
A CONNECTION BETWEEN ONE-STEP RL AND CRITIC
REGULARIZATION IN REINFORCEMENT LEARNING

Benjamin Eysenbach1,2 Matthieu Geist2 Sergey Levine2,3 Ruslan Salakhutdinov1
1CMU 2Google Research 3 UC Berkeley
beysenba@cs.cmu.edu

ABSTRACT

As with any machine learning problem with limited data, effective offline RL algo-
rithms require careful regularization to avoid overfitting. One-step methods perform
regularization by doing just a single step of policy improvement, while critic regular-
ization methods do many steps of policy improvement with a regularized objective.
These methods appear distinct. One-step methods, such as advantage-weighted re-
gression and conditional behavioral cloning, truncate policy iteration after just one
step. This “early stopping” makes one-step RL simple and stable, but can limit its
asymptotic performance. Critic regularization typically requires more compute but
has appealing lower-bound guarantees. In this paper, we draw a close connection be-
tween these methods: applying a multi-step critic regularization method with a reg-
ularization coefficient of 1 yields the same policy as one-step RL. While our theoret-
ical results require assumptions (e.g., deterministic dynamics), our experiments nev-
ertheless show that our analysis makes accurate, testable predictions about practical
offline RL methods (CQL and one-step RL) with commonly-used hyperparameters.

1 INTRODUCTION

n-step RL …

critic
regularization

more regularization less regularization

Figure 1: Both n-step RL and critic regularization can
interpolate between behavioral cloning (left) and un-
regularized RL (right) by varying the regularization pa-
rameter. Endpoints of these regularization paths are the
same. We prove that these methods also obtain the same
policy for an intermediate degree of regularization.

Reinforcement learning (RL) algorithms tend
to perform better when regularized, especially
when given access to only limited data, and es-
pecially in batch (i.e., offline) settings where
the agent is unable to collect new experience.
While RL algorithms can be regularized using
the same tools as in supervised learning (e.g.,
weight decay, dropout), we will use “regulariza-
tion” to refer to regularization methods unique
to the RL setting. Such regularization methods
include policy regularization (penalizing the pol-
icy for sampling out-of-distribution action) and value regularization (penalizing the critic for making
large predictions). Research on these sorts of regularization has grown significantly in recent years,
yet theoretical work studying the tradeoffs between regularization methods remains limited.

Many RL methods perform regularization, and can can be classified by whether they perform one
or many steps of policy improvement. One-step RL methods (Brandfonbrener et al., 2021; Peng
et al., 2019; Peters & Schaal, 2007; Peters et al., 2010) perform one step of policy iteration, updating
the policy to choose actions the are best according to the Q-function of the behavioral policy. The
policy is often regularized to not deviate far from the behavioral policy. In theory, policy iteration
can take a large number of iterations (Õ(|S||A|/(1− γ)) (Scherrer, 2013)) to converge, so one-step
RL (one step of policy iteration) fails to find the optimal policy on most tasks. Empirically, policy
iteration often converges in a smaller number of iterations (Sutton & Barto, 2018, Sec. 4.3), and
the policy after just a single iteration can sometimes achieve performance comparable to multi-step
RL methods (Brandfonbrener et al., 2021). Critic regularization methods modify the training of the
value function such that it predicts smaller returns for unseen actions (Kumar et al., 2020; Chebotar
et al., 2021; Yu et al., 2021; Hatch et al., 2022; Nachum et al., 2019; An et al., 2021; Bai et al., 2022;
Buckman et al., 2020). Errors in the critic might cause it to overestimate the value of some unseen
actions, but that overestimation can be combated by decreasing the values predicted for all unseen

1

actions. In this paper, we will use “critic regularization” to specifically refer to multi-step methods
that use critic regularization.

In this paper, we show that a certain type of actor and critic regularization can be equivalent, under
some assumptions (see Fig. 1). The key idea is that, when using a certain TD loss, the regularized
critic updates converge not to the true Q-values, but rather the Q-values multiplied by an importance
weight. For the critic, these importance weights mean that the Q-values end up estimating the
expected returns of the behavioral policy (Qβ , as in many one-step methods (Peters et al., 2010;
Peters & Schaal, 2007; Peng et al., 2019; Brandfonbrener et al., 2021)), rather than the expected
returns of the optimal policy (Qπ). For the actor, these importance weights mean that the logarithm
of the Q-values includes a term that looks like a KL divergence. So, optimizing the policy with these
Q-values results in a standard form of actor regularization.

The main contributions of this paper are as follows:

• We prove that one-step RL produces the same policy as a multi-step critic regularization method,
for a certain regularization coefficient and when applied in deterministic settings.

• We show that similar connections hold for goal-conditioned RL, as well as other RL settings.
• We provide experiments validating the theoretical results in settings where our assumptions hold.
• We show that the theoretical results make accurate, testable predictions for practical offline RL

methods, which can violate our assumptions.

2 RELATED WORK

Regularization has been applied to RL in many different ways (Neu et al., 2017; Geist et al., 2019),
and features prominantly in offline RL methods (Lange et al., 2012; Levine et al., 2020). While RL
algorithms can be regularized using the same techniques as in supervised learning (e.g., weight decay,
dropout), our focus will be on regularization methods unique to the RL setting. Such RL-specific
regularization methods can be categorized based on whether they regularize the actor or the critic.

One-step RL methods (Brandfonbrener et al., 2021; Gülçehre et al., 2020; Peters & Schaal, 2007;
Peng et al., 2019; Peters et al., 2010; Wang et al., 2018) apply a single step of policy improvement
to the behavioral policy. These methods first estimate the Q-values of the behavioral policy, either via
regression or iterative Bellman updates. Then, these methods optimize the policy to maximize these
Q-values minus an actor regularizer. Many goal-conditioned or task-conditioned imitation learning
methods (Savinov et al., 2018; Ding et al., 2019; Sun et al., 2019; Ghosh et al., 2020; Paster et al., 2020;
Yang et al., 2021; Srivastava et al., 2019; Kumar et al., 2019; Chen et al., 2021; Lynch & Sermanet,
2021; Li et al., 2020; Eysenbach et al., 2020a) also fits into this mold (Eysenbach et al., 2022),
yielding policies that maximize the Q-values of the behavioral policy while avoiding unseen actions.
Note that non-conditional imitation learning methods do not perform policy improvement, and do not
fit into this mold. One-step methods are typically simple to implement and computationally efficient.

Critic regularization methods instead modify the objective for the Q-function so that it predicts lower
returns for unseen actions (Kumar et al., 2020; Chebotar et al., 2021; Yu et al., 2021; Hatch et al.,
2022; Nachum et al., 2019; An et al., 2021; Bai et al., 2022; Buckman et al., 2020). Critic regular-
ization methods are typically more challenging to implement correctly and more computationally
demanding (Kumar et al., 2020; Nachum et al., 2019; Bai et al., 2022; An et al., 2021), but can lead
to better results on some challenging problems (Kostrikov et al., 2021) Our analysis will show that
one-step RL is equivalent to a certain type of critic regularization.

3 PRELIMINARIES

We start by defining the single-task RL problem, and then introduce prototypical examples of one-step
RL and critic regularization. We then introduce an actor critic algorithm we will use for our analysis.

3.1 NOTATION

We assume an MDP with states s, actions a, initial state distribution p0(s0), dynamics p(s′ | s, a), and
reward function r(s, a).1 We assume episodes always have infinite length (i.e., there are no terminal
states). Without loss of generality, we assume rewards are positive, adding a positive constant to all

1If the reward also depends on the next state, then define r(s, a) = Ep(·|s,a)[r(s, a, s
′)].

2

rewards can make them all positive without changing the optimal policy. We will learn a Markovian
policy π(a | s) to maximize the expected discounted sum of rewards:

max
π

Eπ(τ)

[
∞∑
t=0

γtr(st, at) | s0 ∼ p0(s0)

]
,

where π(τ) = p(s0)
∏∞

t=0 π(at | st)p(st+1 | st, at) is the probability of policy π sampling an
infinite-length trajectory τ = (s0, a0, · · ·). We define Q-values for policy π(a | s) as

Qπ(s, a) = Eπ(τ)

[
∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
.

Note that the reward being positive implies that the Q-values are also positive, Qπ(s, a) > 0. Since
we focus on the offline setting, we will consider two policies: β(a | s) is the behavioral policy
that collected the dataset, and π(a | s) is the online policy output by the algorithm that attempts to
maximize the rewards. We will use p(s, a, s′) to denote the empirical distribution of transitions in an
offline dataset, and p(s, a) and p(s) denote the corresponding marginal distributions. The behavioral
policy is defined as β(a | s) = p(a | s).

3.2 EXAMPLES OF REGULARIZATION IN RL

While actor and critic regularization methods can be implemented in many ways, we introduce two
prototypical examples below to make our discussion more concrete.

