr
(
spike is premature

)
, (1− q) = Pr

(
spike is correct

)
.

Upon stopping at a spike, the deterministic “always-stop” policy πdet immediately ends generation
and obtains utility

Us = U
(
stop

)
.

If one instead continues past a premature spike, one realizes an additional utility gain

∆U = U
(
continue

)
− U

(
stop

)
> 0,

so that
Uc = Us +∆U

denotes the utility of continuing. An LLM-based critic is invoked by the adaptive policy πcrit and
classifies any spike as either “premature” or “correct.” We denote its (symmetric) accuracy by

η = Pr
(
critic correct

)
> 1

2 ,

meaning it correctly calls a premature spike “premature” with probability η, and correctly calls a
correct spike “correct” with probability η.

G.2 ANALYSIS OF SELF CRITIQUE WITH NO CRITIQUE COST

Theorem 3 (Superiority of Adaptive Self-Critique, No Cost). Under the above definitions, and
assuming invoking the critic has zero cost, the expected utility difference between πcrit and πdet

at a spike is
E
[
U(πcrit)

]
− E

[
U(πdet)

]
= ∆U

[
q η + (1− q)(1− η)

]
.

In particular, since η > 0.5 and ∆U > 0, this difference is strictly positive for any q ∈ [0, 1).

Proof. The always-stop policy πdet never continues, so it always obtains E[U(πdet)] = Us.

The adaptive policy πcrit first invokes the critic (with no cost). Two cases arise:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1. Spike is premature with probability q:

(a) Critic correct (prob. η): continue→ utility Uc.
(b) Critic errs (prob. 1− η): stop→ utility Us.

2. Spike is correct with probability 1− q:

(a) Critic correct (prob. η): stop→ utility Us.
(b) Critic errs (prob. 1− η): continue→ utility Uc.

Hence the expected utility of πcrit is
E[U(πcrit)] = q

[
η Uc + (1− η)Us

]
+ (1− q)

[
η Us + (1− η)Uc

]
.

Substitute Uc = Us +∆U :
E[U(πcrit)] = q

[
η (Us +∆U) + (1− η)Us

]
+ (1− q)

[
η Us + (1− η) (Us +∆U)

]
.

Collecting terms gives
E[U(πcrit)] = Us +∆U

[
q η + (1− q)(1− η)

]
.

Subtracting E[U(πdet)] = Us yields the claimed result.

G.3 ANALYSIS WITH CRITIQUE COST

Theorem 4 (Superiority of Adaptive Self-Critique, With Cost). Under the same setup, but now
assuming each invocation of the critic incurs a fixed expected utility cost Ccrit > 0, the expected
utility difference at a spike is

E
[
U(πcrit)

]
− E

[
U(πdet)

]
= ∆U

[
q η + (1− q)(1− η)

]
− Ccrit.

In particular, whenever ∆U [q η + (1− q)(1− η)] > Ccrit, the self-critique policy strictly outper-
forms always-stop.

Proof. As before, E[U(πdet)] = Us. The only change is that invoking the critic now deducts Ccrit

from utility. Thus

E[U(πcrit)] =
{
q
[
η Uc + (1− η)Us

]
+ (1− q)

[
η Us + (1− η)Uc

]}
− Ccrit.

Substituting Uc = Us +∆U and collecting terms exactly as in Theorem 3 gives
E[U(πcrit)] = Us +∆U

[
q η + (1− q)(1− η)

]
− Ccrit.

Subtracting Us yields the stated result. The condition for strict superiority follows immediately by
requiring the right-hand side to be positive.

H ROBUSTNESS TO SIGNAL MISSPECIFICATION

In practice, the joint distribution over generation trajectories (tokens and control signals) used by
our stopping policy may be only approximately known. To model this, let Ω denote the space of all
possible trajectories up to a fixed maximum length T . We compare the true distribution P on Ω with
an approximate distribution P̂ , and measure their discrepancy via the total-variation distance.

Definition 1 (Total Variation Distance). For two probability measures P and P̂ on (Ω,F), the total-
variation distance is

TV(P, P̂) = sup
A∈F

∣∣P (A)− P̂ (A)
∣∣ = 1

2

∫
Ω

∣∣dP − dP̂
∣∣.

A stopping policy π is a (possibly randomized) mapping from Ω to a stopping time τ ∈ {1, . . . , T}.
Upon stopping at τ , the policy receives utility

U
(
π, ω

)
= U

(
x≤τ , τ

)
,

where x≤τ are the tokens in trajectory ω. We assume the utility is bounded:

0 ≤ U
(
π, ω

)
≤ Umax for all ω ∈ Ω.

