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ABSTRACT

The growing integration of agentic artificial intelligence technologies into human
workflows has introduced a new paradigm of AI-assisted decision-making. While
previous research has demonstrated that collaboration between humans and AI
can lead to higher accuracy than either working alone, such studies have predom-
inantly focused on static and passive tasks, such as price prediction, recidivism
risk assessment, conversation and content moderation. In this study, we explore
human-AI joint decision-making in a dynamic spatiotemporal robotic task, where
humans tele-operate robots. Using human-subject experiments involving 100 par-
ticipants, we evaluated a teleoperation task in which participants chose between
two mobile robots in a simulation, guided by an AI agent providing its confidence
level. Our findings reveal that human meta-decisions - particularly in resolving
disagreements between humans and AI - are often suboptimal and confidence-
driven frameworks such as Maximum Confidence Slating (MCS) can significantly
enhance joint decision-making outcomes (p < 0.001). To the best of our knowl-
edge, this is the first application of MCS in a human-AI joint decision-making con-
text. Moreover, we discovered that both well-calibrated and poorly-calibrated AI
agents influence human decision accuracy. However, a well-calibrated AI agent
that effectively represents its confidence can lead to better decision outcomes,
while poorly calibrated AI is more likely to steer users toward negative changes in
their decision-making process. These results not only highlight the importance of
well-calibrated AI confidence levels beyond performance metrics but also provide
important insights into fostering effective collaboration and enhancing human-AI
joint decision-making capabilities in complex spatiotemporal tasks.

1 INTRODUCTION

The drive for human-AI agent decision-making arises from the complementary strengths and abil-
ities of humans and computing machines. As we rapidly advance towards an AI-centric future,
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these AI agent systems are increasingly being utilized in collaboration with humans across a wide
spectrum of decision-making domains, including healthcare, business, and design. Since most of
these decision aids are, deployed in static and passive tasks, such as recidivism risk prediction Noti
& Chen (2023); Chiang et al. (2023), content moderation Keswani et al. (2021), medical diagno-
sis Hemmer et al. (2022); Pham et al. (2023), and rental price bidding Wang et al. (2023), little
is known about their integration into dynamic, complex domain like robotics. These operational
settings often involve high-stakes situations, particularly in teleoperated robotics used for search
and rescue operations, medical surgery, military and defense tasks, nuclear and hazardous material
handling, and space exploration and maintenance. In this scenarios, decision-making processes are
pivotal for achieving optimal control, navigation, and task execution and can have profound impacts
on human lives.

As semi- or fully autonomous teleoperated robots become increasingly integrated into various in-
dustries - such as manufacturing (e.g., humanoid robots), healthcare (e.g., surgical robots), trans-
portation (e.g., delivery robots), space exploration, and military applications - the need for precise
and reliable real-time decision-making in selecting capable robots for critical missions is crucial.
Poor decisions can lead to inefficiencies, safety risks, or even failures in overall robotic operations.
Given these high stakes, understanding how humans and AI can best collaborate in selecting capable
mission-critical robots is essential and remain challenging, particularly in ensuring that these joint
decision-making systems work effectively to improve outcomes in real-time robotic operations. In
addition to that, optimizing this partnership to improve overall decision accuracy and efficiency in
scenarios involving robot control with different competence levels remains an open problem.

Early robotic systems involving teleoperation relied solely on human operators as the decision-
makers. Human decision-making, however, often relies on intuition, which can be susceptible to bi-
ases, emotions, and incomplete information Casper & Murphy (2003); Norton et al. (2017); Nguyen
et al. (2020b). This can result in the gradual degradation of decision-making performance, particu-
larly in complex, fast-paced, and long-term teleoperation scenarios. AI, while powerful, often lacks
the contextual understanding and intuition that humans have. Recent advancements have sought
to address these limitations by integrating AI agents with the aim of enhancing decision accuracy
through human-AI collaborative decision-making processes, particularly in scenarios involving high
cognitive demands Hawes et al. (2017); Kunze et al. (2018); Rigter et al. (2020); Tankelevitch et al.
(2024). At the outset, human-AI joint decision-making has been managed by a setup with human-
initiative control Hawes et al. (2007); Chiou et al. (2021); Nguyen et al. (2025a), where the final
decision to accept or reject the AI recommendation lies with the human operator. Few have delved
into the domain of joint decision-making, where both human and AI have an active role, especially
in the context of real-time robotics control.

