
Enhancing Tool Calling in LLMs with the International Tool Calling (ITC)
Dataset

Anonymous ACL submission

Abstract001

Tool calling allows large language models002
(LLMs) to interact with external systems003
like APIs, enabling applications in customer004
support, data analysis, and dynamic content005
generation. Despite recent advances, chal-006
lenges persist due to limited datasets with007
simulated or inaccessible APIs and insufficient008
geographic diversity. To address this, we009
present the International Tool Calling (ITC)010
dataset, designed for real-world, international011
tool calling scenarios. ITC includes 3,571012
real APIs and 17,540 tool calling tasks013
across 20 categories and 40 countries. The014
dataset was constructed through a four-stage015
pipeline: API collection and construction,016
query generation, query scoring and filtering,017
and question–answer pair generation. Exper-018
iments reveal substantial performance gaps019
between open- and closed-source LLMs, while020
fine-tuning on ITC significantly improves021
generalization. ITC offers a valuable resource022
for advancing LLM capabilities in complex,023
multi-tool, and international contexts. Dataset:024
https://anonymous.4open.science/r/International-025
tool-calling-ITC-dataset-5FD7/.026

1 Introduction027

Tool calling empowers large language models028

(LLMs) to interact with external systems—such029

as databases, APIs, and software tools—extending030

their capabilities beyond text generation (Schick031

et al., 2023). By invoking tools, LLMs can access032

real-time data, perform complex computations, and033

execute actions beyond their training data (Nakano034

et al., 2021). This functionality is essential for tasks035

such as automated customer support, data analysis,036

and dynamic content generation, where external re-037

source integration enhances both performance and038

utility. As surveyed in (Mialon et al., 2023), tool039

calling enables more sophisticated, context-aware040

interactions, making LLMs valuable across diverse041

domains.042

Recent advances have led to the development 043

of several datasets and benchmarks to improve 044

tool-use capabilities in LLMs. Notable examples 045

include API-BLEND (Basu et al., 2024), API- 046

Gen (Liu et al., 2024c), and ToolACE (Liu et al., 047

2024b), which focus on API-based function call- 048

ing across a variety of use cases. Others, such 049

as Gorilla (Patil et al., 2023) and ToolLLM (Qin 050

et al., 2023), address real-world tool invocation, 051

reducing hallucinations and improving accuracy. 052

More complex datasets like Seal-Tools (Wu et al., 053

2024), PLUTO (Huang et al., 2024), and SciTool- 054

Bench (Ma et al., 2024) explore multi-step rea- 055

soning and domain-specific tool use. Collectively, 056

these benchmarks have advanced the development 057

of LLMs capable of interacting with external tools 058

effectively. 059

However, key challenges remain. Many exist- 060

ing datasets rely on simulated APIs, lacking the 061

complexity and variability of real-world tool usage 062

(e.g., Seal-Tools (Wu et al., 2024)). Others use pro- 063

prietary or inaccessible APIs, as in ToolLLM (Qin 064

et al., 2023), limiting reproducibility and real-world 065

deployment. Accessibility is further hindered by 066

datasets that are not publicly available. Moreover, 067

most existing benchmarks are US-centric, mak- 068

ing them unsuitable for region-specific tasks in 069

a global context. For example, while APIs like 070

Yahoo_Weather can retrieve data for major cities 071

like Shenzhen, they often fail to provide detailed, 072

district-level information (e.g., Nanshan), under- 073

scoring the need for broader geographic coverage 074

and finer granularity. 075

To address these limitations, we introduce the 076

International Tool Calling (ITC) dataset, designed 077

for real-world, globally distributed tool calling sce- 078

narios. ITC is constructed through a four-stage 079

pipeline: (1) API Collection and Construction, 080

(2) Query Generation, (3) Query Scoring and 081

Filtering, and (4) QA Pair Generation. The fi- 082

nal dataset comprises 3,571 real-world APIs and 083

1

https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/
https://anonymous.4open.science/r/International-tool-calling-ITC-dataset-5FD7/

17,540 tool calling tasks—15,790 for training and084

1,750 for testing—covering 20 categories across 40085

countries. It includes 64.2% global APIs, which086

provide cross-country and multilingual support, as087

well as region-specific APIs, primarily from the088

US and China, along with long-tail APIs from over089

27 additional countries. The dataset consists of090

14,295 single-tool and 3,245 multi-tool tasks, with091

a deliberate focus on supporting underrepresented092

APIs, thereby enhancing its utility for diverse and093

internationally relevant tool calling applications.094

We benchmarked 16 open-source and 8 closed-095

source LLMs on the ITC test set. Results revealed096

substantial performance gaps across multiple met-097

rics, highlighting strengths and weaknesses in tool098

usage—especially in handling non-existent tools,099

missing parameters, and incorrect parameter gen-100

eration. Furthermore, we fine-tuned several open-101

source LLMs (not previously trained on tool calling102

datasets) using ITC. These models exhibited sig-103

nificant performance improvements, demonstrating104

that ITC effectively enhances generalization and ro-105

bustness in complex, real-world tool calling tasks.106

Dataset # Tools Source Access. # Tasks Ex. P.L.
API-BLEND 199 Sim. × 189,040 × Eng.
APIGen 3,673 Real × 60,000

√
Eng.

Gorilla 1,645 Real
√

16,450
√

Eng.
Seal-Tools 4,076 Sim.

√
14,076 × Eng.

ToolACE 26,507 Sim. × 11,300 × Eng.
ToolBench 16,464 Real

√
126,486

√
Eng.

RoTBench 568 ToolEyes × 105
√

Eng.
MLLM-Tool 932 Real × 11,642

√
Eng.

PLUTO 2,032 Sim. × 5,824 × Eng.
SciToolBench 2,446 Sim. × 856 × Eng.
GeoLLM-QA 117 Real × 1,000 × Eng.
INJECAGENT 17 Sim.

√
1,054

√
Eng.

StableToolBench 16,464 ToolBench
√

126,486
√

Eng.
ToolEyes 568 Sim.

√
382

√
Eng.

ToolSword 100 Sim. × 440
√

Eng.
Hammer - APIGen × 67,500 × Eng
ours 3,573 Real

√
17,540

√
Multi

Table 1: Summary of existing tool calling datasets. Ac-
cess.: Public accessibility; Ex.: Executability of the
APIs; P.L.: Primary language; Eng.: English; Sim.:
Simulated APIs.

2 Related Work107

Existing benchmarks designed to enhance the tool-108

invocation capabilities of large language mod-109

els (LLMs) span a wide range of tasks, includ-110

ing API-based interactions, multi-modal tool us-111

age, and robustness evaluations. Datasets such112

as API-BLEND (Basu et al., 2024), APIGen (Liu113

et al., 2024c), and ToolACE (Liu et al., 2024b)114

focus on API-based function calling, providing115

diverse APIs for training and evaluation. While 116

APIGen and ToolACE contain thousands of exe- 117

cutable APIs, API-BLEND primarily supports se- 118

mantic parsing and slot-filling tasks. Gorilla (Patil 119

et al., 2023) and ToolLLM (Qin et al., 2023) en- 120

hance LLM capabilities in real-world API inter- 121

actions, aiming to improve accuracy and reduce 122

hallucinations. Meanwhile, Seal-Tools (Wu et al., 123

2024), PLUTO (Huang et al., 2024), and SciTool- 124

Bench (Ma et al., 2024) introduce more complex 125

tool-use scenarios, including multi-step reasoning 126

and domain-specific applications. Other bench- 127

marks, such as RoTBench (Ye et al., 2024c) and 128

StableToolBench (Guo et al., 2024), assess LLM 129

robustness and stability, while ToolEyes (Ye et al., 130

2024a) and ToolSword (Ye et al., 2024b) focus 131

on cognitive abilities and safety in tool use. Ad- 132

ditionally, multi-modal frameworks like MLLM- 133

Tool (Wang et al., 2024) extend tool learning to 134

non-text modalities, supporting interactions with 135

images, text, and audio. 136

Table 1 provides an overview of representative 137

tool calling datasets and frameworks. Despite no- 138

table progress, existing resources exhibit several 139

critical limitations. Many rely on simulated APIs, 140

which do not reflect the complexity and variability 141

of real-world interactions. Datasets that incorpo- 142

rate real APIs often use proprietary or inaccessible 143

endpoints, restricting their practical utility. More- 144

over, over half of the benchmarks are not publicly 145

available, and even those that are—such as Tool- 146

Bench—frequently include non-functional or out- 147

dated APIs. Finally, most datasets are heavily US- 148

centric, limiting their relevance for tasks requiring 149

region-specific information in a global context. 150

3 Dataset Curation 151

API Collection and Construction

Public
APIs

Query Generation

Query Scoring and Filtering QA Pair Generation

Query
repository

Scoring
model

High-quality
queries

API
repository

Query Diverse Task
Prompt

Checker High-quality
QA

QA Data

Scoring
criteria

RESTfulAPI

Toolname: ……
Description : ……
Home_url: ………
Country: ……
Api_list:[
{name: ……,
Required_Parameters:..,
}]

Normalized
documentation

Standardized API
Documentation

Figure 1: Dataset construction flowchart.

