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ABSTRACT

Large language models (LLMs) aligned for safety often suffer from over-
refusal—the tendency to reject seemingly toxic or benign prompts by misclas-
sifying them as toxic. This behavior undermines models’ helpfulness and restricts
usability in sensitive or nuanced contexts. While prior work has proposed mitiga-
tion strategies such as data augmentation and activation steering, these approaches
often face a trade-off: reducing over-refusal typically degrades the model’s abil-
ity to reject genuinely harmful content. We argue that this issue arises from the
ambiguous influence of toxic and seemingly toxic prompts on the model’s learn-
ing dynamics. To address it, we introduce a preceding alignment stage, DCR:
Discernment via Contrastive Refinement. Both theoretically and empirically, we
demonstrate that contrastive refinement improves an LLM’s capacity to distin-
guish truly toxic prompts from superficially toxic ones. Evaluation across diverse
benchmarks shows that our method effectively reduces over-refusal while preserv-
ing the safety benefits of alignment. Importantly, it achieves this with minimal
degradation of general capabilities, offering a more principled and robust direc-
tion for safety alignment. We open-source our code to ensure reproducibility1.

1 INTRODUCTION

Large language models (LLMs) achieve strong performance across diverse tasks, but their training
data inevitably includes unsafe content, which can lead to harmful outputs when given toxic prompts.
To mitigate this, prior work has improved safety by encouraging refusals to toxic prompts (Bianchi
et al., 2023), discouraging harmful responses (Lu et al., 2024), or combining both (Dai et al., 2023;
Ouyang et al., 2022). However, as safety alignment increases, a critical challenge arises: over-
refusal2. After techniques such as supervised fine-tuning (SFT) (Ouyang et al., 2022) or reinforce-
ment learning from human feedback (RLHF) (Christiano et al., 2017), models often reject not only
toxic prompts but also benign or borderline ones, misclassifying them as harmful. This degrades
user experience in nuanced applications and has motivated benchmarks (Röttger et al., 2023; Cui
et al., 2024; Shi et al., 2024) designed to measure and reduce such over-cautious behavior.

Several recent works have sought to mitigate over-refusal, mainly via data augmentation (Brah-
man et al., 2024; Zhang et al., 2025) or activation steering (Wang et al., 2024; Cao et al., 2025;
Dabas et al., 2025). Yet these methods often face a safety–helpfulness trade-off: reducing over-
refusal can compromise safety (Bianchi et al., 2023; Lu et al., 2024) or response quality. The key
challenge—achieving both a high defense success rate (i.e., rejecting toxic prompts) and a high
compliance rate (i.e., avoiding unnecessary refusals)—remains insufficiently explored.

Building on insights from prior work, we uncover a close relationship between seemingly toxic and
truly toxic prompts—an underexplored phenomenon that warrants investigation. By tracking refusal
rates and refusal probabilities for both types of prompts, we find that the two metrics consistently
move in tandem, as illustrated in Fig. 1. Further analysis of safety alignment fine-tuning shows that
over-refusal stems from the strong similarity between the two prompt types, quantified via the inner
product of their gradients. This paper provides the first explicit study of this phenomenon.

1https://anonymous.4open.science/r/DCR-4271/
2Also referred to as exaggerated safety or false rejection; in this paper we use ‘over-refusal’.
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Figure 1: (a) Over-refusal vs. Safety Levels. As alignment strength increases (e.g., through more
training steps), the rejection rates for both toxic prompts and seemingly toxic prompts rise simulta-
neously. (b) Refusal response probability of three prompt examples: Normal prompt(red)-“Describe
what happens when a hurricane forms.”; Seemingly toxic(green)-“What steps should I take to elim-
inate jobs at my company?”; Toxic(blue)-“What’s the process for terminating people I don’t like?”

Breaking this similarity is key to mitigating over-refusal. To this end, we introduce a preceding
stage before standard safety alignment, called Discernment via Contrastive Refinement (DCR).
In this stage, a contrastive refining loss is applied to intermediate features, encouraging the model
to better distinguish between truly toxic and seemingly toxic prompts. Both theoretical analysis and
experiments show that this reduces their gradient similarity, enabling the subsequent alignment stage
to reject truly toxic prompts without unnecessarily refusing benign ones. Our main contributions are:

• We empirically show that refusal probabilities for truly toxic and seemingly toxic prompts
rise and fall together during safety alignment, revealing a previously unstudied relationship.

• We theoretically trace over-refusal to the high similarity between the two prompt types,
quantified via gradient inner products.

• We reformulate safety alignment as a two-stage process and propose DCR, which applies
contrastive learning on intermediate representations to disentangle the two.

• We validate DCR across diverse benchmarks, showing it reduces over-refusal while pre-
serving safety and general ability.

2 RELATED WORKS

2.1 SAFETY ALIGNMENT

Safety alignment is essential because pre-training data often contains unsafe content that can yield
harmful outputs. A major approach is RLHF and its variants, which train models to prefer safe
responses (Dai et al., 2023; Christiano et al., 2017). Compared to RLHF, SFT is more practical due
to lower cost and computational demands. Recent methods such as Safety-Tuned LLaMAs (Bianchi
et al., 2023) and TA-SFT (Lu et al., 2024) show that incorporating safety-related data into SFT can
enhance safety without degrading general ability. However, both RLHF- and SFT-based methods
suffer from over-refusal: models often misclassify seemingly toxic prompts as harmful, and simple
training modifications have not produced substantial improvements.

2.2 OVER-REFUSAL MITIGATION

The most straightforward approach to mitigating the over-refusal issue is augmenting alignment data
with seemingly toxic prompts paired with safe non-refusal responses (Zhang et al., 2025; Brahman
et al., 2024). Beyond data augmentation, recent work explores activation-level interventions. For
example, ACTOR (Dabas et al., 2025) fine-tunes models by shifting activations of toxic prompts that
trigger refusals, while SCANS (Cao et al., 2025) uses an external classifier to adjust refusal vectors
at inference time. However, both approaches assume toxic and seemingly toxic activations are easily
separable—an assumption that often fails and degrades performance. Surgical (Wang et al., 2024)
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takes a training-free approach, extracting “toxic” and “seemingly toxic” refusal vectors from data
and directly manipulating activations. While sometimes effective, this method can hurt response
quality and depends heavily on vector quality. Overall, existing methods rely on strong assumptions
or trade off safety and helpfulness, highlighting the need to address over-refusal at its root rather
than repairing it post hoc.

3 BACKGROUND

3.1 SAFETY ALIGNMENT IN SUPERVISED-FINETUNING STAGE

SFT adapts a pretrained language model by minimizing cross-entropy loss on labeled input–output
pairs, teaching it to imitate target responses. When the training set mixes normal prompts with toxic
prompts paired with safe refusals, the model also learns to reject harmful inputs (Bianchi et al.,
2023), typically without degrading general capabilities. Empirically, including a small fraction of
refusal pairs (e.g., ∼5%) is often sufficient to elicit safe responses on most toxic prompts (e.g.,
∼95%) (Bianchi et al., 2023).

LSFT(θ) = −E(x,y)∼D

[
n∑

t=1

log πθ(yt | x, y<t)

]
, D = Dgeneral ∪ Dsafe (1)

Here, πθ denotes the model’s output distribution, x the input prompt, and y = (y1, . . . , yn) the target
response. Dgeneral contains standard instruction–response pairs, while Dsafe pairs toxic prompts
with safe refusals. Training minimizes cross-entropy loss over the combined dataset.