Our research takes this human - AI joint decision making studies a step further by integrating con-
fidence into the decision-making process of the dynamic robotic task. We created a simulation
environment where humans interact with robots with varying delay factor in completing spatiotem-
poral rescue tasks, and confidence-calibrated AI agents were there to assist human in robot decision-
making. The task in focus involves selecting the optimal rescue robot for specific control scenarios
where the robots have different delay characteristics. This delay injection concept reflects the reality
that control signal transmission is aleatorically affected by the environment in which the robot is
operating. In real-time robotic operations, decision-making process is critical, as delays can signif-
icantly affect performance, safety, and task completion. Even small delays in control can lead to
substantial deviations from desired outcomes, such as imprecise movements, reduced efficiency, or
even accidents. Ensuring that the right robot is chosen is vital for maintaining the reliability and
effectiveness of robotic systems. Our setup enables an in-depth exploration of human-AI decision-
making dynamics in spatiotemporal robotic tasks and examines how shared confidence levels influ-
ence human-AI team decisions. Through this experiment, we evaluated human collaboration with AI
agents in making critical decisions and assessed meta-decision-making methods, such as Maximum
Confidence Slating (MCS), to improve team output.

Our study yields the following significant findings:
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Figure 1: Joint Decision-Making Frameworks: The diagram shows how confidence levels relate
to metacognition and decision-making, with humans and AI exchanging confidence level to make
joint decisions.

1. Human Suboptimality and Effective of Confidence-Driven Algorithms: Our findings
reveal that human meta-decisions1, particularly when disagreements arise between humans
and AI systems, often underperform compared to algorithmic approaches. Maximum Con-
fidence Slating (MCS), utilizing an accessible metric like confidence ratings, offers an ef-
fective alternative for resolving disagreements in joint decision-making. This is significant
because it marks the first application of this algorithm in the context of human-AI joint
decision-making within robotics.

2. Impact of AI Confidence-Calibration on Human-AI Collaboration: Our study also
provides insight into the different effects of well-calibrated and poorly calibrated AI agents
on human-AI joint decision-making accuracy. Our finding suggests that even suboptimal
AI systems can positively impact human decision-making by prompting a self-verification
process in humans. However, the importance of high-quality AI confidence-calibration
cannot be overstated. Confidence sharing emerges as a critical mechanism, enabling AI to
enhance not only the decision outcomes but also the collaborative decision-making process
itself. A well-calibrated AI agent that transparently represents its confidence can lead to
better decision outcomes, while poorly calibrated AI is more likely to steer users toward
negative changes in their decision-making process.

2 BACKGROUND AND RELATED WORK

Research on joint decision-making in human-human dyads began with studies involving two-
alternative forced-choice tasks in visual perception. Bahrami et al. demonstrated that confidence
plays a crucial role in joint decision-making. More broadly, systems capable of self-assessing their
cognitive processes are referred to as metacognitive systems, which manage confidence levels in
their own decision-making processes. Bahrami et al. found that human dyads, by sharing metacog-
nitive sensitivity through confidence, achieve significantly better collective output compared to sepa-
rate individuals. Such a dyadic system is depicted in Fig. 1. In their experiments, participants judged
which of two briefly-presented stimuli contained an oddball target. They first made their decision
individually, then shared their decisions, and if they disagreed, they discussed the matter until they

1A meta-decision refers to a higher-level decision about the decision-making process itself. It’s essentially
making choices about when to use AI assistance in the overall decision-making process.
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reached a joint decision. The results led to the conclusion that “for two observers of nearly equal
visual sensitivity, two heads were definitely better than one provided they were given the opportunity
to communicate freely.” Bang et al. (2017) In discussing the mechanism for the two-heads-better-
than-one (2HBT1) effect, the authors assumed that each individual can monitor the accuracy of their
performance and can communicate their confidence accurately to the other member.