We construct our dataset using a four-stage 152

pipeline designed for scalability and minimal hu- 153

man intervention. In Stage 1: API Collection 154

and Construction, automated tools extract API 155

2

documentation. In Stage 2: Query Generation,156

GPT-4o generates detailed API instructions. Stage157

3: Query Scoring and Filtering leverages Claude-158

3.5-Sonnet and Gemini-1.5-Pro to refine queries159

for clarity, relevance, and executability. Finally, in160

Stage 4: QA Pair Generation, GPT-4o produces161

high-quality question–answer pairs. This pipeline162

supports easy expansion to new APIs, as illustrated163

in Figure 1.164

3.1 API Collection and Construction165

API Collection: ToolBench (Qin et al., 2023) is166

a widely used benchmark for tool invocation, pri-167

marily sourcing APIs from RapidAPI. However, its168

coverage is largely US-centric, with limited rep-169

resentation from other regions. Many of the in-170

cluded APIs also require paid subscriptions, which171

restricts accessibility.172

To overcome these limitations, we collected173

49,937 real REST APIs across diverse domains174

such as social media, e-commerce, and weather.175

In addition to RapidAPI Hub1, we sourced APIs176

from international platforms including Juhe API2177

and XiaRou API3 in China, as well as community-178

maintained repositories on GitHub like free-api4179

and public-apis5. These efforts aim to create a180

globally diverse and publicly accessible API re-181

source. The collected APIs are organized into 20182

functional categories, including Entertainment, Fi-183

nance, and Education.184

API Supplementation: Our collected APIs vary185

widely in documentation quality, with many miss-186

ing parameter details, examples, or using inconsis-187

tent formats. To ensure reliable parsing by large188

language models, we apply a structured supple-189

mentation pipeline that standardizes all APIs into190

a uniform schema—including name, description,191

endpoint, HTTP method, authentication, input pa-192

rameters (with types and constraints), and output193

format (see Figure 4 in Appendix A).194

For incomplete or unclear documentation, we195

leverage GPT-4o with tailored prompts to auto-196

complete and refine API specs based on avail-197

able metadata like endpoint names or sample in-198

puts/outputs (example prompt in Figure 7). We199

then validate these by executing sample calls, cor-200

recting any inconsistencies or hallucinations man-201

1https://rapidapi.com/
2https://www.juhe.cn/
3https://api.aa1.cn/
4https://github.com/fangzesheng/free-api
5https://github.com/public-apis/public-apis

ually. APIs with irreparable documentation issues 202

are discarded. 203

This process yields comprehensive, consistent 204

API specifications that improve clarity and usabil- 205

ity for both LLMs and developers (example in Fig- 206

ure 15, Appendix G). 207

API Filtering: The initial collection of 49,937 free 208

APIs included a substantial number of redundant 209

or low-quality entries. Many offered overlapping 210

functionalities (e.g., weather forecasting, currency 211

conversion), while others suffered from instability, 212

outdated services, insufficient documentation, or 213

inaccurate outputs. 214

To ensure the quality and reliability of our 215

dataset, we implemented a two-stage filtering 216

pipeline: 217

Stage 1: Basic Functionality Screening We 218

developed automated scripts to issue predefined 219

queries to each API and evaluated the responses. 220

APIs were excluded if they: (1) failed to respond 221

within a 10-second timeout, (2) returned HTTP er- 222

ror codes (e.g., 404, 500), (3) consistently produced 223

empty or null responses, or (4) returned malformed 224

or non-JSON outputs. 225

This initial screening eliminated the majority of 226

non-functional or poorly maintained APIs, reduc- 227

ing the pool from 49,937 to 5,410. Representative 228

failure cases are shown in Figures 5 and 6 in Ap- 229

pendix A. 230

Stage 2: Quality-Oriented Filtering The re- 231

maining 5,410 APIs were further evaluated for 232

stability, update frequency, and response informa- 233

tiveness through a combination of automated tests 234

and manual review. Stability was assessed by in- 235

voking each API 3–5 times over a 48-hour period; 236

APIs exhibiting intermittent failures, highly vari- 237

able latency (e.g., from 300 ms to over 5 seconds), 238

or inconsistent response formats (such as chang- 239

ing data types or fields) were discarded. Update 240

frequency was examined using version histories, 241

metadata (e.g., last update timestamps), and ex- 242

ternal sources like changelogs and issue trackers. 243

APIs with no updates for over 12 months or bro- 244

ken links were removed. Response informativeness 245

was measured by submitting task-specific queries 246

and evaluating the semantic richness of the outputs; 247

APIs that returned minimal, placeholder, or heavily 248

post-processed responses were excluded. 249

This filtering process eliminated 1,839 additional 250

APIs, resulting in a curated set of 3,571 high- 251

quality APIs—only 7.1% of the original 49,937. 252

3

https://rapidapi.com/
https://www.juhe.cn/
https://api.aa1.cn/
https://github.com/fangzesheng/free-api
https://github.com/public-apis/public-apis