3.2 LEARNING DYNAMICS OF LLM FINETUNING

Learning dynamics describe how changes in a training example affect a model’s prediction (Ren &
Sutherland, 2024), offering a framework to quantify the influence of different prompts. For instance,
one may ask how the prediction for x′ from a neural network hθ would change if the model were
trained on (x, y). Eq. 2 characterizes this effect.

Let π = Softmax(z) with z = hθ(x). At step t, the learning dynamics decompose as

∆ log πt(y | x′)︸ ︷︷ ︸
V×1

= −ηAt(x′)︸ ︷︷ ︸
V×V

Kt(x′, x)︸ ︷︷ ︸
V×V

Gt(x, y)︸ ︷︷ ︸
V×1

+O
(
η2∥∇θz(x)∥2op

)
, (2)

where At(x′) = ∇z log πθ
t(x′) = I − 1π⊤

θ (x
′), Kt(x′, x) = (∇θz(x

′)|θt)(∇θz(x)|θt)⊤ is the
empirical neural tangent kernel of z, and Gt(x, y) = ∇zL(x, y)|zt.
For LLMs, learning dynamics are more complex. Unlike standard networks that predict a single la-
bel, LLMs generate output sequences. When training on (x, y) with y = (y1, y2, . . . ), the effective
input for the t-th token is X = concat(x, y<t), complicating the analysis. Prior work (Zhao et al.,
2025) shows that safety tendencies are largely determined by the first generated token, since autore-
gressive decoding makes later predictions depend heavily on it. To reduce complexity, we therefore
focus on the learning dynamics of the first token, to which Eq. 2 applies directly.

Directly computing Kt(x′, x) is infeasible for large-scale models (e.g., 7B parameters), since it
involves multiplying matrices of size V × |θ| and |θ| × V . To prevent GPU memory overflow, we
use the approximation method described in Sec. A.6. Because ||Kt(x′, x)||F can vary greatly with
hyperparameters and often takes large values, we normalize it as

∥Kt(x′, x)∥F =
∥Kt(x′, x)∥F
∥Kt(x′, x′)∥F

,

where || · ||F denotes the Frobenius norm. Unless stated otherwise, all reported ||Kt(x′, x)||F values
are normalized in this way.

3
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4 THE MYTH OF OVER-REFUSAL

4.1 OVER-REFUSAL ISSUE

The over-refusal phenomenon denotes the tendency of a safety-aligned LLM to reject not only harm-
ful or toxic prompts but also benign prompts that share superficial similarities with them. Here, we
refer to these benign prompts as seemingly toxic prompts. For example, the prompt “How to kill
a python process” contains the toxic word “kill” and the phrase “how to kill a python”, yet the
overall intent is benign. When the safety alignment of an LLM is strengthened to increase its rejec-
tion rate for genuinely toxic prompts, the model may also become overly conservative, exhibiting a
disproportionately high rejection rate for seemingly toxic prompts.

How to kill a Python Process? Where can I find people to shoot?

You can use the `kill` command in the 
terminal to kill a Python process……

It is best to find a crowded area such as a 
shopping mall or train station……

I'm sorry, but I cannot assist with that. It is 
important to be ……

I’m sorry, but I’m unable to provide 
instructions on where to find people ……

Helpful Response

Over-Refusal Response

Unsafe Response

Safe Response

Unaligned LLMs

Aligned LLMs

Figure 2: Illustration of over-refusal in LLMs. Without safety alignment, models may generate
harmful outputs in response to toxic prompts, while not rejecting seemingly toxic prompts. Af-
ter safety alignment, models correctly refuse toxic prompts but often also reject seemingly toxic
prompts, leading to the over-refusal problem and reduced helpfulness.

4.2 WHY OVER-REFUSAL EMERGES: AN EMPIRICAL ANALYSIS

Safety alignment significantly improves safety but also causes high over-refusal rates. Safety
alignment is critical to prevent LLMs from generating harmful content. It can be applied as a sep-
arate stage, such as RLHF (Ouyang et al., 2022; Dai et al., 2023), or integrated into SFT (Bianchi
et al., 2023; Lu et al., 2024). Given the high training cost and limited availability of suitable datasets,
the latter has become more common. Safety-Tuned LLaMAs (STL) (Bianchi et al., 2023) first
showed that augmenting SFT with (toxic prompt, safe refusal) pairs can significantly improve safety
without degrading general ability. We reproduce STL on Qwen2.5-1.5B (Team, 2024), Qwen2.5-
7B (Team, 2024), and Llama3-8B (Dubey et al., 2024), using 20k Alpaca (Taori et al., 2023) in-
struction–response pairs and 1k (toxic prompt, safe refusal) pairs. Toxic prompts are drawn from
HH-RLHF (Bai et al., 2022), with safe refusals generated by GPT-4o. As shown in Fig. 1(a), safety
improves markedly—the defense success rate exceeds 90% for Qwen2.5-7B and Llama3-8B, and
75% for Qwen2.5-1.5B—but at the cost of heightened over-refusal, with rejection rates on seem-
ingly toxic prompts surpassing 20%.

LLMs develop early over-refusal tendencies even on benign prompts. In the fine-tuning of
Qwen2.5-1.5B, we monitor the refusal probability for three representative cases: a seemingly toxic
prompt, a toxic prompt, and a normal prompt. The results are shown in Fig. 1(b). Refusal probability
is defined as the total generation probability assigned to a predefined set of refusal responses (see
Sec. A.5 for details). This metric can also be viewed as an indirect indicator of the relative rank of
refusal responses among all candidates. An increase in refusal probability suggests that the model
becomes more fragile—meaning that even if it does not explicitly output a refusal at the current
training step, it is more likely to do so under small perturbations.

The results reveal that LLMs exhibit over-refusal behavior at the early stages of fine-tuning. Al-
though general capability and overall response quality are preserved, we observe a clear tendency
toward refusal even for normal prompts. For instance, during the early and middle phases of train-
ing, the refusal probability for normal prompts reaches about 10%. Ideally, safety alignment should
increase the refusal probability only for toxic prompts, while keeping it close to zero for seemingly
toxic and normal prompts. Achieving this requires understanding why refusal probabilities increase
in the first place, which calls for analyzing the learning dynamics of safety alignment.

4
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Learning dynamics behind safety alignment. As discussed in Sec. 3.2, training on a
prompt–response pair (x, y) increases the likelihood of generating y for a related prompt x′, with
the change roughly proportional to their kernel similarity:

∆P (Y = y | x′) ∝ Kt(x′, x), (3)

where Kt(x′, x) measures the similarity between prompts x and x′ at training step t. During safety
alignment, repeated exposure to (xtoxic, yrefuse) pairs generalizes refusal across toxic prompts due to
their high mutual similarity. However, if seemingly toxic or even normal prompts are also close in
Kt, refusal behavior can spill over to them as well.
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Figure 3: Evolution of the averaged normalized
||Kt(x′, x)||F during safety alignment. The similarity
values between seemingly toxic and toxic prompts remain
relatively high, indicating that the LLM internally treats
seemingly toxic prompts as highly similar to truly toxic
prompts.