Accordingly, under either distribution P or P̂ , the random utility U(π) lies in [0, Umax].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proposition 3 (Robustness to Signal Misspecification). Let P and P̂ be two distributions on Ω

satisfying TV(P, P̂) ≤ ϵ. For any stopping policy π whose utility U(π) ∈ [0, Umax], the difference
in expected utility under the two models is bounded by∣∣∣EP

[
U(π)

]
− EP̂

[
U(π)

]∣∣∣ ≤ ϵ Umax.

Proof. Define the bounded measurable function f(ω) = U(π, ω), so f : Ω→ [0, Umax]. A standard
property of total-variation distance (see, e.g., Le Cam (2012)) states∣∣EP [f]− EP̂ [f]

∣∣ ≤ (sup f − inf f) TV(P, P̂).

Since sup f = Umax and inf f = 0, and TV(P, P̂) ≤ ϵ, the result follows immediately:∣∣EP [U(π)]− EP̂ [U(π)]
∣∣ ≤ Umax ϵ.

Remark 1. This bound holds regardless of the internal structure of π or the nature of the control-
signal mis-specification. Any policy whose utility is bounded cannot lose more than an additive
ϵ Umax in expectation when the underlying generative model shifts by total-variation distance ϵ.

I LIMITATIONS AND FUTURE WORK

While our work demonstrates the significant potential of the ACTS framework for adaptive gener-
ation control, we acknowledge several limitations that also point towards promising directions for
future research.

Dependence on Signal Quality. The effectiveness of all ACTS policies is fundamentally contin-
gent on the quality and reliability of the P (tcontrol) signal produced by the underlying LLM, which
may not be well calibrated across all LLMs, and may in fact be dependent on the number of tokens
of pre-training. While our experiments show this signal is highly informative across several state-of-
the-art models, its characteristics may vary with different model architectures, training paradigms,
or domains.

Scope of Evaluation. Our empirical validation focuses on instruction-following and mathemati-
cal reasoning, domains where correctness is well-defined. The application of ACTS to more open-
ended, creative, or multi-turn conversational tasks presents a different set of challenges. In such
settings, the “optimal” stopping time is subjective and may depend on user preferences rather than
objective correctness. Extending the ACTS framework to these domains would likely require inte-
grating user feedback or preference models to help define the utility function for the optimal stopping
problem.

LLM USAGE STATEMENT

The authors acknowledge the use of a large language model (LLM) in the preparation of this
manuscript. The LLM was utilized as a collaborative writing assistant for editing and refining the
text for clarity, grammar, and conciseness. Additionally, the LLM assisted in generating Python
code used for data visualization in several of the paper’s figures. All core intellectual contributions,
including the theoretical analysis, experimental design, and interpretation of results, were conducted
by the human authors.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J RESULTS

Table 4: Performance comparison of adaptive stopping policies on llama3.1-8b-Instruct
under different generation budgets.

Model Policy Max Tokens Threshold Wait Counter LC-WR (%) WR (%) Average Tokens

Max Tokens = 256
llama3.1-8b-Instruct Greedy Policy 256 – – 16.34 9.47 218.56
llama3.1-8b-Instruct Accumulated Probability Policy 256 1.00E–02 – 11.20 5.34 137.98
llama3.1-8b-Instruct Accumulated Probability Policy 256 1.00E–01 – 14.07 6.43 141.87
llama3.1-8b-Instruct Accumulated Probability Policy 256 5.00E–01 – 15.66 7.45 142.90
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E–05 – 16.28 8.45 209.61
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E–03 – 14.25 8.47 215.83
llama3.1-8b-Instruct Last-Interval Budget Policy 256 1.00E–01 – 15.41 9.09 217.97
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–05 1 13.15 6.40 135.94
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–03 1 13.40 6.65 138.14
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–01 1 13.70 6.82 142.16
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–05 3 14.23 6.66 140.55
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–03 3 14.67 6.95 142.08
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–01 3 13.73 6.80 142.21
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–05 5 13.76 6.73 140.92
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–03 5 13.45 6.62 142.18
llama3.1-8b-Instruct N-Spike Counter Policy 256 1.00E–01 5 13.73 6.80 142.21