Example of one-step RL: Brandfonbrener et al. (2021). One-step RL first estimates the Q-values
of the behavioral policy (Qβ(s, a)), and then optimizes the policy to maximize the Q-values minus a
actor regularizer. While the actor regularizer can take different forms and the Q-values can be learned
via regression, we will use a reverse KL regularizer and TD-style critic update so that the objective is
similar to critic regularization:

max
π

Ep(s)π(a|s)

[
Qβ(s, a) + λ(log β(a | s)− log π(a | s))

]
, where Qβ(s, a) = lim

t→∞
Qt(s, a) (1)

and Qt+1 ← argmin
Q

Ep(s,a)

[(
Q(s, a)− yβ,Qt(s, a)

)2]
and yβ,Qt(s, a) ≜ r(s, a) + γEp(s′|s,a)

β(a′|s′)

[
Qt(s

′, a′)
]
.

where λ is the regularization coefficient and β(a | s) is an estimate of the behavioral policy, typically
learned via behavioral cloning. Like most TD methods (Haarnoja et al., 2018; Mnih et al., 2013;
Fujimoto et al., 2018), the TD targets y are not considered learnable. In practice, most methods do
not solve optimize the critic to convergence at each step, instead taking just a few gradient steps
before updating the TD targets. This one-step critic loss is different from the multi-step critic losses
used in other RL methods (e.g., TD3, SVG(0)) because it uses the TD target yβ,Q(s, a) (corresponds
to a fixed policy) rather than yπ,Q(s, a) (corresponding to a sequence of learned policies). One-step
RL amounts to performing one step of policy iteration, rather than full policy optimization. While
truncating the iterations of policy iteration can be suboptimal, it can also be interpreted as a form of
early stopping regularization.

Example of critic regularization: Kumar et al. (2020). CQL (Kumar et al., 2020) modifies the
standard Bellman loss to include an additional term that decreases the values predicted for unseen
actions. The actor objective is to maximize Q values; some CQL implementations also regularize the
actor loss (Hoffman et al., 2020; Kumar et al., 2020)). The objectives can then be written as

max
π

Ep(s)π(a|s) [Q
π(s, a)] , where Qπ(s, a) = lim

t→∞
Qt(s, a) (2)

and Qt+1 = argmin
Q

Ep(s,a)

[(
Q(s, a)− yπ,Qt(s, a)

)2]
+ λ

(
Ep(s)π(a|s) [Q(s, a)]− Ep(s)β(a|s) [Q(s, a)]

)
.

The second term decreases the Q-values for unseen actions (those sampled from π(a | s)) while the
third term increases the values predicted for seen actions (those sampled from the behavioral policy
β(a | s)). Unlike standard temporal difference methods, the CQL updates resemble a competitive
game between the actor and the critic. In practice, this cyclic dependency can create unstable
learning (Kumar et al., 2020; Hoffman et al., 2020).

3

3.3 HOW ARE THESE METHODS CONNECTED?

Prior work has observed that one-step methods and critic regularization methods perform similarly
on many (Fujimoto & Gu, 2021; Emmons et al., 2021) (but not all (Kostrikov et al., 2021)) tasks.
Despite the differences in objectives and implementations of these two methods (and, more broadly,
the actor/critic regularization methods for which they are prototypes), are there deeper, unifying
connections between the methods?

In the next section, we introduce a different actor-critic method that will allow us to draw a connection
between one-step RL and critic regularization. We experimentally validate this equivalence in Sec. 5.1.
Despite its difference from practically-used methods, such as one-step RL and CQL, we will show
that it makes accurate predictions about the behavior of these practical methods (Sec. 5.2 and 5.3).

3.4 CLASSIFIER ACTOR CRITIC

To support our analysis, we will introduce a new actor-critic algorithm. This algorithm is similar
to prior work, but trains the critic using a cross entropy loss instead of an MSE loss. We introduce
this algorithm not because we expect it to perform better than existing actor-critic methods, but
rather because it allows us to make precise a connection between actor and critic regularization. This
method treats the value function like a classifier, so we will call it classifier actor critic. We will then
introduce actor-regularized and critic-regularized versions of this method. The subsequent section
(Sec. 4) will show that these two regularized methods learn the same policy.

The key to our analysis will be to treat Q-values like probabilities, so we define the critic loss in
terms of a cross-entropy loss, similar to prior work (Kalashnikov et al., 2018; Eysenbach et al., 2021).
Recalling that Q-values are positive (Sec. 3.1), we transform the Q-values to have the correct range by
using Q

Q+1 ∈ [0, 1). We will minimize the cross-entropy loss applied to the transformed Q-values:

Ep(s,a)

[
CE
(

Q(s, a)

Q(s, a) + 1
;

yπ,Qt(s, a)

yπ,Qt(s, a) + 1

)]
(3)

= −Ep(s,a)

[
yπ,Qt(s, a)

yπ,Qt(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yπ,Qt(s, a) + 1
log

1

Q(s, a) + 1

]
const.
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
≜ Lcritic(Q, yπ,Qt), (4)

In the last line we scale both the positive and negative term by yπ,Qt(s, a) + 1, a choice that
does not change the optimal classifier but reduces notational clutter. When the TD target can be
computed exactly, solving this optimization problem results in performing one SARSA update:
Q(s, a)← r(s, a) + γQ(s′, a′) (see Lemma 4.1). Thus, by solving this optimization problem many
times, each time using the previous Q-value to compute the TD targets, we will converge to the correct
Q-values (see Lemma 4.1). The actor objective is to maximize the expected log of the Q-values:

max
π
Lactor(π) ≜ Ep(s)π(a|s) [log(Q

π(s, a))] , where Qπ(s, a) = lim
t→∞

Qt(s, a) (5)

and Qt+1 = argmin
Q

Lcritic(Q, yπ,Qt).

While most actor-critic methods do not use the logarithm transformation, prior work on conditional
behavioral cloning (e.g., (Savinov et al., 2018; Ding et al., 2019; Sun et al., 2019; Ghosh et al.,
2020; Srivastava et al., 2019)) implicitly includes this transformation (Eysenbach et al., 2022). In
the absence of additional regularization, the optimal policy π(a | s) = 1(a = argmaxa′ Q(s, a′))
is the same as the optimal policy for the standard actor objective (without the logarithm). We next
introduce a one-step version of this method, as well as a critic regularization variant that resembles
CQL. While we will implicitly use a regularization coefficient of 1 below, Appendix B.1 discusses
versions of classifier actor critic with varying degrees of regularization.

One-step RL. To make classifier actor critic resemble one-step RL (Brandfonbrener et al., 2021),
we make two changes: estimating the value of the behavioral policy and adding a regularization term
to the actor objective. To estimate the value of the behavioral policy, we modify the critic loss to
sample the next action a′ from the behavioral policy (i.e., we use yβ,Qt(s, a) rather than yπ,Qt(s, a)).

4

We also regularize the policy by adding a relative entropy term to the actor loss, analogous to the
reverse KL penalty used in one-step RL:

max
π

Ep(s)π(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
, where Qβ(s, a) = lim

t→∞
Qt(s, a) (6)

and Qt+1 = argmin
Q

Lcritic(Q, yβ,Qt).

In tabular settings, this critic objective estimates the Q-values for β(a | s) (Appendix Lemma 4.1).

Critic regularization. To emulate CQL, we modify the critic loss (Eq. 4) by adding a penalty
term that decreases the values for unseen actions. Whereas CQL applies this penalty to the Q-values
directly, we will apply it to the logarithm of the Q-values:2

max
π

Ep(s)π(a|s) [logQ
π
r (s, a)] , where Qπ

r (s, a) = lim
t→∞

Qt(s, a) (7)

Qt+1(s, a) = argmin
Q

Lcritic(Q, yπ,Qt) + λ

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
︸ ︷︷ ︸

Lr
critic(Q,yπ,Qt)

.

4 A CONNECTION BETWEEN ONE-STEP RL AND CRITIC REGULARIZATION

This section provides our main result, which is that actor and critic regularization yield the same
policy under some settings. The key to proving this connection will be to analyze the Q-values learned
by critic regularization. While we mainly focus on the single-task setting, Sec. 4.2 describes how
similar results also apply to other settings, including goal-conditioned RL, example-based control,
and settings with smaller degrees of regularization. All proofs are in Appendix A.

To relate one-step RL to critic regularization, we start by analyzing the Q-values learned by both
methods. We first show that the classifier critic converges to the correct Q-values:
Lemma 4.1. Assume that states and actions are tabular (discrete and finite), that rewards are positive,
and that TD targets can be computed exactly (without sampling). Incrementally update the critic by
solving a sequence of optimization problems:

Qt+1 ← argmin
Q

Lcritic(Q, yπ,Qt)

In the limit, this sequence of Q-functions will converge to Qπ:

lim
t→∞

Qt(s, a) = Qπ(s, a) for all states s and actions a.

Because one-step RL trains the critic using Lcritic(Q, yβ,Q), it learns Q-values corresponding to
Qβ(s, a). When regularization is added to the critic updates, it learns different Q-values. Perhaps
surprisingly, this regularization means that our estimates for the value of policy π(a | s) look like the
value of the original behavioral policy:
Lemma 4.2. Assume that states and actions are tabular (discrete and finite), that rewards are positive,
and that TD targets can be computed exactly (without sampling). Incrementally update the critic by
minimizing a sequence of regularized critic losses using policy π and hyperparameter λ = 1:

Qt+1 ← argmin
Q

Lr
critic(Q, yπ,Qt).

