Enhancing Tool Calling in LLLMs with the International Tool Calling (ITC)
Dataset

Anonymous ACL submission

Abstract

Tool calling allows large language models
(LLMs) to interact with external systems
like APIs, enabling applications in customer
support, data analysis, and dynamic content
generation. Despite recent advances, chal-
lenges persist due to limited datasets with
simulated or inaccessible APIs and insufficient
geographic diversity. To address this, we
present the International Tool Calling (ITC)
dataset, designed for real-world, international
tool calling scenarios. ITC includes 3,571
real APIs and 17,540 tool calling tasks
across 20 categories and 40 countries. The
dataset was constructed through a four-stage
pipeline: API collection and construction,
query generation, query scoring and filtering,
and question—answer pair generation. Exper-
iments reveal substantial performance gaps
between open- and closed-source LLMs, while
fine-tuning on ITC significantly improves
generalization. ITC offers a valuable resource
for advancing LLM capabilities in complex,
multi-tool, and international contexts. Dataset:
https://anonymous.4open.science/r/International-
tool-calling-ITC-dataset-SFD7/.

1 Introduction

Tool calling empowers large language models
(LLMs) to interact with external systems—such
as databases, APIs, and software tools—extending
their capabilities beyond text generation (Schick
et al., 2023). By invoking tools, LLMs can access
real-time data, perform complex computations, and
execute actions beyond their training data (Nakano
etal., 2021). This functionality is essential for tasks
such as automated customer support, data analysis,
and dynamic content generation, where external re-
source integration enhances both performance and
utility. As surveyed in (Mialon et al., 2023), tool
calling enables more sophisticated, context-aware
interactions, making LL.Ms valuable across diverse
domains.

Recent advances have led to the development
of several datasets and benchmarks to improve
tool-use capabilities in LLMs. Notable examples
include API-BLEND (Basu et al., 2024), API-
Gen (Liu et al., 2024c), and ToolACE (Liu et al.,
2024b), which focus on API-based function call-
ing across a variety of use cases. Others, such
as Gorilla (Patil et al., 2023) and ToolLLM (Qin
et al., 2023), address real-world tool invocation,
reducing hallucinations and improving accuracy.
More complex datasets like Seal-Tools (Wu et al.,
2024), PLUTO (Huang et al., 2024), and SciTool-
Bench (Ma et al., 2024) explore multi-step rea-
soning and domain-specific tool use. Collectively,
these benchmarks have advanced the development
of LLMs capable of interacting with external tools
effectively.

However, key challenges remain. Many exist-
ing datasets rely on simulated APIs, lacking the
complexity and variability of real-world tool usage
(e.g., Seal-Tools (Wu et al., 2024)). Others use pro-
prietary or inaccessible APIs, as in ToolLLM (Qin
etal., 2023), limiting reproducibility and real-world
deployment. Accessibility is further hindered by
datasets that are not publicly available. Moreover,
most existing benchmarks are US-centric, mak-
ing them unsuitable for region-specific tasks in
a global context. For example, while APIs like
Yahoo_Weather can retrieve data for major cities
like Shenzhen, they often fail to provide detailed,
district-level information (e.g., Nanshan), under-
scoring the need for broader geographic coverage
and finer granularity.

To address these limitations, we introduce the
International Tool Calling (ITC) dataset, designed
for real-world, globally distributed tool calling sce-
narios. ITC is constructed through a four-stage
pipeline: (1) API Collection and Construction,
(2) Query Generation, (3) Query Scoring and
Filtering, and (4) QA Pair Generation. The fi-
nal dataset comprises 3,571 real-world APIs and

https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/

17,540 tool calling tasks—15,790 for training and
1,750 for testing—covering 20 categories across 40
countries. It includes 64.2% global APIs, which
provide cross-country and multilingual support, as
well as region-specific APIs, primarily from the
US and China, along with long-tail APIs from over
27 additional countries. The dataset consists of
14,295 single-tool and 3,245 multi-tool tasks, with
a deliberate focus on supporting underrepresented
APIs, thereby enhancing its utility for diverse and
internationally relevant tool calling applications.
We benchmarked 16 open-source and 8 closed-
source LLMs on the ITC test set. Results revealed
substantial performance gaps across multiple met-
rics, highlighting strengths and weaknesses in tool
usage—especially in handling non-existent tools,
missing parameters, and incorrect parameter gen-
eration. Furthermore, we fine-tuned several open-
source LLMs (not previously trained on tool calling
datasets) using ITC. These models exhibited sig-
nificant performance improvements, demonstrating
that ITC effectively enhances generalization and ro-
bustness in complex, real-world tool calling tasks.

Dataset # Tools Source Access. # Tasks Ex. PL.
API-BLEND 199 Sim. X 189,040 x Eng.
APIGen 3,673 Real x 60,000 / Eng.
Gorilla 1,645 Real v 16450 ./ Eng.
Seal-Tools 4,076 Sim. V4 14,076 x Eng.
ToolACE 26,507 Sim. X 11,300 x Eng.
ToolBench 16,464 Real v 126,486 / Eng.
RoTBench 568 ToolEyes x 105 / Eng.
MLLM-Tool 932 Real X 11,642 / Eng.
PLUTO 2,032 Sim. X 5,824 x Eng.
SciToolBench 2,446 Sim. X 856 x Eng.
GeoLLM-QA 117 Real X 1,000 x Eng.
INJECAGENT 17 Sim. \/ 1,054 \/ Eng.
StableToolBench 16,464 ToolBench / 126,486 / Eng.
ToolEyes 568 Sim. Vv 382 4/ Eng.
ToolSword 100 Sim. X 440 ./ Eng.
Hammer - APIGen X 67,500 x Eng
ours 3,573 Real v 17,540 / Multi

Table 1: Summary of existing tool calling datasets. Ac-
cess.: Public accessibility; Ex.: Executability of the
APIs; PL.: Primary language; Eng.: English; Sim.:
Simulated APIs.

2 Related Work

Existing benchmarks designed to enhance the tool-
invocation capabilities of large language mod-
els (LLMs) span a wide range of tasks, includ-
ing API-based interactions, multi-modal tool us-
age, and robustness evaluations. Datasets such
as API-BLEND (Basu et al., 2024), APIGen (Liu
et al., 2024c), and ToolACE (Liu et al., 2024b)
focus on API-based function calling, providing

diverse APIs for training and evaluation. While
APIGen and ToolACE contain thousands of exe-
cutable APIs, API-BLEND primarily supports se-
mantic parsing and slot-filling tasks. Gorilla (Patil
et al., 2023) and ToolLLM (Qin et al., 2023) en-
hance LLM capabilities in real-world API inter-
actions, aiming to improve accuracy and reduce
hallucinations. Meanwhile, Seal-Tools (Wu et al.,
2024), PLUTO (Huang et al., 2024), and SciTool-
Bench (Ma et al., 2024) introduce more complex
tool-use scenarios, including multi-step reasoning
and domain-specific applications. Other bench-
marks, such as RoTBench (Ye et al., 2024¢) and
StableToolBench (Guo et al., 2024), assess LLM
robustness and stability, while ToolEyes (Ye et al.,
2024a) and ToolSword (Ye et al., 2024b) focus
on cognitive abilities and safety in tool use. Ad-
ditionally, multi-modal frameworks like MLLM-
Tool (Wang et al., 2024) extend tool learning to
non-text modalities, supporting interactions with
images, text, and audio.