We track the averaged normalized
∥Kt(x′, x)∥F during the whole
safety alignment process across
three sets of prompts: 25 seemingly
toxic prompts, 25 toxic prompts
sampled from XSTest (Röttger et al.,
2023), and 25 normal prompts from
Alpaca. As illustrated in Fig. 3,
the averaged ∥Kt(x′, x)∥F between
toxic and seemingly toxic prompts
is particularly high during the whole
safety alignment process. Moreover,
the value of ∥Kt(x′, x)∥F remains
relatively stable , indicating that
standard SFT does not alter the
similarity between prompts. Conse-
quently, when SFT is performed on
datasets that include (toxic prompt,
refusal response) pairs, the refusal
probability for seemingly toxic prompts inevitably increases, since their similarity to toxic prompts,
as measured by ||Kt(x′, x)||F , is kept relatively stable and high.

5 FIX WITH CONTRASTIVE REFINEMENT

Prior works (Bianchi et al., 2023; Cao et al., 2025; Wang et al., 2024) often assume that features
can be linearly separated, but they do not explicitly reduce cross-class kernel similarity. We argue
that effectively addressing the over-refusal issue requires fundamentally reducing the high similarity
Kt between seemingly toxic and truely toxic prompts in base LLMs. Building on this insight, we
reformulate safety alignment as a two-stage process. In the first stage, we introduce DCR, which
equips the model with the ability to distinguish between seemingly toxic and truly toxic prompts
through contrastive learning. The second stage then applies a standard safety alignment procedure
on these disentangled representations.

Proposition 1. Let hx′ = h(ℓ)(x′), hx = h(ℓ)(x). Under assumptions (A1)–(A4) in Sec. A.7

||Kt(x′, x)||F ≤ cℓ h
⊤
x′Qℓhx +

√
cℓ τℓ

(
∥Gx′∥F + ∥Gx∥F

)
+ τ2ℓ + ∆x′x,

where Qℓ ⪰ 0 is defined by (A2), τℓ upper-bounds ∥H0(·)∥F (A4), and

∆x′x = O
(
ε(∥hx′∥2 + ∥hx∥2) + ε2

)
arises from the (A2) linearization. In particular, if the tail is frozen (τℓ = 0),

||Kt(x′, x)||F ≤ cℓ h
⊤
x′Qℓhx + ∆x′x.

Thus any contrastive loss at layer ℓ that decreases the Qℓ-bilinear similarity h⊤
x′Qℓhx for negative

pairs strictly decreases the Kt(x′, x) coupling up to the small remainder.

In the DCR stage, contrastive learning is applied to intermediate activations, while similarity be-
tween prompts Kt(x′, x) is defined in gradient space (Sec. 3.2). To connect these two views, we
establish a theoretical relationship between intermediate activations and Kt(x′, x). Specifically,

5
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Proposition 1 shows that the similarity measure ||Kt(x′, x)||F is bounded by cℓh
⊤
x′Qℓhx + ∆x′x,

where hx′ and hx are activations at layer ℓ, and Qℓ acts like a similarity-weighting operator that
determines how strongly two prompts are coupled. We provide the intuition behind the four fun-
damental assumptions (A1–A4) that establish this bound below. The formal definition and detailed
proof are provided in Sec. A.7. This result implies that any contrastive learning method that reduces
the bilinear similarity term cℓh

⊤
x′Qℓhx will effectively decrease the similarity between prompts.

Importantly, this stage imposes no additional requirements on the subsequent safety alignment pro-
cedure.

A1 Bounded Tail Sensitivity: Assumes the deeper layers (”tail”) of the model respond pre-
dictably without wildly overreacting to small changes in the hidden activations, ensuring
bounded output change.

A2 Local Linearity: Assumes that around the contrastive learning stage, the model’s complex
gradient updates can be approximated as a simpler linear transformation of the activations,
simplifying the analysis.

A3 Mild Tail Update: Assumes that the later layers are updated minimally or frozen during
the contrastive stage (which is true in our implementation), ensuring the stability of the
feature space being learned.

A4 Bounded Feature Norm: Assumes that the hidden feature vectors (activations) are of a
reasonable size, preventing numerical instability or unbounded growth in the similarity
measure.

We adopt Circle loss (Sun et al., 2020) for the contrastive stage and Safety-Tuned LLaMAs (Bianchi
et al., 2023)—a SFT based method—for the safety alignment stage. Circle loss is particularly suit-
able here because it adaptively pushes negative pairs (from different subsets) apart with a strength
proportional to their difficulty: harder pairs receive stronger penalties, while easy pairs that the
model can already distinguish are not over-penalized. A formal proof that Circle loss reduces the
Qℓ-bilinear similarity is provided in Sec. A.8.

In our implementation, the contrastive dataset is divided into two subsets: Dseemingly (seemingly toxic
prompts) and Dtoxic (toxic prompts). Pairs sampled from the same subset are treated as positives,
while pairs across subsets are treated as negatives. To ensure both stable training and the consistent
presence of negative pairs in each batch, we employ a weighted sampler that balances examples from
the two subsets. During the DCR stage, Circle loss is applied at an intermediate layer ℓ, pushing
cross-subset features apart. At the same time, the parameters of the LLM beyond layer ℓ are frozen,
i.e., the tail is fixed (τℓ = 0). This design directly reduces K(x, x′) between seemingly toxic and
toxic prompts. In the subsequent safety alignment stage, when the model learns refusal responses
on toxic prompts, the induced increase in refusal probability does not transfer to seemingly toxic
prompts. As a result, the over-refusal issue is fundamentally mitigated.

6 EXPERIMENTAL SETUP

Models. We evaluate the generalization and robustness of our method on three representative base
LLMs: Qwen2.5-1.5B (Team, 2024), Qwen2.5-7B (Team, 2024), and LLaMA-3-8B (Dubey et al.,
2024). We use greedy decoding for text generation.

Training Datasets. For the contrastive learning stage, we use 250 seemingly toxic prompts from
XSTest (Röttger et al., 2023) and 500 toxic prompts randomly sampled from HH-RLHF (Bai et al.,
2022). For the SFT safety-alignment stage, we use 20k normal instruction-following examples
randomly sampled from Alpaca (Taori et al., 2023), together with 1k toxic prompts from HH-RLHF
paired with safe responses generated by GPT-4o. Note that there is no overlap between the 500 toxic
prompts used in contrastive learning and the 1k toxic prompts used in safety alignment. Please refer
to Sec. A.2 and Sec. A.3 for hyperparameter settings.

Baseline Methods. Our most direct baseline is Safety-Tuned LLaMAs (STL) (Bianchi et al., 2023),
which fine-tunes base LLMs on a mixture of normal instruction-following data and toxic prompts
paired with safe rejection responses. We also consider an enhanced version, STL-aug, where we
augment the SFT dataset with seemingly toxic prompts from XSTest (Röttger et al., 2023). In ad-
dition, we compare against two recent state-of-the-art methods designed to mitigate over-refusal:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SCANS (Cao et al., 2025) and Surgical (Wang et al., 2024). SCANS uses an external prompt classi-
fier, while Surgical aims to remove over-refusal vectors from the internal activations of LLMs. For
fair comparison, we first fine-tune the base models using the same SFT safety-alignment dataset
described earlier, and then apply these two methods to address over-refusal. Please refer to Sec. A.4
for hyperparameter settings of baseline methods.

