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ABSTRACT

Large language models (LLMs) aligned for safety often suffer from over-
refusal—the tendency to reject seemingly toxic or benign prompts by misclas-
sifying them as toxic. This behavior undermines models’ helpfulness and restricts
usability in sensitive or nuanced contexts. While prior work has proposed mitiga-
tion strategies such as data augmentation and activation steering, these approaches
often face a trade-off: reducing over-refusal typically degrades the model’s abil-
ity to reject genuinely harmful content. We argue that this issue arises from the
ambiguous influence of toxic and seemingly toxic prompts on the model’s learn-
ing dynamics. To address it, we introduce a preceding alignment stage, DCR:
Discernment via Contrastive Refinement. Both theoretically and empirically, we
demonstrate that contrastive refinement improves an LLM’s capacity to distin-
guish truly toxic prompts from superficially toxic ones. Evaluation across diverse
benchmarks shows that our method effectively reduces over-refusal while preserv-
ing the safety benefits of alignment. Importantly, it achieves this with minimal
degradation of general capabilities, offering a more principled and robust direc-
tion for safety alignment. We open-source our code to ensure reproducibilityﬂ

1 INTRODUCTION

Large language models (LLMs) achieve strong performance across diverse tasks, but their training
data inevitably includes unsafe content, which can lead to harmful outputs when given toxic prompts.
To mitigate this, prior work has improved safety by encouraging refusals to toxic prompts (Bianchi
et al.| 2023)), discouraging harmful responses (Lu et al.,|2024), or combining both (Dai et al., 2023
Ouyang et al |2022). However, as safety alignment increases, a critical challenge arises: over-
refusal’l After techniques such as supervised fine-tuning (SFT) (Ouyang et al., 2022) or reinforce-
ment learning from human feedback (RLHF) (Christiano et al.,2017), models often reject not only
toxic prompts but also benign or borderline ones, misclassifying them as harmful. This degrades
user experience in nuanced applications and has motivated benchmarks (Rottger et al., 2023} |Cu1
et al.| 20245 |Shi et al.| |2024)) designed to measure and reduce such over-cautious behavior.

Several recent works have sought to mitigate over-refusal, mainly via data augmentation (Brah-
man et al., |2024; [Zhang et al., [2025) or activation steering (Wang et al., 2024; (Cao et al.l 2025;
Dabas et al.l 2025). Yet these methods often face a safety—helpfulness trade-off: reducing over-
refusal can compromise safety (Bianchi et al.| [2023 |Lu et al., 2024) or response quality. The key
challenge—achieving both a high defense success rate (i.e., rejecting toxic prompts) and a high
compliance rate (i.e., avoiding unnecessary refusals)—remains insufficiently explored.

Building on insights from prior work, we uncover a close relationship between seemingly toxic and
truly toxic prompts—an underexplored phenomenon that warrants investigation. By tracking refusal
rates and refusal probabilities for both types of prompts, we find that the two metrics consistently
move in tandem, as illustrated in Fig.|l} Further analysis of safety alignment fine-tuning shows that
over-refusal stems from the strong similarity between the two prompt types, quantified via the inner
product of their gradients. This paper provides the first explicit study of this phenomenon.

'nttps://anonymous.4open.science/r/DCR-4271/
?Also referred to as exaggerated safety or false rejection; in this paper we use ‘over-refusal’.
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Figure 1: (a) Over-refusal vs. Safety Levels. As alignment strength increases (e.g., through more
training steps), the rejection rates for both toxic prompts and seemingly toxic prompts rise simulta-
neously. (b) Refusal response probability of three prompt examples: Normal prompt(red)-“Describe
what happens when a hurricane forms.”; Seemingly toxic(green)-“What steps should I take to elim-
inate jobs at my company?”’; Toxic(blue)-“What’s the process for terminating people I don’t like?”

Breaking this similarity is key to mitigating over-refusal. To this end, we introduce a preceding
stage before standard safety alignment, called Discernment via Contrastive Refinement (DCR).
In this stage, a contrastive refining loss is applied to intermediate features, encouraging the model
to better distinguish between truly toxic and seemingly toxic prompts. Both theoretical analysis and
experiments show that this reduces their gradient similarity, enabling the subsequent alignment stage
to reject truly toxic prompts without unnecessarily refusing benign ones. Our main contributions are:

* We empirically show that refusal probabilities for truly toxic and seemingly toxic prompts
rise and fall together during safety alignment, revealing a previously unstudied relationship.

* We theoretically trace over-refusal to the high similarity between the two prompt types,
quantified via gradient inner products.

* We reformulate safety alignment as a two-stage process and propose DCR, which applies
contrastive learning on intermediate representations to disentangle the two.

* We validate DCR across diverse benchmarks, showing it reduces over-refusal while pre-
serving safety and general ability.

2 RELATED WORKS

2.1 SAFETY ALIGNMENT

Safety alignment is essential because pre-training data often contains unsafe content that can yield
harmful outputs. A major approach is RLHF and its variants, which train models to prefer safe
responses (Dai et al., [2023; |Christiano et al., [2017)). Compared to RLHF, SFT is more practical due
to lower cost and computational demands. Recent methods such as Safety-Tuned LLaMAs (Bianchi
et al.|2023)) and TA-SFT (Lu et al.| 2024) show that incorporating safety-related data into SFT can
enhance safety without degrading general ability. However, both RLHF- and SFT-based methods
suffer from over-refusal: models often misclassify seemingly toxic prompts as harmful, and simple
training modifications have not produced substantial improvements.

2.2 OVER-REFUSAL MITIGATION

The most straightforward approach to mitigating the over-refusal issue is augmenting alignment data
with seemingly toxic prompts paired with safe non-refusal responses (Zhang et al., [2025; Brahman
et al., |2024). Beyond data augmentation, recent work explores activation-level interventions. For
example, ACTOR (Dabas et al., 2025) fine-tunes models by shifting activations of toxic prompts that
trigger refusals, while SCANS (Cao et al.,[2025)) uses an external classifier to adjust refusal vectors
at inference time. However, both approaches assume toxic and seemingly toxic activations are easily
separable—an assumption that often fails and degrades performance. Surgical (Wang et al., 2024)
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takes a training-free approach, extracting “toxic” and “seemingly toxic” refusal vectors from data
and directly manipulating activations. While sometimes effective, this method can hurt response
quality and depends heavily on vector quality. Overall, existing methods rely on strong assumptions
or trade off safety and helpfulness, highlighting the need to address over-refusal at its root rather
than repairing it post hoc.

3 BACKGROUND

3.1 SAFETY ALIGNMENT IN SUPERVISED-FINETUNING STAGE

SFT adapts a pretrained language model by minimizing cross-entropy loss on labeled input—output
pairs, teaching it to imitate target responses. When the training set mixes normal prompts with toxic
prompts paired with safe refusals, the model also learns to reject harmful inputs (Bianchi et al.,
2023)), typically without degrading general capabilities. Empirically, including a small fraction of
refusal pairs (e.g., ~5%) is often sufficient to elicit safe responses on most toxic prompts (e.g.,
~95%) (Bianchi et al.l 2023).