Table 1 provides an overview of representative
tool calling datasets and frameworks. Despite no-
table progress, existing resources exhibit several
critical limitations. Many rely on simulated APIs,
which do not reflect the complexity and variability
of real-world interactions. Datasets that incorpo-
rate real APIs often use proprietary or inaccessible
endpoints, restricting their practical utility. More-
over, over half of the benchmarks are not publicly
available, and even those that are—such as Tool-
Bench—frequently include non-functional or out-
dated APIs. Finally, most datasets are heavily US-
centric, limiting their relevance for tasks requiring
region-specific information in a global context.

3 Dataset Curation

; Query Generation \ /

API Collection and Construction

R Begg Tl

Query Diverse Task ~ API Standardized API Public Normalized
Prompt _ repository Documentation APIs__dc ion./
Query Scoring and Filtering C QA Pair Generation
Scoring £33 6\—%}
— =2
criteria " v cg
E & g—= B == a— S
Query Scoring High-quality QA Data Checker High-quality
. repository model queries QA

Figure 1: Dataset construction flowchart.

We construct our dataset using a four-stage
pipeline designed for scalability and minimal hu-
man intervention. In Stage 1: API Collection
and Construction, automated tools extract API

documentation. In Stage 2: Query Generation,
GPT-40 generates detailed API instructions. Stage
3: Query Scoring and Filtering leverages Claude-
3.5-Sonnet and Gemini-1.5-Pro to refine queries
for clarity, relevance, and executability. Finally, in
Stage 4: QA Pair Generation, GPT-40 produces
high-quality question—answer pairs. This pipeline
supports easy expansion to new APIs, as illustrated
in Figure 1.

3.1 API Collection and Construction

API Collection: ToolBench (Qin et al., 2023) is
a widely used benchmark for tool invocation, pri-
marily sourcing APIs from RapidAPI. However, its
coverage is largely US-centric, with limited rep-
resentation from other regions. Many of the in-
cluded APIs also require paid subscriptions, which
restricts accessibility.

To overcome these limitations, we collected

49,937 real REST APIs across diverse domains
such as social media, e-commerce, and weather.
In addition to RapidAPI Hub', we sourced APIs
from international platforms including Juhe API?
and XiaRou API® in China, as well as community-
maintained repositories on GitHub like free-api*
and public-apis®. These efforts aim to create a
globally diverse and publicly accessible API re-
source. The collected APIs are organized into 20
functional categories, including Entertainment, Fi-
nance, and Education.
API Supplementation: Our collected APIs vary
widely in documentation quality, with many miss-
ing parameter details, examples, or using inconsis-
tent formats. To ensure reliable parsing by large
language models, we apply a structured supple-
mentation pipeline that standardizes all APIs into
a uniform schema—including name, description,
endpoint, HTTP method, authentication, input pa-
rameters (with types and constraints), and output
format (see Figure 4 in Appendix A).

For incomplete or unclear documentation, we
leverage GPT-40 with tailored prompts to auto-
complete and refine API specs based on avail-
able metadata like endpoint names or sample in-
puts/outputs (example prompt in Figure 7). We
then validate these by executing sample calls, cor-
recting any inconsistencies or hallucinations man-

"https://rapidapi.com/

2https://www.juhe.cn/

3https ://api.aal.cn/

4https ://github.com/fangzesheng/free-api
Shttps: //github.com/public-apis/public-apis

ually. APIs with irreparable documentation issues
are discarded.

This process yields comprehensive, consistent

API specifications that improve clarity and usabil-
ity for both LLMs and developers (example in Fig-
ure 15, Appendix G).
API Filtering: The initial collection of 49,937 free
APIs included a substantial number of redundant
or low-quality entries. Many offered overlapping
functionalities (e.g., weather forecasting, currency
conversion), while others suffered from instability,
outdated services, insufficient documentation, or
inaccurate outputs.

To ensure the quality and reliability of our
dataset, we implemented a two-stage filtering
pipeline:

Stage 1: Basic Functionality Screening We
developed automated scripts to issue predefined
queries to each API and evaluated the responses.
APIs were excluded if they: (1) failed to respond
within a 10-second timeout, (2) returned HTTP er-
ror codes (e.g., 404, 500), (3) consistently produced
empty or null responses, or (4) returned malformed
or non-JSON outputs.

This initial screening eliminated the majority of
non-functional or poorly maintained APIs, reduc-
ing the pool from 49,937 to 5,410. Representative
failure cases are shown in Figures 5 and 6 in Ap-
pendix A.

Stage 2: Quality-Oriented Filtering The re-
maining 5,410 APIs were further evaluated for
stability, update frequency, and response informa-
tiveness through a combination of automated tests
and manual review. Stability was assessed by in-
voking each API 3-5 times over a 48-hour period;
APIs exhibiting intermittent failures, highly vari-
able latency (e.g., from 300 ms to over 5 seconds),
or inconsistent response formats (such as chang-
ing data types or fields) were discarded. Update
frequency was examined using version histories,
metadata (e.g., last update timestamps), and ex-
ternal sources like changelogs and issue trackers.
APIs with no updates for over 12 months or bro-
ken links were removed. Response informativeness
was measured by submitting task-specific queries
and evaluating the semantic richness of the outputs;
APIs that returned minimal, placeholder, or heavily
post-processed responses were excluded.

This filtering process eliminated 1,839 additional
APIs, resulting in a curated set of 3,571 high-
quality APIs—only 7.1% of the original 49,937.

https://rapidapi.com/
https://www.juhe.cn/
https://api.aa1.cn/
https://github.com/fangzesheng/free-api
https://github.com/public-apis/public-apis

These APIs are stable, actively maintained, and pro-
vide meaningful outputs, forming a reliable foun-
dation for generating tool-use instructions.

3.2 Query Generation

To address the often-overlooked challenges of lan-
guage and region specificity in tool calling, we
design tasks focused on retrieving localized infor-
mation through region-specific APIs. For instance,
imagine a Japanese tourist planning a trip to Li-
jiang, China. They may require detailed weather
updates and travel recommendations from both
Japanese and Chinese APIs, with content presented
in Japanese and Chinese, respectively. This sce-
nario highlights the importance of enabling LL.Ms
to perform cross-lingual reasoning and interact ef-
fectively with APIs across different linguistic and
geographic contexts.

Based on the above principles, we curated 36
seed examples across a range of scenarios. For
each, we selected one or more APIs and generated
three sample queries using the following strategies
to ensure quality and diversity:

1. Biased Sampling Correction: Our API col-
lection follows a long-tail distribution, with
countries like China and the U.S. contributing
disproportionately more APIs. To ensure geo-
graphic diversity, we over-sample APIs from
underrepresented countries, reducing bias and
enhancing cross-regional representation.

2. Tool Confusion Strategy: To increase task
complexity and test model robustness, we in-
clude similar APIs within the same functional
category or across countries. Queries are de-
signed to be intentionally ambiguous, forcing
the model to distinguish between APIs with
overlapping capabilities—thus evaluating its
ability to resolve fine-grained distinctions.

We used GPT-40 to generate queries based on
these examples, producing diverse outputs format-
ted in JSON. Each entry includes a “Thought”
field capturing the model’s reasoning process in
the same language as the query, and an “Action”
field specifying the corresponding API calls.

tool calling tasks can be broadly categorized into
two types: Single Tool Calling Tasks, which in-
volve invoking a single API to complete a task,
and Multiple Tools Calling Tasks, which require
coordinating multiple API calls, potentially across

different domains or countries. Multiple Tools Call-
ing Tasks can be further classified into three sub-
types. In Repeated Tool Calling, the same API is
invoked multiple times with different parameters
to complete a multi-stage objective. Parallel Tool
Calling involves invoking two or more APIs simul-
taneously to address different components of the
task. In contrast, Nested Tool Calling requires a
step-by-step process where the output of one API
serves as the input for the next, forming a sequen-
tial chain of reasoning.