Over-Refusal Evaluation. To assess the tendency of models to over-refuse benign queries, we
employ five established benchmarks:

• XSTest (Röttger et al., 2023): 250 seemingly-toxic prompts, hand-crafted and expert-verified.
• CoCoNot (Brahman et al., 2024): 379 seemingly-toxic prompts, built from hand-crafted seeds,

augmented with GPT-4, and verified by both LLMs and humans.
• OR-Bench (Cui et al., 2024): 1,319 seemingly-toxic prompts, auto-generated by Mixtral 8×7B

from toxic-word seeds and verified with multiple LLMs.
• OKTest (Shi et al., 2024): 300 seemingly-toxic prompts, auto-generated by GPT-4 with toxic-

word seeds and manually reviewed and lightly edited.
• PHTest(An et al., 2024): 3,269 seemingly-toxic prompts, auto-generated using the controllable

generation tool AutoDAN and verified with GPT-4.

These datasets, either manually annotated or automatically curated via different LLM-based
pipelines, cover a wide range of seemingly toxic but benign prompts. Evaluation on XSTest consti-
tutes an in-distribution experiment, as it overlaps with training of DCR or baseline methods. Follow-
ing standard practice (Röttger et al., 2023), we measure rejection rates using a rejection-word filter
and report the compliance rate—the fraction of benign prompts receiving substantive, non-refusal
responses. Of XSTest’s 550 prompts, we use the 250 seemingly toxic prompts for over-refusal
evaluation and exclude the 300 toxic prompts.

Safety Evaluation. Following Safety-Tuned LLaMAs (Bianchi et al., 2023), we evaluate our fine-
tuned models on five harmfulness benchmarks—I-Malicious, I-CoNa, I-Controversial, HarmfulQ,
and AdvBench (Zou et al., 2023)—covering hateful speech, controversial topics, malicious instruc-
tions, and common jailbreak prompts. Together, they include 938 toxic prompts for broad coverage.
Using LLaMA-3-8B-Guard (Dubey et al., 2024), we report the defense success rate, i.e., the fraction
of responses judged safe.

General Ability and Response Quality. We assess model general ability using the Evaluation Har-
ness on multiple-choice benchmarks, including MMLU (Hendrycks et al., 2020), ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), and
PIQA (Bisk et al., 2020), reporting accuracy computed from predicted probabilities for options
“A”–“D”. To evaluate response quality, we use AlpacaEval (Dubois et al., 2024; Li et al., 2023;
Dubois et al., 2023), which employs a LLM annotator to compare responses of the tested model
against a reference (STL) model; higher selection rates indicate better performance. In our experi-
ments, GPT-4o-mini serves as the annotator, and we report the tested models’ win rates.

7 RESULTS

7.1 MITIGATING OVER-REFUSAL

As shown in Table 1, our method DCR achieves the highest compliance rate across all three LLMs
on nearly all over-refusal benchmarks, covering both in-distribution and out-of-distribution settings,
while maintaining a comparable safety level as measured by the average defense success rate on
five harmfulness benchmarks. The only difference between our DCR and STL is the addition of
a contrastive refinement stage before the SFT safety alignment. The substantial improvement over
STL highlights the critical role of this stage. Compared with STL-aug, which incorporates seem-
ingly toxic prompts directly into the SFT training data, our approach instead leverages them in
contrastive learning. The consistent gains over STL-aug show that contrastive refinement more ef-
fectively teaches the model to distinguish seemingly toxic prompts from truly toxic ones, enabling
it to reject only harmful inputs and thereby avoid over-refusal.

While our approach slightly reduces the models’ general abilities—as measured by accuracy on
knowledge-intensive QA tasks—it delivers higher response quality than Surgical and SCANS on
Qwen2.5-1.5B and Qwen2.5-7B, and comparable quality on LLaMA-3-8B. Both Surgical and
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Table 1: Evaluation results on Qwen2.5-1.5B, Qwen2.5-7B, and LLaMA-3-8B.

Seemingly Toxic Safety QA quality

XS CoCo OR OK PH MMLU ARC e ARC c OpQA PIQA

Qwen2.5-1.5B

STL 0.73 0.88 0.72 0.75 0.75 0.72 0.59 0.77 0.48 0.41 0.76 50.0
STL-aug 0.75 0.90 0.69 0.76 0.75 0.77 0.59 0.77 0.48 0.41 0.76 50.1
Surgical 0.81 0.84 0.54 0.78 0.54 0.78 0.59 0.76 0.48 0.40 0.76 40.2
SCANS 0.83 0.92 0.87 0.84 0.87 0.65 0.59 0.75 0.47 0.39 0.76 47.0
DCR (ours) 0.98 0.98 0.83 0.86 0.86 0.81 0.58 0.75 0.47 0.38 0.76 51.8

Qwen2.5-7B

STL 0.66 0.87 0.34 0.87 0.80 0.95 0.71 0.77 0.51 0.47 0.80 50.0
STL-aug 0.74 0.89 0.53 0.85 0.83 0.95 0.72 0.75 0.50 0.47 0.80 49.9
Surgical 0.93 0.96 0.71 0.96 0.89 0.93 0.71 0.77 0.51 0.47 0.80 35.7
SCANS 0.84 0.92 0.50 0.97 0.91 0.94 0.70 0.73 0.50 0.44 0.79 45.5
DCR (ours) 0.93 0.96 0.71 0.94 0.91 0.94 0.70 0.83 0.59 0.44 0.79 45.8

LLaMA-3-8B

STL 0.79 0.94 0.59 0.89 0.85 0.93 0.61 0.80 0.56 0.45 0.82 50.0
STL-aug 0.84 0.96 0.59 0.87 0.85 0.91 0.60 0.81 0.55 0.45 0.82 49.7
Surgical 0.72 0.90 0.53 0.89 0.85 0.91 0.60 0.80 0.56 0.45 0.81 46.2
SCANS 0.84 0.97 0.86 0.80 0.90 0.88 0.60 0.80 0.56 0.44 0.82 45.5
DCR (ours) 0.93 0.99 0.85 0.92 0.90 0.91 0.59 0.78 0.51 0.39 0.79 46.0

SCANS directly add or ablate “refusal” vectors in intermediate representations, which significantly
degrades response quality. Moreover, these methods rely on the assumption that internal features
can reliably separate toxic and seemingly toxic prompts. However, as analyzed in Sec. A.9, classi-
fication accuracy using internal features from the latest LLMs remains unsatisfactory, limiting the
reliability of these approaches. By design, our contrastive refinement framework does not explicitly
preserve internal knowledge, so a slight reduction in stored factual knowledge is expected. Explor-
ing strategies to better preserve internal knowledge while maintaining strong over-refusal mitigation
is an important direction for future work.

7.2 REFUSAL BEHAVIOR TRACKING DURING SFT
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Figure 4: Evolution of defense success
and seemingly toxic compliance rates during
safety alignment. Each point marks a train-
ing checkpoint, with lighter colors for earlier
stages and darker colors for later ones.

