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Abstract

Magnitude pruning is one of the mainstream methods in lightweight architecture
design whose goal is to extract subnetworks with the largest weight connections.
This method is known to be successful, but under very high pruning regimes, it
suffers from topological inconsistency which renders the extracted subnetworks
disconnected, and this hinders their generalization ability. In this paper, we devise
a novel end-to-end Topologically Consistent Magnitude Pruning (TCMP) method
that allows extracting subnetworks while guaranteeing their topological consis-
tency. The latter ensures that only accessible and co-accessible — impactful —
connections are kept in the resulting lightweight architectures. Our solution is
based on a novel reparametrization and two supervisory bi-directional networks
which implement accessibility/co-accessibility and guarantee that only connected
subnetworks will be selected during training. This solution allows enhancing gen-
eralization significantly, under very high pruning regimes, as corroborated through
extensive experiments, involving graph convolutional networks, on the challenging
task of skeleton-based action recognition.

1 Introduction

Deep convolutional networks are nowadays becoming mainstream in solving many pattern classifica-
tion tasks including visual recognition [22, 4, 3, 6]. Their principle consists in training convolutional
filters together with pooling and attention mechanisms that maximize classification performances.
Many existing convolutional networks were initially dedicated to grid-like data, including images
[23, 25, 24, 27]. However, data sitting on top of irregular domains (such as skeleton graphs in
action recognition) require extending convolutional networks to general graph structures, and these
extensions are known as graph convolutional networks (GCNs) [9, 26]. Two families of GCNs
exist in the literature: spectral and spatial. Spectral methods are based on graph Fourier transform
[42, 31–34, 29, 30, 11, 12] while spatial ones rely on message passing and attention [36–41]. Whilst
spatial GCNs have been relatively more effective compared to spectral ones, their precision is reliant
on the attention matrices that capture context and node-to-node relationships [43]. With multi-head
attention, GCNs are more accurate but overparametrized and computationally overwhelming.
Many solutions are proposed in the literature to reduce time and memory footprint of convolutional
networks including GCNs [45–50]. Some of them pretrain oversized networks prior to reduce their
computational complexity (using distillation [51–59], linear algebra [67], quantization [63] and prun-
ing [60–62]), whilst others build efficient networks from scratch using neural architecture search [68].
In particular, pruning methods, either unstructured or structured are currently mainstream, and their
principle consists in removing connections whose impact on the classification performance is the least
noticeable. Unstructured pruning [62, 63] proceeds by dropping out connections individually using
different proxy criteria, such as weight magnitude, and then retraining the resulting pruned networks.
In contrast, structured pruning [64, 66] removes groups of connections, entire filters or subnetworks
using different mechanisms such as grouped sparsity. However, existing pruning methods either
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structured or unstructured suffer from several drawbacks. On the one hand, structured pruning may
reach high speedup on usual hardware, but its downside resides in the rigidity of the class of learnable
architectures. On the other hand, unstructured pruning is more flexible, but its discrimination is
limited at high pruning regimes due to topological disconnections, and handling the latter is highly
intractable as adding or removing any connection combinatorially affects the others.
As contemporary network sizes grow into billions of parameters, studying high compression regimes
has been increasingly important on very large network architectures. Nevertheless, pruning mid-size
(but still heavy) architectures, including GCNs, is even more challenging as this usually leads to
highly disconnected and untrainable subnetworks, even at reasonably (not very) large pruning rates.
Hence, we target our contribution towards mid-size network architectures including GCNs in order
to fit not only the usual edge devices, such as smartphones, but also highly miniaturized devices
endowed with very limited computational resources (e.g., smart glasses). Considering the aforemen-
tioned issues, our contribution in this paper includes a new lightweight design which guarantees
the topological consistency of the extracted subnetworks. Our proposed solution is variational and
proceeds by training pruning masks and weight parameters that maximize classification performances
while guaranteeing the accessibility of the unpruned connections (i.e., their reachability from the
network input) and their co-accessibility (i.e., their actual contribution in the evaluation of the output).
Hence, only topologically consistent (accessible and co-accessible) subnetwork connections are
combinatorially selected. Extensive experiments, on the challenging task of skeleton-based action
recognition, show the outperformance of our proposed TCMP method.

2 A Glimpse on GCNs

Let S = {Gi = (Vi, Ei)}i denote a collection of graphs with Vi, Ei being respectively the nodes
and the edges of Gi. Each graph Gi (denoted for short as G = (V, E)) is endowed with a signal
{ϕ(u) ∈ Rs : u ∈ V} and associated with an adjacency matrix A with each entry Auu′ > 0 iff
(u, u′) ∈ E and 0 otherwise. GCNs aim at learning a set of C filters F that define convolution on n
nodes of G (with n = |V|) as (G ? F)V = f

(
A U>W

)
, here > stands for transpose, U ∈ Rs×n

is the graph signal, W ∈ Rs×C is the matrix of convolutional parameters corresponding to the
C filters and f(.) is a nonlinear activation applied entrywise. In (G ? F)V , the input signal U is
projected using A and this provides for each node u, the aggregate set of its neighbors. Entries of A
could be handcrafted or learned so (G ? F)V implements a convolutional block with two layers; the
first one aggregates signals in N (V) (sets of node neighbors) by multiplying U with A while the
second layer achieves convolution by multiplying the resulting aggregates with the C filters in W.
Learning multiple adjacency (also referred to as attention) matrices (denoted as {Ak}Kk=1) allows
us to capture different contexts and graph topologies when achieving aggregation and convolution.
With multiple matrices {Ak}k (and associated convolutional filter parameters {Wk}k), (G ? F)V
is updated as f

(∑K
k=1 A

kU>Wk
)
. Stacking aggregation and convolutional layers, with multiple

matrices {Ak}k, makes GCNs accurate but heavy. We propose subsequently a method that makes
our network architectures lightweight and still effective.