3.3 Query Scoring and Filtering

In the last step, we obtained 44,198 queries. How-
ever, many of these queries presented issues such
as unclear requirements, insufficient relevance to
the tools, non-standard language, and failure to
appropriately adhere to cultural context.

Our query selection method consists of two main
steps: Query Scoring and Query Selection. In
the Query Scoring step, we addressed the limi-
tations of existing datasets, which often lack fine-
grained evaluation standards for assessing the qual-
ity of generated queries or question-and-answer
pairs. Rather than relying on coarse metrics,
we introduce five comprehensive scoring dimen-
sions—Relevance, Practicality, Linguistic Appli-
cability, Clarity, and Specificity (see Appendix F.1
for details) to ensure a thorough evaluation of in-
structions from multiple perspectives. To miti-
gate potential model bias, as highlighted in recent
work (Zheng et al., 2023), we employ two indepen-
dent scoring standards: Anthropic’s Claude-3.5-
sonnet and Google’s Gemini-1.5-pro. Both models
assign scores from 1 (very low quality) to 5 (highest
quality). Filtering and optimization are performed
based on the aggregated scores from both models.

During the Query Filtering step, we apply rig-
orous filtering criteria to retain only the highest-
quality queries. Specifically, only instructions that
receive a score higher than 4 from both the Claude
and Gemini models are considered high-quality.
This effectively excludes lower-scoring instructions
that may contain irrelevant or poorly structured con-
tent. Through this stringent filtering process, we
ensure that the retained queries meet high standards
of relevance, practicality, clarity, specificity, and
linguistic applicability, ultimately enhancing the re-
liability and usability of the dataset for downstream
tasks.

Following scoring and filtering, the dataset was
refined to a final set of 17,540 high-quality queries.

3.4 Question-and-Answer Pair Generation

The last step is to use GPT-40 model to generate
answer for each query, along with relevant API in-
formation into the GPT-40 model. The model then
generates the corresponding thought process and
identifies the appropriate APIs to be called. This
process requires careful handling of the model’s
reasoning to ensure that both the generated answers
and the API calls are contextually appropriate. Fur-
thermore, ensuring the coherence and accuracy of
the answers across multiple languages adds an ad-
ditional layer of complexity, as it demands that the
model appropriately handles language-specific fea-
tures while maintaining high-quality outputs for
a diverse set of use cases. For single-tool tasks,
the complexity is relatively low, so we directly use
prompt templates to generate question-and-answer
pairs. However, for multiple tools calling tasks,
in addition to using prompt templates, we employ
another large language model as a Checker that
has visibility into the entire generation process.
This Checker validates the generated question-and-
answer pairs, thereby enhancing their accuracy.

4 Data Statistics

Our International Tool Calling (ITC) dataset com-
prises 3,571 APIs and a total of 17,540 question-
and-answer pairs, including 15,790 for training and
1,750 for testing. In the following sections, we
detail the composition of the dataset from two per-
spectives: APIs and Tasks.

4.1 Statistics on APIs

Utilities : 114 [EXED) — Commerce : 181 507%

9 [
Travel : 8 (R Communication : 348 ENEY]
Technology : 154 431%
Sports : 30 084“/
Science : 49

[Other : 128 ERELT) —
Music : 96 B

Media : 156 437%
Math : 30 (227

Location : 333 EEEI]) /
Life : 72 [pEAPALY —

Image : 149 CRED

Gaming : 158 EE¥AL) —

Data : 462 [(PXLTY

\ ' Education : 209 B

Entertainment : 292 EREL]

—[Environment : 93 2,60%
Finance : 509 {EWET)

Figure 2: Distribution of APIs by Category in the ITC
Dataset.

Figure 2 illustrates the distribution of APIs
across 20 Category in the ITC Dataset. The
largest categories are Finance (14.25%), Data
(12.9%), Communication (9.75%), and Entertain-
ment (8.18%). Conversely, the smallest categories

include Travel (0.22%), Math (0.84%), and Sports
(0.84%).

Our dataset demonstrates notable geographical
diversity, encompassing APIs from over 30 coun-
tries and regions. We classify these APIs into two
categories: global APIs, which provide information
across multiple countries and languages, such as
machine translation and weather forecasting. These
APIs are predominantly from the USA. The second
category is country-specific APIs, which offer in-
formation tailored to a particular country and its
language, such as local weather updates and news.
Global APIs account for 2,291 samples (64.2%).
China and the United States contribute the majority
of country-specific APIs. Additionally, long-tail
APISs, originating from over 27 other countries and
regions, contribute 11.31% of the dataset. A de-
tailed breakdown of the country distribution can be
found in Figure 8 in Appendix A.5

4.2 Statistics on Tasks

Figure 3: Language distribution of all tasks (Logarith-
mic Scale).

Our dataset consists of 17,540 tasks, including
14,295 single-tool calling tasks and 3,245 multiple
tools calling tasks. The language distribution of
all tasks is shown in Figure 3. For single-tool call-
ing tasks, we ensure coverage across all countries
and categories from which the APIs are sourced.
While a significant portion of the APIs are from the
USA (including global APIs), resulting in a higher
volume of English-language queries, we have inten-
tionally generated more tasks for long-tail APIs to
mitigate the long-tail problem. As a result, global

APIs comprise 56.27% of the taks, while long-tail
APIs account for 13.57%. In the case of multiple
tools calling tasks, each task typically requires the
LLM to invoke between 2 and 5 tools to success-
fully complete the task.

5 Experiments and Results

5.1 Implementation Details

We used both open-source and closed-source LLMs
in our experiments. Open-source models, which
are freely accessible for research and development,
include those with relatively strong general capa-
bilities (such as Qwen2.5 (Yang et al., 2024) and
Deepseek-V3 (Liu et al., 2024a)), as well as models
dedicated to tool calling (such as Hammer2 (Lin
et al., 2024b) and Watt-tool-8B). In contrast, closed-
source models comprise advanced systems such as
GPT-40 and Claude-3.5-Sonnet.

We applied the default parameters for the open-
source LLLMs during testing on our dataset. To
fine-tune the models, we used LoRA (Hu et al.,
2021), training them for 3 epochs with a batch size
of 1 per device, 8 gradient accumulation steps, and
a learning rate of 1.0e-4. A cosine learning rate
scheduler with a warmup ratio of 0.1 was used for
the training configuration.

5.2 Evaluation Metrics

In this paper, we employ four evaluation met-
rics to comprehensively assess model performance.
The first three—drawn from Seal-Tools (Wu et al.,
2024)—are as follows: (1) Tool Selection (P/R/F1)
evaluates the model’s ability to accurately identify
the appropriate tools from a set of candidates, mea-
suring tool localization accuracy via precision, re-
call, and F1-score; (2) Tool Invocation (P/R/F1)
assesses the model’s capability to generate correct
and complete invocation parameters, using triple-
level matching to compute precision, recall, and F1;
(3) Format Matching Accuracy (FM) measures
whether the model’s output adheres to the required
JSON schema, a critical prerequisite for successful
downstream execution.

However, these metrics overlook a key re-
quirement in multilingual real-world applications:
the ability of large language models to main-
tain linguistic consistency throughout tool call-
ing interactions. To address this, we introduce
a new metric—Language Matching Accuracy
(LM)—which quantifies the proportion of cases
where the model’s internal reasoning (thought field)

is expressed in the same language as the user’s
query. Language identification is performed using
the langid library. Detailed computation methods
for all four metric are provided in Appendix C.

Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1

Qwen2.5-7B-Instruct ~ 90.51 96.65 54.08 53.06 53.18 4276 43.37 42.71
Qwen2.5-Coder-7B 94.93 9838 69.76 66.01 6723 54.17 54.11 53.75
Qwen2.5-3B-Instruct 87.40 93.00 49.34 45.84 47.52 4090 41.77 41.33
Qwen2.5-Coder-3B 84.26 89.25 4892 49.01 4876 3849 38.83 3843

watt-tool-8B 7448 553 8890 88.03 88.30 7633 7346 7431
ToolACE-8B 81.31 4.56 7030 69.82 69.93 59.39 56.22 57.17
Hammer2.1-7b 86.82 20.71 64.64 64.68 64.44 33.14 32.68 32.75
Hammer2.0-7b 78.21 9542 6122 5748 58.68 4500 4525 4485
Functionary-v3.1 76.75 54.15 40.63 37.15 3830 3525 35.64 35.02
Yi-1.5-9B-Chat-16K ~ 82.37 919 4528 4571 4532 35.67 35.66 3533
glm-4-9b-chat 76.00 97.55 4345 41.44 4209 3277 3285 3257
Phi-4 96.73 96.29 80.90 82.68 8149 70.15 7025 69.84

Qwen2.5-Coder-32B 91.05 99.14 84.82 8144 8254 71.13 71.04 70.69
Qwen2.5-72B-Instruct 89.47 98.16 5278 51.44 51.83 43.11 4335 4289

Deepseek-V3 86.09 99.80 83.10 8373 8328 7594 7577 7549
Deepseek-R1 7705 100 8689 8525 8579 7347 7315 7279
ol-mini 9589 93.68 6441 66.61 6472 6058 6253 61.06
03-mini 86.19 7137 61.06 61.13 60.93 5401 5356 53.54
GPT4o-mini 96.24 99.83 7647 7521 7555 71.69 7038 70.71
GPT4o 97.95 99.83 88.95 89.48 89.01 82.18 81.57 8157
GLM-Zero 8837 9845 5124 5031 5051 42.64 43.64 4278
gemini-2.0-flash 95.04 99.77 77.25 7776 7732 69.08 68.14 68.18
gemini-2.0-pro 96.17 94.13 84.57 8350 83.86 7322 71.65 71.95

Claude-3.5-sonnet 94.75 97.06 82.08 81.00 81.19 7205 7229 71.77

Table 2: Zero-shot evaluation results on ITC testing
data (%). The best results are highlighted in bold.

5.3 Zero-Shot Evaluation of Tool Calling
Capabilities

We begin by evaluating the zero-shot performance
of large language models (LLMs) on our ITC test-
ing dataset, aiming to assess their intrinsic tool call-
ing capabilities without task-specific fine-tuning.
Overall performance: Table 2 presents a com-
prehensive comparison of both open-source and
closed-source LLMs. As expected, closed-source
models generally outperform open models across
all evaluation dimensions. However, several open-
source models still demonstrate strong performance
on specific sub-tasks.

Linguistic and structural accuracy: In terms of
LM, which evaluates the consistency and fluency
of generated instructions, scores range from 74% to
97.95%. Open-source models such as Qwen2.5-7B-
Instruct achieve high linguistic fidelity (90.51%),
while closed models like GPT-40 reach the up-
per limit (97.95%). For FM—which measures
adherence to the required output structure (e.g.,
JSON)—mnearly all closed-source models (except
03-mini) and over two-thirds of open-source mod-
els achieve scores above 90%. Notably, Deepseek-
R1 (100%) and Qwen2.5-Coder-32B (99.14%) ex-
hibit excellent structural compliance, whereas mod-
els like watt-tool-8B and Tool ACE-8B often pro-
duce malformed outputs.

Functional competence in tool calling: For Tool
Selection, closed-source models such as GPT-40
exhibit superior performance, achieving high preci-
sion, recall, and F1 scores—demonstrating a strong
understanding of task-to-tool alignment. Among
open-source models, watt-tool-8B performs com-
paratively well, while others like Functionary-v3.1
frequently fail to identify appropriate tools, indicat-
ing weaknesses in tool relevance comprehension.
In terms of Tool Invocation, GPT-40 and watt-tool-
8B again lead with high scores, reflecting robust
capabilities in generating accurate invocation pa-
rameters and producing well-structured outputs. In
contrast, models like Hammer2.1-7B struggle sig-
nificantly, often generating malformed invocations
or incorrect arguments, highlighting deficiencies in
parameter composition and structural formatting.
Discrepancy analysis: The performance gap be-
tween Tool Selection and Tool Invocation provides
insight into a model’s holistic understanding of tool-
use tasks. GPT-40 demonstrates high consistency
across both stages, indicating mature reasoning
and generation abilities. Conversely, models with
a wider performance gap—such as Hammer?2.1-
7B—typically exhibit difficulties in translating tool
choice into correct parameterization and invoca-
tion syntax. This divergence serves as a critical
diagnostic signal for tool-augmented applications,
reflecting weaknesses in planning, schema ground-
ing, or structured generation.

Error analysis: Table 3 summarizes tool selection
and invocation errors across models. Most models
struggle with missing required tools and hallucinat-
ing non-existent ones. For example, gemini-2.0-
pro avoids hallucination entirely (0%) but misses
many tools (85.64%), while GPT40 achieves a
more balanced performance. In invocation, incor-
rect and missing parameters are common issues,
with Hammer2.1-7b showing high error rates. Mod-
els like GPT40-mini and ToolACE-8B demonstrate
more consistent performance across error types,
suggesting better robustness in tool calling.

5.4 Fine-tuned Evaluation of Tool Calling
Capabilities

In this experiment, we fine-tuned four models
from the Qwen 2.5 family—Qwen?2.5-7B-Instruct,
Qwen2.5-Coder-7B, Qwen2.5-3B-Instruct, and
Qwen2.5-Coder-3B—on our ITC training dataset
to evaluate the impact of fine-tuning on the tool
calling capabilities of open-source LLMs.

Testing results on the ITC test set: Table 4 demon-

Model Name Tool Selection Tool Invocation

Hall. Mis. Ex. Incor. Miss. Ext.
Qwen2.5-7B-Instruct 21.57 73.23 5.20 51.53 19.73 28.74
Qwen2.5-Coder-7B 4.25 86.65 9.10 51.01 20.59 28.39
Qwen2.5-3B-Instruct 8.74 75.79 15.47 42.14 16.42 41.45
Qwen2.5-Coder-3B 38.48 51.51 10.00 37.36 23.02 39.62
watt-tool-8B 25.51 67.74 6.74 45.54 40.61 13.85
ToolACE-8B 4.12 88.75 7.13 42.03 48.63 9.34
Hammer2.1-7b 0.70 91.56 7.74 17.18 64.26 18.56
Hammer2.0-7b 2.35 89.16 8.49 57.80 23.92 18.28
Functionary-v3.1 20.92 76.97 2.11 37.70 28.80 3351
Yi-1.5-9B-Chat-16K 3735 55.78 6.86 38.90 18.66 42.44
glm-4-9b-chat 0.98 93.90 5.12 27.88 54.78 17.34
Phi-4 11.29 69.18 19.53 44.75 29.11 26.14
Qwen2.5-Coder-32B 8.09 66.31 25.61 46.43 27.80 25.78
Qwen2.5-72B-Instruct 43.64 51.95 4.41 46.65 22.79 30.56
Deepseek-V3 0.43 80.21 19.36 57.65 24.38 17.97
Deepseek-R1 8.33 83.33 8.33 41.67 29.17 29.17
ol-mini 355 61.68 2.82 54.5 28.5 17.0
03-mini 34.8 62.33 2.87 53.89 29.64 16.47
GPT40-mini 19.71 76.26 4.03 48.76 39.94 11.29
GPT4o0 47.16 49.72 3.12 53.67 21.22 25.10
GLM-Zero 37.63 58.09 4.28 48.89 13.27 37.83
gemini-2.0-flash 30.93 62.13 6.95 50.42 29.50 20.08
gemini-2.0-pro 0 85.64 14.36 47.31 35.13 17.56
Claude-3.5-sonnet 22.11 68.81 9.08 54.67 21.21 24.12

Table 3: Error analysis of tool selection and invoca-
tion across different LLMs (%). Hall.: hallucinating
non-existing tools, Mis.: missing required tools, Ex.:
calling extra tools, Incor.: generating incorrect param-
eters, Miss.: missing parameters, Ext.: generating
extra parameters. The best results are highlighted in
bold.

strates significant improvements in both tool se-
lection and invocation following fine-tuning. Re-
markably, the fine-tuned 3B models achieve per-
formance on par with the larger 7B models. For
example, Qwen2.5-7B-Instruct achieved a 45.02%
increase in tool selection recall and a 47.88% in-
crease in tool invocation precision, while Qwen2.5-
Coder-3B recorded the highest improvement in tool
invocation F1 score at 51.53%, with overall per-
formance closely matching that of Qwen2.5-7B-
Instruct. These findings confirm the robustness of
our training data in boosting tool calling capabili-
ties across different model scales.