Further studies by Koriat demonstrated that the benefit of having two heads remains even in the
absence of communication between participants in a dyad. Recent works Bang et al. (2014); Mas-
soni & Roux (2017); Bang et al. (2017); Rouault et al. (2018) have concluded that ”the decisions
advised by the confidence heuristic were just as accurate as those reached through interaction, for in-
dividuals of nearly equal reliability.” This indicates that the confidence heuristic is a very important
and promising tool for enhancing joint decision-making ability in dyadic systems. With only confi-
dence in decision sharing, the Maximum Confidence Slating (MCS) algorithm was used to select the
higher confidence choice made in a dyad and it was shown that the MCS algorithm resulted in higher
accuracy than the better performing individual. Studies in human-human joint decision making on
varied tasks such as threat detection by observing video feeds Bhattacharyya et al. (2021), detecting
fake news Guilbeault et al. (2021), deciding rank ordering between items on a survival situation
task Hamada et al. (2020), and breast and skin cancer diagnosis Kurvers et al. (2016), and robotics
tele-operation Bhattacharyya et al. (2024); Nguyen et al. (2025b) have also shown that higher confi-
dence decision selection leads to higher accuracy. Additionally, the collective benefit is statistically
indistinguishable between conditions with and without feedback in the long-term perceptual task.
Given enough practice, the learning process of ”without feedback” takes longer to develop but leads
to as much collective benefit as ”with feedback”. Bang et al. (2014)

In the domain of human-AI interaction, extensive research explores how humans are influenced by
AI through various factors, including the accuracy of AI models: Yin et al. (2019); Lai & Tan (2019);
Hoel et al. (2020); Asmar & Kochenderfer (2022); Srivastava et al. (2022), confidence: Zhang et al.
(2020); Rechkemmer & Yin (2022), the type of AI explanations and the ways that they are pre-
sented: Yang et al. (2020); Bansal et al. (2021); Corso et al. (2019), humans’ mental models about
AI: Bansal et al. (2019a;b); Glaese et al. (2022); See et al. (2019b;a), and the level of agreement be-
tween humans and AI models: Lu & Yin (2021); Sanneman & Shah (2020); El-Sayed et al. (2024),
metacognition in generative AI and human interaction: Tankelevitch et al. (2024); Meimandi et al.
(2024); Zhang et al. (2024); Nguyen et al. (2020a); Kim et al. (2024); Lee et al. (2024). Nonethe-
less, most studies have concentrated on static and passive tasks. In contrast, dynamic tasks involve
continuously changing variables and real-time interactions, which introduce a higher level of com-
plexity. Unlike static tasks, where decisions rely on fixed data points, dynamic tasks require instan-
taneous decision-making and adjustments based on fluctuating and spatio conditions. Consequently,
the domain of human-AI interaction in dynamic, spatiotemporal tasks, ubiquitous in human-robot
interaction, has yet to be thoroughly explored.

To address this gap in knowledge, our work investigates the impact of AI suggestions in a spatiotem-
poral environment. Motivated by the use of confidence heuristics from human psychology, this study
is, to the best of our knowledge, the first to examine the Maximum Confidence Slating (MCS) algo-
rithm within a human-AI joint decision-making context in the robotics application domain.

3 METHODOLOGY

In this section, we first provide a formal definition of the AI-assisted decision-making framework,
specifically focusing on the confidence-sharing setting studied in this paper. Next, we describe the
design of the AI system with confidence-sharing capabilities. Building up on this, we introduce
the meta-decision approach for resolving human-AI disagreements using the Maximum Confidence
Slating (MCS) algorithm. Finally, we briefly present the framework that supports the entire experi-
ment and the metrics used to evaluate our implementation.