In the limit, this sequence of Q-functions will converge to the Q-values for the behavioral policy
(β(a | s)), weighted by the ratio of the behavioral and online policies:

lim
t→∞

Qt(s, a) =
Qβ(s, a)β(a | s)

π(a | s)
for all states s and actions a.

2From a dimensional analysis perspective (Huntley, 1967), this choice makes sense because it allows the
penalty term to have the same “units” as the critic loss: log Q-values. A second motivation for regularizing the
logarithm is that the actor loss uses a logarithm.

5

Proof sketch. The ratio β(a|s)
π(a|s) above is an importance weight. Ordinarily, a TD backup for policy

π(a | s) would entail sampling an action a ∼ π(a | s). However, this importance weight means
that TD backup is effectively performed by sampling an action a ∼ β(a | s). Such a TD backup
resembles the TD backup for β(a | s). The full proof is in Appendix A.

Intuitively, this result says that critic regularization reweights the Q-values to assign higher values
to in-distribution actions, where β(a | s) is large. An unexpected part of this result is that the
Q-values correspond to the behavioral policy. Said in other words, critic regularization added to a
multi-step RL method (one using yπ,Qt(s, a)) yields the same critic as a one-step RL method (one
using yβ,Qt(s, a)). Our main result is a direct corollary of this Lemma:

Theorem 4.3. Let a behavioral policy β(a | s) be given and let Qβ(s, a) be the corresponding value
function. Let π(a | s) be an arbitrary policy (typically learned) with support constrained to β(a | s)
(i.e., π(a | s) > 0 =⇒ β(a | s) > 0). Let Qπ

r (s, a) be the critic obtained by the regularized critic
update (Eq. 7) to this policy with λ = 1. Then critic regularization results in the same policy as
one-step RL:

Eπ(a|s) [logQ
π
r (s, a)] = Eπ(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
for all states s.

Since both forms of regularization result in the same objective for the actor, they must produce
the same policy in the end. While prior work has mentioned that critic regularization implicitly
regularizes the policy (Yu et al., 2021), this result shows that under the assumptions stated above,
the implicit regularization of critic regularization results in the exact same policy learning objective
as one-step RL. This equivalence holds when λ = 1, and not necessarily for other regularization
coefficients. Appendix B.1 shows how a variant of this result that includes an additional regularization
mechanism does apply to different regularization coefficients. This connection between one step
RL and critic regularization concerns their objective functions, not the procedures used to optimize
those objective functions. Indeed, because practical offline RL algorithms sometimes use different
optimization procedures (e.g., TD vs. MC estimates of Qβ(s, a)), they will incur errors in estimating
Qβ(s, a), violating Theorem 4.3’s assumption that these Q-values are estimated exactly.

4.1 LIMITATIONS

Our theoretical analysis makes assumptions that may not always hold in practice. For example, our
results use a critic loss based on the cross entropy loss, while most (but not all (Kalashnikov et al.,
2018; Eysenbach et al., 2020b)) practical methods use the MSE. Our analysis assumes that critic
regularization arrives at an equilibrium, and ignores errors introduced by function approximation and
sampling. Nonetheless, our theoretical results will make accurate predictions about practically-used
offline RL methods.

4.2 EXTENSIONS OF THE ANALYSIS

We extend this analysis in three ways. First, we also show that a similar connection can be established
for lesser degrees of regularization (λ < 1) (see Appendix B.1). Second, we show that a similar con-
nection holds for RL problems defined via success examples (Pinto & Gupta, 2016; Tung et al., 2018;
Kalashnikov et al., 2021; Singh et al., 2019; Zolna et al., 2020; Calandra et al., 2017; Eysenbach et al.,
2021) These results use existing actor-critic method, rather than classifier actor critic (see Appendix C).
Third, we extend our analysis to multi-task settings by looking at goal-conditioned RL problems.

5 NUMERICAL SIMULATIONS

Our numerical simulations study whether the theoretical connection between actor and critic regular-
ization holds empirically. The first experiments (Sec. 5.1) will use classifier actor-critic, and we will
expect the equivalence to hold exactly in this setting. We then study whether this connection still
holds for practical prior methods (one-step RL and CQL), which violate our assumptions. We study
these commonly-used methods in both tabular settings (Sec. 5.2) and on a benchmark offline RL task
with continuous states and actions (Sec. 5.3). We do not expect these methods to always be the same
(see, e.g., Kostrikov et al. (2021, Table 1)), and we will focus our experiments on critic regularization

6

0.000 0.005
expected returns

actor
critic
none

0.0 0.5
actor regularization

0.0

0.5

1.0

cr
iti

c
re

gu
la

riz
at

io
n

y = x

0.0

0.5

1.0

Q-
le

ar
ni

ng

0.0 0.1
expected returns

actor
critic
none

0.0 0.5
actor regularization

0.0

0.5

1.0

cr
iti

c
re

gu
la

riz
at

io
n

y = x

0.0

0.5

1.0

no
 re

gu
la

riz
at

io
n

MDPs where regularization decreases returns.

0.0 0.1
expected returns

actor
critic
none

0.0

0.5

1.0

no
 re

gu
la

riz
at

io
n

0.0 0.5 1.0
actor regularization

0.0

0.5

1.0

cr
iti

c
re

gu
la

riz
at

io
n

y = x

MDP where regularization in-
creases returns.

Figure 2: Actor and critic regularization produce identical policies. Across three tabular settings, we plot the
action probabilities π(a | s) for the policies produced by one-step RL and critic-regularized classifier actor-critic
(R2 ≥ 0.999). We also plot the action probabilities for a policy learned by an unregularized policy to confirm
that the equivalence between one-step RL and critic regularization is not a coincidence.

-10 +1

(a) reward function (b) Q-learning (c) One-step RL (d) CQL(λ = 10) (e) CQL(λ = 0.1)

Figure 3: CQL can behave like one-step RL. We design a gridworld (a) so that one-step RL (c) learns a
suboptimal policy. For the three cells highlighted in blue, the optimal policy (b) navigates towards the high-
reward state (green) while the one-step RL policy (c) navigates away from the high-reward state. (d) CQL with a
large regularization coefficient exhibits the same suboptimal behavior as one-step RL, taking actions that lead
away from the high-reward states. (e) CQL with a small regularization coefficient behaves like Q-learning. For
clarity, we only show the argmax action in each state; we omit the arrow when the argmax action is “do nothing”.

with moderate regularization coefficients. See Appendix E for details and hyperparameters for the
experiments. Code will be released.

5.1 EXACT EQUIVALENCE WHEN USING CLASSIFIER ACTOR CRITIC

Our first experiment aims to validate our theoretical result under the required assumptions: when using
classifier actor-critic as the RL algorithm, and when using a tabular environment. We use a 5×5 deter-
ministic gridworld with 5 actions (up/down/left/right/nothing). We describe the reward function and
other details in Appendix E. To ensure that critic regularization converges to a fixed point and to avoid
oscillatory learning dynamics, we update the policy using an exponential moving average. We also in-
clude (unregularized) classifier actor-critic to confirm that regularization is important in some settings.

We compare these three methods in three environments. The first setting (Fig. 2 (left)) checks our
theory that one-step RL and critic regularization should obtain the same policy. The second setting
(Fig. 2 (center)) shows that one-step RL and critic regularization learn the same (suboptimal) policy
in settings where using the Q-values for the behavioral policy lead to a suboptimal policy. The
final setting is designed so that regularization increases the expected returns. The dataset is a single
trajectory from the initial state to the goal. With such limited data, unregularized classifier actor critic
overestimates the Q-values at unseen actions, learning a policy that mistakenly takes these actions.
In contrast, the regularized approaches learn to imitate the expert trajectory. Fig. 2 (right) shows
that both forms of regularization produce the optimal policy. In summary, these tabular experiments
validate our theoretical results, including in settings where regularization is useful and harmful.

5.2 PRACTICAL IMPLEMENTATIONS EXHIBIT SIMILAR BEHAVIOR

Based on our theoretical analysis, we predict that practical implementations of one-step RL and
critic regularization will exhibit similar behavior, for a certain critic regularization coefficient. This
section studies the tabular setting, and the following section will use a continuous control benchmark.
For critic regularization, we used CQL (Kumar et al., 2020) together with soft value iteration;
following (Brandfonbrener et al., 2021), we implement one-step RL (reverse KL) using Q-learning.