Testing results on out-of-domain data: To eval-
uate the models’ ability to generalize beyond
the training distribution, we tested our fine-tuned
Qwen?2.5 variants on challenging out-of-domain
tool selection and invocation tasks. As shown in
Table 5, all four models demonstrate significant im-
provements, with tool selection precision increas-
ing by up to 25.75% and tool invocation precision
improving by as much as 18.10%. These results
highlight the effectiveness of our training dataset
in enhancing performance on diverse, previously
unseen tool calling tasks.

5.5 Ablation Study on Language Impact

To assess the impact of non-English languages
on model performance, we conducted an ablation

Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1
Qwen2.5-7B-Instruct 96.89(+6.38) 99.77(+3.12) 97.72(+43.64) 98.08(+45.02) 97.76(+44.58) 90.64(+47.88) 90.55(+47.18) 90.34(+47.63)
Qwen2.5-Coder-7B 97.41(+2.48) 99.64(+1.26) 97.69(+27.93) 98.00(+31.99) 97.72(+30.49) 90.57(+36.4) 90.38(+36.27) 90.22(+36.47)
Qwen2.5-3B-Instruct 97.26(+9.86) 99.54(+6.54) 97.35(+48.01) 97.92(+52.08) 97.48(+49.96) 89.78(+48.88) 89.50(+47.73) 89.36(+48.03)
Qwen2.5-Coder-3B 97.29(+13.03) 99.79(+10.54) 97.64(+48.72) 97.89(+48.88) 97.64(+48.88) 90.25(+51.76) 90.26(+51.43) 89.96(+51.53)

Table 4: Fine-tuned evaluation results on ITC testing dataset (%), with values in brackets showing the improve-
ment from the original models. The best results and greatest improvements are highlighted in bold.

Model Nexus Raven

Seal-Tools

Tool-Alpaca

Tool Selection (P) Tool Invocation (P) Tool Selection (P) Tool Invocation (P) Tool Selection (P) Tool Invocation (P)

Qwen2.5-7B-Instruct 90.57(+25.75) 59.97(+1023) 89.91(+24.00) 76.16(+17.76) 77.05(+18.10) 49.96(+9.85)
Qwen2.5-Coder-7B-Instruct 90.99(+20.44) 68.04(+17.76) 89.57(+22.22) 78.04(+18.92) 77.34(+14.91) 50.87(+8.23)
Qwen2.5-3B-Instruct 81.03(+6.50) 57.14(+2.78) 90.32(+23.26) 76.76(+20.02) 75.00(+8.92) 47.54(+8.57)
Qwen2.5-Coder-3B-Instruct ~ 84.17(+2.09) 64.22(+4.90) 89.34(+8.50) 76.18(+7.97) 73.10(+4.53) 48.69(+7.06)

Table 5: Fine-tuned evaluation results on three benchmark testing datasets (%), with values in brackets
showing the improvement from the original models. The best results and greatest improvements are

highlighted in bold.

Type Model Name LM FM

Tool Selection

Tool Invocation

P

R F1

P

R

F1

Qwen2.5-7B-Instruct 96.30(+5.56) 99.27(+4.18)
Qwen2.5-Coder-7B 96.47(+7.04) 98.91(+1.46)
Qwen2.5-3B-Instruct 91.62(+11.24) 95.91(+13.55)
Qwen2.5-Coder-3B 94.21(+9.34) 98.91(+4.36)

91.57(+36.67)
93.29(+21.77)
87.03(+39.58)
87.44(+40.15)

ALL

98.57(+42.02) 94.94(+39.69)
93.55(+19.61) 93.42(+20.67)
89.76(+40.25) 88.37(+39.91)
86.91(+39.30) 87.17(+39.86)

87.78(+45.93)
88.37(+33.17)
76.17(+44.06)
80.20(+46.89)

86.36(+44.08)
89.19(+34.80)
74.23(+41.27)
80.42(+45.66)

87.06(+45.45)
88.77(+34.56)
75.19(+42.66)
80.31(+46.67)

Qwen2.5-7B-Instruct
EN Qwen2.5-Coder-7B
Qwen2.5-3B-Instruct
Qwen2.5-Coder-3B

91.33(+0.59)
92.57(+2.14)
83.64(+3.26)
85.67(+0.80)

97.09(+2.00)
98.28(+1.17)
86.51(+4.15)
96.45(+1.90)

79.55(+24.65)
88.24(+15.72)
77.96(+30.51)
78.85(+31.56)

79.12(+22.57) 79.33(+24.08)
88.32(+14.38) 88.28(+15.53)
77.70(+28.19) 77.83(+29.37)
79.47(+31.86) 79.16(+31.85)

70.82(+28.97)
79.47(+24.27)
69.7(+37.59)
69.85(+36.54)

71.17(+28.89)
79.63(+25.24)
69.97(+37.01)
69.99(+35.23)

70.99(+29.38)
79.55(+25.34)
69.83(+37.30)
69.92(+36.28)

Table 6: Ablation study on non-English queries in the ITC testing dataset evaluating language impact (%),
with values in brackets indicating improvements over the original models. The label ‘“Type = ALL’ denotes
training on the full ITC dataset, while ‘Type = EN’ indicates training exclusively on the English subset of the
ITC dataset. The best results and largest improvements are highlighted in bold.

study by fine-tuning Qwen2.5 models either on the
full multilingual ITC training set (“Type = ALL’)
or exclusively on the English subset (‘Type = EN’),
then evaluating on the non-English test data. As
shown in Table 6, models trained on the full dataset
achieve substantially higher gains on non-English
queries. For example, the Qwen2.5-7B-Instruct
model fine-tuned on all languages improved tool
selection recall by 42.02%, which is 19.45% higher
than the gain achieved by the same model trained
only on English. Similarly, tool invocation F1 for
Qwen2.5-Coder-7B increased by 34.56% with full
multilingual training, outperforming the English-
only training gain by 9.22%. These results demon-
strate that limiting training to English significantly
restricts performance gains on non-English queries,
highlighting the importance of incorporating di-
verse language data to strengthen the multilingual
generalization capabilities of large language mod-
els.

6 Conclusion

In this paper, we address the urgent need for a di-
verse, globally representative dataset to advance
large language models’ tool calling capabilities.
We introduce the International Tool Calling (ITC)
dataset—a comprehensive resource designed to
train and evaluate LL.Ms across international and
multi-tool calling scenarios. Covering a broad
spectrum of API categories, including both global
and region-specific APIs, ITC effectively addresses
challenges such as long-tail API coverage and the
complexities of multi-tool interactions. Our experi-
ments highlight the dataset’s value in uncovering
critical performance issues in tool invocation, in-
cluding handling missing or incorrect parameters,
and demonstrate substantial improvements achiev-
able through fine-tuning. These results underscore
ITC’s potential to enhance LLMs’ proficiency with
international APIs and point toward promising av-
enues for future research.