These APIs are stable, actively maintained, and pro-253

vide meaningful outputs, forming a reliable foun-254

dation for generating tool-use instructions.255

3.2 Query Generation256

To address the often-overlooked challenges of lan-257

guage and region specificity in tool calling, we258

design tasks focused on retrieving localized infor-259

mation through region-specific APIs. For instance,260

imagine a Japanese tourist planning a trip to Li-261

jiang, China. They may require detailed weather262

updates and travel recommendations from both263

Japanese and Chinese APIs, with content presented264

in Japanese and Chinese, respectively. This sce-265

nario highlights the importance of enabling LLMs266

to perform cross-lingual reasoning and interact ef-267

fectively with APIs across different linguistic and268

geographic contexts.269

Based on the above principles, we curated 36270

seed examples across a range of scenarios. For271

each, we selected one or more APIs and generated272

three sample queries using the following strategies273

to ensure quality and diversity:274

1. Biased Sampling Correction: Our API col-275

lection follows a long-tail distribution, with276

countries like China and the U.S. contributing277

disproportionately more APIs. To ensure geo-278

graphic diversity, we over-sample APIs from279

underrepresented countries, reducing bias and280

enhancing cross-regional representation.281

2. Tool Confusion Strategy: To increase task282

complexity and test model robustness, we in-283

clude similar APIs within the same functional284

category or across countries. Queries are de-285

signed to be intentionally ambiguous, forcing286

the model to distinguish between APIs with287

overlapping capabilities—thus evaluating its288

ability to resolve fine-grained distinctions.289

We used GPT-4o to generate queries based on290

these examples, producing diverse outputs format-291

ted in JSON. Each entry includes a “Thought”292

field capturing the model’s reasoning process in293

the same language as the query, and an “Action”294

field specifying the corresponding API calls.295

tool calling tasks can be broadly categorized into296

two types: Single Tool Calling Tasks, which in-297

volve invoking a single API to complete a task,298

and Multiple Tools Calling Tasks, which require299

coordinating multiple API calls, potentially across300

different domains or countries. Multiple Tools Call- 301

ing Tasks can be further classified into three sub- 302

types. In Repeated Tool Calling, the same API is 303

invoked multiple times with different parameters 304

to complete a multi-stage objective. Parallel Tool 305

Calling involves invoking two or more APIs simul- 306

taneously to address different components of the 307

task. In contrast, Nested Tool Calling requires a 308

step-by-step process where the output of one API 309

serves as the input for the next, forming a sequen- 310

tial chain of reasoning. 311

3.3 Query Scoring and Filtering 312

In the last step, we obtained 44,198 queries. How- 313

ever, many of these queries presented issues such 314

as unclear requirements, insufficient relevance to 315

the tools, non-standard language, and failure to 316

appropriately adhere to cultural context. 317

Our query selection method consists of two main 318

steps: Query Scoring and Query Selection. In 319

the Query Scoring step, we addressed the limi- 320

tations of existing datasets, which often lack fine- 321

grained evaluation standards for assessing the qual- 322

ity of generated queries or question-and-answer 323

pairs. Rather than relying on coarse metrics, 324

we introduce five comprehensive scoring dimen- 325

sions—Relevance, Practicality, Linguistic Appli- 326

cability, Clarity, and Specificity (see Appendix F.1 327

for details) to ensure a thorough evaluation of in- 328

structions from multiple perspectives. To miti- 329

gate potential model bias, as highlighted in recent 330

work (Zheng et al., 2023), we employ two indepen- 331

dent scoring standards: Anthropic’s Claude-3.5- 332

sonnet and Google’s Gemini-1.5-pro. Both models 333

assign scores from 1 (very low quality) to 5 (highest 334

quality). Filtering and optimization are performed 335

based on the aggregated scores from both models. 336

During the Query Filtering step, we apply rig- 337

orous filtering criteria to retain only the highest- 338

quality queries. Specifically, only instructions that 339

receive a score higher than 4 from both the Claude 340

and Gemini models are considered high-quality. 341

This effectively excludes lower-scoring instructions 342

that may contain irrelevant or poorly structured con- 343

tent. Through this stringent filtering process, we 344

ensure that the retained queries meet high standards 345

of relevance, practicality, clarity, specificity, and 346

linguistic applicability, ultimately enhancing the re- 347

liability and usability of the dataset for downstream 348

tasks. 349

Following scoring and filtering, the dataset was 350

refined to a final set of 17,540 high-quality queries. 351

4

3.4 Question-and-Answer Pair Generation352

The last step is to use GPT-4o model to generate353

answer for each query, along with relevant API in-354

formation into the GPT-4o model. The model then355

generates the corresponding thought process and356

identifies the appropriate APIs to be called. This357

process requires careful handling of the model’s358

reasoning to ensure that both the generated answers359

and the API calls are contextually appropriate. Fur-360

thermore, ensuring the coherence and accuracy of361

the answers across multiple languages adds an ad-362

ditional layer of complexity, as it demands that the363

model appropriately handles language-specific fea-364

tures while maintaining high-quality outputs for365

a diverse set of use cases. For single-tool tasks,366

the complexity is relatively low, so we directly use367

prompt templates to generate question-and-answer368

pairs. However, for multiple tools calling tasks,369

in addition to using prompt templates, we employ370

another large language model as a Checker that371

has visibility into the entire generation process.372

This Checker validates the generated question-and-373

answer pairs, thereby enhancing their accuracy.374

4 Data Statistics375

Our International Tool Calling (ITC) dataset com-376

prises 3,571 APIs and a total of 17,540 question-377

and-answer pairs, including 15,790 for training and378

1,750 for testing. In the following sections, we379

detail the composition of the dataset from two per-380

spectives: APIs and Tasks.381

4.1 Statistics on APIs382

Commerce：181 5.07%

Communication：348 9.75%

Data：462 12.94%

Education：209 5.85%

Entertainment：292 8.18%

Environment：93 2.60%
14.25% 509Finance：

4.42% 158Gaming：

4.17% 149Image：

2.02% 72Life：

9.33% 333Location：
0.84% 30Math：
4.37% 156Media：
2.69% 96Music：
3.58% 128Other：

1.37% 49Science：
0.84% 30Sports：

4.31% 154Technology：
0.22% 8Travel：

3.19% 114Utilities：

Commerce Communication Data Education Entertainment Environment Finance Gaming Image Life

Location Math Media Music Other Science Sports Technology Travel Utilities

Figure 2: Distribution of APIs by Category in the ITC
Dataset.

Figure 2 illustrates the distribution of APIs383

across 20 Category in the ITC Dataset. The384

largest categories are Finance (14.25%), Data385

(12.9%), Communication (9.75%), and Entertain-386

ment (8.18%). Conversely, the smallest categories387

include Travel (0.22%), Math (0.84%), and Sports 388

(0.84%). 389

Our dataset demonstrates notable geographical 390

diversity, encompassing APIs from over 30 coun- 391

tries and regions. We classify these APIs into two 392

categories: global APIs, which provide information 393

across multiple countries and languages, such as 394

machine translation and weather forecasting. These 395

APIs are predominantly from the USA. The second 396

category is country-specific APIs, which offer in- 397

formation tailored to a particular country and its 398

language, such as local weather updates and news. 399

Global APIs account for 2,291 samples (64.2%). 400

China and the United States contribute the majority 401

of country-specific APIs. Additionally, long-tail 402

APIs, originating from over 27 other countries and 403

regions, contribute 11.31% of the dataset. A de- 404

tailed breakdown of the country distribution can be 405

found in Figure 8 in Appendix A.5 406

4.2 Statistics on Tasks 407

Figure 3: Language distribution of all tasks (Logarith-
mic Scale).

Our dataset consists of 17,540 tasks, including 408

14,295 single-tool calling tasks and 3,245 multiple 409

tools calling tasks. The language distribution of 410

all tasks is shown in Figure 3. For single-tool call- 411

ing tasks, we ensure coverage across all countries 412

and categories from which the APIs are sourced. 413

While a significant portion of the APIs are from the 414

USA (including global APIs), resulting in a higher 415

volume of English-language queries, we have inten- 416

tionally generated more tasks for long-tail APIs to 417

mitigate the long-tail problem. As a result, global 418

5

APIs comprise 56.27% of the taks, while long-tail419

APIs account for 13.57%. In the case of multiple420

tools calling tasks, each task typically requires the421

LLM to invoke between 2 and 5 tools to success-422

fully complete the task.423

5 Experiments and Results424

5.1 Implementation Details425

We used both open-source and closed-source LLMs426

in our experiments. Open-source models, which427

are freely accessible for research and development,428

include those with relatively strong general capa-429

bilities (such as Qwen2.5 (Yang et al., 2024) and430

Deepseek-V3 (Liu et al., 2024a)), as well as models431

dedicated to tool calling (such as Hammer2 (Lin432

et al., 2024b) and Watt-tool-8B). In contrast, closed-433

source models comprise advanced systems such as434

GPT-4o and Claude-3.5-Sonnet.435

We applied the default parameters for the open-436

source LLMs during testing on our dataset. To437

fine-tune the models, we used LoRA (Hu et al.,438

2021), training them for 3 epochs with a batch size439

of 1 per device, 8 gradient accumulation steps, and440

a learning rate of 1.0e-4. A cosine learning rate441

scheduler with a warmup ratio of 0.1 was used for442

the training configuration.443

5.2 Evaluation Metrics444

In this paper, we employ four evaluation met-445

rics to comprehensively assess model performance.446

The first three—drawn from Seal-Tools (Wu et al.,447

2024)—are as follows: (1) Tool Selection (P/R/F1)448

evaluates the model’s ability to accurately identify449

the appropriate tools from a set of candidates, mea-450

suring tool localization accuracy via precision, re-451

call, and F1-score; (2) Tool Invocation (P/R/F1)452

assesses the model’s capability to generate correct453

and complete invocation parameters, using triple-454

level matching to compute precision, recall, and F1;455

(3) Format Matching Accuracy (FM) measures456

whether the model’s output adheres to the required457

JSON schema, a critical prerequisite for successful458

downstream execution.459

However, these metrics overlook a key re-460

quirement in multilingual real-world applications:461

the ability of large language models to main-462

tain linguistic consistency throughout tool call-463

ing interactions. To address this, we introduce464

a new metric—Language Matching Accuracy465

(LM)—which quantifies the proportion of cases466

where the model’s internal reasoning (thought field)467

is expressed in the same language as the user’s 468

query. Language identification is performed using 469

the langid library. Detailed computation methods 470

for all four metric are provided in Appendix C. 471

Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1

Qwen2.5-7B-Instruct 90.51 96.65 54.08 53.06 53.18 42.76 43.37 42.71
Qwen2.5-Coder-7B 94.93 98.38 69.76 66.01 67.23 54.17 54.11 53.75
Qwen2.5-3B-Instruct 87.40 93.00 49.34 45.84 47.52 40.90 41.77 41.33
Qwen2.5-Coder-3B 84.26 89.25 48.92 49.01 48.76 38.49 38.83 38.43
watt-tool-8B 74.48 5.53 88.90 88.03 88.30 76.33 73.46 74.31
ToolACE-8B 81.31 4.56 70.30 69.82 69.93 59.39 56.22 57.17
Hammer2.1-7b 86.82 20.71 64.64 64.68 64.44 33.14 32.68 32.75
Hammer2.0-7b 78.21 95.42 61.22 57.48 58.68 45.00 45.25 44.85
Functionary-v3.1 76.75 54.15 40.63 37.15 38.30 35.25 35.64 35.02
Yi-1.5-9B-Chat-16K 82.37 91.9 45.28 45.71 45.32 35.67 35.66 35.33
glm-4-9b-chat 76.00 97.55 43.45 41.44 42.09 32.77 32.85 32.57
Phi-4 96.73 96.29 80.90 82.68 81.49 70.15 70.25 69.84
Qwen2.5-Coder-32B 91.05 99.14 84.82 81.44 82.54 71.13 71.04 70.69
Qwen2.5-72B-Instruct 89.47 98.16 52.78 51.44 51.83 43.11 43.35 42.89
Deepseek-V3 86.09 99.89 83.10 83.73 83.28 75.94 75.77 75.49
Deepseek-R1 77.05 100 86.89 85.25 85.79 73.47 73.15 72.79