We designed a deterministic gridworld so one-step RL would fail to learn the optimal policy (see
Fig. 3 (left)). If CQL interpolates between the behavioral policy (random) and the optimal policy,

7

0.0 0.5 1.0
fraction of suboptimal actions

where CQL and one-step RL agree

0

20

nu
m

be
r o

f
ra

nd
om

 M
DP

s better than
chance

Figure 4: CQL and one-step RL take similar actions
on most MDPs that resemble Fig. 3

10 2 10 1 100 101 102 103

(CQL coefficient)

0.0

0.2

0.4

0.6

0.8

1.0

sim
ila

rit
y

(%
 sa

m
e

ac
tio

n)

Q-learning Behavioral
Cloning

chance

Figure 5: One-step RL is most similar to CQL with a
moderate regularization coefficient.

then the argmax action would always be the same as the action for π∗. Based on our analysis, we
make a different prediction: that CQL will learn a policy similar to the one-step RL policy. We show
results in Fig. 3 (right), just showing the argmax action for visual clarity. The CQL policy takes
actions away from both the high-reward state and the low reward state, similar to the behavioral
policy but different from both the behavioral policy and the optimal policy. This experiment suggests
that CQL can exhibit behavior similar to one-step RL. Of course, this effect is mediated by the
regularization strength: a larger regularization coefficient would cause CQL to learn a random policy,
and a coefficient of 0 would make CQL identical to Q-learning.

How often does one-step RL approximate CQL? To show that the results in Fig. 3 are not
cherry-picked, we repeated this experiment using 100 MDPs that are structurally similar to that in
Fig. 3, but where the locations of the high-reward and low reward state are randomized. In each
randomly generated MDP, we determine whether CQL exhibits behavior similar to one-step RL by
looking at the states where CQL takes actions that differ from the reward-maximizing actions (as
determined by running Q-learning with unlimited data). Since there are five total actions, a random
policy would have a similarity score of 20%. As shown in Fig. 4, the similarity score is significantly
higher than chance for the vast majority of MDPs, showing that one-step RL and CQL(λ = 10)
produce similar policies on most such gridworlds.

When does one-step RL approximate CQL? Because one-step RL is highly regularized (policy
iteration is truncated after just one step), one might imagine that it would be most similar to CQL
with a very large regularization coefficient. To study this, we use the same environment (Fig. 3) and
measure the fraction of states where one-step RL and CQL choose the same argmax action. As shown
in Fig. 5, one-step RL is most similar to CQL with moderate regularization (λ = 10), and is less
similar to CQL with a very strong regularization.

5.3 TESTING PREDICTIONS ABOUT EXISTING OFFLINE RL METHODS

Our final set of experiments studies whether our theoretical results can make accurate testable
predictions about practically-used regularization methods in a setting where they are commonly
used: offline RL benchmarks with continuous states and actions. For these experiments, we will use
well-tuned implementations of CQL and one-step RL from Hoffman et al. (2020), using the default
hyperparameters without modification. We made one change to the one-step RL implementation
to makethe comparison more fair: because CQL learns two Q functions and takes the minimum (a
trick introduced in Fujimoto et al. (2018)), we applied this same parametrization to the one-step RL
implementation. Since offline RL methods can perform different on datasets of varying quality (Wang
et al., 2020; Fujimoto & Gu, 2021; Paine et al., 2020; Wang et al., 2021; Fujimoto et al., 2019), we
will repeat our experiments on four datasets from the D4RL benchmark (Fu et al., 2020).

Lower bounds on Q-values. One oft-cited benefit of critic regularization is that it has guarantees
about value-estimation (Kumar et al., 2020): under appropriate assumptions, the learned value
function will underestimate the discounted expected returns of the policy. Because our analysis shows
a conenction between one-step RL and critic regularization, it raises the question of whether one-step
RL methods have similar value-estimation properties. Taken at face value, this hypothesis seems
obvious: the behavioral critic estimates the value of the behavioral policy, so it should underestimate
the value of any policy that is better than the behavioral policy. Despite this, the lower bound property
of methods like one-step RL are rarely discussed, suggesting that it has yet to be widely appreciated.

Fig. 6 shows both these predicted and actual (discounted) returns throughout the course of training.
The results for one-step RL confirm our theoretical prediction on 4/4 datasets: the Q-values from

8

0

500

re
tu

rn
s

1-step RL
medium-expert medium-replay

 overestimation

 underestimation

medium random

predicted returns
actual returns

0 0.5 1
gradient steps 1e6

0

500

re
tu

rn
s

CQL

0 0.5 1
gradient steps 1e6

0 0.5 1
gradient steps 1e6

 overestimation

 underestimation

0 0.5 1
gradient steps 1e6

predicted returns
actual returns

Figure 6: Q-value under/over-estimation. (Top) Experiments on benchmark datasets of varying quality show
that one-step RL underestimates the Q-values. (Bottom) Despite the theoretical guarantees about critic regular-
ization (CQL) yielding underestimates, in practice we observe that the values learned via critic regularization
can sometimes overestimate the actual returns. We plot the mean and standard deviation across five random
seeds. Note that the Q-values are equivalent to the value function V π(s).

0.0 0.5 1.0
gradient steps 1e6

0.1

0.2

ac
to

r M
SE

 lo
ss

medium-expert

0.0 0.5 1.0
gradient steps 1e6

0.30

0.35

medium-replay

0.0 0.5 1.0
gradient steps 1e6

0.05

0.10

0.15
medium

0.0 0.5 1.0
gradient steps 1e6

1.0

1.1
random

Figure 7: Critic regularization causes actor regularization. Performing critic regularization via CQL
implicitly results in actor regularization, similar to one-step RL: the MSE between the predicted actions and the
dataset actions decreases. We plot the mean and standard deviation across five random seeds.

one-step RL underestimate the actual returns. In contrast, we observe that critic regularization
overestimates the true returns on 2/4 environments, perhaps because the regularization coefficients
used to achieve good returns in practice are too weak to guarantee the lower bound property, and
perhaps because the theoretical guarantees are only guaranteed to hold at convergence. In total,
these experiments confirm our theoretical predictions that one-step RL will result in Q-values that
are underestimations, while also questioning the claim that critic regularization methods are always
preferable for ensuring underestimation.

Critic regularization causes actor regularization. Our analysis in Sec. 4 not only suggests that
one-step RL methods might inherit properties of critic regularization (as studied in the previous
section), but also suggests that critic regularization methods may behave like one-step methods. In
particular, while critic regularization methods such as CQL do not explicitly regularize their actor,
we hypothesize that they implicitly regularize the actor (Lemma 4.2), similar to how one-step RL
methods explicitly regularize the actor.

We measure the MSE between the action in the dataset and the action predicted by the learned policy.
Fig. 7 shows the results. Some CQL implementations, including ours, “warm-start” the actor by
applying a behavioral cloning loss for 50,000 iterations; we omit these initial gradient steps from
our plots so that any effect is caused solely by the critic regularization. On 4/4 datasets, we observe
that the MSE between the CQL policy’s actions and the actions in the datasets decreases throughout
training. Perhaps the one exception is on the medium-replay dataset, where the MSE eventually
starts to increase after 5e5 gradient steps. While directly regularizing the actor leads to MSE errors
that are ∼ 3× smaller, this plot nevertheless provides evidence that critic regularization indirectly
regularizes the actor.

6 CONCLUSION

In this paper, we drew a connection between two seemingly-distinct RL regularization methods:
one-step RL and critic regularization. While our analysis made assumptions that are typically violated
in practice, it nonetheless made accurate, testable predictions about practical methods with commonly-
used hyperparameters: critic regularization methods can behave like one-step methods, and vice versa.

9

REPRODUCIBILITY STATEMENT

We have included full experimental details in Appendix E and proofs in Appendix A.

REFERENCES

Shoshana Abramovich and Lars-Erik Persson. Some new estimates of the ’Jensen gap’. Journal of Inequalities
and Applications, 2016(1):1–9, 2016.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement
learning with diversified Q-ensemble. Advances in neural information processing systems, 34:7436–7447,
2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran Wang. Pes-
simistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv preprint arXiv:2202.11566,
2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without off-policy
evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-dataset policy
optimization. arXiv preprint arXiv:2009.06799, 2020.

Roberto Calandra, Andrew Owens, Manu Upadhyaya, Wenzhen Yuan, Justin Lin, Edward H Adelson, and
Sergey Levine. The feeling of success: Does touch sensing help predict grasp outcomes? arXiv preprint
arXiv:1710.05512, 2017.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan, Benjamin
Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline reinforcement learning
of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning.
Advances in neural information processing systems, 32, 2019.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for offline rl via
supervised learning? In International Conference on Learning Representations, 2021.

Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history with inverse
rl: Hindsight inference for policy improvement. In Advances in Neural Information Processing Systems,
2020a.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals via
recursive classification. In International Conference on Learning Representations, 2020b.

Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with examples: Example-
based policy search via recursive classification. Advances in Neural Information Processing Systems, 34:
11541–11552, 2021.

Benjamin Eysenbach, Soumith Udatha, Sergey Levine, and Ruslan Salakhutdinov. Imitating past successes can
be very suboptimal. arXiv preprint arXiv:2206.03378, 2022.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with events: A
general framework for data-driven reward definition. Advances in neural information processing systems, 31,
2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

10

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances in
neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods.
In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Xiang Gao, Meera Sitharam, and Adrian E Roitberg. Bounds on the Jensen gap, and implications for mean-
concentrated distributions. arXiv preprint arXiv:1712.05267, 2017.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision processes. In
International Conference on Machine Learning, pp. 2160–2169. PMLR, 2019.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. In International Conference on
Learning Representations, 2020.