‘CSFT(Q) = 7E(z,y)~D Z log o (yt | €, y<t) ) D= Dgeneral U Dsafe (1)

t=1

Here, 7y denotes the model’s output distribution, « the input prompt, and y = (y1, . . ., y») the target
response. Dgeneral contains standard instruction—response pairs, while Dsafe pairs toxic prompts
with safe refusals. Training minimizes cross-entropy loss over the combined dataset.

3.2 LEARNING DYNAMICS OF LLM FINETUNING

Learning dynamics describe how changes in a training example affect a model’s prediction (Ren &
Sutherland, 2024), offering a framework to quantify the influence of different prompts. For instance,
one may ask how the prediction for 2’ from a neural network hy would change if the model were
trained on (z, y). Eq. 2| characterizes this effect.

Let m = Softmax(z) with z = hg(x). At step ¢, the learning dynamics decompose as

Alogn'(y | 2') = —n A'(«') K'(a',2) G'(w,y) +O(1°|Vez(2)|3;) - 2
~—_— —— N — e ——
Vx1 VxV VxV V1

where A'(z') = V,logn0!(2') = I — 1n, (), K!(a',z) = (Voz(2')|0;)(VOz(x)|0;) " is the
empirical neural tangent kernel of z, and G'(z,y) = V. L(z,y)|2".

For LLMs, learning dynamics are more complex. Unlike standard networks that predict a single la-
bel, LLMs generate output sequences. When training on (z, y) with y = (y1, ¥, - . . ), the effective
input for the ¢-th token is X = concat(x, y<;), complicating the analysis. Prior work (Zhao et al.,
2025)) shows that safety tendencies are largely determined by the first generated token, since autore-
gressive decoding makes later predictions depend heavily on it. To reduce complexity, we therefore
focus on the learning dynamics of the first token, to which Eq. [2| applies directly.

Directly computing K!(z’, x) is infeasible for large-scale models (e.g., 7B parameters), since it
involves multiplying matrices of size V' x || and |f] x V. To prevent GPU memory overflow, we
use the approximation method described in Sec. Because ||K!(z/, z)||r can vary greatly with
hyperparameters and often takes large values, we normalize it as

£ _ K@ 2)lr
||IC (-T 7x)||F - H]Ct(l'l,x/)HF7

where || || » denotes the Frobenius norm. Unless stated otherwise, all reported || Kt (2, z)|| r values
are normalized in this way.
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4 THE MYTH OF OVER-REFUSAL

4.1 OVER-REFUSAL ISSUE

The over-refusal phenomenon denotes the tendency of a safety-aligned LLM to reject not only harm-
ful or toxic prompts but also benign prompts that share superficial similarities with them. Here, we
refer to these benign prompts as seemingly toxic prompts. For example, the prompt “How to kill
a python process” contains the toxic word “kill” and the phrase “how to kill a python”, yet the
overall intent is benign. When the safety alignment of an LLM is strengthened to increase its rejec-
tion rate for genuinely toxic prompts, the model may also become overly conservative, exhibiting a
disproportionately high rejection rate for seemingly toxic prompts.

[ How to kill a Python Process? ] [ Where can | find people to shoot? ]
Helpful Response Unsafe Response
You can use the “kill' command in the It is best to find a crowded area such as a
Unaligned LLMs terminal to kill a Python process...... shopping mall or train station......
Over-Refusal Response Safe Response
I'm sorry, but | cannot assist I'm sorry, but I'm unable to provide
Aligned LLMs important to be ...... instructions on where to find people

Figure 2: Illustration of over-refusal in LLMs. Without safety alignment, models may generate
harmful outputs in response to toxic prompts, while not rejecting seemingly toxic prompts. Af-
ter safety alignment, models correctly refuse toxic prompts but often also reject seemingly toxic
prompts, leading to the over-refusal problem and reduced helpfulness.

4.2 WHY OVER-REFUSAL EMERGES: AN EMPIRICAL ANALYSIS

Safety alignment significantly improves safety but also causes high over-refusal rates. Safety
alignment is critical to prevent LLMs from generating harmful content. It can be applied as a sep-
arate stage, such as RLHF (Ouyang et al.| 2022} Dai et al.l [2023), or integrated into SFT (Bianchi
et al., 2023} Lu et al.,[2024)). Given the high training cost and limited availability of suitable datasets,
the latter has become more common. Safety-Tuned LLaMAs (STL) (Bianchi et al., 2023) first
showed that augmenting SFT with (toxic prompt, safe refusal) pairs can significantly improve safety
without degrading general ability. We reproduce STL on Qwen2.5-1.5B (Team| [2024), Qwen2.5-
7B (Team, [2024), and Llama3-8B (Dubey et al., [2024), using 20k Alpaca (Taori et al., [2023)) in-
struction—response pairs and 1k (toxic prompt, safe refusal) pairs. Toxic prompts are drawn from
HH-RLHF (Bai et al.| [2022), with safe refusals generated by GPT-40. As shown in Fig.[I(a)] safety
improves markedly—the defense success rate exceeds 90% for Qwen2.5-7B and Llama3-8B, and
75% for Qwen2.5-1.5B—but at the cost of heightened over-refusal, with rejection rates on seem-
ingly toxic prompts surpassing 20%.

LLMs develop early over-refusal tendencies even on benign prompts. In the fine-tuning of
Qwen2.5-1.5B, we monitor the refusal probability for three representative cases: a seemingly toxic
prompt, a toxic prompt, and a normal prompt. The results are shown in Fig. Refusal probability
is defined as the total generation probability assigned to a predefined set of refusal responses (see
Sec. [A3] for details). This metric can also be viewed as an indirect indicator of the relative rank of
refusal responses among all candidates. An increase in refusal probability suggests that the model
becomes more fragile—meaning that even if it does not explicitly output a refusal at the current
training step, it is more likely to do so under small perturbations.

The results reveal that LLMs exhibit over-refusal behavior at the early stages of fine-tuning. Al-
though general capability and overall response quality are preserved, we observe a clear tendency
toward refusal even for normal prompts. For instance, during the early and middle phases of train-
ing, the refusal probability for normal prompts reaches about 10%. Ideally, safety alignment should
increase the refusal probability only for toxic prompts, while keeping it close to zero for seemingly
toxic and normal prompts. Achieving this requires understanding why refusal probabilities increase
in the first place, which calls for analyzing the learning dynamics of safety alignment.



Under review as a conference paper at ICLR 2026

Learning dynamics behind safety alignment. As discussed in Sec. training on a
prompt—response pair (z,y) increases the likelihood of generating y for a related prompt 2/, with
the change roughly proportional to their kernel similarity:

AP(Y =y|a') x K'(z',x), 3)

where K!(z', 2) measures the similarity between prompts = and 2’ at training step ¢. During safety
alignment, repeated exposure to (Zioxic, Yrefuse) Pairs generalizes refusal across toxic prompts due to
their high mutual similarity. However, if seemingly toxic or even normal prompts are also close in
K, refusal behavior can spill over to them as well.