o1-mini 95.89 93.68 64.41 66.61 64.72 60.58 62.53 61.06
o3-mini 86.19 71.37 61.06 61.13 60.93 54.01 53.56 53.54
GPT4o-mini 96.24 99.83 76.47 75.21 75.55 71.69 70.38 70.71
GPT4o 97.95 99.83 88.95 89.48 89.01 82.18 81.57 81.57
GLM-Zero 88.37 98.45 51.24 50.31 50.51 42.64 43.64 42.78
gemini-2.0-flash 95.04 99.77 77.25 77.76 77.32 69.08 68.14 68.18
gemini-2.0-pro 96.17 94.13 84.57 83.50 83.86 73.22 71.65 71.95
Claude-3.5-sonnet 94.75 97.06 82.08 81.00 81.19 72.05 72.29 71.77

Table 2: Zero-shot evaluation results on ITC testing
data (%). The best results are highlighted in bold.

5.3 Zero-Shot Evaluation of Tool Calling 472

Capabilities 473

We begin by evaluating the zero-shot performance 474

of large language models (LLMs) on our ITC test- 475

ing dataset, aiming to assess their intrinsic tool call- 476

ing capabilities without task-specific fine-tuning. 477

Overall performance: Table 2 presents a com- 478

prehensive comparison of both open-source and 479

closed-source LLMs. As expected, closed-source 480

models generally outperform open models across 481

all evaluation dimensions. However, several open- 482

source models still demonstrate strong performance 483

on specific sub-tasks. 484

Linguistic and structural accuracy: In terms of 485

LM, which evaluates the consistency and fluency 486

of generated instructions, scores range from 74% to 487

97.95%. Open-source models such as Qwen2.5-7B- 488

Instruct achieve high linguistic fidelity (90.51%), 489

while closed models like GPT-4o reach the up- 490

per limit (97.95%). For FM—which measures 491

adherence to the required output structure (e.g., 492

JSON)—nearly all closed-source models (except 493

o3-mini) and over two-thirds of open-source mod- 494

els achieve scores above 90%. Notably, Deepseek- 495

R1 (100%) and Qwen2.5-Coder-32B (99.14%) ex- 496

hibit excellent structural compliance, whereas mod- 497

els like watt-tool-8B and ToolACE-8B often pro- 498

duce malformed outputs. 499

6

Functional competence in tool calling: For Tool500

Selection, closed-source models such as GPT-4o501

exhibit superior performance, achieving high preci-502

sion, recall, and F1 scores—demonstrating a strong503

understanding of task-to-tool alignment. Among504

open-source models, watt-tool-8B performs com-505

paratively well, while others like Functionary-v3.1506

frequently fail to identify appropriate tools, indicat-507

ing weaknesses in tool relevance comprehension.508

In terms of Tool Invocation, GPT-4o and watt-tool-509

8B again lead with high scores, reflecting robust510

capabilities in generating accurate invocation pa-511

rameters and producing well-structured outputs. In512

contrast, models like Hammer2.1-7B struggle sig-513

nificantly, often generating malformed invocations514

or incorrect arguments, highlighting deficiencies in515

parameter composition and structural formatting.516

Discrepancy analysis: The performance gap be-517

tween Tool Selection and Tool Invocation provides518

insight into a model’s holistic understanding of tool-519

use tasks. GPT-4o demonstrates high consistency520

across both stages, indicating mature reasoning521

and generation abilities. Conversely, models with522

a wider performance gap—such as Hammer2.1-523

7B—typically exhibit difficulties in translating tool524

choice into correct parameterization and invoca-525

tion syntax. This divergence serves as a critical526

diagnostic signal for tool-augmented applications,527

reflecting weaknesses in planning, schema ground-528

ing, or structured generation.529

Error analysis: Table 3 summarizes tool selection530

and invocation errors across models. Most models531

struggle with missing required tools and hallucinat-532

ing non-existent ones. For example, gemini-2.0-533

pro avoids hallucination entirely (0%) but misses534

many tools (85.64%), while GPT4o achieves a535

more balanced performance. In invocation, incor-536

rect and missing parameters are common issues,537

with Hammer2.1-7b showing high error rates. Mod-538

els like GPT4o-mini and ToolACE-8B demonstrate539

more consistent performance across error types,540

suggesting better robustness in tool calling.541

5.4 Fine-tuned Evaluation of Tool Calling542

Capabilities543

In this experiment, we fine-tuned four models544

from the Qwen 2.5 family—Qwen2.5-7B-Instruct,545

Qwen2.5-Coder-7B, Qwen2.5-3B-Instruct, and546

Qwen2.5-Coder-3B—on our ITC training dataset547

to evaluate the impact of fine-tuning on the tool548

calling capabilities of open-source LLMs.549

Testing results on the ITC test set: Table 4 demon-550

Model Name Tool Selection Tool Invocation

Hall. Mis. Ex. Incor. Miss. Ext.

Qwen2.5-7B-Instruct 21.57 73.23 5.20 51.53 19.73 28.74
Qwen2.5-Coder-7B 4.25 86.65 9.10 51.01 20.59 28.39
Qwen2.5-3B-Instruct 8.74 75.79 15.47 42.14 16.42 41.45
Qwen2.5-Coder-3B 38.48 51.51 10.00 37.36 23.02 39.62
watt-tool-8B 25.51 67.74 6.74 45.54 40.61 13.85
ToolACE-8B 4.12 88.75 7.13 42.03 48.63 9.34
Hammer2.1-7b 0.70 91.56 7.74 17.18 64.26 18.56
Hammer2.0-7b 2.35 89.16 8.49 57.80 23.92 18.28
Functionary-v3.1 20.92 76.97 2.11 37.70 28.80 33.51
Yi-1.5-9B-Chat-16K 37.35 55.78 6.86 38.90 18.66 42.44
glm-4-9b-chat 0.98 93.90 5.12 27.88 54.78 17.34
Phi-4 11.29 69.18 19.53 44.75 29.11 26.14
Qwen2.5-Coder-32B 8.09 66.31 25.61 46.43 27.80 25.78
Qwen2.5-72B-Instruct 43.64 51.95 4.41 46.65 22.79 30.56
Deepseek-V3 0.43 80.21 19.36 57.65 24.38 17.97
Deepseek-R1 8.33 83.33 8.33 41.67 29.17 29.17

o1-mini 35.5 61.68 2.82 54.5 28.5 17.0
o3-mini 34.8 62.33 2.87 53.89 29.64 16.47
GPT4o-mini 19.71 76.26 4.03 48.76 39.94 11.29
GPT4o 47.16 49.72 3.12 53.67 21.22 25.10
GLM-Zero 37.63 58.09 4.28 48.89 13.27 37.83
gemini-2.0-flash 30.93 62.13 6.95 50.42 29.50 20.08
gemini-2.0-pro 0 85.64 14.36 47.31 35.13 17.56
Claude-3.5-sonnet 22.11 68.81 9.08 54.67 21.21 24.12

Table 3: Error analysis of tool selection and invoca-
tion across different LLMs (%). Hall.: hallucinating
non-existing tools, Mis.: missing required tools, Ex.:
calling extra tools, Incor.: generating incorrect param-
eters, Miss.: missing parameters, Ext.: generating
extra parameters. The best results are highlighted in
bold.