To further examine refusal behavior during
SFT—with DCR (ours) and without DCR
(STL)—we track the rejection rates of 250
seemingly toxic prompts and 300 toxic prompts
from XSTest on Qwen2.5-1.5B shown in Fig. 4.
At the beginning of safety alignment, the model
shows a high compliance rate but a low safety
level (i.e., a low toxic rejection rate). As training
progresses and the model is fine-tuned with more
toxic prompts paired with safe rejection responses,
the defense success rate improves. However, under
the STL training scheme, the compliance rate on
seemingly toxic prompts drops sharply, whereas
our method is able to maintain a high compliance
rate throughout. This observation demonstrates that
DCR successfully enables the LLM to distinguish
seemingly toxic prompts from truly toxic ones
so that the LLM could learn to only reject toxic
prompts.

As discussed in Sec. 4.2, although an LLM may not explicitly refuse to answer certain prompts,
the rejection probability can still increase. This probability captures the model’s latent tendency to
refuse and, more specifically, can be interpreted as indirectly reflecting the relative rank of the refusal
candidate among all possible responses. A high rejection probability indicates that, even if the
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model currently produces a non-refusal response, it remains vulnerable—small perturbations to the
input or decoding process may cause the refusal candidate to surface. This property is particularly
critical when the inputs are seemingly toxic prompts. Using 250 seemingly toxic prompts and 300
toxic prompts from XSTest, along with 300 general prompts from Alpaca, we compare STL and
our method DCR on Qwen2.5-1.5B. As shown in Fig. 5(a), STL leads to a sharp rise in rejection
probability for all three prompt types, including general prompts. In contrast, our method increases
rejection probability only for toxic prompts Fig. 5(b), while keeping seemingly toxic and general
prompts stable. These results indicate that contrastive learning enhances robustness and mitigates
over-refusals during safety alignment.
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(a) Safety alignment without DCR
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Figure 5: Rejection probability comparison during training.

7.3 EFFECT OF CONTRASTIVE LEARNING ON ||Kt||F

The core idea of our method is to decouple the strong association between toxic and seemingly toxic
prompts. As discussed in Sec. 4.2, the similarity between prompts, measured by ||Kt(x′, x)||F ,
can be effectively reduced through contrastive learning. In this section, we quantify ||Kt(x′, x)||F
among three categories of prompts: seemingly toxic, toxic, and general. Specifically, we sampled 25
prompts from each category, with toxic and seemingly toxic prompts drawn from XSTest and gen-
eral prompts from the Alpaca dataset. The approximation procedure for computing ||Kt(x′, x)||F
follows the method described in Sec. A.6. For each category pair, we report the average value of
||Kt(x′, x)||F . Fig. 6 demonstrates that the similarity between seemingly toxic and toxic prompts
is substantially reduced after contrastive learning. While other pairwise similarities also change
slightly due to parameter updates in the LLM, these shifts are relatively minor. An important obser-
vation is that the similarity between seemingly toxic and general prompts consistently exceeds that
between general prompts themselves, both in the base model and after contrastive learning. This
phenomenon may be attributed to imperfections introduced during pre-training. In principle, our
contrastive learning approach could also reduce the similarity between seemingly toxic and general
prompts, such that their similarity would fall below that observed between general prompts them-
selves. However, this is not the primary objective of the present work. The consequences of this
imperfection are not yet fully understood addressing such imperfections arising from pre-training
represents an important direction for future research.

8 CONCLUSION

In this work, we systematically investigate the origin of the over-refusal issue in safety alignment. By
analyzing the learning dynamics, we show that over-refusal arises from the high similarity learned
between seemingly toxic and truly toxic prompts during the pretraining of base models. To address
this, we propose DCR, which employs contrastive learning to break this incorrect similarity. Both
theoretical analysis and empirical results demonstrate that DCR effectively mitigates over-refusal
while preserving safety and general ability. Our study is limited by the scale of models and public
benchmarks available for experimentation. We hope future work, especially with larger LLMs in
industrial or consortium settings, will extend and further validate these findings.
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(a) Base Model
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Figure 6: Mean values of Kt(x′, x) across different prompt types. A higher value indicates greater
similarity between prompt types, implying that learning on one type is more likely to transfer to the
other. DCR effectively reduces the Kt(x′, x) between seemingly toxic (S-Toxic) and toxic prompts.
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Xinpeng Wang, Chengzhi Hu, Paul Röttger, and Barbara Plank. Surgical, cheap, and flexi-
ble: Mitigating false refusal in language models via single vector ablation. arXiv preprint
arXiv:2410.03415, 2024.

Zhehao Zhang, Weijie Xu, Fanyou Wu, and Chandan K Reddy. Falsereject: A resource for improv-
ing contextual safety and mitigating over-refusals in llms via structured reasoning. arXiv preprint
arXiv:2505.08054, 2025.

11

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/stanford_alpaca


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiachen Zhao, Jing Huang, Zhengxuan Wu, David Bau, and Weiyan Shi. Llms encode harmfulness
and refusal separately, 2025. URL https://arxiv.org/abs/2507.11878.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

12

https://arxiv.org/abs/2507.11878


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ETHICAL CONSIDERATIONS AND USE OF LARGE LANGUAGE MODELS

This paper contains examples and model-generated outputs that may be considered offensive. These
instances are included solely for research purposes, as they are necessary to evaluate and analyze the
safety alignment of large language models (LLMs). In addition, LLMs were employed as auxiliary
tools to polish the writing of the paper. Their use was limited to language refinement and formatting
support; all substantive ideas, experiments, and analyses were developed and verified by the authors.
We open-source our code to ensure reproducibility3.

A.2 CONTRASTIVE LEARNING DETAILS

We optimize the base models with the Circle Loss using margin m = 0.25 and scale γ = 16.
To stabilize learning and keep the general ability, we include an auxiliary negative log-likelihood
(NLL) regularizer with weight λ = 0.001. The batch size is 32 and the learning rate is 1 × 10−4.
For Qwen2.5-1.5B and Qwen2.5-7B, we set the contrastive learning target layer to 13, while for
LLaMA-3-8B we use layer 15. We do not further tune this hyperparameter due to limited compu-
tational resources. The intuition is that targeting very shallow layers would not effectively change
the Kt(x′, x) similarity between seemingly toxic and truly toxic prompts according to Section 5. In
contrast, targeting very deep layers would involve optimizing a large number of parameters, which
can excessively influence the model’s general ability and response quality. Selecting an intermediate
layer therefore provides a balanced trade-off between effectiveness and stability. For model-specific
schedules, we run 3 epochs for Qwen2.5-1.5B and Llama-3-8B, and 2 epochs for Qwen2.5-7B.

A.3 SAFETY-ALIGNMENT FINETUNING DETAILS

For the SFT safety-alignment experiments, we follow the official chat templates provided for each
model family, as shown below.

Qwen2.5 template.

System: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
User: {user message}
Assistant: {assistant response}

LLaMA-3-8B template.

User: {user message}
Assistant: {assistant response}

For all SFT safety-alignment experiments, we adopt LoRA fine-tuning. The training batch size is
128, with gradient accumulation over 32 steps (micro-batch size of 4). We set the learning rate to
1× 10−4, LoRA rank r = 8, α = 32, and dropout 0.05. We fine-tune Qwen2.5-1.5B for 3 epochs,
and Qwen2.5-7B and LLaMA-3-8B for 4 epochs. A warmup phase is applied to 3% of the total
training steps, and the optimizer used is AdamW.