Limitations

While our work presents significant advancements,
several limitations warrant further attention. First,
despite emphasizing geographical diversity, cer-
tain regions (e.g., Africa and parts of Asia) remain
underrepresented, potentially limiting the model’s
ability to grasp nuanced cultural or regulatory con-
texts. Second, the dataset focuses solely on REST
APIs, leaving other tool types (e.g., SOAP APIs
or database connectors) unaddressed, which may
constrain applicability in more heterogeneous tool
ecosystems. Third, reliance on free APIs intro-
duces potential instability due to service depreca-
tion or rate limits, making regular dataset updates
essential to maintain relevance and reproducibility.
Finally, more challenging datasets are needed to
further boost the tool calling capabilities of open-
source LLMs. Addressing these issues will be criti-
cal for future work aimed at building truly robust
and universal tool calling systems.

Acknowledgments

References

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,
Soham Dan, Maxwell Crouse, Asim Munawar, Sad-
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-
nipathi, and Luis A. Lastras. 2024. Api-blend: A
comprehensive corpora for training and benchmark-
ing api llms. Preprint, arXiv:2402.15491.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. Stabletoolbench: Towards stable
large-scale benchmarking on tool learning of large
language models. arXiv preprint arXiv:2403.07714.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Tenghao Huang, Dongwon Jung, and Muhao Chen.
2024. Planning and editing what you retrieve
for enhanced tool learning. arXiv preprint
arXiv:2404.00450.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie,
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou,
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan
Zhang. 2024a. Hammer: Robust function-calling
for on-device language models via function masking.
Preprint, arXiv:2410.04587.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. 2024b. Ham-
mer: Robust function-calling for on-device lan-
guage models via function masking. arXiv preprint
arXiv:2410.04587.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b.
Toolace: Winning the points of llm function calling.
Preprint, arXiv:2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024c.
Apigen: Automated pipeline for generating verifi-
able and diverse function-calling datasets. ArXiv,
abs/2406.18518.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 System Demonstrations, pages
25-30, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu,
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin
Cao, Aixin Sun, Hany Awadalla, et al. 2024. Scia-
gent: Tool-augmented language models for scientific
reasoning. arXiv preprint arXiv:2402.11451.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022.
Talm: Tool augmented language models. Preprint,
arXiv:2205.12255.

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2409.00920
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://arxiv.org/abs/2205.12255

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. Preprint,
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Simranjit Singh, Michael Fore, and Dimitrios Stamoulis.
2024. Evaluating tool-augmented agents in remote
sensing platforms. arXiv preprint arXiv:2405.00709.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023a.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. Preprint,
arXiv:2306.05301.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023b.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Chenyu Wang, Weixin Luo, Qianyu Chen, Haonan
Mai, Jindi Guo, Sixun Dong, Zhengxin Li, Lin Ma,
Shenghua Gao, et al. 2024. Tool-Imm: A large multi-
modal model for tool agent learning. arXiv preprint
arXiv:2401.10727.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools:
self-instruct tool learning dataset for agent tuning and
detailed benchmark. In CCF International Confer-
ence on Natural Language Processing and Chinese
Computing, pages 372-384. Springer.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

10

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine-
grained evaluation for tool learning capabilities of
large language models in real-world scenarios. arXiv
preprint arXiv:2401.00741.

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang,
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024b. Toolsword: Un-
veiling safety issues of large language models in
tool learning across three stages. arXiv preprint
arXiv:2402.10753.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang,
Tao Gui, and Xuanjing Huang. 2024c. Rotbench: a
multi-level benchmark for evaluating the robustness
of large language models in tool learning. arXiv
preprint arXiv:2401.08326.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301

A API Processing

A.1 API Format

API Format

{

"tool_name"”:"tool name",
"tool_description”:"tool description”,
"home_url”:"home url”,
"country”:"Countries involved in the tool”,
"api_list”:[
{
"name":"api name",
"url”:"api url”,
"description”:"api function description”,
"method"” : "POST/GET",
"required_parameters”: [
{

non

"name”:"parameter name”,
"type":"parameter type”,
"description”:"parameter description”,
"default"”:"Default value, empty if none”
}
1,
"optional_parameters”:[
{
"name”:"parameter name"”,
"type":"parameter type",
"description”:"parameter description”,
"default"”:"Default value, empty if none”
}
1,
"statuscode”:"statuscode"”

Figure 4: API Format.

A.2 API Error Response

API Error Response Demo

API Description

Endpoint Name: Get User Information
Method: GET

URL: /api/users/{id}

Request Example:

GET /apifusers/123 HTTR/1. 1
Host: api. sxanple. con
duthorization: Bearer token!23
Content-Type: application/json

Possible Error Responses:

e 400 - Bad Request

* 401 - Unauthorized

® 403 - Forbidden

® 404 - User Not Found

* 500 - Internal Server Error

‘Send API Request

Request Failed

Error Code: 500

Figure 5: API Error Response Demo.

11

A3

API Empty Response

APl Empty Response Demo

API

Description

Endpoint Name: Get User Settings

Method: GET

URL:

/api/settings

Request Example:

GET /apifsettings HTTE/1.1

Host

api. exanple. con

huthorization: Bearer token123
Content-Type: application/json

Expected Response:

{ "settings”: { "theme”: "dark”, “motifications”: true | |

Actual Response:

Detai

Request ID: req_dubf4

Respc

A4

age: Empty

s: API returr SON object

stamp: 2025-04-18T12:41:47.908Z

x2yd

onse Body: {}

Figure 6: API Empty Response Demo.

API Documentation Rewriting

API Documentation Rew:

You are a highly skilled data engineer specializing in API
analysis, able to accurately identify the functionality of
APIs and their various parameters, and excel at extracting
information from APIs.

You have the following API information:

{tool_info}

Your task:

Rewrite the API based on the provided format example. The
format example is as follows:

T json

{tool_example}

Note:

1. If any descriptions are missing or unclear, you need to fill
them in with simple and understandable information.

2. Parameter information must strictly follow the provided API
details, and you should not fabricate any false parameters.

3. The output should still be in JSON format with no extra
content.

your response:

AS

Figure 7: API Documentation Rewriting.

API Country Distribution

Figure 8 provides a comprehensive overview of the
geographical distribution of APIs in our dataset,
including both global and country-specific APIs
across more than 30 countries and regions.

Global
China
USA

2291

India
Vietnam
UK

Japan
Germany

28
25
2
Brazil 2
Indonesia
France 13
Australia 12
Canada 1
Nouvelle-
Calédonie
Korea 8

Pakistan 8
Egypt 7
Thailand 7
Saudi Arabia 7
Uganda 6
Argentina 6

10

Senegal
Morocco
Ghana
UAE

Kenya 4
Trinidad 4
and Tobago
Mexico 3

Netherlands
Philippines
Finland
Slovenia

Cameroon
Italy
Singapore
Malaysia
Spain

South Sudan
Sweden
Croatia
Russia

10° 10! 10? 10°

Figure 8: Distribution of tools by countries (Logarith-
mic Scale).

B Annotation Protocol and Details

All annotations in this study were performed by the
authors themselves.