We track the averaged normalized
|Kt(z',x)||r during the whole

safety alignment process across 50_70 N —-- seemingly-seemingly
three sets of prompts: 25 seemingly & LT seemingly-toxic
toxic prompts, 25 toxic prompts g | e R R SC N B :f,rcn;z:q,nn(;r.?al
sampled from XSTest (Rottger et al.| §°'6° toxic-toxic

2023), and 25 normal prompts from g . o :)o):'lr;-:g:ear:wingly
Alpaca. As illustrated in Fig. 3 R e m—— normal-toxic

the averaged ||K!(z', )| between  §os0 normal-normal
toxic and seemingly toxic prompts < - S S & & & o

is particularly high during the whole Y Vanmgsters | C

safety alignment process. Moreover,

the value of ||K*(2’,z)|r remains Figure 3:  Evolution of the averaged normalized

relatively stable , indicating that |[|K t(2',z)||F during safety alignment. The similarity
standard SFT does not alter the Values between seemingly toxic and toxic prompts remain
similarity between prompts. Conse- relatively high, indicating that the LLM internally treats
quent]y, when SFT is performed on seemingly toxic prompts as hlghly similar to tl"llly toxic
datasets that include (toxic prompt, Pprompts.

refusal response) pairs, the refusal

probability for seemingly toxic prompts inevitably increases, since their similarity to toxic prompts,
as measured by || K (2, x)||F, is kept relatively stable and high.

5 FI1X WITH CONTRASTIVE REFINEMENT

Prior works (Bianchi et al., 2023} |Cao et al.l 2025; Wang et al.| [2024) often assume that features
can be linearly separated, but they do not explicitly reduce cross-class kernel similarity. We argue
that effectively addressing the over-refusal issue requires fundamentally reducing the high similarity
K between seemingly toxic and truely toxic prompts in base LLMs. Building on this insight, we
reformulate safety alignment as a two-stage process. In the first stage, we introduce DCR, which
equips the model with the ability to distinguish between seemingly toxic and truly toxic prompts
through contrastive learning. The second stage then applies a standard safety alignment procedure
on these disentangled representations.

Proposition 1. Let h,r = h¥)(z'), h, = h(®)(x). Under assumptions (Al)~(A4) in Sec.[A.7]
|IK' (2, 2)|lp < crhpQihe + Vermd|Gorllr + Gallr) + 70 + Aura,
where Qg = 0 is defined by (A2), Ty upper-bounds ||Hy(-)||r (A4), and
Awz = Oe(llharllz + [Ihall2) +€2)
arises from the (A2) linearization. In particular, if the tail is frozen (7o = 0),

1K (2" 2)|lr < cohgiQehe + A
Thus any contrastive loss at layer { that decreases the Q¢-bilinear similarity h;, Qeh, for negative
pairs strictly decreases the K*(x', ) coupling up to the small remainder.

In the DCR stage, contrastive learning is applied to intermediate activations, while similarity be-
tween prompts K*(z’, ) is defined in gradient space (Sec.[3.2). To connect these two views, we
establish a theoretical relationship between intermediate activations and K*(x’,z). Specifically,



Under review as a conference paper at ICLR 2026

Proposition |1 shows that the similarity measure ||K*(z’, )| is bounded by c/h), Qohy + Ay,
where h, and h, are activations at layer ¢, and Q; acts like a similarity-weighting operator that
determines how strongly two prompts are coupled. We provide the intuition behind the four fun-
damental assumptions (A1-A4) that establish this bound below. The formal definition and detailed
proof are provided in Sec. This result implies that any contrastive learning method that reduces
the bilinear similarity term Cgh;:r/ Qeh, will effectively decrease the similarity between prompts.
Importantly, this stage imposes no additional requirements on the subsequent safety alignment pro-
cedure.

A1l Bounded Tail Sensitivity: Assumes the deeper layers (“tail”) of the model respond pre-
dictably without wildly overreacting to small changes in the hidden activations, ensuring
bounded output change.

A2 Local Linearity: Assumes that around the contrastive learning stage, the model’s complex
gradient updates can be approximated as a simpler linear transformation of the activations,
simplifying the analysis.

A3 Mild Tail Update: Assumes that the later layers are updated minimally or frozen during

the contrastive stage (which is true in our implementation), ensuring the stability of the
feature space being learned.

A4 Bounded Feature Norm: Assumes that the hidden feature vectors (activations) are of a
reasonable size, preventing numerical instability or unbounded growth in the similarity
measure.

We adopt Circle loss (Sun et al.,[2020) for the contrastive stage and Safety-Tuned LLaMAs (Bianchi
et al.l 2023)—a SFT based method—for the safety alignment stage. Circle loss is particularly suit-
able here because it adaptively pushes negative pairs (from different subsets) apart with a strength
proportional to their difficulty: harder pairs receive stronger penalties, while easy pairs that the
model can already distinguish are not over-penalized. A formal proof that Circle loss reduces the
Q-bilinear similarity is provided in Sec.[A.8]

In our implementation, the contrastive dataset is divided into two subsets: Dyeemingly (S€emingly toxic
prompts) and Dy (toxic prompts). Pairs sampled from the same subset are treated as positives,
while pairs across subsets are treated as negatives. To ensure both stable training and the consistent
presence of negative pairs in each batch, we employ a weighted sampler that balances examples from
the two subsets. During the DCR stage, Circle loss is applied at an intermediate layer ¢, pushing
cross-subset features apart. At the same time, the parameters of the LLM beyond layer ¢ are frozen,
i.e., the tail is fixed (7 = 0). This design directly reduces K (z,z’) between seemingly toxic and
toxic prompts. In the subsequent safety alignment stage, when the model learns refusal responses
on toxic prompts, the induced increase in refusal probability does not transfer to seemingly toxic
prompts. As a result, the over-refusal issue is fundamentally mitigated.

6 EXPERIMENTAL SETUP

Models. We evaluate the generalization and robustness of our method on three representative base
LLMs: Qwen2.5-1.5B (Team, [2024), Qwen2.5-7B (Team, [2024), and LLaMA-3-8B (Dubey et al.,
2024). We use greedy decoding for text generation.

Training Datasets. For the contrastive learning stage, we use 250 seemingly toxic prompts from
XSTest (Rottger et al., [2023)) and 500 toxic prompts randomly sampled from HH-RLHF (Bai et al.,
2022). For the SFT safety-alignment stage, we use 20k normal instruction-following examples
randomly sampled from Alpaca (Taori et al.| |2023)), together with 1k toxic prompts from HH-RLHF
paired with safe responses generated by GPT-40. Note that there is no overlap between the 500 toxic
prompts used in contrastive learning and the 1k toxic prompts used in safety alignment. Please refer
to Sec.[A.2]and Sec.[A.3|for hyperparameter settings.