Çaglar Gülçehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad Zolna,
Rishabh Agarwal, Josh Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. RL unplugged: Benchmarks for
offline reinforcement learning. 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine learning,
pp. 1861–1870. PMLR, 2018.

Kyle Hatch, Tianhe Yu, Rafael Rafailov, and Chelsea Finn. Example-based offline reinforcement learning
without rewards. Proceedings of Machine Learning Research vol, 144:1–17, 2022.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy exploration.
In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara Norman,
Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex Novikov, Sergio Gómez
Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and
Nando de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.

Herbert Edwin Huntley. Dimensional analysis. Dover publications, 1967.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan
Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pp. 651–673. PMLR, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale.
arXiv preprint arXiv:2104.08212, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-learning. In
International Conference on Learning Representations, 2021.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint arXiv:1912.13465,
2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement learning,
pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Alexander C Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning. arXiv
preprint arXiv:2002.11708, 2020.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J Roberts. Revisiting design choices in
offline model based reinforcement learning. In International Conference on Learning Representations, 2021.

11

https://arxiv.org/abs/2006.00979

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data. Proceedings
of Robotics: Science and Systems, 2021.

Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, and Xiu Li. Efficient continuous control with double actors and
regularized critics. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7655–
7663, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286–295, 1951.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized Markov decision
processes. arXiv preprint arXiv:1705.07798, 2017.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov, Ziyu
Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning. arXiv preprint
arXiv:2007.09055, 2020.

Keiran Paster, Sheila A McIlraith, and Jimmy Ba. Planning from pixels using inverse dynamics models. arXiv
preprint arXiv:2012.02419, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In Proceedings of the 24th international conference on Machine learning, pp. 745–750, 2007.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot
hours. In 2016 IEEE international conference on robotics and automation (ICRA), pp. 3406–3413. IEEE,
2016.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for navigation.
In International Conference on Learning Representations, 2018.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy iteration. Advances in
Neural Information Processing Systems, 26, 2013.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas
Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic reinforcement
learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhuber. Training
agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877, 2019.

Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy continuation with hindsight inverse
dynamics. Advances in Neural Information Processing Systems, 32, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hsiao-Yu Tung, Adam W Harley, Liang-Kang Huang, and Katerina Fragkiadaki. Reward learning from narrated
demonstrations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7004–7013, 2018.

Adam Villaflor, John Dolan, and Jeff Schneider. Fine-tuning offline reinforcement learning with model-based
policy optimization. Offline Reinforcement Learning Workshop at Neural Information Processing Systems,
2020.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation learning for
batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

12

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of offline rl with pre-trained
neural representation. In International Conference on Machine Learning, pp. 10948–10960. PMLR, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E Reed, Bobak
Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized regression. Advances in
Neural Information Processing Systems, 33:7768–7778, 2020.

Junfeng Wen, Saurabh Kumar, Ramki Gummadi, and Dale Schuurmans. Characterizing the gap between
actor-critic and policy gradient. In International Conference on Machine Learning, pp. 11101–11111. PMLR,
2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Rui Yang, Meng Fang, Lei Han, Yali Du, Feng Luo, and Xiu Li. MHER: Model-based hindsight experience
replay. ArXiv, abs/2107.00306, 2021.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforcement learning.
arXiv preprint arXiv:2011.07213, 2020.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Aytar, Misha
Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and unlabeled experience.
arXiv preprint arXiv:2011.13885, 2020.

13

APPENDICES

In the Appendices, we provide proofs of the theoretical results (Appendix C), extend the analysis to
other RL settings (Appendices C–D), and then provide details of the experiments (Appendix E).

A PROOFS

A.1 PROOF OF LEMMA 4.1

Proof sketch. Lemma 4.1 shows that classifier actor critic converges. The key idea of the proof will be
to show that the incremental updates for classifier actor critic are exactly the same as the incremental
updates for Q-learning. Q-learning converges, so an algorithm that performs the same incremental
updates as Q-learning must also converge.

Proof. As the cross entropy loss is minimized when the predictions equal the labels, updates for
Lcritic(Q, π) can be written as Q(s,a)

Q(s,a)+1 ←
yπ,Qt (s,a)

yπ,Qt (s,a)+1
. If the updates are performed by averaging

over all possible next states (e.g., in the tabular setting), these updates are equivalent to directly
updating Q(s, a) ← yπ,Qt(s, a) = r(s, a) + γEp(s′|s,a)π(a′|s′) [Qt(s

′, a′)], which is the standard
policy evaluation update for policy π(a | s). Thus, we can invoke the standard result that policy
evaluation converges to Qπ (Agarwal et al., 2019, Theorem 1.14.) to argue that updates for Lcritic
likewise converge to Qπ .

In this proof, the TD targets were the expectation over the next state and next action. If Eq. 4 were
optimized using a single-sample estimate of this expectation, y = r(s, a) + γQt(s

′, a′), then the
updates would be biased:

Q(s, a)

Q(s, a) + 1
← E

[
y

y + 1

]
≤ E[y]

E[y] + 1
=

yπ,Qt(s, a)

yπ,Qt(s, a) + 1
.

In settings with stochastic transitions or policies, these updates would result in estimating a lower
bound on Qπ(s, a).

A.2 PROOF OF LEMMA 4.2 AND THEOREM 4.3

Proof. Our proof proceeds in three steps. First, we derive the update equations for the regularized
critic update. That is, if we maintained a table of Q-values, what would the new value for Q(s, a)
be? Second, we show that these updates are equivalent to performing policy evaluation on a re-
parametrized critic Q̃(s, a) = Q(s, a)π(a|s)β(a|s) . We invoke the standard results for policy evaluation

to prove convergence that Q̃(s, a) convergences. Finally, we undo the reparametrization to obtain
convergence results for Q(s, a).

Step 0. We start by rearranging the regularized critic objective:

Lr
critic(Q, yπ,Qt) ≜ Lcritic(Q, yπ,Qt) +

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
+

(
Ep(s)π(a|s) [log(Q(s, a) + 1)]− Ep(s)β(a|s) [log(Q(s, a) + 1)]

)
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+
�������
log

1

Q(s, a) + 1

]
−
(
((((((((((((
Ep(s)π(a|s)

[
log

1

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

])
= −Ep(s,a)

[
yπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s)β(a|s)

[
log

1

Q(s, a) + 1

]
.

For the cancelation on the third line, we used the fact that p(s, a) = p(s)β(a | s).

14

Step 1. To start, note that the regularized critic update is equivalent to a weighted classification loss:
positive examples are sampled (s, a) ∼ p(s)β(a | s) and receive weight yπ,Qt (s,a)

yπ,Qt (s,a)+1
, and negative

examples are sampled (s, a) ∼ p(s)π(a | s) and receive weight 1
yπ,Qt (s,a)+1

. The Bayes’ optimal
classifier is given by

Q(s, a)

Q(s, a) + 1
=

yπ,Qt (s,a)

yπ,Qt (s,a)+1
p(s)β(a | s)

yπ,Qt (s,a)

yπ,Qt (s,a)+1
p(s)β(a | s) + 1

yπ,Qt (s,a)+1
p(s)π(a | s)

=
yπ,Qt(s, a)β(a | s)

yπ,Qt(s, a)β(a | s) + π(a | s) .

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yπ,Qt(s, a)
β(a | s)
π(a | s)

= (r(s, a) + Ep(s′|s,a)π(a′|s′)[Qt(s
′, a′)])

β(a | s)
π(a | s)

. (8)

This equation tells us what each update for the regularized critic loss does.

Step 2. To analyze these updates, we define Q̃(s, a) ≜ Qt(s, a)
π(a|s)
β(a|s) . Then these updates can be

written using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s)

=

(
r(s, a) + Ep(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s)

, (9)

which can be simplified to

Q̃(s, a) = r(s, a) + Ep(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
. (10)

Note that the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight, so that the expectation

over π(a′ | s′) becomes an expectation over β(a′ | s′). Thus, the regularized critic updates
are equivalent to perform policy evaluation on Q̃(s, a). An immediately consequence is that the
regularized critic updates converge, and they converge to Q̃∗(s, a) = Qβ(s, a).

Step 3. Finally, we translate these convergence results for Q̃(s, a) into convergence results for
Q(s, a). Written in terms of the original Q-values, we see that the optimal critic for the regularized
critic update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

. (11)

This completes the proof of Lemma 4.2.

We now prove Theorem 4.3 by applying a logarithm:

Proof.

logQ∗(s, a) = log

(
Qβ(s, a)

β(a | s)
π(a | s)

)
= logQβ(s, a) + log β(a | s)− log π(a | s).

We note that our proof does not account for stochastic and function approximation errors. However,
if we assume that the TD updates are deterministic (e.g., as they are in deterministic MDPs), then
the updates for classifier actor-critic are identical to those of Q-learning (Lemma 4.1). Thus, it
immediately inherits any theoretical results regarding the propagation of errors for Q-learning.

While this Theorem 4.3 shows that one-step RL and critic regularization have the same fixed point, it
does not say how many transitions or gradient updates are required to reach those fixed points.