A.4 BASELINE METHODS HYPERPARAMETER

Both SCANS Cao et al. (2025) and Surgical Wang et al. (2024) are activation-based steering methods
that add or ablate refusal vectors on intermediate activations to control model refusal behaviors.
These vectors are extracted from either toxic or seemingly toxic datasets. For SCANS, we follow
the default dataset and hyperparameter settings from the original paper, but tune the weight of the
added refusal vector to achieve safety levels comparable to other methods. Specifically, we set the
weight to 1.0 for Qwen2.5-1.5B, 3.0 for Qwen2.5-7B, and 0.1 for LLaMA-3-8B. For Surgical, we
also adopt the default settings from the original paper, while tuning the weights of both the toxic

3https://anonymous.4open.science/r/DCR-4271/
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refusal vector (added) and the seemingly toxic refusal vector (ablated). For Qwen2.5-1.5B, these
weights are 0.1 (toxic) and 0.5 (seemingly toxic); for Qwen2.5-7B, 0.1 and 0.1; and for LLaMA-3-
8B, 0.5 and 0.3, respectively.

A.5 REFUSAL RESPONSE PROBABILITY

We calculate the refusal response probability by aggregating the generation probabilities of all
rejection responses in a predefined set. Let S = {y1, y2, . . . , yK} denote the set of rejection response
candidates. For a given prompt x, the refusal probability is

Prefuse(x) =
∑
y∈S

Pθ(y | x).

Here, Pθ(y | x) is the model’s probability of generating the sequence y = (y1, . . . , yT ) conditioned
on input x. In the context of an autoregressive LLM, this sequence probability is computed as

Pθ(y | x) =

T∏
t=1

Pθ(yt | x, y<t),

where yt is the t-th token in the candidate response and y<t denotes all preceding tokens.

Thus, the refusal probability Prefuse(x) measures the total probability mass the model assigns to all
candidate refusal responses when prompted with x. The set S used in this paper is listed below.

No, No.
I cannot I can’t
I’m not able I am not able
It is not appropriate It’s not appropriate
It is not accurate It’s not accurate
I am not sure that it’s
appropriate

I’m not sure that it’s
appropriate

It is not ethical It’s not ethical
As an AI I am an AI language model
I apologize I am really sorry
I’m really sorry My apologies
I’m sorry, but as an AI
language model,

I’m sorry, but I cannot

I cannot fulfill your
request

I cannot fulfill this
request

I’m just an AI, I don’t
have access to

I’m just an AI, it’s not
within my programming
or ethical guidelines to
provide

It is not recommended to It is illegal
I am not promoting any
illegal or harmful
activities

I do not have access to
information

I’m not able to provide you
with

A.6 APPROXIMATION OF Kt(x′, x)

Recall from Eq. (2) that the Kt(x′, x) block is defined as

Kt(x′, x) =
(
∇θz(x

′)
) (

∇θz(x)
)⊤ ∈ RV×V ,

where z(x) are the logits of the network. For large language models, explicitly forming the Jacobians
∇θz(x

′) ∈ RV×|θ| and ∇θz(x) ∈ RV×|θ| is infeasible due to the parameter dimension |θ|. We
therefore approximate Kt(x′, x) without constructing Jacobians, using a column-wise VJP → JVP
finite-difference scheme.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Token/position selection. Let So ⊆ {1, . . . , V } be the set of output tokens selected at position po
of x′, and Su ⊆ {1, . . . , V } at position pu of x. In practice, So and Su are chosen as top-k tokens
according to model logits. We seek to approximate the submatrix Kt

So,Su
(x′, x) ∈ R|So|×|Su|.

Approximating one column. Fix a token i ∈ Su at position pu. Let ei ∈ RV be the one-hot basis
vector. The i-th column of Kt(x′, x) is(

Kt(x′, x)
)
:,i

= ∇θz(x
′)
(
∇θz(x)

⊤ei
)
.

1. VJP (vector–Jacobian product). Define the scalar logit s(θ) = zi(x; θ) at (pu, i). We
compute

w ∇θs(θ) = ∇θz(x)
⊤ei,

via backpropagation with respect to the chosen parameter subset.

2. JVP (Jacobian–vector product) via finite differences. We approximate Jow =
∇θz(x

′)w by central difference. Evaluate the logits on x′ at perturbed parameters:

z+(x
′) = z(x′; θ + εw), z−(x

′) = z(x′; θ − εw).

Then

Jow ≈ z+(x
′)− z−(x

′)

2ε
,

which is exactly the i-th column of Kt(x′, x).

3. Row slicing. Restrict this vector to indices So to obtain the sub-column (Kt
So,Su

(x′, x)):,i.

Building the block. Repeating the above for all i ∈ Su yields Kt
So,Su

(x′, x). In practice: (i) we
select top-k tokens at the last position of x′ and x. Therefore So = Su = 0; (ii) restrict gradients
to a parameter subset (e.g., last N layers + lm head) to reduce cost; (iii) use a finite-difference step
ε = 10−3 for numerical stability.

Similarity measure. To quantify the coupling between x′ and x, we report the Frobenius norm

∥Kt
So,Su

(x′, x)∥F ,

and, for comparability across runs, we use the normalized form

∥Kt
So,Su

(x′, x)∥F
∥Kt

So,So
(x′, x′)∥F

.

A.7 PROOF OF PROPOSITION 1

For an input x,

z0(x) ∈ RV , J0(x) ≡ ∇θz0(x) ∈ RV×P ,

where z0(x) is the pre-softmax logit vector at position 0. Split parameters at layer ℓ. By the chain
rule,

J0(x) =
[
Jg(hx)Gx , H0(x)

]
,

with hx = h(ℓ)(x) ∈ Rd, Jg(hx) ∈ RV×d the tail Jacobian, Gx = ∇θ<h
(ℓ)(x) ∈ Rd×P< , and

H0(x) = ∇θ>z0(x) ∈ RV×P> .

The position-0 eNTK block for (x′, x) is

Kt(x′, x) = J0(x
′)J0(x)

⊤ ∈ RV×V .
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Assumptions (as in the main text).

(A1) (Uniform tail bound) suph ∥Jg(h)∥22 ≤ cℓ.

(A2) (Head NTK linearization) For each x,

vec(Gx) = Tℓhx + rx, ∥rx∥2 ≤ ε,

with Qℓ = T⊤
ℓ Tℓ ⪰ 0. Equivalently,

⟨Gx′ , Gx⟩F = h⊤
x′Qℓhx +O

(
ε(∥hx′∥2 + ∥hx∥2) + ε2

)
,

and
∥Gx∥2F = h⊤

x Qℓhx +O
(
ε∥hx∥2 + ε2

)
.

(A3) (Mild tail change) θ> is frozen or updated with a tiny learning rate so that (A1) continues
to hold.

(A4) (Bounded tail Jacobian) supx ∥H0(x)∥F ≤ τℓ.

Step 1: Four-term expansion. Expanding the product gives

Kt(x′, x) = Jg(hx′)Gx′G⊤
x Jg(hx)

⊤

+ Jg(hx′)Gx′H0(x)
⊤ +H0(x

′)G⊤
x Jg(hx)

⊤ +H0(x
′)H0(x)

⊤.