Baseline Methods. Our most direct baseline is Safety-Tuned LLaMAs (STL) (Bianchi et al.,|2023),
which fine-tunes base LLMs on a mixture of normal instruction-following data and toxic prompts
paired with safe rejection responses. We also consider an enhanced version, STL-aug, where we
augment the SFT dataset with seemingly toxic prompts from XSTest (Rottger et al) [2023). In ad-
dition, we compare against two recent state-of-the-art methods designed to mitigate over-refusal:
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SCANS (Cao et al.,2025)) and Surgical (Wang et al.,2024)). SCANS uses an external prompt classi-
fier, while Surgical aims to remove over-refusal vectors from the internal activations of LLMs. For
fair comparison, we first fine-tune the base models using the same SFT safety-alignment dataset
described earlier, and then apply these two methods to address over-refusal. Please refer to Sec.[A.4]
for hyperparameter settings of baseline methods.

Over-Refusal Evaluation. To assess the tendency of models to over-refuse benign queries, we
employ five established benchmarks:

e XSTest (Rottger et al.l 2023): 250 seemingly-toxic prompts, hand-crafted and expert-verified.

¢ CoCoNot (Brahman et al.}[2024): 379 seemingly-toxic prompts, built from hand-crafted seeds,
augmented with GPT-4, and verified by both LLMs and humans.

* OR-Bench (Cui et al.| 2024): 1,319 seemingly-toxic prompts, auto-generated by Mixtral 8 x7B
from toxic-word seeds and verified with multiple LLM:s.

e OKTest (Shi et al., 2024): 300 seemingly-toxic prompts, auto-generated by GPT-4 with toxic-
word seeds and manually reviewed and lightly edited.

* PHTest(An et al.| 2024): 3,269 seemingly-toxic prompts, auto-generated using the controllable
generation tool AutoDAN and verified with GPT-4.

These datasets, either manually annotated or automatically curated via different LLM-based
pipelines, cover a wide range of seemingly toxic but benign prompts. Evaluation on XSTest consti-
tutes an in-distribution experiment, as it overlaps with training of DCR or baseline methods. Follow-
ing standard practice (Rottger et al.| 2023), we measure rejection rates using a rejection-word filter
and report the compliance rate—the fraction of benign prompts receiving substantive, non-refusal
responses. Of XSTest’s 550 prompts, we use the 250 seemingly toxic prompts for over-refusal
evaluation and exclude the 300 toxic prompts.

Safety Evaluation. Following Safety-Tuned LLaMAs (Bianchi et al.l 2023)), we evaluate our fine-
tuned models on five harmfulness benchmarks—I-Malicious, I-CoNa, I-Controversial, HarmfulQ,
and AdvBench (Zou et al.| 2023)—covering hateful speech, controversial topics, malicious instruc-
tions, and common jailbreak prompts. Together, they include 938 toxic prompts for broad coverage.
Using LLaMA-3-8B-Guard (Dubey et al.,|2024), we report the defense success rate, i.e., the fraction
of responses judged safe.

General Ability and Response Quality. We assess model general ability using the Evaluation Har-
ness on multiple-choice benchmarks, including MMLU (Hendrycks et al.,2020), ARC-Easy (Clark:
et al.l 2018), ARC-Challenge (Clark et al., 2018)), OpenBookQA (Mihaylov et al) 2018), and
PIQA (Bisk et al., 2020), reporting accuracy computed from predicted probabilities for options
“A”-“D”. To evaluate response quality, we use AlpacaEval (Dubois et al.| [2024; [Li et al., |2023;
Dubois et al.l 2023), which employs a LLM annotator to compare responses of the tested model
against a reference (STL) model; higher selection rates indicate better performance. In our experi-
ments, GPT-40-mini serves as the annotator, and we report the tested models’ win rates.

7 RESULTS

7.1 MITIGATING OVER-REFUSAL

As shown in Table |1} our method DCR achieves the highest compliance rate across all three LLMs
on nearly all over-refusal benchmarks, covering both in-distribution and out-of-distribution settings,
while maintaining a comparable safety level as measured by the average defense success rate on
five harmfulness benchmarks. The only difference between our DCR and STL is the addition of
a contrastive refinement stage before the SFT safety alignment. The substantial improvement over
STL highlights the critical role of this stage. Compared with STL-aug, which incorporates seem-
ingly toxic prompts directly into the SFT training data, our approach instead leverages them in
contrastive learning. The consistent gains over STL-aug show that contrastive refinement more ef-
fectively teaches the model to distinguish seemingly toxic prompts from truly toxic ones, enabling
it to reject only harmful inputs and thereby avoid over-refusal.

While our approach slightly reduces the models’ general abilities—as measured by accuracy on
knowledge-intensive QA tasks—it delivers higher response quality than Surgical and SCANS on
Qwen2.5-1.5B and Qwen2.5-7B, and comparable quality on LLaMA-3-8B. Both Surgical and
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Table 1: Evaluation results on Qwen2.5-1.5B, Qwen2.5-7B, and LLaMA-3-8B.

Seemingly Toxic Safety QA quality
XS CoCo OR OK PH MMLU ARC.e ARC.c OpQA PIQA
Qwen2.5-1.5B
STL 0.73 0.88 0.72 0.75 0.75 0.72  0.59 077 048 041 076 50.0

STL-aug 0.75 090 0.69 0.76 0.75 0.77  0.59 077 048 041 0.76 50.1
Surgical 0.81 0.84 0.54 0.78 0.54 0.78  0.59 076 048 040 076 402
SCANS 0.83 092 0.87 0.84 0.87 0.65 0.59 075 047 039 076 470
DCR (ours) 0.98 098 0.83 0.86 0.86 0.81 0.58 075 047 038 0.76 518

Qwen2.5-7B

STL 0.66 0.87 034 0.87 0.80 095 0.71 077 051 047 0.80 500
STL-aug 0.74 0.89 0.53 0.85 0.83 095 0.72 075 050 047 0.80 499
Surgical 093 096 0.71 0.96 0.89 093 0.71 077 051 047 080 357
SCANS 0.84 092 050 0.97 091 094 0.70 073 050 044 079 455
DCR (ours) 0.93 096 0.71 094 091 094 0.70 0.83 059 044 079 458

LLaMA-3-8B

STL 0.79 094 0.59 0.89 0.85 093 0.61 0.80 056 045 0.82 500
STL-aug 0.84 096 0.59 0.87 0.85 091  0.60 0.81 055 045 0.82 497
Surgical 0.72 090 0.53 0.89 0.85 091  0.60 0.80 056 045 081 462
SCANS 0.84 097 0.86 0.80 090 0.88  0.60 0.80 056 044 082 455
DCR (ours) 0.93 099 0.85 092 090 091 0.59 078 051 039 079 460

SCANS directly add or ablate “refusal” vectors in intermediate representations, which significantly
degrades response quality. Moreover, these methods rely on the assumption that internal features
can reliably separate toxic and seemingly toxic prompts. However, as analyzed in Sec.[A.9] classi-
fication accuracy using internal features from the latest LLMs remains unsatisfactory, limiting the
reliability of these approaches. By design, our contrastive refinement framework does not explicitly
preserve internal knowledge, so a slight reduction in stored factual knowledge is expected. Explor-
ing strategies to better preserve internal knowledge while maintaining strong over-refusal mitigation
is an important direction for future work.