15

A.3 WHY USE THE CROSS-ENTROPY LOSS?

Our proof of Theorem 4.3 helps explain why classifier actor-critic use the cross entropy loss for the
critic loss, rather than the MSE loss. Precisely, our analysis requires that the optimal Q function
be a ratio, Q̃(s, a) = Q(s,a)π(a|s)

β(a|s) . The cross entropy loss can readily estimate ratios. For example,

the optimal classifier for data drawn from p(x) and q(x) is C(x) = p(x)
p(x)+q(x) , so the ratio can be

expressed as C(x)
1−C(x) =

p(x)
q(x) . However, fitting a function C(x) to data drawn from (say) a 1:1 mixture

of p(x) and q(x) would result in C(x) = 1
2p(x) +

1
2q(x), which we cannot transform to express the

ratio p(x)
q(x) as a function of C(x).

A.4 VALIDATING THE THEORY

10 1 100 101

regularization coefficient ()

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 sa

m
e

ac
tio

ns

Figure 8: Under the assumptions of Theorem 4.3, one-
step RL is most similar to critic regularization with a
coefficient of λ = 1.

Our theoretical results suggest that one-step RL
and critic regularization should be most simi-
lar with critic regularization is applied with a
regularization coefficient of λ = 1. To test this
hypothesis, we took the task from Fig. 2 (Left)
and measured the similarity between one-step
RL and critic-regularized classifier actor critic,
for varying values of the critic regularization
parameter. We measured the similarity of the
policies obtained by the two methods by count-
ing the fraction of states where the two methods
choose the same (argmax) action. The results,
shown in Fig. 8, validate our theoretical predic-
tion that these methods should be most similar
with λ = 1.

A.5 WHAT ABOUT USING THE POLICY GRADIENT?

Our analysis fundamentally requires using TD learning: the key step is that doing TD backups using
one policy is equivalent to doing (modified) TD backups with a different policy. However, the actor
updates for both methods could be implemented using a policy gradient or natural gradient, rather
than a straight-through gradient estimator. Indeed, much of the work on one-step RL methods (Peng
et al., 2019; Siegel et al., 2020) uses an actor update that resembles a policy gradient or natural policy
gradient (e.g., 1-step RL with a reverse KL penalty (Brandfonbrener et al., 2021)).

B VARYING THE REGULARIZATION COEFFICIENT

While our main analysis (Theorem 4.3)showed that regularization and critic regularization yield the
same policy when these regularizers are applied with a certain strength, in practice the strength of
regularization is controlled by a hyperparameter. This hyperparameter raises a question: does the
connection between one-step RL and critic regularization hold for different values of this hyperpa-
rameter?

In this section, we show that there remains a precise connection between actor and critic regularization,
even for different values of this hyperparameter. This result not only suggests that the connection is
stronger than initially suggested by the main result. Proving this connection also helps highlight how
many regularization methods can be cast from a similar mold.

B.1 A REGULARIZATION COEFFICIENT.

We start by modifying the actor regularizer and critic regularizer introduced in Sec. 3.4 to include an
additional hyperparameter.

16

Mixture policy. Both the actor and critic losses will make use of a mixture policy, (1− λ)π(a |
s) + λβ(a | s), where λ ∈ [0, 1] will be a hyperparameter. Larger values of λ yield a mixture
policy that is closer to the behavioral policy; this will correspond to higher degrees of regularization.
Mixtures of policies are commonly used in practice (Kumar et al., 2020, Appendix F),(Villaflor et al.,
2020, Eq. 11), (Finn et al., 2016, Sec. 4.3) (Lyu et al., 2022) (Hazan et al., 2019, Eq. 2.5), even though
it rarely appears in theoretical offline RL literature. Indeed, because critic regularization resembles a
two-player zero-sum game, mixture policies might even be required to find a (Nash) equilibrium of
the critic regularizer (Nash, 1951).

λ-weighted critic loss. With this concept of a mixture policy, we define the λ-weighted actor and
critic regularizers. For the λ-weighted critic loss, we will change how the TD targets are computed.
Instead of sampling the next action from π or β, we will sample the next action from a λTD-weighted
combination of these two policies, reminiscent of how prior work has regularized the actions sampled
for the TD backup (Fujimoto et al., 2019; Zhou et al., 2020):

yλTD ≜ y(1−λ)π+λβ(s, a) = r(s, a) + γE p(s′|s,a)
(1−λTD)π(a|s)+λTDβ(a|s)

[Q(s′, a′)].

When introducing one-step RL in Sec. 3.4, we used λTD = 1.

Using this TD target, the λ-weighted critic loss can now be written as a combination of the un-
regularized objective (Eq. 4) plus the regularized objective (Eq. 7):

Lr
critic(Q,λcritic) ≜ (1− λcritic)

(
−Ep(s,a)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])
+ λ

(
−E p(s,a)

a−∼π(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a) + 1

])

= −E p(s,a)

a−∼(1−λcritic)π(·|s)+λcriticβ(·|s)

[
yλTD(s, a)

yλTD(s, a) + 1
log

Q(s, a)

Q(s, a) + 1
+

1

yλTD(s, a) + 1
log

1

Q(s, a−) + 1

]
.

(12)

The second line rewrites this objective: the first term looks the same as the original “positive” term
in the critic objective, while the “negative” term uses actions sampled from a mixture of the current
policy and the behavioral policy. When λcritic = 1, we recover the regularized critic loss introduced
in Sec. 3.4.

λ-weighted actor loss. Finally, the strength of the actor regularizer can be controlled by changing
the reverse KL penalty. While it may seem like changing the reward scale would varying the strength
of the actor loss, this is not the case for classifier actor critic because of the log(·) in the actor loss.
Instead, we will relax the reverse KL penalty between the learned policy π(a | s) and the behavioral
policy β(a | s) so that only the mixture policy only needs to be close to behavioral policy:

Lr
actor(π, λKL) ≜ Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))] . (13)

As indicated on the second line, replacing β(a | s) with the mixture policy has an effect similar to
that of decreasing the weight applied to the KL penalty. The approximation on the second line is
determined by the Jensen Gap (Abramovich & Persson, 2016; Gao et al., 2017). When introducing
one-step RL in Sec. 3.4, we used λKL = 1, together with λTD = 1.

In summary, the strength of the actor and critic regularizers can be controlled through additional
hyperparameters (λcritic, λTD, λKL). Indeed, it is typical for offline RL methods to require many
hyperparameters (Brandfonbrener et al., 2021; Lu et al., 2021; Paine et al., 2020; Wu et al., 2019),
and performance is sensitive to their settings. However, the close connection that we have shown
between actor and critic regularizers allows us to decrease the number of hyperparameters.

B.2 ANALYSIS

In our main result (Thm. 4.3), we showed that one-stel RL and critic regularization are equivalent
when λcritic = λTD = λKL = 1. This is a large value for the regularization strength, and we now
consider what happens for smaller degrees of regularization: is there still a connection between
one-step RL and critic regularization?

17

The following theorem will prove that this is the case. In particular, applying critic regularization
with coefficient λcritic yields the same policy as applying one-step RL with λTD = λKL = λcritic. That
is, there is a very simple recipe for converting the hyperparameters for critic regularization into the
hyperparameters for one-step RL.
Theorem B.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-function of the behavioral
policy, and let QλTD

r (s, a, λcritic) be the critic obtained by the λcritic-weighted regularized critic update
(Eq. 12) using TD targets yλTD(s, a). If λcritic = λTD = λKL, then the λKL-weighted actor loss (Eq. 13)
is equivalent to the un-regularized policy objective using the regularized critic:

Ep(s)π(a|s) [logQ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))]

= Eπ(a|s)

[
logQλTD

r (s, a, λcritic)
]

for all states s.

While we used the cross entropy loss for this result, it turns out that the result also holds for the more
standard MSE loss (we omit the proof for brevity).

Limitations. Before presenting the proof in Sec. B.3, we discuss a few limitations of this result.
Like the rest of the analysis in this paper, the form of the critic regularizer is different from that often
used in practice. Additionally, our analysis assumes ignores many sources of errors (e.g., sampling,
function approximation), and assumes that each objective is optimized exactly.

B.3 PROOF OF THEOREM B.1

Proof. We start by defining the fixed point of the λ-weighted regularized critic loss. Like in the
single-task setting, this loss resembles a weighted classification problem, so we can write down the
Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

yλTD (s,a)

yλTD (s,a)+1
p(s)β(a | s)

yλTD (s,a)

yλTD (s,a)+1
p(s)β(a | s) + 1

yλTD (s,a)+1
p(s)((1− λcritic)π(a | s) + λcriticβ(a | s))

=
yλTD(s, a)β(a | s)

yλTD(s, a)β(a | s) + (1− λcritic)π(a | s) + λcriticβ(a | s)
.

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = yλTD(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

= (r(s, a) + Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)])
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)
.

(14)

Note that the next action a′ is sampled from a mixture policy defined by λTD. This equation tells us
what each update for the λ-weighted regularized critic loss does.

To analyze these updates, we define

Q̃(s, a) ≜ Q(s, a)
(1− λcritic)π(a | s) + λcriticβ(a | s)

β(a | s) .