Step 2: Trace bound by norms. ⟨A,B⟩F ≤ ∥A∥F ∥B∥F and ∥AB∥F ≤ ∥A∥2∥B∥F , we obtain

∥Kt(x′, x)∥F ≤ cℓ∥Gx′∥F ∥Gx∥F +
√
cℓ τℓ

(
∥Gx′∥F + ∥Gx∥F

)
+ τ2ℓ . (1)

Step 3: Relating ∥Gx∥F to Qℓ-metric. By (A2),

∥Gx∥2F = h⊤
x Qℓhx +O

(
ε∥hx∥2 + ε2

)
,

⟨Gx′ , Gx⟩F = h⊤
x′Qℓhx +O

(
ε(∥hx′∥2 + ∥hx∥2) + ε2

)
.

Step 4: Polarization inequality. Applying AM–GM,

∥Gx′∥F ∥Gx∥F ≤ 1
2

(
∥Gx′∥2F + ∥Gx∥2F

)
.

Furthermore,

1
2

(
h⊤
x′Qℓhx′ + h⊤

x Qℓhx

)
= h⊤

x′Qℓhx + 1
4∥Q

1/2
ℓ (hx′ − hx)∥22 ≥ h⊤

x′Qℓhx.

Thus
∥Gx′∥F ∥Gx∥F ≤ h⊤

x′Qℓhx +O
(
ε(∥hx′∥2 + ∥hx∥2) + ε2

)
.

Step 5: Final bound. Plugging into (1) yields

∥Kt(x′, x)∥F ≤ cℓ h
⊤
x′Qℓhx +

√
cℓ τℓ

(
∥Gx′∥F + ∥Gx∥F

)
+ τ2ℓ +∆x′x,

with
∆x′x = O

(
ε(∥hx′∥2 + ∥hx∥2) + ε2

)
.

If the tail is frozen (τℓ = 0), this simplifies to

∥Kt(x′, x)∥F ≤ cℓ h
⊤
x′Qℓhx +∆x′x.
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A.8 PROOF OF CIRCLE LOSS

We instantiate the contrastive objective with Circle Loss , defined as

Lcircle =
1

B

B∑
i=1

log

(
1 +

∑
p∈P(i)

exp
(
− γ α(i)

p (sip −∆p)
) ∑
n∈N (i)

exp
(
γ α(i)

n (sin −∆n)
))

. (4)

Where,

• B is the mini-batch size; indices i run over samples in the batch.

• hi ∈ Rd is the feature of sample i at the layer where the loss is applied; ĥi = hi/∥hi∥2 is
its L2-normalized version.

• sij := ⟨ĥi, ĥj⟩ ∈ [−1, 1] is the cosine similarity between samples i and j.

• P(i) = { p ̸= i : yp = yi } (positives: same subset label, i.e., both in Dseemingly or both in
Dtoxic); N (i) = {n : yn ̸= yi } (negatives: one from each subset).

• ∆p = 1−m and ∆n = m are the positive/negative target centres with margin m ∈ (0, 1).

• α
(i)
p = [∆p − sip]+, α(i)

n = [sin −∆n]+ are adaptive weights; only violating pairs (posi-
tives that are too dissimilar or negatives that are too similar) receive nonzero weight. Here
[·]+ = max(·, 0).

• γ > 0 is a scale (temperature) that accentuates hard pairs.

Circle loss modifies the hidden representations h(ℓ) so that negative pairs are farther apart in the
raw inner product. Since Qℓ ⪰ 0 is positive semidefinite, we have

h⊤
x′Qℓhx ≤ λmax(Qℓ) ∥hx′∥ ∥hx∥,

where λmax(Qℓ) is the largest eigenvalue of Qℓ. More importantly, when hx′ and hx move toward
orthogonality in the raw inner product (as enforced by circle loss for negative pairs), they also move
toward orthogonality in any PSD-weighted inner product. Therefore, decreasing h⊤

x′hx via circle
loss also decreases h⊤

x′Qℓhx, unless Qℓ has a highly pathological structure. □

Under this objective, any negative pair (i, n) with sin > ∆n is pushed to lower similarity (driving
cross-subset similarities down), while any positive pair (i, p) with sip < ∆p is pulled together
(improving within-subset compactness). Consequently, K(x, x′) for cross-subset pairs (seemingly-
toxic vs. toxic) decreases, whereas K(x, x′) within each subset (seemingly-to-seemingly and toxic-
to-toxic) increases. This contraction of cross-class coupling confines the learned increase in refusal
probability to the toxic subset, preventing spillover to seemingly toxic prompts. Please refer to
Sec. A.2 for the hyperparameter settings.
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Figure 7: K-means unsupervised classification accuracy of XSTest with each layer’s activations.
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Layer 0 Layer 7 Layer 13 Layer 20 Layer 27

Qwen2.5-1.5B

Qwen2.5-7B

LLaMA-3-8B

Figure 8: Visualization of intermediate activation across layers. The orange points represent the ac-
tivations of seemingly toxic prompts, the blue points represent the activations of truly toxic prompts.

A.9 ANALYSIS OF INTERMEDIATE ACTIVATION

The performance of SCANS Cao et al. (2025) and Surgical Wang et al. (2024) largely depends on the
degree of separability between the features of seemingly toxic and truly toxic prompts. To examine
this, we visualize the intermediate representations of XSTest, which contains 250 seemingly toxic
prompts and 300 truly toxic prompts, from the safety-aligned models described in Section 6. As
shown in Fig. 8, the activations are projected into two dimensions using MDS Torgerson (1952),
which preserves the global structure of the features. To further qualitatively assess separability,
we conduct unsupervised classification at each layer: k-means clustering is applied to the layer
activations, and the predicted clusters are aligned to the ground-truth labels using the Hungarian
algorithm. The overall accuracy is then calculated as the proportion of correctly aligned predictions.
As illustrated in Fig. 7, the maximum classification accuracy across all layers remains below 76%,
indicating that it is inherently difficult to separate seemingly toxic prompts from toxic prompts based
solely on intermediate activations. Consequently, the performance of SCANS and Surgical cannot
be consistently guaranteed.

A.10 ADDITIONAL RESULTS

A.10.1 REFUSAL PROBABILITY OF QWEN2-7B AND LLAMA3-8B

As a supplement to Fig. 1(b), we provide additional results regarding the refusal probabilities of
Qwen2-7b and Llama3-8b, using the same three prompts in Fig. 9. We observe a consistent trend:
the refusal probabilities for both toxic and seemingly toxic prompts fluctuate synchronously during
safety alignment, while the refusal probability for normal prompts exhibits only minor fluctuations

A.10.2 COMPUTATION COST OF DCR

We evaluate the computational efficiency of the DCR method by comparing its GPU-hour and GPU-
memory requirements against the safety-alignment stage across the three tested LLMs. All experi-
ments were conducted using identical hardware configurations.

As detailed in Table 2, the additional training time introduced by DCR is negligible compared to the
overall safety-alignment process. Regarding memory usage, DCR currently employs full-parameter
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Figure 9: Refusal response probability of three prompt examples: Normal prompt(red)-“Describe
what happens when a hurricane forms.”; Seemingly toxic(green)-“What steps should I take to elim-
inate jobs at my company?”; Toxic(blue)-“What’s the process for terminating people I don’t like?”

training with a batch size of 32, whereas the safety-alignment stage utilizes LoRA-based fine-tuning
(batch size of 4 with gradient accumulation over 32 steps). This configuration difference accounts
for the higher peak memory usage observed in DCR. However, DCR is architecturally compatible
with LoRA; integrating low-rank adaptation into the DCR workflow remains a viable direction for
future work to significantly reduce memory requirements.