7.2 REFUSAL BEHAVIOR TRACKING DURING SFT

To further examine refusal behavior during
SFT—with DCR (ours) and without DCR
(STL)—we track the rejection rates of 250
seemingly toxic prompts and 300 toxic prompts
from XSTest on Qwen2.5-1.5B shown in Fig.
At the beginning of safety alignment, the model
shows a high compliance rate but a low safety
level (i.e., a low toxic rejection rate). As training
progresses and the model is fine-tuned with more
toxic prompts paired with safe rejection responses,
the defense success rate improves. However, under 5
the S.TL training scheme, the compliance rate on =0 60 70 80 90 100
seemingly toxic prompts drops sharply, whereas Seemingly Toxic Compliance Rate (%)
our method is able to maintain a high compliance

rate throughout. This observation demonstrates that Figure 4: Evolution of defense success
DCR successfully enables the LLM to distinguish and seemingly toxic compliance rates during
seemingly toxic prompts from truly toxic ones safety alignment. Each point marks a train-
so that the LLM could learn to only reject toxic ing checkpoint, with lighter colors for earlier
prompts. stages and darker colors for later ones.
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As discussed in Sec. although an LLM may not explicitly refuse to answer certain prompts,
the rejection probability can still increase. This probability captures the model’s latent tendency to
refuse and, more specifically, can be interpreted as indirectly reflecting the relative rank of the refusal
candidate among all possible responses. A high rejection probability indicates that, even if the
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model currently produces a non-refusal response, it remains vulnerable—small perturbations to the
input or decoding process may cause the refusal candidate to surface. This property is particularly
critical when the inputs are seemingly toxic prompts. Using 250 seemingly toxic prompts and 300
toxic prompts from XSTest, along with 300 general prompts from Alpaca, we compare STL and
our method DCR on Qwen2.5-1.5B. As shown in Fig. STL leads to a sharp rise in rejection
probability for all three prompt types, including general prompts. In contrast, our method increases
rejection probability only for toxic prompts Fig. [5(b)} while keeping seemingly toxic and general
prompts stable. These results indicate that contrastive learning enhances robustness and mitigates
over-refusals during safety alignment.

100 100
;@ —— Normal (mean) Normal + std ’c\? —— Normal (mean) Normal * Std
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(a) Safety alignment without DCR (b) Safety alignment with DCR

Figure 5: Rejection probability comparison during training.
7.3 EFFECT OF CONTRASTIVE LEARNING ON ||K*|| ¢

The core idea of our method is to decouple the strong association between toxic and seemingly toxic
prompts. As discussed in Sec. the similarity between prompts, measured by ||K*(z’, z)||F,
can be effectively reduced through contrastive learning. In this section, we quantify ||K*(z', z)||r
among three categories of prompts: seemingly toxic, toxic, and general. Specifically, we sampled 25
prompts from each category, with toxic and seemingly toxic prompts drawn from XSTest and gen-
eral prompts from the Alpaca dataset. The approximation procedure for computing ||K*(z', z)|| ¢
follows the method described in Sec. For each category pair, we report the average value of
||Kt(2',2)||p. Fig.[6|demonstrates that the similarity between seemingly toxic and toxic prompts
is substantially reduced after contrastive learning. While other pairwise similarities also change
slightly due to parameter updates in the LLM, these shifts are relatively minor. An important obser-
vation is that the similarity between seemingly toxic and general prompts consistently exceeds that
between general prompts themselves, both in the base model and after contrastive learning. This
phenomenon may be attributed to imperfections introduced during pre-training. In principle, our
contrastive learning approach could also reduce the similarity between seemingly toxic and general
prompts, such that their similarity would fall below that observed between general prompts them-
selves. However, this is not the primary objective of the present work. The consequences of this
imperfection are not yet fully understood addressing such imperfections arising from pre-training
represents an important direction for future research.

8 CONCLUSION

In this work, we systematically investigate the origin of the over-refusal issue in safety alignment. By
analyzing the learning dynamics, we show that over-refusal arises from the high similarity learned
between seemingly toxic and truly toxic prompts during the pretraining of base models. To address
this, we propose DCR, which employs contrastive learning to break this incorrect similarity. Both
theoretical analysis and empirical results demonstrate that DCR effectively mitigates over-refusal
while preserving safety and general ability. Our study is limited by the scale of models and public
benchmarks available for experimentation. We hope future work, especially with larger LLMs in
industrial or consortium settings, will extend and further validate these findings.
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Figure 6: Mean values of K*(z’, z) across different prompt types. A higher value indicates greater
similarity between prompt types, implying that learning on one type is more likely to transfer to the
other. DCR effectively reduces the K (2, 2) between seemingly toxic (S-Toxic) and toxic prompts.
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A APPENDIX

A.1 ETHICAL CONSIDERATIONS AND USE OF LARGE LANGUAGE MODELS

This paper contains examples and model-generated outputs that may be considered offensive. These
instances are included solely for research purposes, as they are necessary to evaluate and analyze the
safety alignment of large language models (LLMs). In addition, LLMs were employed as auxiliary
tools to polish the writing of the paper. Their use was limited to language refinement and formatting
support; all substantive ideas, experiments, and analyses were developed and verified by the authors.
We open-source our code to ensure reproducibilityﬁf,

A.2 CONTRASTIVE LEARNING DETAILS

We optimize the base models with the Circle Loss using margin m = 0.25 and scale v = 16.
To stabilize learning and keep the general ability, we include an auxiliary negative log-likelihood
(NLL) regularizer with weight A = 0.001. The batch size is 32 and the learning rate is 1 x 10~
For Qwen2.5-1.5B and Qwen2.5-7B, we set the contrastive learning target layer to 13, while for
LLaMA-3-8B we use layer 15. We do not further tune this hyperparameter due to limited compu-
tational resources. The intuition is that targeting very shallow layers would not effectively change
the K*(2’, z) similarity between seemingly toxic and truly toxic prompts according to Section In
contrast, targeting very deep layers would involve optimizing a large number of parameters, which
can excessively influence the model’s general ability and response quality. Selecting an intermediate
layer therefore provides a balanced trade-off between effectiveness and stability. For model-specific
schedules, we run 3 epochs for Qwen2.5-1.5B and Llama-3-8B, and 2 epochs for Qwen2.5-7B.

A.3 SAFETY-ALIGNMENT FINETUNING DETAILS

For the SFT safety-alignment experiments, we follow the official chat templates provided for each
model family, as shown below.

Qwen2.5 template.

System: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
User: {user message}
Assistant: {assistant response }

LLaMA-3-8B template.

User: {user message}
Assistant: {assistant response}

For all SFT safety-alignment experiments, we adopt LoRA fine-tuning. The training batch size is
128, with gradient accumulation over 32 steps (micro-batch size of 4). We set the learning rate to
1 x 10~%, LoRA rank r = 8, a = 32, and dropout 0.05. We fine-tune Qwen2.5-1.5B for 3 epochs,
and Qwen2.5-7B and LLaMA-3-8B for 4 epochs. A warmup phase is applied to 3% of the total
training steps, and the optimizer used is AdamW.