3.1 PROBLEM FORMULATION

We consider the following AI-assisted decision-making setting in this paper: A human decision
maker must complete a sequence of T binary robot selection tasks in a varying environmental context
with the aid of an AI model. in each trial t (1 ≤ t ≤ T). The initial pose of the robot and the door
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Figure 2: Experiment Setup: Online robot navigation simulator using ROS and web interface. Red
and green curves show trajectories driven by a study participant controlling the Jackal robot under
low and high delay conditions, respectively.

configuration are sampled randomly at the beginning of each trial, while the goal position, to which
the human must teleoperate the robot within a time limit, remains fixed. An example of a rescue
robotics teleoperation task in a ROS environment is shown in Fig. 2. The delay characteristics of
each robot are randomly preset using a staircase procedure. In this procedure, the task difficulty is
adjusted adaptively: after two consecutive successful choices, the delay difference between the two
robots is decrease by 20 ms, making the behaviour difference harder to distinguish. Conversely, if
a failure occurs, the delay is increase by 20 ms, making the task easier. This adaptive adjustment
ensures that the accuracy achieved by any participant is around 70%, preventing the task from being
too easy (resulting in ceiling performance) or too difficult (leading to performance close to random).
This approach helps avoid participants being either overly confident or underconfident about their
performance Levitt (1971).

The participant teleoperates each robot and provides their choice of robot that they deem to have
a greater advantage in reaching the preset rescue point more promptly (Dh), along with their con-
fidence (Ch). Additionally, the decision-maker receives an AI decision recommendation (DAI),
which may or may not be the same as (Dcorrect), the correct decision of this trial, along with
their confidence (CAI). With all this information, the human decision maker needs to make a fi-
nal decision along with their confidence (Dh-final, Ch-final) which allows human to accept or
reject the AI agent recommendation, as well as adjust their confidence. The set of robot deci-
sions is D ∈ {Robot 1,Robot 2}, and confidence is C ∈ {Highest Confidence, High
Confidence, Low Confidence, Lowest Confidence}. When the final decision is made,
the decision maker will not be informed of its correctness. Through this setup, we aim to study the
meta-decision-making ability of humans in a human-AI agent dyad and the benefits of confidence
sharing between humans and AI agents in making joint meta-decisions. We employ the Maximum
Confidence Slating algorithm to make meta-decisions when the human and AI agent choices con-
flict. This occurs in the absence of feedback, so the human may not have complete information
about the AI’s performance. The Maximum-Confidence Slating (MCS) algorithm then facilitates
joint decision-making by selecting the decision with the highest confidence from two sources: a
human decision maker (Dh) and an AI agent (DAI). The MCS algorithm is datailed in Alg. 2.

An example of the choice-making interface design is shown in Fig. 3.

3.2 AI RECOMMENDATION MODEL

The focus of our study is to explore how humans benefit from AI agent suggestions in this tele-
robotics setting through confidence sharing. To equip the AI agent with confidence-sharing ability,
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Figure 3: Study InterfaceAfter completing the robots teleoperation, participants saw three panels
sequentially: the left panel for their initial robot choice and confidence, the middle panel for the AI’s
suggestions and confidence. If the participant decides to change their initial choice, a third panel,
similar to the left, will be shown to collect their final choice and confidence.

we collected one round of human data in a separate experiment where humans performed the same
tele-robotic task without AI assistance. We used that data to train the AI agent for this study.

For each set of robot delay characteristics, which determine the difficulty of the trials, we built dis-
crete distributions of human confidence levels (Highest Confidence, High Confidence,
Low Confidence, Lowest Confidence) separately for both correct and incorrect decision
scenarios. The algorithm to calculate the confidence calibration of humans Nguyen et al. (2025c) is
presented in Alg. 1. Based on this, we designed two types of AI agents: ”Good” (well-calibrated)
and ”Bad” (poorly-calibrated). The Good AI agent learns from the discrete confidence distribu-
tion of humans with well-calibrated confidence, while the Bad AI agent learns from the confidence
distribution of participants with poorly calibrated confidence, based on data from our previous ex-
periments. The AI agents then sample their confidence from these discrete distributions in specific
task setups.