Table 2: Comparison of computational resources (time and memory) for DCR and Alignment across
different models.

Model GPU Hours GPU Memory

DCR Alignment DCR Alignment

Qwen2.5-1.5B < 1 min ∼ 18 min ∼ 18 GB ∼ 29 GB
Qwen2.5-7B < 1 min ∼ 21 min ∼ 81 GB ∼ 50 GB
Llama3-8B < 1 min ∼ 24 min ∼ 82 GB ∼ 52 GB

A.10.3 ABLATION STUDY ON CONTRASTIVE TRAINING EPOCHS

To determine the optimal stopping criterion and assess how the strength of contrastive learning
influences performance, we conducted an ablation study on Qwen2.5-1.5B by varying the training
duration (1, 2, 3, and 5 epochs).

As detailed in Table 3, training for 3 epochs achieves the optimal balance, yielding the highest
compliance rate across all five over-refusal benchmarks while preserving strong general capabilities
and response quality. Our analysis indicates that fewer epochs (1–2) are insufficient to fully decouple
seemingly toxic prompts from toxic ones, resulting in residual over-refusal. Conversely, excessive
training (e.g., 5 epochs) induces significant shifts in mid-layer activations, which negatively impacts
the model’s general ability. Consequently, we adopted a setting of 2–3 epochs for the Qwen2.5-7B
and Llama3-8B experiments reported in the main text.

Table 3: Ablation study on the number of contrastive training epochs (Qwen2.5-1.5B). The optimal
balance is achieved at 3 epochs.

Seemingly Toxic Safety QA quality

XS CoCo OR OK PH MMLU ARC e ARC c OpQA PIQA

1 epoch 0.90 0.93 0.80 0.81 0.86 0.81 0.60 0.77 0.47 0.40 0.76 50.3
2 epochs 0.96 0.96 0.80 0.84 0.86 0.82 0.58 0.76 0.47 0.39 0.76 51.4
3 epochs 0.98 0.98 0.93 0.86 0.86 0.81 0.58 0.75 0.47 0.38 0.76 51.8
5 epochs 0.99 0.99 0.85 0.90 0.90 0.80 0.58 0.70 0.44 0.37 0.75 44.3
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A.10.4 ABLATION STUDY ON CONTRASTIVE SAMPLING RATIO

We investigate the effect of the sampling ratio between toxic and seemingly toxic prompts within
the contrastive training dataset. To conduct this analysis, we used the Qwen2.5-1.5B model and
kept the 250 seemingly toxic prompts from our main experiments as a fixed component. We then
varied the number of toxic prompts to create sampling ratios of 1:1, 2:1, 3:1, and 5:1. Table 4
summarizes the performance across these settings. The results show that optimal performance is
achieved when the ratio of toxic to seemingly-toxic prompts is maintained between 2:1 and 3:1.The
observed performance degradation outside this range is due to two distinct mechanisms:

Insufficient Coverage: When the ratio decreases below 2:1, the coverage of toxic prompts becomes
insufficient. This prevents the effective decoupling of the gradient-space similarity between the two
classes, which leaves the over-refusal issue unresolved.

Loss Dominance: Conversely, an excessively high ratio (e.g., 5:1) leads to the total loss being dom-
inated by toxic pairs. In this skewed scenario, most representation updates originate from the abun-
dant toxic examples, minimizing the contribution of the seemingly toxic samples necessary for fine-
grained separation.

Table 4: Ablation study on the toxic-to-seemingly-toxic sampling ratio during the contrastive train-
ing stage (Qwen2.5-1.5B).

Seemingly Toxic Safety QA quality

XS CoCo OR OK PH MMLU ARC e ARC c OpQA PIQA

1:1 0.85 0.93 0.76 0.85 0.80 0.80 0.59 0.75 0.46 0.41 0.76 49.7
2:1 0.98 0.98 0.93 0.86 0.86 0.81 0.58 0.75 0.47 0.38 0.76 51.8
3:1 0.96 0.96 0.80 0.84 0.84 0.80 0.58 0.71 0.45 0.39 0.75 53.8
5:1 0.92 0.95 0.79 0.80 0.82 0.79 0.59 0.70 0.43 0.39 0.74 49.1

A.10.5 MULTI-SOURCE EVALUATION FOR OVER-REFUSAL AND SAFETY LEVEL

To ensure the robustness and minimize bias in our safety assessment, we adopted an enhanced
evaluation protocol that mitigates reliance on single-source judgments, such as automated guard
models or keyword filters. This multi-faceted approach combines rule-based filtering with external
API-based and state-of-the-art LLM-based judging.

For measuring compliance across the five over-refusal benchmarks, the compliance rate in Table 5
is reported as three values separated by a slash:

• First Value: Results obtained from the traditional keyword filter (rule-based evaluation,
consistent with XSTest).

• Second Value: Results obtained using a GPT-4o Judge (LLM-based evaluation). We follow
the same automatic LLM-judge framework as in XSTest Röttger et al. (2023).

• Third Value: Results obtained using a GPT-5.1 Judge (LLM-based evaluation). We follow
the same automatic LLM-judge framework as in XSTest Röttger et al. (2023).

This tri-validation allows for cross-comparison between rule-based and LLM-based evaluation
frameworks, demonstrating the stability and consistency of over-refusal compliance across different
judgment types.

The overall safety score (the final column) is reported as two values separated by a slash:

• First Value: Results from the Llama Guard model (LLM-based safety classifier).
• Second Value: Results from the OpenAI Moderation API (external, binary safety classifi-

cation).

We found that while absolute safety scores may differ between the Llama Guard model and the Mod-
eration API, the relative performance ranking of the different safety alignment methods remains con-
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sistent. Our proposed DCR method continues to demonstrate superior comparative efficacy across
these different judging methodologies.

Table 5: Safety and Compliance performance comparison across methods using multi-source evalu-
ation. The five compliance columns (XS-PH) report compliance rate with three different evaluation:
Keyword Filter / GPT-4o Judge / GPT-5.1 Judge. The Safety column reports response safe rate with
two different evaluation: Llama Guard Model / OpenAI Moderation API.

Seemingly Toxic Safety

Method XS CoCo OR OK PH

STL 0.73/0.74/0.72 0.88/0.88/0.87 0.72/0.70/0.65 0.75/0.84/0.76 0.75/0.76/0.69 0.72/0.86
STL-aug 0.75/0.75/0.72 0.90/0.88/0.88 0.69/0.65/0.60 0.76/0.86/0.79 0.75/0.74/0.68 0.77/0.88
Surgical 0.81/0.73/0.79 0.84/0.79/0.84 0.54/0.46/0.50 0.78/0.74/0.90 0.54/0.48/0.55 0.78/0.87
SCANS 0.83/0.82/0.84 0.92/0.92/0.91 0.87/0.82/0.83 0.84/0.86/0.89 0.87/0.83/0.88 0.65/0.80
DCR (ours) 0.98/0.97/0.96 0.98/0.97/0.98 0.83/0.80/0.80 0.86/0.94/0.94 0.86/0.88/0.89 0.81/0.92
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