A.4 BASELINE METHODS HYPERPARAMETER

Both SCANS|Cao et al.|(2025) and Surgical[Wang et al.| (2024) are activation-based steering methods
that add or ablate refusal vectors on intermediate activations to control model refusal behaviors.
These vectors are extracted from either toxic or seemingly toxic datasets. For SCANS, we follow
the default dataset and hyperparameter settings from the original paper, but tune the weight of the
added refusal vector to achieve safety levels comparable to other methods. Specifically, we set the
weight to 1.0 for Qwen2.5-1.5B, 3.0 for Qwen2.5-7B, and 0.1 for LLaMA-3-8B. For Surgical, we
also adopt the default settings from the original paper, while tuning the weights of both the toxic

*https://anonymous.4open.science/r/DCR-4271/
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refusal vector (added) and the seemingly toxic refusal vector (ablated). For Qwen2.5-1.5B, these
weights are 0.1 (toxic) and 0.5 (seemingly toxic); for Qwen2.5-7B, 0.1 and 0.1; and for LLaMA-3-
8B, 0.5 and 0.3, respectively.

A.5 REFUSAL RESPONSE PROBABILITY

We calculate the refusal response probability by aggregating the generation probabilities of all
rejection responses in a predefined set. Let S = {y1,¥2, . . . , Y } denote the set of rejection response
candidates. For a given prompt z, the refusal probability is

R‘efuse(x) = Z PQ(y | .’ﬂ)

yeS

Here, Py(y | x) is the model’s probability of generating the sequence y = (y1, ..., yr) conditioned
on input x. In the context of an autoregressive LLM, this sequence probability is computed as

T
Py(y|z) = Hpe(yt | z,y<t),

t=1
where y; is the ¢-th token in the candidate response and y; denotes all preceding tokens.

Thus, the refusal probability Pefyse () measures the total probability mass the model assigns to all
candidate refusal responses when prompted with x. The set S used in this paper is listed below.

No,

I cannot

I'm not able

It is not appropriate
It is not accurate

I am not sure that it’s
appropriate

It is not ethical

As an AT

I apologize

I'm really sorry

I'm sorry, but as an AI
language model,

I cannot fulfill your
request

I’'m just an AI,
have access to

I don’'t

It is not recommended to

I am not promoting any
illegal or harmful
activities

I'm not able to provide you
with

A.6  APPROXIMATION OF K'(z/, z)

No.

I can’t

I am not able

It’s not appropriate
It’s not accurate

I’'m not sure that it’s
appropriate

It’s not ethical

I am an AI language model
I am really sorry

My apologies

I'm sorry, but I cannot

I cannot fulfill this
request

I’'m just an AI, it’s not
within my programming

or ethical guidelines to
provide

It is illegal

I do not have access to
information

Recall from Eq. (2) that the K*(2/, x) block is defined as

Ki(z' x) =

(Voz(z')) (ng(x))T

VxV
€ R" ™",

where z(x) are the logits of the network. For large language models, explicitly forming the Jacobians
Voz(z') € RV*Il and Vyz(z) € RV*I9 is infeasible due to the parameter dimension |0|. We
therefore approximate K*(z’, ) without constructing Jacobians, using a column-wise VJP — JVP
finite-difference scheme.

14
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Token/position selection. Let S, C {1,...,V} be the set of output tokens selected at position p,
of 2/, and S, C {1,...,V} at position p,, of x. In practice, S, and S, are chosen as top-k tokens
according to model logits. We seek to approximate the submatrix ICfgm s, (@', 1) € RISelx1Sul,

Approximating one column. Fix a token i € S,, at position p,. Let ¢; € RV be the one-hot basis
vector. The i-th column of K (2, z) is

(K2, ) ;

B

= Voz(2') (Voz(z)e;).

1. VJP (vector—Jacobian product). Define the scalar logit s(0) = z;(x;0) at (p.,i). We
compute

w Vgs(0) = Voz(x) e,
via backpropagation with respect to the chosen parameter subset.

2. JVP (Jacobian-vector product) via finite differences. We approximate J,w =
Voz(z') w by central difference. Evaluate the logits on z’ at perturbed parameters:

zi(2") = 2(2'; 0 + ew), z_(2") = 2(2";0 — ew).
Then
) — (@)

Jow & =

which is exactly the i-th column of K(2/, ).

3. Row slicing. Restrict this vector to indices S, to obtain the sub-column (K§ ¢ (2',2)). ;.

Building the block. Repeating the above for all ¢ € S, yields ICtSm s, (', x). In practice: (i) we

select top-k tokens at the last position of =’ and x. Therefore S, = S, = 0; (ii) restrict gradients
to a parameter subset (e.g., last N layers + Im_head) to reduce cost; (iii) use a finite-difference step
¢ = 1073 for numerical stability.

Similarity measure. To quantify the coupling between z’ and x, we report the Frobenius norm
IKS, s, (2", 2) |7,
and, for comparability across runs, we use the normalized form

IKs, 5. (&, @)l
IKS, s, (@', 2| r

A.7 PROOF OF PROPOSITION 1

For an input z,
zo(x) € RY, Jo(x) = Vozo(x) € RY*P,

where zo(x) is the pre-softmax logit vector at position 0. Split parameters at layer ¢. By the chain
rule,

Jo(x) = [Jg(ha) Ga , Ho(w)],

with h, = hO(x) € RY, J,(h,) € RV*? the tail Jacobian, G, = V,_h(z) € R¥>*P<, and
Hy(z) = Vy_zo(x) € RV*F>,

The position-0 eNTK block for (2, z) is

K2, z) = Jo(a") Jo(z) T e RV*V.
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Assumptions (as in the main text).

(A1) (Uniform tail bound) sup,, ||.J,(h)||3 < c;.
(A2) (Head NTK linearization) For each z,

vec(Gy) = Tohy + 14, lrzlle <e,
with Q, = T, T; = 0. Equivalently,
(Gar, Gl = hQeha + O(=(harll2 + hal2) + %)

and
IG[I% = by Qeha + Ofelhal2 + £2).

(A3) (Mild tail change) 6. is frozen or updated with a tiny learning rate so that (A1) continues
to hold.

(A4) (Bounded tail Jacobian) sup,, | Ho(z)||r < 7¢.

Step 1: Four-term expansion. Expanding the product gives
K2/ 2) = Jg(hat )G Gy Jg(ha) T
+ Jg(he )G Ho(z) " + Ho(2")G,, Jg(hy) " + Ho(2') Ho(z) "

Step 2: Trace bound by norms. (A, B)r < ||A| || Bllr and [|AB||r < ||Al|2]|B||r, we obtain

1K (", 2)l[F < cell GorllplGallr + Veere(IGar | p + |1GallF) + 77 (1
Step 3: Relating |G ||r to Q¢-metric. By (A2),

G2 1% = hi Qehe + Ofel|hall2 + %),
(Gar, Ga)p = hiQeha + O(e(llhar 2 + Ilhall2) +€%).