strates significant improvements in both tool se- 551

lection and invocation following fine-tuning. Re- 552

markably, the fine-tuned 3B models achieve per- 553

formance on par with the larger 7B models. For 554

example, Qwen2.5-7B-Instruct achieved a 45.02% 555

increase in tool selection recall and a 47.88% in- 556

crease in tool invocation precision, while Qwen2.5- 557

Coder-3B recorded the highest improvement in tool 558

invocation F1 score at 51.53%, with overall per- 559

formance closely matching that of Qwen2.5-7B- 560

Instruct. These findings confirm the robustness of 561

our training data in boosting tool calling capabili- 562

ties across different model scales. 563

Testing results on out-of-domain data: To eval- 564

uate the models’ ability to generalize beyond 565

the training distribution, we tested our fine-tuned 566

Qwen2.5 variants on challenging out-of-domain 567

tool selection and invocation tasks. As shown in 568

Table 5, all four models demonstrate significant im- 569

provements, with tool selection precision increas- 570

ing by up to 25.75% and tool invocation precision 571

improving by as much as 18.10%. These results 572

highlight the effectiveness of our training dataset 573

in enhancing performance on diverse, previously 574

unseen tool calling tasks. 575

5.5 Ablation Study on Language Impact 576

To assess the impact of non-English languages 577

on model performance, we conducted an ablation 578

7

Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1

Qwen2.5-7B-Instruct 96.89(+6.38) 99.77(+3.12) 97.72(+43.64) 98.08(+45.02) 97.76(+44.58) 90.64(+47.88) 90.55(+47.18) 90.34(+47.63)
Qwen2.5-Coder-7B 97.41(+2.48) 99.64(+1.26) 97.69(+27.93) 98.00(+31.99) 97.72(+30.49) 90.57(+36.4) 90.38(+36.27) 90.22(+36.47)
Qwen2.5-3B-Instruct 97.26(+9.86) 99.54(+6.54) 97.35(+48.01) 97.92(+52.08) 97.48(+49.96) 89.78(+48.88) 89.50(+47.73) 89.36(+48.03)
Qwen2.5-Coder-3B 97.29(+13.03) 99.79(+10.54) 97.64(+48.72) 97.89(+48.88) 97.64(+48.88) 90.25(+51.76) 90.26(+51.43) 89.96(+51.53)

Table 4: Fine-tuned evaluation results on ITC testing dataset (%), with values in brackets showing the improve-
ment from the original models. The best results and greatest improvements are highlighted in bold.

Model Nexus Raven Seal-Tools Tool-Alpaca

Tool Selection (P) Tool Invocation (P) Tool Selection (P) Tool Invocation (P) Tool Selection (P) Tool Invocation (P)

Qwen2.5-7B-Instruct 90.57(+25.75) 59.97(+10.23) 89.91(+24.00) 76.16(+17.76) 77.05(+18.10) 49.96(+9.85)
Qwen2.5-Coder-7B-Instruct 90.99(+20.44) 68.04(+17.76) 89.57(+22.22) 78.04(+18.92) 77.34(+14.91) 50.87(+8.23)
Qwen2.5-3B-Instruct 81.03(+6.50) 57.14(+2.78) 90.32(+23.26) 76.76(+20.02) 75.00(+8.92) 47.54(+8.57)
Qwen2.5-Coder-3B-Instruct 84.17(+2.09) 64.22(+4.90) 89.34(+8.50) 76.18(+7.97) 73.10(+4.53) 48.69(+7.06)

Table 5: Fine-tuned evaluation results on three benchmark testing datasets (%), with values in brackets
showing the improvement from the original models. The best results and greatest improvements are
highlighted in bold.

Type Model Name LM FM Tool Selection Tool Invocation

P R F1 P R F1

ALL

Qwen2.5-7B-Instruct 96.30(+5.56) 99.27(+4.18) 91.57(+36.67) 98.57(+42.02) 94.94(+39.69) 87.78(+45.93) 86.36(+44.08) 87.06(+45.45)
Qwen2.5-Coder-7B 96.47(+7.04) 98.91(+1.46) 93.29(+21.77) 93.55(+19.61) 93.42(+20.67) 88.37(+33.17) 89.19(+34.80) 88.77(+34.56)

Qwen2.5-3B-Instruct 91.62(+11.24) 95.91(+13.55) 87.03(+39.58) 89.76(+40.25) 88.37(+39.91) 76.17(+44.06) 74.23(+41.27) 75.19(+42.66)
Qwen2.5-Coder-3B 94.21(+9.34) 98.91(+4.36) 87.44(+40.15) 86.91(+39.30) 87.17(+39.86) 80.20(+46.89) 80.42(+45.66) 80.31(+46.67)

EN

Qwen2.5-7B-Instruct 91.33(+0.59) 97.09(+2.00) 79.55(+24.65) 79.12(+22.57) 79.33(+24.08) 70.82(+28.97) 71.17(+28.89) 70.99(+29.38)
Qwen2.5-Coder-7B 92.57(+2.14) 98.28(+1.17) 88.24(+15.72) 88.32(+14.38) 88.28(+15.53) 79.47(+24.27) 79.63(+25.24) 79.55(+25.34)

Qwen2.5-3B-Instruct 83.64(+3.26) 86.51(+4.15) 77.96(+30.51) 77.70(+28.19) 77.83(+29.37) 69.7(+37.59) 69.97(+37.01) 69.83(+37.30)
Qwen2.5-Coder-3B 85.67(+0.80) 96.45(+1.90) 78.85(+31.56) 79.47(+31.86) 79.16(+31.85) 69.85(+36.54) 69.99(+35.23) 69.92(+36.28)

Table 6: Ablation study on non-English queries in the ITC testing dataset evaluating language impact (%),
with values in brackets indicating improvements over the original models. The label ‘Type = ALL’ denotes
training on the full ITC dataset, while ‘Type = EN’ indicates training exclusively on the English subset of the
ITC dataset. The best results and largest improvements are highlighted in bold.

study by fine-tuning Qwen2.5 models either on the579

full multilingual ITC training set (‘Type = ALL’)580

or exclusively on the English subset (‘Type = EN’),581

then evaluating on the non-English test data. As582

shown in Table 6, models trained on the full dataset583

achieve substantially higher gains on non-English584

queries. For example, the Qwen2.5-7B-Instruct585

model fine-tuned on all languages improved tool586

selection recall by 42.02%, which is 19.45% higher587

than the gain achieved by the same model trained588

only on English. Similarly, tool invocation F1 for589

Qwen2.5-Coder-7B increased by 34.56% with full590

multilingual training, outperforming the English-591

only training gain by 9.22%. These results demon-592

strate that limiting training to English significantly593

restricts performance gains on non-English queries,594

highlighting the importance of incorporating di-595

verse language data to strengthen the multilingual596

generalization capabilities of large language mod-597

els.598

6 Conclusion 599

In this paper, we address the urgent need for a di- 600

verse, globally representative dataset to advance 601

large language models’ tool calling capabilities. 602

We introduce the International Tool Calling (ITC) 603

dataset—a comprehensive resource designed to 604

train and evaluate LLMs across international and 605

multi-tool calling scenarios. Covering a broad 606

spectrum of API categories, including both global 607

and region-specific APIs, ITC effectively addresses 608

challenges such as long-tail API coverage and the 609

complexities of multi-tool interactions. Our experi- 610

ments highlight the dataset’s value in uncovering 611

critical performance issues in tool invocation, in- 612

cluding handling missing or incorrect parameters, 613

and demonstrate substantial improvements achiev- 614

able through fine-tuning. These results underscore 615

ITC’s potential to enhance LLMs’ proficiency with 616

international APIs and point toward promising av- 617

enues for future research. 618

8

Limitations619

While our work presents significant advancements,620

several limitations warrant further attention. First,621

despite emphasizing geographical diversity, cer-622

tain regions (e.g., Africa and parts of Asia) remain623

underrepresented, potentially limiting the model’s624

ability to grasp nuanced cultural or regulatory con-625

texts. Second, the dataset focuses solely on REST626

APIs, leaving other tool types (e.g., SOAP APIs627

or database connectors) unaddressed, which may628

constrain applicability in more heterogeneous tool629

ecosystems. Third, reliance on free APIs intro-630

duces potential instability due to service depreca-631

tion or rate limits, making regular dataset updates632

essential to maintain relevance and reproducibility.633

Finally, more challenging datasets are needed to634

further boost the tool calling capabilities of open-635

source LLMs. Addressing these issues will be criti-636

cal for future work aimed at building truly robust637

and universal tool calling systems.638

Acknowledgments639

References640

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,641
Soham Dan, Maxwell Crouse, Asim Munawar, Sad-642
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-643
nipathi, and Luis A. Lastras. 2024. Api-blend: A644
comprehensive corpora for training and benchmark-645
ing api llms. Preprint, arXiv:2402.15491.646