Max Tokens = 512
llama3.1-8b-Instruct Greedy Policy 512 – – 22.92 19.91 380.56
llama3.1-8b-Instruct Accumulated Probability Policy 512 1.00E–02 – 23.36 14.68 296.01
llama3.1-8b-Instruct Accumulated Probability Policy 512 1.00E–01 – 21.61 14.37 300.91
llama3.1-8b-Instruct Accumulated Probability Policy 512 5.00E–01 – 25.08 17.25 309.78
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E–05 – 24.08 18.81 353.31
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E–03 – 25.13 20.66 365.37
llama3.1-8b-Instruct Last-Interval Budget Policy 512 1.00E–01 – 23.85 20.21 370.91
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–05 1 21.12 12.51 286.63
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–03 1 22.05 14.49 296.80
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–01 1 22.93 15.95 308.44
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–05 3 22.94 15.33 303.06
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–03 3 23.93 16.29 306.57
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–01 3 23.85 16.84 308.44
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–05 5 22.85 15.90 308.10
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–03 5 23.85 16.84 308.57
llama3.1-8b-Instruct N-Spike Counter Policy 512 1.00E–01 5 23.85 16.84 308.44

Max Tokens = 1024
llama3.1-8b-Instruct Greedy Policy 1024 – – 26.41 28.44 470.42
llama3.1-8b-Instruct Accumulated Probability Policy 1024 1.00E–02 – 24.92 22.54 397.09
llama3.1-8b-Instruct Accumulated Probability Policy 1024 1.00E–01 – 26.63 24.98 406.50
llama3.1-8b-Instruct Accumulated Probability Policy 1024 5.00E–01 – 27.63 26.53 418.35
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E–05 – 30.11 29.45 423.27
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E–03 – 28.44 28.40 436.80
llama3.1-8b-Instruct Last-Interval Budget Policy 1024 1.00E–01 – 28.45 28.48 436.80
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–05 1 24.73 21.00 374.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–03 1 24.53 22.91 403.34
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–01 1 27.47 26.90 419.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–05 3 25.12 23.93 406.38
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–03 3 26.61 25.94 417.71
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–01 3 27.47 26.90 419.77
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–05 5 27.26 26.05 411.97
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–03 5 26.44 25.90 417.76
llama3.1-8b-Instruct N-Spike Counter Policy 1024 1.00E–01 5 27.47 26.90 419.77

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of adaptive stopping policies on s1.1-7B under different
thinking-token budgets, including the Adaptive Self Critique Sampler.

Model Policy Max Thinking Tokens Threshold Wait Counter Accuracy Average Tokens

Max Thinking Tokens = 2048
s1.1-7B Greedy Policy 2048 – – 0.500 1784.86
s1.1-7B Accumulated Probability Policy 2048 0.1 – 0.668 2696.68
s1.1-7B Accumulated Probability Policy 2048 1 – 0.680 2716.13
s1.1-7B Accumulated Probability Policy 2048 3 – 0.686 2920.95
s1.1-7B Last-Interval Budget Policy 2048 0.01 – 0.700 3004.00
s1.1-7B Last-Interval Budget Policy 2048 0.1 – 0.700 2983.52
s1.1-7B Last-Interval Budget Policy 2048 0.5 – 0.698 3026.28
s1.1-7B N-Spike Counter Policy 2048 0.01 1 0.714 2720.42
s1.1-7B N-Spike Counter Policy 2048 0.01 3 0.706 2925.70
s1.1-7B N-Spike Counter Policy 2048 0.01 5 0.710 2991.65
s1.1-7B N-Spike Counter Policy 2048 0.1 1 0.714 2727.15
s1.1-7B N-Spike Counter Policy 2048 0.1 3 0.696 2985.12
s1.1-7B N-Spike Counter Policy 2048 0.1 5 0.684 3051.00
s1.1-7B N-Spike Counter Policy 2048 0.5 1 0.706 2730.81
s1.1-7B N-Spike Counter Policy 2048 0.5 3 0.688 2986.16
s1.1-7B N-Spike Counter Policy 2048 0.5 5 0.704 3022.09
s1.1-7B Adaptive Self Critique Sampler 2048 – – 0.742 2614.56