Like before, the ratio β(a′|s′)
(1−λTD)π(a′|s′)+λTDβ(a′|s′) can act like an importance weight. When λTD =

λcritic, then this importance weight cancels with the sampling distribution, providing the following
identity:

Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)[Q(s′, a′)]

= Ep(s′|s,a),a′∼(1−λTD),π(·|s′)+λTDβ(·|s)

[
Q̃(s, a)

β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s)

]
= Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

Substituting this identity in Eq. 14, we can write the updates using Q̃(s, a):

Q̃(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)

=
(
r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)]

) β(a | s)
(1− λcritic)π(a | s) + λcriticβ(a | s)

,

18

which can be simplified to

Q̃(s, a) = r(s, a) + Ep(s′|s,a),a′∼β(·|s′)[Q̃(s, a)].

We then translate these convergence results for Q̃(s, a) into convergence results for Q(s, a). Written
in terms of the original Q-values, we see that the optimal critic for the regularized critic update is

Q∗(s, a) = Qβ(s, a)
β(a | s)

(1− λcritic)π(a | s) + λcriticβ(a | s)
. (15)

Note that this holds for any value of λcritic = λTD ∈ [0, 1]. This result suggests that two common
forms of regularization, decreasing the values predicted at unseen actions and regularizing the actions
used in the TD backup, can produce the same effect: a critic that estimates the Q-values of the
behavioral policy (multiplied by some importance weight).

Finally, substitute this Q-function into the un-regularized actor loss, we see that the result is equivalent
to the λ-weighted actor loss:

Ep(s)π(a|s) [logQ
∗(s, a)] =Ep(s)π(a|s)

[
logQβ(s, a) + log β(a | s)− log ((1− λKL)π(a | s) + λKLβ(a | s))︸ ︷︷ ︸

λ-weighted actor regularizer

]

C REGULARIZATION FOR GOAL-CONDITIONED PROBLEMS

Like single-task RL problems, goal-conditioned RL problems have also been approached with
both one-step methods (Ghosh et al., 2020; Ding et al., 2019; Sun et al., 2019) and critic regular-
ization (Chebotar et al., 2021). In these problems, the aim is to learn a goal-conditioned policy
π(a | s, sg) that maximizes the expected discounted sum of goal-conditioned rewards rg(s, a), where
goals are sampled sg ∼ pg(sg):

max
π

Epg(sg)Eπ(τ |sg)

[∞∑
t=0

γtrg(st, at)

]
.

We will use the goal-conditioned reward function rg(s, a) = p(s′ = sg | s, a), which is defined in
terms of the environment dynamics. In settings with discrete states, maximizing this reward function
is equivalent to maximizing the sparse indicator reward function (rg(s, a) = 1(sg = s)).

In this section, we show that one-step RL and critic regularization are equivalent for a certain goal-
conditioned actor-critic method. Unlike our analysis in the single-task setting, this analysis here uses
an existing method, C-learning (Eysenbach et al., 2020b). C-learning is a TD method that already
makes use of the cross entropy loss for training the critic:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yπ,Qt(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yπ,Qt(s, a, sg) = Ep(s′|s,a)π(a′|s′,sg) [Q(s′, a′, sg)] serves the role of the TD target.

The first two terms increase the Q-values while the last term decreases the Q-values. The actor is
updated to maximize the Q-values. While this objective for the actor can be written in many ways, we
will write it as maximizing a log ratio because it will allow us to draw a precise equivalence between
actor and critic regularization:

max
π

Epg(sg)p(s)π(a|s,sg) [logQ(s, a, sg)]

We will now consider variants of C-learning that incorporate actor and critic regularization.

19

One-step RL. We will consider a variant of C-learning that resembles one-step RL (Brandfonbrener
et al., 2021). The critic update will be similar to before, but the next-actions sampled for the TD
updates will be sampled from the marginal behavioral policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
+ γEp(s,a)pg(sg)

[
yβ,Qt(s, a, s) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
+ Ep(s,a)pg(sg)

[
log

1

Q(s, a, sg = s′) + 1

]
,

where yβ,Qt(s, a, sg) = Ep(s′|s,a)β(a′|s′)[Qt(s
′, a′, sg)]. The actor update will be modified to include

a reverse KL divergence:

max
π

Ep(s)pg(sg)π(a|s,sg) [logQ(s, a, sg) + log β(a | s)− π(a | s, sg)] . (16)

Note that we are regularizing the policy to be similar to the average behavioral policy, β(a | s).
Compared to regularization towards a goal-conditioned behavioral policy β(a | s, sg), this choice
gives the policy additional flexibility: when trying to reach goal sg , it is allowed to take actions that
were not taken by β(a | s, sg), as long as they were taken by the behavioral policy when trying to
reach some other goal s′g .

Critic regularization. To regularize the critic, we will modify the “negative” term in the C-learning
objective to use actions sampled from the policy:

max
Q

(1− γ)Ep(s,a,s′)

[
log

Q(s, a, sg = s′)

Q(s, a, sg = s′) + 1

]
(17)

+ γEp(s,a)pg(sg)

[
yπ,Qt(s, a, sg) log

Q(s, a, sg)

Q(s, a, sg) + 1

]
(18)

+ Ep(s)pg(sg)a∼π(·|s,sg)

[
log

1

Q(s, a, sg) + 1

]
. (19)

C.1 ANALYSIS FOR GOAL-CONDITIONED PROBLEMS

Like in the single-task setting, these two forms of regularization yield the same fixed points:
Theorem C.1. Let policy π(a | s, sg) be given, let Qβ(s, a, sg) be the Q-values for the marginal
behavioral policy β(a | s) and let Qπ

r (s, a, sg) be the critic obtained by the regularized critic update
(Eq. 19). Then performing regularized policy updates (Eq. 16) using the behavioral critic is equivalent
to the un-regularized policy objective using the regularized critic:

Eπ(a|s,sg)
[
logQβ(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
= Eπ(a|s,sg) [logQ

π
r (s, a, sg)]

for all states s and goals sg .

Proof. We start by determining the fixed point of critic-regularized C-learning. Like in the single-task
setting, the C-learning objective resembles a weighted-classification problem, so we can write down
the Bayes’ optimal classifier as

Q(s, a, sg)

Q(s, a, sg) + 1
=

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))β(a | s)

((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s′, sg))β(a | s) + p(sg)π(a | s, sg)
.

Solving for Q(s, a, sg) on the left hand side, the optimal value for Q(s, a, sg) is given by

Q(s, a, sg) = ((1− γ)p(s′ = sg | s, a) + γp(s = sg)y(s
′, sg))

β(a | s)
π(a | s, sg)

This tells us what each critic-regularized C-learning update does.

To analyze these updates, we define Q̃(s, a, sg) ≜ Q(s, a, sg)
π(a|s,sg)
β(a|s) . Then these updates can be

written using Q̃(s, a, sg) as

Q̃(s, a, sg)
β(a | s)

π(a | s, sg)
=

(
(1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)π(a′|s′,sg)

[
Q̃(s′, a′, sg)

β(a′ | s′)
π(a′ | s′, sg)

])
β(a | s)

π(a | s, sg)
.

20

These updates can be simplified to

Q̃(s, a, sg) = (1− γ)p(s′ = sg | s, a) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′, sg)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′,sg) inside the expectation acts like an importance weight. Thus, the

regularized critic updates are equivalent to perform policy evaluation on Q̃(s, a, sg). Note that this is
estimating the probability that the average behavioral policy β(a | s) reaches goal sg; this is not the
probability that a goal-directed behavioral policy β(a | s, sg) reaches the goal.

Finally, we translate these convergence results for Q̃(s, a, sg) into convergence results for Q(s, a, sg).
Written in terms of the original Q-values, we see that the optimal critic for the regularized critic
update is

Q∗(s, a, sg) = Q̃∗(s, a, sg)
β(a | s)

π(a | s, sg)
= Qβ(·|·)(s, a, sg)

β(a | s)
π(a | s, sg)

.

Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as
one-step RL:

Ep(s),sg∼p(s),π(a|s,sg) [logQ
∗(s, a, sg)]

= Ep(s),sg∼p(s),π(a|s,sg)

[
logQβ(·|·)(s, a, sg) + log β(a | s)− log π(a | s, sg)

]
.

D REGULARIZATION FOR EXAMPLE-BASED CONTROL PROBLEMS

While specifying tasks in terms of reward functions is standard for MDPs, it can be difficult for
real-world applications of RL. So, prior work has looked at specifying tasks by goal states (as in
the previous section) or sets of states representing good outcomes (Pinto & Gupta, 2016; Tung
et al., 2018; Fu et al., 2018). In addition to requiring more flexible and user-friend forms of task
specification, these algorithms targeted at real-world applications often demand regularization. In the
same way that prior goal-conditioned RL algorithms have employed critic regularization, so too have
prior example-based control algorithms (Singh et al., 2019; Hatch et al., 2022). In this section, we
extend our analysis to regularization of an example-based control algorithm. Again, we will show
that a certain form of critic regularization is equivalent to regularizing the actor.