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-647
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu648
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family649
of large language models from glm-130b to glm-4 all650
tools. arXiv preprint arXiv:2406.12793.651

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,652
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,653
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-654
centivizing reasoning capability in llms via reinforce-655
ment learning. arXiv preprint arXiv:2501.12948.656

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,657
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and658
Yang Liu. 2024. Stabletoolbench: Towards stable659
large-scale benchmarking on tool learning of large660
language models. arXiv preprint arXiv:2403.07714.661

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan662
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,663
and Weizhu Chen. 2021. Lora: Low-rank adap-664
tation of large language models. arXiv preprint665
arXiv:2106.09685.666

Tenghao Huang, Dongwon Jung, and Muhao Chen.667
2024. Planning and editing what you retrieve668
for enhanced tool learning. arXiv preprint669
arXiv:2404.00450.670

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, 671
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou, 672
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan 673
Zhang. 2024a. Hammer: Robust function-calling 674
for on-device language models via function masking. 675
Preprint, arXiv:2410.04587. 676

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 677
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 678
Zhou, Cheng Cheng, Yin Zhao, et al. 2024b. Ham- 679
mer: Robust function-calling for on-device lan- 680
guage models via function masking. arXiv preprint 681
arXiv:2410.04587. 682

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 683
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 684
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a. 685
Deepseek-v3 technical report. arXiv preprint 686
arXiv:2412.19437. 687

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 688
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 689
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux- 690
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan 691
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu 692
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming 693
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b. 694
Toolace: Winning the points of llm function calling. 695
Preprint, arXiv:2409.00920. 696

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 697
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 698
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei 699
Yang, Silvio Savarese, Juan Carlos Niebles, Huan 700
Wang, Shelby Heinecke, and Caiming Xiong. 2024c. 701
Apigen: Automated pipeline for generating verifi- 702
able and diverse function-calling datasets. ArXiv, 703
abs/2406.18518. 704

Marco Lui and Timothy Baldwin. 2012. langid.py: An 705
off-the-shelf language identification tool. In Proceed- 706
ings of the ACL 2012 System Demonstrations, pages 707
25–30, Jeju Island, Korea. Association for Computa- 708
tional Linguistics. 709

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, 710
Shuohang Wang, Liangming Pan, Yujiu Yang, Yixin 711
Cao, Aixin Sun, Hany Awadalla, et al. 2024. Scia- 712
gent: Tool-augmented language models for scientific 713
reasoning. arXiv preprint arXiv:2402.11451. 714

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo- 715
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu, 716
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, 717
Asli Celikyilmaz, et al. 2023. Augmented language 718
models: a survey. arXiv preprint arXiv:2302.07842. 719

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 720
Long Ouyang, Christina Kim, Christopher Hesse, 721
Shantanu Jain, Vineet Kosaraju, William Saunders, 722
et al. 2021. Webgpt: Browser-assisted question- 723
answering with human feedback. arXiv preprint 724
arXiv:2112.09332. 725

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. 726
Talm: Tool augmented language models. Preprint, 727
arXiv:2205.12255. 728

9

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2410.04587
https://arxiv.org/abs/2409.00920
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://api.semanticscholar.org/CorpusID:270738094
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://aclanthology.org/P12-3005/
https://arxiv.org/abs/2205.12255

Shishir G. Patil, Tianjun Zhang, Xin Wang, and729
Joseph E. Gonzalez. 2023. Gorilla: Large lan-730
guage model connected with massive apis. Preprint,731
arXiv:2305.15334.732

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan733
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,734
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,735
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,736
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-737
cilitating large language models to master 16000+738
real-world apis. Preprint, arXiv:2307.16789.739

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta740
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola741
Cancedda, and Thomas Scialom. 2023. Toolformer:742
Language models can teach themselves to use tools.743
Preprint, arXiv:2302.04761.744

Simranjit Singh, Michael Fore, and Dimitrios Stamoulis.745
2024. Evaluating tool-augmented agents in remote746
sensing platforms. arXiv preprint arXiv:2405.00709.747

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei748
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023a.749
Toolalpaca: Generalized tool learning for language750
models with 3000 simulated cases. Preprint,751
arXiv:2306.05301.752

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei753
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023b.754
Toolalpaca: Generalized tool learning for language755
models with 3000 simulated cases. arXiv preprint756
arXiv:2306.05301.757

Gemini Team, Rohan Anil, Sebastian Borgeaud,758
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,759
Radu Soricut, Johan Schalkwyk, Andrew M Dai,760
Anja Hauth, et al. 2023. Gemini: a family of761
highly capable multimodal models. arXiv preprint762
arXiv:2312.11805.763

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan764
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,765
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.766
2024. Gemini 1.5: Unlocking multimodal under-767
standing across millions of tokens of context. arXiv768
preprint arXiv:2403.05530.769

Chenyu Wang, Weixin Luo, Qianyu Chen, Haonan770
Mai, Jindi Guo, Sixun Dong, Zhengxin Li, Lin Ma,771
Shenghua Gao, et al. 2024. Tool-lmm: A large multi-772
modal model for tool agent learning. arXiv preprint773
arXiv:2401.10727.774

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,775
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools:776
self-instruct tool learning dataset for agent tuning and777
detailed benchmark. In CCF International Confer-778
ence on Natural Language Processing and Chinese779
Computing, pages 372–384. Springer.780

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,781
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,782
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-783
nical report. arXiv preprint arXiv:2412.15115.784

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang, 785
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou, 786
Qi Zhang, Tao Gui, et al. 2024a. Tooleyes: Fine- 787
grained evaluation for tool learning capabilities of 788
large language models in real-world scenarios. arXiv 789
preprint arXiv:2401.00741. 790

Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang, 791
Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui, 792
and Xuanjing Huang. 2024b. Toolsword: Un- 793
veiling safety issues of large language models in 794
tool learning across three stages. arXiv preprint 795
arXiv:2402.10753. 796

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang 797
Huang, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang, 798
Tao Gui, and Xuanjing Huang. 2024c. Rotbench: a 799
multi-level benchmark for evaluating the robustness 800
of large language models in tool learning. arXiv 801
preprint arXiv:2401.08326. 802

Alex Young, Bei Chen, Chao Li, Chengen Huang, 803
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng 804
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi: 805
Open foundation models by 01. ai. arXiv preprint 806
arXiv:2403.04652. 807

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 808
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 809
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 810
Judging llm-as-a-judge with mt-bench and chatbot 811
arena. Advances in Neural Information Processing 812
Systems, 36:46595–46623. 813

10

https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301

A API Processing814

A.1 API Format815

API Format

{
"tool_name":"tool name",
"tool_description":"tool description",
"home_url":"home url",
"country":"Countries involved in the tool",
"api_list":[

{
"name":"api name",
"url":"api url",
"description":"api function description",
"method":"POST/GET",
"required_parameters":[

{
"name":"parameter name",
"type":"parameter type",

"description":"parameter description",
"default":"Default value, empty if none"

}
],
"optional_parameters":[
{

"name":"parameter name",
"type":"parameter type",

"description":"parameter description",
"default":"Default value, empty if none"
}

],
"statuscode":"statuscode"

}
]

}

Figure 4: API Format.

A.2 API Error Response816

Figure 5: API Error Response Demo.

A.3 API Empty Response 817

Figure 6: API Empty Response Demo.

A.4 API Documentation Rewriting 818

API Documentation Rewriting Prompt

You are a highly skilled data engineer specializing in API
analysis, able to accurately identify the functionality of
APIs and their various parameters, and excel at extracting
information from APIs.
You have the following API information:
{tool_info}

Your task:
Rewrite the API based on the provided format example. The
format example is as follows:
```json
{tool_example}
```

Note:
1. If any descriptions are missing or unclear, you need to fill
them in with simple and understandable information.
2. Parameter information must strictly follow the provided API
details, and you should not fabricate any false parameters.
3. The output should still be in JSON format with no extra
content.

your response:

Figure 7: API Documentation Rewriting.

A.5 API Country Distribution 819

Figure 8 provides a comprehensive overview of the 820

geographical distribution of APIs in our dataset, 821

including both global and country-specific APIs 822

across more than 30 countries and regions. 823

11

Figure 8: Distribution of tools by countries (Logarith-
mic Scale).