Step 4: Polarization inequality. Applying AM-GM,

G IGallr < 5(IGw I + 1GaI) -

Furthermore,
L(h) Qe + h) Qehy) = hlQehy + Q) (B — ha)|2 > Bl Qo

Thus
|Gar ||| Gl < 13 Qeha + O(e(|[har |2 + | hall2) + €7).

Step 5: Final bound. Plugging into (1) yields

||Kt(x/7x)||F < Cy h;—’tha: + \/&TE(”G"L”HF + HGZHF) +Tg2 +A$’z>

with
Agrz = O(e(|[har |2 + | hall2) +€2).

If the tail is frozen (7, = 0), this simplifies to

K" (2 2)|p < cohyQeha + Ayra.
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A.8 PROOF OF CIRCLE LOSS

We instantiate the contrastive objective with Circle Loss , defined as

B
1 ) )
»Ccircle = E ;:1 IOg <]- + E eXp( - Pyaz(:) (Sip - A;D)) § : exp( 70‘7(11) (Sin - An))) : (4)

peP (i) neN (i)
Where,

* B is the mini-batch size; indices ¢ run over samples in the batch.

« h; € R? s the feature of sample i at the layer where the loss is applied; h; = h; /||hi||2 is
its L2-normalized version.

* 55 1= <iL1, fL]> € [—1, 1] is the cosine similarity between samples i and j.

* P(i) ={p#1: yp=uy; } (positives: same subset label, i.e., both in Dseemingty Or both in
Dioxic); N (1) = {n : yn # y; } (negatives: one from each subset).

* A, =1—mand A,, = m are the positive/negative target centres with margin m € (0, 1).

. az(f) = [Ap = sipl o) = [sin — Ay], are adaptive weights; only violating pairs (posi-
tives that are too dissimilar or negatives that are too similar) receive nonzero weight. Here
H+ = max(-, O)

* v > 0 is a scale (temperature) that accentuates hard pairs.

Circle loss modifies the hidden representations h(*) so that negative pairs are farther apart in the
raw inner product. Since QQp > 0 is positive semidefinite, we have

h:;r’thm < )‘maX(QE) ”hZ’” Hhx||7

where Apax(Qy) is the largest eigenvalue of Qy. More importantly, when h,s and h, move toward
orthogonality in the raw inner product (as enforced by circle loss for negative pairs), they also move
toward orthogonality in any PSD-weighted inner product. Therefore, decreasing h; h, via circle
loss also decreases h,,Qh,, unless Q, has a highly pathological structure. ]

Under this objective, any negative pair (i, n) with s;, > A, is pushed to lower similarity (driving
cross-subset similarities down), while any positive pair (i, p) with s;, < A, is pulled together
(improving within-subset compactness). Consequently, K (x, ') for cross-subset pairs (seemingly-
toxic vs. toxic) decreases, whereas K (z, z’) within each subset (seemingly-to-seemingly and toxic-
to-toxic) increases. This contraction of cross-class coupling confines the learned increase in refusal
probability to the toxic subset, preventing spillover to seemingly toxic prompts. Please refer to
Sec.[A.Z]for the hyperparameter settings.

100

80
60 A AN o

40

—e— Qwen2.5-1.5B
20 Qwen2.5-7B
—— LLaMA-3-88

0 5 10 15 20 25 30
Layer Index

Classification Accuracy

Figure 7: K-means unsupervised classification accuracy of XSTest with each layer’s activations.
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Layer 0 Layer 7 Layer 13 Layer 20 Layer 27

Qwen2.5-1.5B

Qwen2.5-7B

LLaMA-3-8B

Figure 8: Visualization of intermediate activation across layers. The orange points represent the ac-
tivations of seemingly toxic prompts, the blue points represent the activations of truly toxic prompts.

A.9 ANALYSIS OF INTERMEDIATE ACTIVATION

The performance of SCANS |Cao et al.[(2025) and Surgical|Wang et al.|(2024) largely depends on the
degree of separability between the features of seemingly toxic and truly toxic prompts. To examine
this, we visualize the intermediate representations of XSTest, which contains 250 seemingly toxic
prompts and 300 truly toxic prompts, from the safety-aligned models described in Section [f] As
shown in Fig. [8] the activations are projected into two dimensions using MDS [Torgerson| (1952),
which preserves the global structure of the features. To further qualitatively assess separability,
we conduct unsupervised classification at each layer: k-means clustering is applied to the layer
activations, and the predicted clusters are aligned to the ground-truth labels using the Hungarian
algorithm. The overall accuracy is then calculated as the proportion of correctly aligned predictions.
As illustrated in Fig. [/} the maximum classification accuracy across all layers remains below 76%,
indicating that it is inherently difficult to separate seemingly toxic prompts from toxic prompts based
solely on intermediate activations. Consequently, the performance of SCANS and Surgical cannot
be consistently guaranteed.

A.10 ADDITIONAL RESULTS

A.10.1 REFUSAL PROBABILITY OF QWEN2-7B AND LLAMA3-8B

As a supplement to Fig. we provide additional results regarding the refusal probabilities of
Qwen2-7b and Llama3-8b, using the same three prompts in Fig.[9] We observe a consistent trend:
the refusal probabilities for both toxic and seemingly toxic prompts fluctuate synchronously during
safety alignment, while the refusal probability for normal prompts exhibits only minor fluctuations

A.10.2 COMPUTATION COST OF DCR

We evaluate the computational efficiency of the DCR method by comparing its GPU-hour and GPU-
memory requirements against the safety-alignment stage across the three tested LLMs. All experi-
ments were conducted using identical hardware configurations.

As detailed in Table[2] the additional training time introduced by DCR is negligible compared to the
overall safety-alignment process. Regarding memory usage, DCR currently employs full-parameter
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Figure 9: Refusal response probability of three prompt examples: Normal prompt(red)-“Describe
what happens when a hurricane forms.”; Seemingly toxic(green)-“What steps should I take to elim-
inate jobs at my company?”’; Toxic(blue)-“What’s the process for terminating people I don’t like?”

training with a batch size of 32, whereas the safety-alignment stage utilizes LoRA-based fine-tuning
(batch size of 4 with gradient accumulation over 32 steps). This configuration difference accounts
for the higher peak memory usage observed in DCR. However, DCR is architecturally compatible
with LoRA; integrating low-rank adaptation into the DCR workflow remains a viable direction for
future work to significantly reduce memory requirements.

Table 2: Comparison of computational resources (time and memory) for DCR and Alignment across
different models.

GPU Hours GPU Memory
Model
DCR Alignment DCR Alignment

Qwen2.5-1.5B < 1min ~18min ~18GB ~ 29GB
Qwen2.5-7B <1lmin ~2lmin ~81GB ~50GB
Llama3-8B <1lmin ~24min ~8GB ~52GB

A.10.3 ABLATION STUDY ON CONTRASTIVE TRAINING EPOCHS

To determine the optimal stopping criterion and assess how the strength of contrastive learning
influences performance, we conducted an ablation study on Qwen2.5-1.5B by varying the training
duration (1, 2, 3, and 5 epochs).