B.1 Instructions

The authors followed a predefined set of evaluation
guidelines when rating the generated instructions.
Each item was scored along five dimensions: ac-
curacy, fluency, cultural adaptability, grammatical
correctness, and feasibility of execution. Each di-
mension was rated on a scale from 1 (poor) to
5 (excellent). The annotators discussed unclear
cases and followed the same rubric throughout the
evaluation process. The full text of the annotation
instructions is shown in Figure 14

B.2 Recruitment and Payment

No external annotators were recruited. All annota-
tion work was carried out by the authors as part of
the research effort. Therefore, no monetary com-
pensation was involved.

B.3 Annotator Characteristics

The annotators are the co-authors of this paper. All
are NLP researchers with prior experience in multi-
lingual evaluation and large language model devel-

12

opment. They are fluent in the relevant languages
used in the dataset. This ensured high-quality and
consistent annotation across multiple languages
and tasks.

C Detailed Formulate for Evaluation
Metrics

To control page layout, we use FM to represent For-
mat Matching Accuracy, LM for Language Match-
ing Accuracy, Tool for Tool Selection, and TI for
Tool Invocation.

amount correct language

LM = (D
amount 4
M — amount correct format Q)
amount 4y
Tool P — amount correct tools 3)
amOuntpredict tools
Tool R — aMOoUnt correct tools 4)
amountgold tools
2 - Tool P - Tool R
Tool F1 = 5
00 Tool P + Tool R ©)
TI P — aMOUNt coprect tools (6)
amountpredict tools
TI R — amount coprect tools (7
amOuntgold tools
2-TITP-TI R
TIFl =" 8
TIP+TIR ®

D Single Tool Calling Tasks Query
Generation Prompt

For single tool calling tasks, we utilize a prompt-
based approach to instruct the LLM to generate a
query. The prompt templates used for this process
are illustrated in Figures 9.

E Multiple tools Calling Tasks Query
Generation

For multiple tool calling tasks, we have classified
them into three categories: Repeated Calls, Parallel
Calls, and Nested Calls. Given that the require-
ments for each type of task differ, we have tailored
specific prompts to generate queries for each cat-
egory. The prompt templates for these tasks are
illustrated in Figures 10, 11, and 12.

Single Tool Calling Tasks Query Generation Prompt

Please strictly follow these guidelines:

diversity in your instructions.
2.
3.
4.
5.
or technology.

Generate 10 diverse instructions.

non

xxx","a xxx" or "a specific xxx".

structures that convey a request.

Here is the API information:
{api_list}

your response:

1. The instructions should be 1 to 2 sentences long. Use a mix of interrogative sentences,
first-person statements, imperative sentences, and other structures that convey a request. Aim for

Do not mention the API's name in your instructions.
Your instructions should only involve the features provided by these APIs.

Use specific nouns and real-world examples from various domains, such as entertainment, sports,

6. Please provide concrete details.Don't using any form of generic phrases, such as "this xxx", "the
7. Ensure diversity in language by combining questions with imperative statements and other

8. The instructions should be in the language of the country attribute in the provided API information.

9. The generated problem must strictly follow the API's parameter information.
10. If country is Global, please generate 10 instructions in English.

Please generate the question in the language of the specified country.

Figure 9: Query generation prompt for single tool calling tasks.

F Query Scoring
F.1 Scoring dimensions

To comprehensively assess the quality of instruc-
tions (queries or question-and-answer pairs), we
adopt the following five evaluation dimensions:

1. Relevance: Measures the alignment between
the instruction and the task objective. High-
scoring instructions accurately reflect the task
requirements, while irrelevant or off-topic in-
structions receive lower scores.

Practicality: Assesses the feasibility and exe-
cutability of the instruction in real-world sce-
narios. High scores indicate instructions that
can be directly implemented without signifi-
cant obstacles.

Linguistic Applicability: Evaluates the in-
struction’s adherence to grammatical norms
and consideration of cultural and linguistic
context. High-scoring instructions are well-
phrased, natural, and unambiguous.

Clarity: Judges whether the instruction is
clearly articulated, logically coherent, and
easy to understand. High scores indicate con-
cise, explicit, and actionable instructions.

. Specificity: Measures the level of detail and
focus in the instruction. High-scoring instruc-

13

tions clearly define the scope of operation,
reduce ambiguity, and facilitate precise tool
invocation.

Each dimension is scored on a scale from 1 to 5,
where 1 indicates very low quality and 5 indicates
very high quality. The detailed scoring criteria are
shown in Table 7

F.2 Example of scoring

Figure 13 illustrates an example of query scoring,
where, given a query and relevant API information,
we used both Anthropic’s Claude-3.5-sonnet model
and Google’s Gemini-1.5-pro model to evaluate the
query’s quality across five dimensions, with scores
ranging from 1 to 5 for each dimension. Figure 14
shows the prompt for LLMs to evaluate the query.

Dimension 1 (Very Low) 3 (Medium) 5 (Very High)
Relevance Completely irrelevant Partially relevant Highly aligned with the task
Practicality Hard to implement Feasible but with obstacles Directly applicable
Linguistic Applicability | Incorrect or awkward Basically fluent Standard, natural, idiomatic
Clarity Vague or confusing Understandable but ambiguous Clear and unambiguous
Specificity Overly broad or vague Some details present Detailed, focused, unambiguous

Table 7: Scoring guidelines for each evaluation dimension.

epe:

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different|
tasks.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.

5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "a
specific detail.” Multiple tool Parallel Cal!
6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.

7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below |

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.

5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "
specific detail.”

6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
\ for the respective tools.

7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.

Figure 10: Multiple tool repeated calls. 8. Ensure the content of each instruction strictly aligns with the

examples provided and closely follows the format of the examples below |

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly

following the Output format. @

your response:

Here are some examples for Multi-Tool Instructions:
{example_list}

G Data Examples

Here is the API information:
. . {api_data}
Figure 15 illustrates an example of the Google
. . Here is the Output format:
Translate API. Figure 16 provides an example of {Output_format)
a Single tool Calling task, while Figure 17 demon- Please select only one tool (from the provided API list) and strictly
. . . following the Output format.
strates a repeated multiple tools calling task. Fig-
ure 18 shows an example of a parallel multiple tools
calling task, and Figure 19 presents an example of

a nested multiple tools calling task. Figure 11: Multiple tool parallel calls.

your response:

14

Please strictly follow these guidelines:

1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.

2. For each instruction, select exactly 2 or 3 tools from the provided
API list to create a scenario where these tools are used in a logical
sequence. Ensure that the output of the previous tool can serve as the
input for the next tool, forming a nested call.

3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.

4. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information” or "
specific detail.”

5. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.

6. Generate 10 diverse instructions, each involving 2 or 3 tools
working together in a logical sequence and existence of nested calls.

a

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please strictly following the Output format.

your response:

Figure 12: Multiple tool nested calls.

15

BAR2023F1181R
WEFAES , REQ
EBRREEEHT.

Query

{"country": "China",
"api_name": "EAHEH
API",

“api_description”: “3REX
BERMNERER",
“required_parameters™:[],
"optional_parameters":[],
"method": "GET"}

Relative API Information

Score Result

/ Relevance: 5 points — The query is highly relevant to the API's functio@

specifically requesting the yellow calendar information for a particular date,
usually including suggestions for auspicious activities such as travel.
Clarity: 4 points — The query is clear, but the clarity could be slightly
improved by explicitly stating that the user is seeking advice on the
suitability of travel based on the yellow calendar.

Specificity: S points — The query clearly specifies a particular date

¢ (November 1, 2023) and requests travel-related information, making full use
W\ |)of the APT's capabilities.

Usability: 5 points — The request reflects a common real-world scenario, as
people often consult the yellow calendar for guidance on travel plans.
Linguistic Appropriateness: 5 points — The language used is appropriate for
the target audience, in Mandarin, and utilizes terminology familiar to users

seeking yellow calendar information.
Total Score: 5 points

/ Relevance: 5 — The query explicitly requests the yellow calendar inform@

for November 1, 2023, and asks whether it is suitable for travel, directly
aligning with the functionality of the yellow calendar query API.