In this stage of our AI agent development, the AI is designed to know the correct robot choice 70%
of the time across all trials where it assists humans. Finally, given its current knowledge of human
confidence and decision accuracy, the AI agent recommends choices to human users, along with its
confidence level for each separate tele-operation trial.

3.3 ALGORITHM FOR RESOLVING DISAGREEMENTS

Our studies specifically focused on decision-making scenarios where the human participant and AI
agent held opposing choice of robot. To maximize the best outcome in these cases, we employed
the Maximum Confidence Slating (MCS) Alg. 2, which is extensively studied by prior research in
the human-human psychology domain as the meta-decision maker Massoni & Roux (2017); Bang
et al. (2017); Rouault et al. (2018).

3.4 EVALUATION METRICS

The performance metrics used in our research were accuracy, and the rates of positive and neg-
ative changes in human decision-making after observing suggestions from both good and poor
confidence-calibtated AI agents. We also assessed the accuracy of human decision-making both
before and after receiving AI agents suggestions. Additionally, the performance of the dyad’s meta-
decision using the MCS algorithm was evaluated based on the accuracy metric.
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4 HUMAN-SUBJECT EXPERIMENT

We conducted an online study, approved by the University Research Ethics Committee, to collect
human data on AI-assisted decision-making in the robot controller selection task.

4.1 PARTICIPANTS

We collected responses from 100 participants in total via Prolific Platform. We excluded participants
who were either unable to perform the task or were inattentive, based on the following criteria: 1)
those with an accuracy of less than 65%, and 2) those who gave the same confidence rating response
for over 95 of 100 trials. This threshold was chosen to ensure that all participants included in the
analyses were performing the task above chance, as is standard procedure in the literature studying
human self-confidence Rouault et al. (2018).

Out of the 100 participants who participated in our experiment, 80 passed the above criteria and
their data was used for the subsequent analysis. Demographics included 47 males and 33 females.
The mean age of participants was 37, with a standard deviation of 11. The average time taken for
the experiment was 1.0 hours, with a standard deviation of 0.2 hours, paying an average of 7.6 USD.

4.2 EXPERIMENTAL SETUP

The study was designed to allow participants to take part online from any location. Each participant
was paired with two identical simulated rescue robots, each programmed with different delay char-
acteristics in the control. They were tasked with navigating the robots, one at a time, from a start
location to a rescue goal through a narrow gap with a closing door as an obstacle. The interface
is shown in Fig. 2. The rescue robots randomly start in 1 of 6 possible initial positions, and the
doorway has 4 different gap configurations, resulting in 24 unique environment setting. The fixed
rescue goal location is marked by a traffic cone.

At the start of each trial, the robot’s initial position and door configuration were randomly selected.
Participants controlled the robots using the keyboard. They drove each robot in random order within
6 seconds limit, the minimum driving time needed to make a decision between the two robots.

We introduced a time delay in the control of each robot. One robot had a fixed delay of 50 ms
between key press and action, while the other robot’s delay started at 70 ms and varied based on
previous trials. These delays set the task difficulty level. The order of robot appearance was shuffled
randomly across 100 trials, and a staircase procedure adjusted this difficulty. This experiment setup
was initialized and optimized through multiple iterations of separate pilot studies with N = 10
samples each.