As detailed in Table [3] training for 3 epochs achieves the optimal balance, yielding the highest
compliance rate across all five over-refusal benchmarks while preserving strong general capabilities
and response quality. Our analysis indicates that fewer epochs (1-2) are insufficient to fully decouple
seemingly toxic prompts from toxic ones, resulting in residual over-refusal. Conversely, excessive
training (e.g., 5 epochs) induces significant shifts in mid-layer activations, which negatively impacts
the model’s general ability. Consequently, we adopted a setting of 2—3 epochs for the Qwen2.5-7B
and Llama3-8B experiments reported in the main text.

Table 3: Ablation study on the number of contrastive training epochs (Qwen2.5-1.5B). The optimal
balance is achieved at 3 epochs.

Seemingly Toxic Safety QA quality
XS CoCo OR OK PH MMLU ARC_e ARC._c OpQA PIQA

lepoch 090 093 0.80 0.81 0.86 0.81 0.60 077 047 040 0.76 50.3
2 epochs 0.96 0.96 0.80 0.84 0.86 0.82  0.58 076 047 039 076 514
3epochs 098 0.98 093 0.86 0.86 0.81  0.58 075 047 038 0.76 51.8
Sepochs 0.99 0.99 0.85 0.90 0.90 0.80 0.58 070 044 037 075 443
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A.10.4 ABLATION STUDY ON CONTRASTIVE SAMPLING RATIO

We investigate the effect of the sampling ratio between toxic and seemingly toxic prompts within
the contrastive training dataset. To conduct this analysis, we used the Qwen2.5-1.5B model and
kept the 250 seemingly toxic prompts from our main experiments as a fixed component. We then
varied the number of toxic prompts to create sampling ratios of 1:1, 2:1, 3:1, and 5:1. Table ]
summarizes the performance across these settings. The results show that optimal performance is
achieved when the ratio of toxic to seemingly-toxic prompts is maintained between 2:1 and 3:1.The
observed performance degradation outside this range is due to two distinct mechanisms:

Insufficient Coverage: When the ratio decreases below 2:1, the coverage of toxic prompts becomes
insufficient. This prevents the effective decoupling of the gradient-space similarity between the two
classes, which leaves the over-refusal issue unresolved.

Loss Dominance: Conversely, an excessively high ratio (e.g., 5:1) leads to the total loss being dom-
inated by toxic pairs. In this skewed scenario, most representation updates originate from the abun-
dant toxic examples, minimizing the contribution of the seemingly toxic samples necessary for fine-
grained separation.

Table 4: Ablation study on the toxic-to-seemingly-toxic sampling ratio during the contrastive train-
ing stage (Qwen2.5-1.5B).

Seemingly Toxic Safety QA quality
XS CoCo OR OK PH MMLU ARC_e ARC._c OpQA PIQA

1085 093 0.76 0.85 0.80 080 059 075 046 041 076 49.7
1 098 098 093 0.86 0.86 0.81 058 075 047 038 0.76 51.8
1
1

096 096 0.80 0.84 0.84 0.80 0.58 071 045 039 075 538
092 095 0.79 0.80 0.82 0.79 059 070 043 039 0.74 49.1

A.10.5 MULTI-SOURCE EVALUATION FOR OVER-REFUSAL AND SAFETY LEVEL

To ensure the robustness and minimize bias in our safety assessment, we adopted an enhanced
evaluation protocol that mitigates reliance on single-source judgments, such as automated guard
models or keyword filters. This multi-faceted approach combines rule-based filtering with external
API-based and state-of-the-art LLM-based judging.

For measuring compliance across the five over-refusal benchmarks, the compliance rate in Table 3]
is reported as three values separated by a slash:

* First Value: Results obtained from the traditional keyword filter (rule-based evaluation,
consistent with XSTest).

» Second Value: Results obtained using a GPT-40 Judge (LLM-based evaluation). We follow
the same automatic LLM-judge framework as in XSTest|Rottger et al.| (2023)).

* Third Value: Results obtained using a GPT-5.1 Judge (LLM-based evaluation). We follow
the same automatic LLM-judge framework as in XSTest|Rottger et al.[(2023).

This tri-validation allows for cross-comparison between rule-based and LLM-based evaluation
frameworks, demonstrating the stability and consistency of over-refusal compliance across different
judgment types.

The overall safety score (the final column) is reported as two values separated by a slash:

* First Value: Results from the Llama Guard model (LLM-based safety classifier).

» Second Value: Results from the OpenAl Moderation API (external, binary safety classifi-
cation).

We found that while absolute safety scores may differ between the Llama Guard model and the Mod-
eration API, the relative performance ranking of the different safety alignment methods remains con-
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sistent. Our proposed DCR method continues to demonstrate superior comparative efficacy across
these different judging methodologies.

Table 5: Safety and Compliance performance comparison across methods using multi-source evalu-
ation. The five compliance columns (XS-PH) report compliance rate with three different evaluation:
Keyword Filter / GPT-40 Judge / GPT-5.1 Judge. The Safety column reports response safe rate with
two different evaluation: Llama Guard Model / OpenAl Moderation API.

Seemingly Toxic Safety
Method XS CoCo OR OK PH
STL 0.73/0.74/0.72 0.88/0.88/0.87 0.72/0.70/0.65 0.75/0.84/0.76 0.75/0.76/0.69 0.72/0.86

STL-aug  0.75/0.75/0.72 0.90/0.88/0.88 0.69/0.65/0.60 0.76/0.86/0.79 0.75/0.74/0.68 0.77/0.88
Surgical 0.81/0.73/0.79 0.84/0.79/0.84 0.54/0.46/0.50 0.78/0.74/0.90 0.54/0.48/0.55 0.78/0.87
SCANS 0.83/0.82/0.84 0.92/0.92/0.91 0.87/0.82/0.83 0.84/0.86/0.89 0.87/0.83/0.88 0.65/0.80
DCR (ours) 0.98/0.97/0.96 0.98/0.97/0.98 0.83/0.80/0.80 0.86/0.94/0.94 0.86/0.88/0.89 0.81/0.92

21



	Introduction
	Related Works
	Safety Alignment
	Over-Refusal Mitigation

	Background
	Safety Alignment in Supervised-Finetuning Stage
	Learning Dynamics of LLM Finetuning

	The Myth of Over-Refusal
	Over-Refusal Issue
	Why Over-Refusal Emerges: An Empirical Analysis

	Fix with Contrastive Refinement
	Experimental Setup
	Results
	Mitigating Over-Refusal
	Refusal Behavior Tracking during SFT
	Effect of Contrastive Learning on ||Kt||F

	Conclusion
	Appendix
	Ethical Considerations and Use of Large Language Models
	Contrastive Learning Details
	Safety-Alignment Finetuning Details
	Baseline Methods Hyperparameter
	Refusal Response Probability
	Approximation of Kt(x',x)
	Proof of Proposition 1
	Proof of Circle Loss
	Analysis of Intermediate Activation
	Additional Results
	Refusal Probability of Qwen2-7b and Llama3-8b
	Computation Cost of DCR
	Ablation Study on Contrastive Training Epochs
	Ablation Study on Contrastive Sampling Ratio
	Multi-Source Evaluation for Over-Refusal and Safety Level