Max Thinking Tokens = 4096
s1.1-7B Greedy Policy 4096 – – 0.642 2725.00
s1.1-7B Accumulated Probability Policy 4096 0.1 – 0.726 3841.05
s1.1-7B Accumulated Probability Policy 4096 1 – 0.748 3871.68
s1.1-7B Accumulated Probability Policy 4096 3 – 0.756 4550.30
s1.1-7B Last-Interval Budget Policy 4096 0.01 – 0.758 5255.40
s1.1-7B Last-Interval Budget Policy 4096 0.1 – 0.778 5354.85
s1.1-7B Last-Interval Budget Policy 4096 0.5 – 0.756 5406.34
s1.1-7B N-Spike Counter Policy 4096 0.01 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.01 3 0.754 4304.67
s1.1-7B N-Spike Counter Policy 4096 0.01 5 0.770 4647.54
s1.1-7B N-Spike Counter Policy 4096 0.1 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.1 3 0.772 4374.37
s1.1-7B N-Spike Counter Policy 4096 0.1 5 0.758 5002.43
s1.1-7B N-Spike Counter Policy 4096 0.5 1 0.762 3759.02
s1.1-7B N-Spike Counter Policy 4096 0.5 3 0.756 4670.00
s1.1-7B N-Spike Counter Policy 4096 0.5 5 0.756 5373.00
s1.1-7B Adaptive Self Critique Sampler 4096 – – 0.792 4244.91

Max Thinking Tokens = 8192
s1.1-7B Greedy Policy 8192 – – 0.714 3917.57
s1.1-7B Accumulated Probability Policy 8192 0.1 – 0.774 5077.64
s1.1-7B Accumulated Probability Policy 8192 1 – 0.788 5405.76
s1.1-7B Accumulated Probability Policy 8192 3 – 0.796 6631.65
s1.1-7B Last-Interval Budget Policy 8192 0.01 – 0.794 11033.53
s1.1-7B Last-Interval Budget Policy 8192 0.1 – 0.800 10712.60
s1.1-7B Last-Interval Budget Policy 8192 0.5 – 0.784 10512.50
s1.1-7B N-Spike Counter Policy 8192 0.01 1 0.798 5163.36
s1.1-7B N-Spike Counter Policy 8192 0.01 3 0.800 5817.96
s1.1-7B N-Spike Counter Policy 8192 0.01 5 0.802 6726.14
s1.1-7B N-Spike Counter Policy 8192 0.1 1 0.798 5163.36
s1.1-7B N-Spike Counter Policy 8192 0.1 3 0.806 5975.91
s1.1-7B N-Spike Counter Policy 8192 0.1 5 0.804 8105.31
s1.1-7B N-Spike Counter Policy 8192 0.5 1 0.798 5114.54
s1.1-7B N-Spike Counter Policy 8192 0.5 3 0.804 7010.83
s1.1-7B N-Spike Counter Policy 8192 0.5 5 0.810 9727.63
s1.1-7B Adaptive Self Critique Sampler 8192 – – 0.812 7330.56

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 6: Performance of Qwen3 Models on the Maths500 Benchmark. This table compares the
Baseline performance of Qwen3-8b and Qwen3-14b models against the ’Peak-Sampler-Critique’
method under various configurations. The primary metrics are Maths500 accuracy and the average
token count per problem. The results show that the Peak-Sampler-Critique method, particularly with
k=3 critiques, a spike threshold of 0.25, and a larger context window, achieves the highest accuracy
(0.950) while significantly reducing the token count compared to the baseline.

Model Method Critiques (k) Context Window Spike Threshold Maths500 Acc. Avg. Tokens

Qwen3-8b

Baseline N/A 8k / 16k N/A 0.924 4683.00
Baseline N/A 16k / 32k N/A 0.934 5312.00
Peak-Sampler 1 8k / 16k 0.10 0.900 2166.10
Peak-Sampler 3 8k / 16k 0.10 0.908 2718.62
Peak-Sampler 5 8k / 16k 0.10 0.922 3108.73
Peak-Sampler 1 8k / 16k 0.25 0.914 2482.83
Peak-Sampler 3 8k / 16k 0.25 0.918 2882.83
Peak-Sampler 5 8k / 16k 0.25 0.922 3220.43
Peak-Sampler 1 16k / 32k 0.10 0.906 2227.50
Peak-Sampler 3 16k / 32k 0.10 0.916 2799.19
Peak-Sampler 5 16k / 32k 0.10 0.928 3370.71
Peak-Sampler 1 16k / 32k 0.25 0.914 2568.46
Peak-Sampler 3 16k / 32k 0.25 0.944 3055.18
Peak-Sampler 5 16k / 32k 0.25 0.937 3635.18