B Annotation Protocol and Details824

All annotations in this study were performed by the825

authors themselves.826

B.1 Instructions827

The authors followed a predefined set of evaluation828

guidelines when rating the generated instructions.829

Each item was scored along five dimensions: ac-830

curacy, fluency, cultural adaptability, grammatical831

correctness, and feasibility of execution. Each di-832

mension was rated on a scale from 1 (poor) to833

5 (excellent). The annotators discussed unclear834

cases and followed the same rubric throughout the835

evaluation process. The full text of the annotation836

instructions is shown in Figure 14837

B.2 Recruitment and Payment838

No external annotators were recruited. All annota-839

tion work was carried out by the authors as part of840

the research effort. Therefore, no monetary com-841

pensation was involved.842

B.3 Annotator Characteristics843

The annotators are the co-authors of this paper. All844

are NLP researchers with prior experience in multi-845

lingual evaluation and large language model devel-846

opment. They are fluent in the relevant languages 847

used in the dataset. This ensured high-quality and 848

consistent annotation across multiple languages 849

and tasks. 850

C Detailed Formulate for Evaluation 851

Metrics 852

To control page layout, we use FM to represent For- 853

mat Matching Accuracy, LM for Language Match- 854

ing Accuracy, Tool for Tool Selection, and TI for 855

Tool Invocation. 856

LM =
amountcorrect language

amountall
(1)

FM =
amountcorrect format

amountall
(2)

Tool P =
amountcorrect tools

amountpredict tools
(3)

Tool R =
amountcorrect tools

amountgold tools
(4)

Tool F1 =
2 · Tool P · Tool R
Tool P + Tool R

(5)

TI P =
amountcorrect tools

amountpredict tools
(6)

TI R =
amountcorrect tools

amountgold tools
(7)

TI F1 =
2 · TI P · TI R

TI P + TI R
(8)

D Single Tool Calling Tasks Query 857

Generation Prompt 858

For single tool calling tasks, we utilize a prompt- 859

based approach to instruct the LLM to generate a 860

query. The prompt templates used for this process 861

are illustrated in Figures 9. 862

E Multiple tools Calling Tasks Query 863

Generation 864

For multiple tool calling tasks, we have classified 865

them into three categories: Repeated Calls, Parallel 866

Calls, and Nested Calls. Given that the require- 867

ments for each type of task differ, we have tailored 868

specific prompts to generate queries for each cat- 869

egory. The prompt templates for these tasks are 870

illustrated in Figures 10, 11, and 12. 871

12

Single Tool Calling Tasks Query Generation Prompt

Please strictly follow these guidelines:
1. The instructions should be 1 to 2 sentences long. Use a mix of interrogative sentences,
first-person statements, imperative sentences, and other structures that convey a request. Aim for
diversity in your instructions.
2. Do not mention the API's name in your instructions.
3. Your instructions should only involve the features provided by these APIs.
4. Generate 10 diverse instructions.
5. Use specific nouns and real-world examples from various domains, such as entertainment, sports,
or technology.
6. Please provide concrete details.Don't using any form of generic phrases, such as "this xxx", "the
xxx","a xxx" or "a specific xxx".
7. Ensure diversity in language by combining questions with imperative statements and other
structures that convey a request.
8. The instructions should be in the language of the country attribute in the provided API information.
9. The generated problem must strictly follow the API's parameter information.
10. If country is Global, please generate 10 instructions in English.

Here is the API information:
{api_list}
Please generate the question in the language of the specified country.

your response:

Figure 9: Query generation prompt for single tool calling tasks.

F Query Scoring872

F.1 Scoring dimensions873

To comprehensively assess the quality of instruc-874

tions (queries or question-and-answer pairs), we875

adopt the following five evaluation dimensions:876

1. Relevance: Measures the alignment between877

the instruction and the task objective. High-878

scoring instructions accurately reflect the task879

requirements, while irrelevant or off-topic in-880

structions receive lower scores.881

2. Practicality: Assesses the feasibility and exe-882

cutability of the instruction in real-world sce-883

narios. High scores indicate instructions that884

can be directly implemented without signifi-885

cant obstacles.886

3. Linguistic Applicability: Evaluates the in-887

struction’s adherence to grammatical norms888

and consideration of cultural and linguistic889

context. High-scoring instructions are well-890

phrased, natural, and unambiguous.891

4. Clarity: Judges whether the instruction is892

clearly articulated, logically coherent, and893

easy to understand. High scores indicate con-894

cise, explicit, and actionable instructions.895

5. Specificity: Measures the level of detail and896

focus in the instruction. High-scoring instruc-897

tions clearly define the scope of operation, 898

reduce ambiguity, and facilitate precise tool 899

invocation. 900

Each dimension is scored on a scale from 1 to 5, 901

where 1 indicates very low quality and 5 indicates 902

very high quality. The detailed scoring criteria are 903

shown in Table 7 904

F.2 Example of scoring 905

Figure 13 illustrates an example of query scoring, 906

where, given a query and relevant API information, 907

we used both Anthropic’s Claude-3.5-sonnet model 908

and Google’s Gemini-1.5-pro model to evaluate the 909

query’s quality across five dimensions, with scores 910

ranging from 1 to 5 for each dimension. Figure 14 911

shows the prompt for LLMs to evaluate the query. 912

13

Dimension 1 (Very Low) 3 (Medium) 5 (Very High)
Relevance Completely irrelevant Partially relevant Highly aligned with the task
Practicality Hard to implement Feasible but with obstacles Directly applicable
Linguistic Applicability Incorrect or awkward Basically fluent Standard, natural, idiomatic
Clarity Vague or confusing Understandable but ambiguous Clear and unambiguous
Specificity Overly broad or vague Some details present Detailed, focused, unambiguous

Table 7: Scoring guidelines for each evaluation dimension.

Multiple tool Repeated Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.
5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 10: Multiple tool repeated calls.

G Data Examples913

Figure 15 illustrates an example of the Google914

Translate API. Figure 16 provides an example of915

a single tool calling task, while Figure 17 demon-916

strates a repeated multiple tools calling task. Fig-917

ure 18 shows an example of a parallel multiple tools918

calling task, and Figure 19 presents an example of919

a nested multiple tools calling task.920

Multiple tool Parallel Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select only one tool (from the provided API
list) and perform multiple calls to the same tool to complete different
tasks.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Leverage the unique features of the selected tool. Each instruction
must clearly demonstrate how the tool can be used through multiple
calls to effectively solve a problem or fulfill a request. Avoid
generic or vague task descriptions.
5. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
6. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
7. Generate 10 diverse instructions, each showcasing a single tool
being used multiple times. Each instruction can use a different tool.
8. Ensure the content of each instruction strictly aligns with the
examples provided and closely follows the format of the examples below.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please select only one tool (from the provided API list) and strictly
following the Output format.

your response:

Figure 11: Multiple tool parallel calls.

14

Multiple tool Nested Calling Tasks Query Generation

Please strictly follow these guidelines:
1. Provide 1 to 2 sentences for each instruction, using a mix of
interrogative sentences, imperative statements, and descriptive
requests. Ensure the instructions are diverse in structure and tone to
reflect real-world scenarios.
2. For each instruction, select exactly 2 or 3 tools from the provided
API list to create a scenario where these tools are used in a logical
sequence. Ensure that the output of the previous tool can serve as the
input for the next tool, forming a nested call.
3. Do not mention any API names directly in your instructions. Instead,
focus on the functionality they provide.
4. Use detailed and specific nouns, examples, and contextual scenarios
from domains like travel, business, sports, entertainment, or
technology. Avoid vague phrases such as "this information" or "a
specific detail."
5. The generated instructions must strictly align with the parameter
information of each API/tool. Ensure the inputs and outputs are valid
for the respective tools.
6. Generate 10 diverse instructions, each involving 2 or 3 tools
working together in a logical sequence and existence of nested calls.

Here are some examples for Multi-Tool Instructions:
{example_list}

Here is the API information:
{api_data}

Here is the Output format:
{Output_format}

Please strictly following the Output format.

your response:

Figure 12: Multiple tool nested calls.