Clarity: 5 — The query is expressed clearly, specifying the type of information
needed (yellow calendar data) and the specific requirement (suitability for
travel).

Specificity: 5 — The query specifies a concrete date (November 1, 2023) and a
clear request (whether it is suitable for travel), demonstrating high specificity.
Usability: 5 — The query reflects a common real-world scenario, where people
refer to the yellow calendar to decide whether to travel, showing strong
practical relevance.

Linguistic Appropriateness: 5 — The language used is simple and clear,
aligning with the query's purpose, and is suitable for the audience seeking

yellow calendar information.
Total Score: 5 points

Score Result

Figure 13: The query scoring process.

16

Evaluation Criteria:

Use a 1-5 scale to score the following five dimensions:

1. Relevance: How well the query matches the API's functionality.

2. Clarity: Whether the query is specific enough, avoiding ambiguous
terms like 'this xxx', 'the xxx', or 'a xxx', and ensuring the use of
the API's features.

3. Specificity: Whether the query is specific enough to utilize the
API's capabilities

4. Practicality: Whether the query reflects real-world usage scenarios|
5. Language Appropriateness: Whether the query's language is suitable
for target users

Scoring Standard:

1 point: Does not meet the standard

2 points: Partially meets the standard
3 points: Meets the basic standard

4 points: Meets the standard well

5 points: Fully meets the standard

Total Score Calculation:
Calculate the average of the five dimension scores, round to the
nearest integer, as the final total score (1-5 points).

Evaluation Steps:

1. Carefully read the API name and the generated query.

2. Score each dimension and provide a brief explanation.

3. Calculate the total score.

4. Provide an overall evaluation and suggestions for improvement.
5. If the total score is less than 3, mark it as "Needs Improvement”.

Output Format:
Scores:

1. Relevance: [Score] - [Explanation]

2. Clarity: [Score] - [Explanation]

3. Specificity: [Score] - [Explanation]

4. Practicality: [Score] - [Explanation]

5. Language Appropriateness: [Score] - [Explanation]
Total Score: [1-5 points]

Overall Evaluation:

[Brief summary of the query's strengths and weaknesses]
Improvement Suggestions:

[Provide specific suggestions for improvement if needed]
Conclusion: [If total score >= 4, then "Pass”; if total score < 4, then
"Needs Improvement”]

Please evaluate the following data's query

{datal'query']}

Your response:

Figure 14: Query scoring prompt.

17

API Example

{
"tool_name": "Google Translate”,
"tool_description”: "A tool for translating
text between different languages using
Google's translation services.”,
"home_url”: "https://rapidapi.com/
nickrapidapi/api/google_translate/",
"country"”: "Global”,
"api_list”: [
{
"name”: "translatel”,
"url”: "https://google_translate.p.rapidapi.
com/",
"description”: "This API endpoint allows users
to perform translations of text from
one language to another.”,
"method”: "GET",
"category”: "Utilities”,
"required_parameters”: [
{
"name”: "text",
"type": "string",
"description”: "The text content to be
translated”

"name”: "target_lang”,
"type": "string",
"description”: "The target language code
(e.g., 'en' for English, 'zh' for Chinese)"”
}
1,
"optional_parameters”: [],
"statuscode”: "200",
"schema”: {}}]
3

Figure 15: Example of google translate API.

Single Tool Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1='vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')I\"}",
"conversations”: [
{
"from": "user”,
"value"”: "Can you help me translate "Hello, how are you?" into French for my
upcoming trip to Paris?”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To assist the user with their request for
translation, I will utilize the Google Translate API, which is specifically
designed for translating text between languages. The user needs a translation
for a common greeting in French, which is straightforward.\",
\"Action\":\"[Google Translate(text="'Hello, how are you?',"target_lang”"="fr")]
\"}"31}

Figure 16: Single tool calling task example.

18

Repeated Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
Select the most appropriate tool(s) or API(s) to solve the task
Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1="'vall', param_2='val2'),
function_name2(param_1='vall', param_2='val2')J\"}",
"conversations”: [
{
"from": "user",
"value"”: "Can you verify the email address 'john.doe@example.com' using the
Express option? After that, check 'jane.smith@sample.com' with the Premium
option to see if it's valid.”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To verify the email addresses, I will use the
Global Email V4 API. First, I will check 'john.doe@example.com' with the Express
option, and then I will verify 'jane.smith@sample.com' using the Premium option.
\"Action\":\"[Global Email V4(opt="VerifyMailbox:Express”, email=
"john.doe@example.com”),Global Email V4(opt="VerifyMailbox:ExpressPremium”,
email="jane.smith@sample.com"”)]

\"}"31}

Figure 17: Repeated multiple tools calling task example.

19

Parallel Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1='vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')I\"}",
"conversations”: [
{
"from": "user”,
"value": "Can you check the latest exchange rates for USD and AUD against EUR,
and also give me a list of all available currencies?”
}’
{
"from": "assistant”,
"value"”: "json{\"Thought\":\"To fulfill the request, I need to retrieve the
latest exchange rates for USD and AUD against EUR, as well as a list of all
available currencies. This requires using two different API endpoints: one for
the latest exchange rates and another for the list of currencies.”,
\"Action\":\"[latest(from="EUR', to='USD,AUD'), currencies()]
\"}"31}

Figure 18: Parallel multiple tools calling task example.

20

Nested Multiple Tools Calling Task Example

{"system”: "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:
- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\"” section
Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_namel(param_1="'vall', param_2='val2'),
function_name2(param_1="'vall', param_2='val2')J\"}",
"conversations”: [

{

"from": "user”,

"value"”: "Can you generate a secure password with numbers and then hash that
password using the MD5 algorithm?”

},

{

"from": "assistant”,

"value": "json{\"Thought\":\"To generate a secure password with numbers, I will
use the 'Generate password' API with the appropriate parameters. After
generating the password, I will hash it using the 'MD5 Text Hash' API.”,
\"Action\":\"[Generate password(numbers=true,pwCount=1,length=12),MD5 Text
Hash(dataString="'generated_password')]

\"y

}’

{

"role”: "Tool”,

"content”: {\"code\": 200,\"msg\": \"Password generated successfully.\",
\"data\": {\"password\": \"A1b2C3d4E5f6\" 33

}!

{

"from": "assistant”,

"value”: "json{\"Thought\":\"I have generated the password 'A1b2C3d4E5f6'
successfully. Now, I will hash this password using the MD5 algorithm.”,
\"Action\":\"[MD5 Text Hash(dataString='A1b2C3d4E5f6"')]

\"y

}

13

Figure 19: Nested multiple tools calling task example.

21

	Introduction
	Related Work
	Dataset Curation
	API Collection and Construction
	Query Generation
	Query Scoring and Filtering
	Question-and-Answer Pair Generation

	Data Statistics
	Statistics on APIs
	Statistics on Tasks

	Experiments and Results
	Implementation Details
	Evaluation Metrics
	Zero-Shot Evaluation of Tool Calling Capabilities
	Fine-tuned Evaluation of Tool Calling Capabilities
	Ablation Study on Language Impact

	Conclusion
	API Processing
	API Format
	API Error Response
	API Empty Response
	API Documentation Rewriting
	API Country Distribution

	Annotation Protocol and Details
	Instructions
	Recruitment and Payment
	Annotator Characteristics

	Detailed Formulate for Evaluation Metrics
	Single Tool Calling Tasks Query Generation Prompt
	Multiple tools Calling Tasks Query Generation
	Query Scoring
	Scoring dimensions
	Example of scoring

	Data Examples