4.3 EXPERIMENTAL PROCEDURE

Participants were prefiltered on Prolific to ensure they were at least 18 years old. Selected partic-
ipants received a link to a study overview page with ethics information and participation details.
After agreeing to participate, they viewed a detailed study overview, including a video demonstra-
tion and example trial runs. They then completed 5 practice trials to familiarize themselves with
controlling the robot using a keyboard controller. In the main experiment, participants conducted
100 driving trials. At the conclusion of each trial, they were asked to select the robot they believed
had the lower control delay. The AI agent, which had prior knowledge of the task difficulty as well
as a learned distribution of real human calibration confidence levels at that specific task difficulty,
would then provide the human participant with a recommendation on the correct choice, along with
its confidence. After receiving the AI agent’s advice, participants were given the opportunity to
either follow the recommendation or re-evaluate their original selection.
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Figure 4: Joint Decision-Making Performance: Joint decision-making human-AI team achieved
higher accuracy than human decision-making alone (p < 0.001). Moreover, the MCS combining
human and AI decisions outperformed joint decisions decided human (p < 0.001).

5 RESULTS

5.1 RQ1: HOW CAN WE ACHIEVE THE BEST OUTCOME WHEN HUMANS AND AI DISAGREE
ON A CHOICE?

One of our main focuses is on trials where there is a disagreement between the human participant and
the AI agent regarding the choice of robot.Maximum Confidence Slating (MCS) is a more effective
approach to joint decision-making between humans and AI agents, compared to relying solely on
human final decisions.

In Fig. 4, ”Joint Decision Decided By Human” represents cases where, in the event of a disagree-
ment, the final decision is made by the human participant, while ”Joint Decision Decided By MCS”
refers to cases where the final decision is determined by the Maximum Confidence Slating (MCS)
algorithm. Although the final decision made by humans after receiving AI recommendations shows
well improvement compared to their original decision without AI support (52.5% vs. 46.7%), the
accuracy of the MCS algorithm is significantly higher than when the human makes the final decision
(p < 0.001). The MCS algorithm achieved an average accuracy of 63.3%, which is substantially
higher than the 52.5% accuracy achieved by humans.

This finding indicates that human-based decision-making is inefficient, and that there is a more op-
timal method exists for resolving disagreements between humans and AI agents. By implementing
Maximum Confidence Slating, based on a simple and easily accessible metric confidence we have
found an effective method for resolving decision-making disagreements between humans and AI
agents.

5.2 RQ2: HOW DO HUMANS BENEFIT FROM GOOD AND BAD AI IN SPATIOTEMPORAL TASK?

As mentioned in Section. 3.2, we specifically designed two types of AI agents for this study: Good
and Bad, both acting as teammates advising humans. Out of 100 participants, we randomly assigned
the Good AI agent to 50 participants and the Bad AI agent to the remaining 50. Fig. 5 illustrates the
accuracy of human decision-making when paired with Good versus Bad AI agents, both before and
after receiving AI recommendations.

We found that pairing humans with both Bad and Good AI agents increased their final decision
accuracy, with p < 0.05 and p < 0.005, respectively. This counterintuitive result suggests that
even suboptimal AI agents can positively impact human decisions, possibly by encouraging a self-
verification process. Introducing ’confidence’ sharing between the human and AI agents, the collec-
tive benefit was enhanced. These results align with findings from many studies on static and passive
tasks, but this is the first time such an effect has been confirmed in a spatiotemporal robotic task.
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Figure 5: Task Performance Analysis: Pairing humans with both Bad and Good Confidence-
Calibration AI agents significantly improved their final decision accuracy. Additionally, humans
paired with the Good AI agent achieved higher final decision accuracy (p < 0.05).

Figure 6: Rates of Positive and Negative Decision-Making Changes by AI Agent Type: The Bad
AI agent results in more bad/negative changes, while the Good AI agent leads to more good/positive
changes.

Furthermore, we recorded the rates of positive and negative changes in decision-making. We defined
a negative (or bad) change as when a human changes from a correct answer to an incorrect one based
on AI suggestions, and a positive (or good) change as when a human changes from an incorrect
answer to a correct one after AI agent suggestions. Based on the data, we analyzed how suggestions
from Bad and Good AI agent influence human final decisions. The statistical results in Fig. 6 shows
that Bad AI agent leads to more negative changes (t(61) = 1.61, p = .05), while Good AI agent
leads to more positive changes (t(61) = 1.34, p = .09). This indicates the importance of ensuring
that AI agents are of high quality (i.e., well-calibrated) to maximize positive outcomes. In this
context, a high-quality AI agent is one with well-calibrated confidence levels.