Qwen3-14b

Baseline N/A 8k / 16k N/A 0.933 4286.70
Baseline N/A 16k / 32k N/A 0.940 4732.62
Peak-Sampler 1 8k / 16k 0.25 0.928 2141.40
Peak-Sampler 3 8k / 16k 0.25 0.932 2683.92
Peak-Sampler 5 8k / 16k 0.25 0.930 2883.92
Peak-Sampler 1 16k / 16k 0.25 0.932 2138.05
Peak-Sampler 3 16k / 32k 0.25 0.950 3084.97
Peak-Sampler 5 16k / 32k 0.25 0.950 3524.97

Table 7: Performance of Qwen3 Models on the AIME25 Benchmark. This table presents the accu-
racy and average token consumption for Qwen3 models of varying sizes (4B, 8B, 14B). We compare
the standard Baseline generation method against our ’Peak-Sampler-Critique’ approach with an in-
creasing number of critiques (k). The Peak-Sampler-Critique method generally improves accuracy
over the baseline for all model sizes, with performance scaling with the number of critiques. The
Qwen3-14B model with k=7 achieves the highest accuracy of 0.722, a notable improvement over its
baseline performance of 0.655. All experiments were conducted using a 16k/32k context window
and a spike threshold of 0.25 for the Peak-Sampler method.

Model Method Critiques (k) AIME Accuracy Average Token Count

Qwen3-4B

Baseline N/A 0.578 13923.5
Peak-Sampler 1 0.434 10047.20
Peak-Sampler 3 0.500 12010.20
Peak-Sampler 5 0.588 13451.10
Peak-Sampler 7 0.600 14176.20

Qwen3-8B

Baseline N/A 0.589 ± 0.056 13793.5 ± 113.77
Peak-Sampler 1 0.500 ± 0.081 12364.1 ± 320.96
Peak-Sampler 3 0.622 ± 0.056 13408.4 ± 199.80
Peak-Sampler 5 0.667 ± 0.027 13850.0 ± 462.10
Peak-Sampler 7 0.656 ± 0.032 15192.0 ± 483.86

Qwen3-14B

Baseline N/A 0.655 ± 0.041 13278.0 ± 201.50
Peak-Sampler 1 0.688 ± 0.068 11977.7 ± 208.60
Peak-Sampler 3 0.667 ± 0.072 13099.4 ± 142.80
Peak-Sampler 5 0.711 ± 0.042 13559.0 ± 378.60
Peak-Sampler 7 0.722 ± 0.031 14064.0 ± 666.58

26

	Introduction
	Our Contributions

	Related Work
	Preliminaries: The ACTS Framework
	Methodology: A Spectrum of Principled Generation Policies
	Policies For Sampling

	Experimental Setup
	Experimental Results
	RQ1: Signal Charectarization
	RQ2: Instruction Following Efficiency:
	RQ3: Mitigating Reasoning Underthinking

	Analysis of Overthinking: Averting Overthinking in Complex Reasoning
	RQ5: Parallel sampling with shared sequential reasoning:

	Extended Related Work
	Test-Time Scaling and Dynamic Inference
	Controlling Reasoning Behavior at Test-Time
	Theoretical Foundations for Policy Design

	A Reader's Guide to the Theoretical Analysis
	Notation Reference
	The Narrative and Intuition of Our Theoretical Results
	Why is Budget Management a Non-Trivial Problem? (Proposition ??)
	Why Trust the Signal? (Lemma 1)
	How Robust are Simple Policies to Noise? (Propositions 1 & 2)
	How Do Our Policies Perform Over Time? (Theorem 1)
	How Do Our Policies Compare to an Oracle? (Theorem 2)
	Why is Self-Critique the Superior Policy? (Theorems 3 and 4)
	How Robust is the Entire Framework? (Proposition 3)

	Why Trust the Signal? (Lemma 1): Analysis of Spike Correctness
	How Robust is N-Spike Counter Policy to Noise? (Proposition 1): Spurious Termination Bound
	How Robust is Cumulative-Probability Sampler Policies to Noise? (Proposition 2): Evidence Accumulation Reliability
	Analysis of Last‑Interval Policy
	How Does Last-Interval Policy Perform Over Time? (Theorem 1): Regret of Deterministic Threshold Policies
	How Does Last Interval Policy Compare to an Oracle? (Theorem 2): Prophet Benchmark Bound

	Why is Self-Critique the Superior Policy? (Theorems 3 and 4): Analysis of the Adaptive Self‑Critique Policy
	Notation and Setup
	Analysis of Self critique with No Critique Cost
	Analysis With Critique Cost

	Robustness to Signal Misspecification
	Limitations and Future Work
	Results