15

请给我2023年11月1日
的黄历信息，我想知
道那天是否适合出行。

{"country": "China",
"api_name": "黄历查询
API",
“api_description”: “获取
特定日期的黄历信息”,
“required_parameters”:[],
"optional_parameters":[],
"method": "GET"}

Relevance: 5 points – The query is highly relevant to the API's functionality,
specifically requesting the yellow calendar information for a particular date,
usually including suggestions for auspicious activities such as travel.
Clarity: 4 points – The query is clear, but the clarity could be slightly
improved by explicitly stating that the user is seeking advice on the
suitability of travel based on the yellow calendar.
Specificity: 5 points – The query clearly specifies a particular date
(November 1, 2023) and requests travel-related information, making full use
of the API's capabilities.
Usability: 5 points – The request reflects a common real-world scenario, as
people often consult the yellow calendar for guidance on travel plans.
Linguistic Appropriateness: 5 points – The language used is appropriate for
the target audience, in Mandarin, and utilizes terminology familiar to users
seeking yellow calendar information.
Total Score: 5 points

Relevance: 5 – The query explicitly requests the yellow calendar information
for November 1, 2023, and asks whether it is suitable for travel, directly
aligning with the functionality of the yellow calendar query API.
Clarity: 5 – The query is expressed clearly, specifying the type of information
needed (yellow calendar data) and the specific requirement (suitability for
travel).
Specificity: 5 – The query specifies a concrete date (November 1, 2023) and a
clear request (whether it is suitable for travel), demonstrating high specificity.
Usability: 5 – The query reflects a common real-world scenario, where people
refer to the yellow calendar to decide whether to travel, showing strong
practical relevance.
Linguistic Appropriateness: 5 – The language used is simple and clear,
aligning with the query's purpose, and is suitable for the audience seeking
yellow calendar information.
Total Score: 5 points

Query

Rela�ve API Informa�on

Score Result

Score Result

Figure 13: The query scoring process.

16

Query Scoring Prompt

Evaluation Criteria:
Use a 1-5 scale to score the following five dimensions:
1. Relevance: How well the query matches the API's functionality.
2. Clarity: Whether the query is specific enough, avoiding ambiguous
terms like 'this xxx', 'the xxx', or 'a xxx', and ensuring the use of
the API's features.
3. Specificity: Whether the query is specific enough to utilize the
API's capabilities
4. Practicality: Whether the query reflects real-world usage scenarios
5. Language Appropriateness: Whether the query's language is suitable
for target users

Scoring Standard:
1 point: Does not meet the standard
2 points: Partially meets the standard
3 points: Meets the basic standard
4 points: Meets the standard well
5 points: Fully meets the standard

Total Score Calculation:
Calculate the average of the five dimension scores, round to the
nearest integer, as the final total score (1-5 points).

Evaluation Steps:
1. Carefully read the API name and the generated query.
2. Score each dimension and provide a brief explanation.
3. Calculate the total score.
4. Provide an overall evaluation and suggestions for improvement.
5. If the total score is less than 3, mark it as "Needs Improvement".

Output Format:
Scores:
1. Relevance: [Score] - [Explanation]
2. Clarity: [Score] - [Explanation]
3. Specificity: [Score] - [Explanation]
4. Practicality: [Score] - [Explanation]
5. Language Appropriateness: [Score] - [Explanation]
Total Score: [1-5 points]

Overall Evaluation:
[Brief summary of the query's strengths and weaknesses]
Improvement Suggestions:
[Provide specific suggestions for improvement if needed]
Conclusion: [If total score >= 4, then "Pass"; if total score < 4, then
"Needs Improvement"]
Please evaluate the following data's query
{data['query']}

Your response:

Figure 14: Query scoring prompt.

API Example

{
"tool_name": "Google Translate",
"tool_description": "A tool for translating
text between different languages using
Google's translation services.",
"home_url": "https://rapidapi.com/
nickrapidapi/api/google_translate/",
"country": "Global",
"api_list": [
{
"name": "translate1",
"url": "https://google_translate.p.rapidapi.
com/",
"description": "This API endpoint allows users
to perform translations of text from
one language to another.",
"method": "GET",
"category": "Utilities",
"required_parameters": [
{

"name": "text",
"type": "string",
"description": "The text content to be
translated"

},
{

"name": "target_lang",
"type": "string",

"description": "The target language code
(e.g., 'en' for English, 'zh' for Chinese)"

}
],
"optional_parameters": [],
"statuscode": "200",
"schema": {}}]
}

Figure 15: Example of google translate API.

17

Single Tool Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you help me translate "Hello, how are you?" into French for my
upcoming trip to Paris?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To assist the user with their request for
translation, I will utilize the Google Translate API, which is specifically
designed for translating text between languages. The user needs a translation
for a common greeting in French, which is straightforward.\",
\"Action\":\"[Google Translate(text='Hello, how are you?',"target_lang"="fr")]
\"}"}]}

Figure 16: Single tool calling task example.

18

Repeated Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you verify the email address 'john.doe@example.com' using the
Express option? After that, check 'jane.smith@sample.com' with the Premium
option to see if it's valid."
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To verify the email addresses, I will use the
Global Email V4 API. First, I will check 'john.doe@example.com' with the Express
option, and then I will verify 'jane.smith@sample.com' using the Premium option.",
\"Action\":\"[Global Email V4(opt="VerifyMailbox:Express", email=
"john.doe@example.com"),Global Email V4(opt="VerifyMailbox:ExpressPremium",
email="jane.smith@sample.com")]
\"}"}]}

Figure 17: Repeated multiple tools calling task example.

19

Parallel Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you check the latest exchange rates for USD and AUD against EUR,
and also give me a list of all available currencies?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To fulfill the request, I need to retrieve the
latest exchange rates for USD and AUD against EUR, as well as a list of all
available currencies. This requires using two different API endpoints: one for
the latest exchange rates and another for the list of currencies.",
\"Action\":\"[latest(from='EUR', to='USD,AUD'), currencies()]
\"}"}]}

Figure 18: Parallel multiple tools calling task example.

20

Nested Multiple Tools Calling Task Example

{"system": "You are an advanced AI assistant with expertise in:
1. Intelligent tool and API selection
2. Multilingual problem-solving
3. Systematic analytical thinking
Task Guidelines:

- Carefully analyze the problem presented
- Select the most appropriate tool(s) or API(s) to solve the task
- Provide clear, structured reasoning for your tool selection
- Ensure precise and efficient problem resolution

Important Principles:
- If no suitable tool exists, clearly explain the limitations
- Prioritize accuracy and relevance in tool selection
- Consider potential alternative approaches
- Maintain a logical and methodical approach

When tools are insufficient or parameters are incomplete:
- Explicitly state the gaps in available tools or information
- Provide constructive suggestions for obtaining resources
- Return an empty list in the \"Action\" section

Note: Please respond in the same national language as the problem
while maintaining clarity, logic, and structure in your answers.
Below is the list of functions you can invoke (in JSON format):
{api_list}

Please strictly follow the format below, without additional text:

json{\"Thought\": \"Respond in same language as problem. Provide
analysis, reasoning for tool selection, and challenges.\",
\"Action\": \"[function_name1(param_1='val1', param_2='val2'),
function_name2(param_1='val1', param_2='val2')]\"}",

"conversations": [
{
"from": "user",
"value": "Can you generate a secure password with numbers and then hash that
password using the MD5 algorithm?"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"To generate a secure password with numbers, I will
use the 'Generate password' API with the appropriate parameters. After
generating the password, I will hash it using the 'MD5 Text Hash' API.",
\"Action\":\"[Generate password(numbers=true,pwCount=1,length=12),MD5 Text
Hash(dataString='generated_password')]
\"}"
},
{
"role": "Tool",
"content": {\"code\": 200,\"msg\": \"Password generated successfully.\",
\"data\": {\"password\": \"A1b2C3d4E5f6\" }}"
},
{
"from": "assistant",
"value": "json{\"Thought\":\"I have generated the password 'A1b2C3d4E5f6'
successfully. Now, I will hash this password using the MD5 algorithm.",
\"Action\":\"[MD5 Text Hash(dataString='A1b2C3d4E5f6')]
\"}"
}
]}

Figure 19: Nested multiple tools calling task example.

21

	Introduction
	Related Work
	Dataset Curation
	API Collection and Construction
	Query Generation
	Query Scoring and Filtering
	Question-and-Answer Pair Generation

	Data Statistics
	Statistics on APIs
	Statistics on Tasks

	Experiments and Results
	Implementation Details
	Evaluation Metrics
	Zero-Shot Evaluation of Tool Calling Capabilities
	Fine-tuned Evaluation of Tool Calling Capabilities
	Ablation Study on Language Impact

	Conclusion
	API Processing
	API Format
	API Error Response
	API Empty Response
	API Documentation Rewriting
	API Country Distribution

	Annotation Protocol and Details
	Instructions
	Recruitment and Payment
	Annotator Characteristics

	Detailed Formulate for Evaluation Metrics
	Single Tool Calling Tasks Query Generation Prompt
	Multiple tools Calling Tasks Query Generation
	Query Scoring
	Scoring dimensions
	Example of scoring

	Data Examples