6 DISCUSSION & CONCLUSION

We studied human-AI dyad joint decision-making on a robot teleoperation task. Our research re-
veals the suboptimality of human meta-decision making, particularly when resolving disagreements
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between humans and AI. This discovery highlights the potential for more effective approaches, such
as Maximum Confidence Slating (MCS), which leverages confidence as an easily accessible metric.
The application of MCS in this context represents a novel contribution to the field of human-AI joint
decision-making in robotics. Our study demonstrates that pairing humans with AI, even when the AI
is not perfectly confidence-calibrated, can enhance overall decision accuracy. This finding suggests
that AI’s role extends beyond providing correct answers; it also enhances the decision-making pro-
cess through confidence sharing. However, we emphasize the critical importance of well-calibrated
AI confidence levels. Our findings indicate that a high-quality confidence-calibration AI agent can
lead to improved decision outcomes. This highlights the necessity for AI systems to prioritize not
only precision but also confidence-aware frameworks to maximize their collaborative potential and
influence in complex collaboration environments.

To the best of our knowledge, this is the first study on joint decision-making for a spatio-temporal
dynamic task involving actively controlling robots. Our study lays groundwork for further research
on other approaches to improve decision-making in human-AI collaborative decision-making in a
more complex collaboration environments like robotics domain, advancing to safer, more efficient,
and more reliable robotics operations.

7 ETHICAL STATEMENT

This research was conducted with strict adherence to ethical guidelines governing human-AI inter-
action studies. All human participants involved in the experiment provided informed consent, with
a full understanding of the study’s purpose, procedures, and any potential risks or benefits. Data
collected from the experiment were anonymized and used solely for the purpose of this research.
The study was reviewed and approved by the University Research Ethics Committee, confirming
that all ethical standards were met.
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A APPENDIX

In the appendix, we present detailed descriptions of the two implemented algorithms.

Algorithm 1 Confidence Calibration (AUROC2)

1: Input:
correct: vector of size 1× ntrials, with 0 for error and 1 for correct trials
conf : vector of size 1× ntrials, with confidence ratings from 1 to Nratings

Nratings: number of available confidence levels
2: Output: auroc2: type-2 area under the ROC curve
3: Initialize i← Nratings + 1
4: for c← 1 to Nratings do
5: H2[i− 1]← count(conf = c ∧ correct) + 0.5
6: FA2[i− 1]← count(conf = c ∧ ¬correct) + 0.5
7: i← i− 1
8: end
9: Normalize H2← H2/

∑
H2

10: Normalize FA2← FA2/
∑

FA2
11: Compute cumulative sums:
12: csum H2← [0, cumsum(H2)]
13: csum FA2← [0, cumsum(FA2)]
14: Initialize i← 1
15: for c← 1 to Nratings do
16: A← csum H2[c+ 1]− csum FA2[c]
17: B ← csum H2[c]− csum FA2[c+ 1]
18: k[i]← A2 −B2

19: i← i+ 1
20: end
21: Compute auroc2← 0.5 + 0.25×

∑
k

22: return auroc2

Algorithm 2 Maximum-Confidence Slating (MCS)

1: Input: Decision set D = {Dh,DAI},
Confidence set C = {Ch,CAI}, Set of trials T

2: Output: MCS decisions {MCS(t)}t∈T

3: MCS← ∅
4: for each trial t ∈ T do
5: Ch ← C[Ch, t]
6: CAI ← C[CAI, t]
7: Dh ← D[Dh, t]
8: DAI ← D[DAI, t]
9: while Dh ̸= DAI then

10: if Ch > CAI then
11: MCS(t)← Dh
12: else if CAI > Ch then
13: MCS(t)← DAI
14: end if
15: end for
16: return {MCS(t)}t∈T
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