We first define the problem of example-based control (Fu et al., 2018). In these problems, the agent is
given a small collection of states s ∼ pe(s), which are examples of successful outcomes. The aim is
to learn a policy π(a | s) that maximizes the probability of reaching a success state:

max
π

Ep(sg)Eπ(τ |sg)

[∞∑
t=0

γtpe(st)

]
.

Note that this objective function is exactly equivalent to a reward-maximization problem, with a
reward function r(s, a) = pe(st).

In this section, we show that one-step RL and critic regularization are equivalent for a certain example-
based control algorithm. Unlike our analysis in the single-task setting, this analysis here uses an
existing method, RCE (Eysenbach et al., 2021). RCE is a TD method that already makes use of the
cross entropy loss for training the critic:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yπ,Qt(s, a) = Ep(s′|s,a)π(a′|s′)[Q(s′, a′)] serves the role of the TD target. The first two terms
increase the Q-values while the last term decreases the Q-values. The actor is updated to maximize
the Q-values. While this objective for the actor can be written in many ways, we will write it as
maximizing a log ratio because it will allow us to draw a precise equivalence between actor and critic
regularization:

max
π

Ep(s)π(a|s) [logQ(s, a)]

We will now consider variants of RCE that incorporate actor and critic regularization.

21

One-step RL. We will consider a variant of RCE that resembles one-step RL (Brandfonbrener
et al., 2021). The critic update will be similar to before, but the next-actions sampled for the TD
updates will be sampled from the behavioral policy:

max
Q

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a)

[
γyβ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a) + 1

]
,

where yβ,Qt(s, a) = Ep(s′|s,a)β(a′|s′)[Q(s′, a′)]. The actor update will be modified to include a
reverse KL divergence:

max
π

Ep(s),π(a|s) [logQ(s, a) + log β(a | s)− π(a | s)] . (20)

Critic regularization. To regularize the critic, we will modify the “negative” term in the RCE
objective to use actions sampled from the policy:

(1− γ)Epe(s)β(a|s)

[
log

Q(s, a)

Q(s, a) + 1

]
+ Ep(s,a),a−∼π(·|s)

[
γyπ,Qt(s, a) log

Q(s, a)

Q(s, a) + 1
+ log

1

Q(s, a−) + 1

]
,

(21)

D.1 ANALYSIS FOR EXAMPLE-BASED CONTROL PROBLEMS

Like in the single-task setting, these two forms of regularization yield the same fixed points:
Theorem D.1. Let policy π(a | s) be given, let Qβ(s, a) be the Q-values for the behavioral policy
β(a | s) and let Qπ

r (s, a) be the critic obtained by the regularized critic update (Eq. 21). Then
performing regularized policy updates (Eq. 20) using the behavioral critic is equivalent to the
un-regularized policy objective using the regularized critic:

Eπ(a|s)
[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
= Eπ(a|s) [logQ

π
r (s, a)]

for all states s.

Proof. We start by determining the fixed point of critic-regularized RCE. Like in the single-task
setting, The RCE objective resembles a weighted-classification problem, so we can write down the
Bayes’ optimal classifier as

Q(s, a)

Q(s, a) + 1
=

((1− γ)pe(s) + γyπ,Qt(s, a))β(a | s)
((1− γ)pe(s) + γyπ,Qt(s, a))β(a | s) + π(a | s) .

Solving for Q(s, a) on the left hand side, the optimal value for Q(s, a) is given by

Q(s, a) = ((1− γ)pe(s) + γyπ,Qt(s, a))
β(a | s)
π(a | s)

This tells us what each critic-regularized RCE update does.

To analyze these updates, we define Q̃(s, a) ≜ Q(s, a)π(a|s)β(a|s) . Then these updates can be written

using Q̃(s, a) as

Q̃(s, a)
β(a | s)
π(a | s) =

(
(1− γ)pe(s) + γEp(s′|s,a)π(a′|s′)

[
Q̃(s′, a′)

β(a′ | s′)
π(a′ | s′)

])
β(a | s)
π(a | s) .

These updates can be simplified to

Q̃(s, a) = (1− γ)pe(s) + γEp(s′|s,a)β(a′|s′)

[
Q̃(s′, a′)

]
.

Like before, the ratio β(a′|s′)
π(a′|s′) inside the expectation acts like an importance weight. Thus, the

regularized critic updates are equivalent to perform policy evaluation on Q̃(s, a).

Finally, we translate these convergence results for Q̃(s, a) into convergence results for Q(s, a).
Written in terms of the original Q-values, we see that the optimal critic for the regularized critic
update is

Q∗(s, a) = Q̃∗(s, a)
β(a | s)
π(a | s)

= Qβ(s, a)
β(a | s)
π(a | s)

.

Thus, critic regularization implicitly regularizes the actor objective so that it is the same objective as
one-step RL:

Ep(s),π(a|s) [logQ
∗(s, a)] = Ep(s),π(a|s)

[
logQβ(s, a) + log β(a | s)− log π(a | s)

]
.

22

E EXPERIMENTAL DETAILS

E.1 TABULAR EXPERIMENTS

Implementing critic regularization for classifier actor critic. The objective for critic regular-
ization in contrastive actor critic (Eq. 7) is nontrivial to optimize because of the cyclic dependency
between the policy and the critic: simply alternating between optimizing the actor and the critic does
not converge. In our experiments, we update the critic using an exponential moving average of the
policy, as proposed in Wen et al. (2021). We found that this decision was sufficient for ensuring
convergence. When applying CQL in the tabular setting (Figures 3 and 4), we did not do this because
soft value iteration represents the policy implicitly in terms of the value function.

Fig. 2 (left) The initial state and goal state are located in opposite corners. The reward function is
+1 for reaching the goal and 0 otherwise. We use a dataset of 20 trajectories, 50 steps each, collected
by a random policy. We use γ = 0.95 and train for 20k full-batch updates, using a learning rate of
1e-2. The Q table is randomly initialized using a standard normal distribution.

Fig. 2 (center) The initial state and goal state are located in adjacent corners. The goal state has a
reward of +3.5, the states between the initial state and goal state have a reward +1, and all other states
(including the initial state) have a reward of +2. We use a dataset of 20 trajectories, 50 steps each,
collected by a random policy. We use γ = 0.95 and train for 20k full-batch updates, using a learning
rate of 1e-2. The Q table is randomly initialized using a standard normal distribution.

Fig. 2 (right) The initial state and goal state are located in adjacent corners. The reward is +0.01
at the goal state and 0 otherwise. We use a dataset of 1 trajectories with 10 steps, which traces the
following path:

[(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4), (0, 4), (0, 4), (0, 4)].

We use γ = 0.95 and train for 10k full-batch updates, using a learning rate of 1e-2. The Q table is
randomly initialized using a standard normal distribution.

Fig. 3 There is a bad state (reward of−10) next to the optimal state (reward of +1), so the behavioral
policy navigates away from the optimal state. We generate 10 trajectories of length 100 from a
uniform random policy. We use γ = 0.95 and train each method for 10k full-batch updates. The Q
table is randomly initialized using a standard normal distribution. One-step RL performs SARSA
updates while CQL performs soft value iteration (as suggested in the CQL paper).

Fig. 4 We generate 100 random variants of Fig. 3 by randomly sampling the high-reward state and
low-reward state (without replacement). The datasets are generated in the same way.

Fig. 5 We use the same environment and dataset as in Fig. 3, but train the CQL agent with varying
values of λ, each with 5 random seeds. We train the one-step RL agent for 5 random seeds. For each
point on the X axis of Fig. 5, we compare compute 5× 5 pairwise comparisons and report the mean
and standard deviation.

E.2 CONTINUOUS CONTROL EXPERIMENTS

For the experiments in Figures 6 and 7, we used the implementation of one-step RL (reverse KL) and
CQL provided by Hoffman et al. (2020). We choose this implementation because it is well tuned and
uses similar hyperparameters for the two methods. As mentioned in the main text, the only change
we made to the implementation was adding the twin-Q trick to one-step RL, such that it matched
the critic architecture used by CQL. We did not change any of the other hyperparameters, including
hyperparameters controlling the regularization strength.

23

	Introduction
	Related Work
	Preliminaries
	Notation
	Examples of Regularization in RL
	How are these methods connected?
	Classifier Actor Critic

	A Connection between One-Step RL and Critic Regularization
	Limitations
	Extensions of the Analysis

	Numerical Simulations
	Exact Equivalence when Using Classifier Actor Critic
	Practical Implementations Exhibit Similar Behavior
	Testing Predictions about Existing Offline RL Methods

	Conclusion
	Proofs
	Proof of Lemma 4.1
	Proof of Lemma 4.2 and Theorem 4.3
	Why use the cross-entropy loss?
	Validating the Theory
	What about using the policy gradient?

	Varying the regularization coefficient
	A Regularization Coefficient.
	Analysis
	Proof of Theorem B.1

	Regularization for Goal-Conditioned Problems
	Analysis for Goal-Conditioned Problems

	Regularization for Example-based Control Problems
	Analysis for Example-based Control Problems

	Experimental Details
	Tabular experiments
	Continuous control experiments