3 Magnitude Pruning

In the rest of this paper, a given GCN is subsumed as a multi-layered neural network gθ whose
weights defined as θ =

{
W1, . . . ,WL

}
, with L being its depth, W` ∈ Rd`−1×d` its `th layer weight

tensor, and d` the dimension of `. The output of a given layer ` is defined as φ` = f`(W
`> φ`−1),

` ∈ {2, . . . , L}, being f` an activation function. Without a loss of generality, we omit the bias in
the definition of φ`. Magnitude Pruning (MP) consists in zeroing the smallest weights in gθ (up
to a pruning rate), while retraining the remaining weights. A relaxed variant of MP is obtained
by multiplying W` with a differentiable mask ψ(W`) applied entrywise to W`. The entries of
ψ(W`) are set depending on whether the underlying layer connections are kept or removed, so
φ` = f`((W

` � ψ(W`))> φ`−1), here � stands for the element-wise matrix product. In this
definition, ψ(W`) enforces the prior that smallest weights should be removed from the network. In
order to achieve magnitude pruning, ψ must be symmetric, bounded in [0, 1], and ψ(ω) 1 when
|ω| is sufficiently large and ψ(ω) 0 otherwise1.

1A possible choice, used in practice, that satisfies these four conditions is ψ(ω) = 2σ(ω2)− 1 with σ being the sigmoid function.
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Pruning is achieved using a global loss as a combination of a cross entropy term denoted as Le, and a
budget cost which measures the difference between the targeted cost (denoted as c) and the actual
number of unpruned connections

min
{W`}`

Le
(
{W` � ψ(W`)}`

)
+ λ
( L−1∑
`=1

1>d`ψ(W
`)1d`+1

− c
)2
, (1)

here 1d` is a vector of d` ones. Eq. 1 focuses on minimizing the budget loss (with λ sufficiently large)
while progressively making {ψ(W`)}` crisp (almost binary) by linearly annealing the temperature
of the sigmoid function that defines ψ. As training evolves, the right-hand side term reaches its
minimum and stabilizes while the gradient of the global loss becomes dominated by the gradient of
the left-hand side term, and this maximizes further the classification performances.

4 Proposed Method: TCMP

The aforementioned pruning formulation is relatively effective (as shown later in experiments), how-
ever, it suffers from several drawbacks. On the one hand, removing connections independently may
result into topologically inconsistent network architectures (see section 4.1), i.e., either completely
disconnected or having isolated connections. On the other hand, high pruning rates may lead to an
over-regularization effect and hence weakly discriminant lightweight networks, especially when the
latter include isolated connections (see again later experiments). In what follows, we introduce a more
principled pruning framework that guarantees the topological consistency of the pruned networks and
allows improving generalization even at very high pruning rates.

4.1 Accessibility and Co-accessibility

Our formal definition of topological consistency relies on two principles: accessibility and co-
accessibility of connections in gθ. Let’s remind ψ(W`

ij) as a crisp (binary) function that indicates the
presence or absence of a connection between the i-th and the j-th neurons of layer `. This connection
is referred to as accessible if ∃i1, . . . , i`−1, s.t. ψ(W1

i1,i2
) = · · · = ψ(W`−1

i`−1,i
) = 1, and it is

co-accessible if ∃i`+1, . . . , iL, s.t. ψ(W`+1
j,i`+1

) = · · · = ψ(WL
iL−1,iL

) = 1.
Considering S`a = ψ(W1) ψ(W2) . . . ψ(W`−1) and S`c = ψ(W`+1) ψ(W`+2) . . . ψ(WL), and
following the above definition, it is easy to see that a connection between i and j is accessible (resp.
co-accessible) iff the i-th column (resp. j-th row) of S`a (resp. S`c) is different from the null vector.
A network architecture is called topologically consistent iff all its connections are both accessible
and co-accessible. Accessibility guarantees that incoming connections to the i-th neuron carry out
effective activations resulting from the evaluation of gθ up to layer `. Co-accessibility is equivalently
important and guarantees that the outgoing activation from the j-th neuron actually contributes in the
evaluation of the network output. A connection — not satisfying accessibility or co-accessibility and
even when its magnitude is large — becomes useless and should be removed when gθ is pruned.
For any given network architecture, parsing all its topologically consistent subnetworks and keeping
only the one that minimizes Eq. 1 is highly combinatorial. Indeed, the accessibility of a given
connection depends on whether its preceding and subsequent ones are kept or removed, and any
masked connections may affect the accessibility of the others. A heuristic is proposed in [35] as a
greedy approach to prune networks while guaranteeing their topological consistency; however, this
approach is clearly suboptimal as (i) topologically consistent subnetwork selection is decoupled from
(ii) weight retraining. In what follows, we introduce our main contribution (TCMP) that couples both
steps (i) and (ii) during network pruning using two supervisory accessibility networks.

4.2 Accessibility and Co-Accessibility Networks

Our solution relies on two supervisory networks that measure accessibility and co-accessibility of
connections in gθ. These two networks, denoted as φr and φl, have exactly the same architecture as
gθ with only a few differences: indeed, φr measures accessibility and inherits the same connections in
gθ with the only difference that their weights correspond to {ψ(W`)}` instead of {W` � ψ(W`)}`.
Similarly, φl inherits the same connections and weights as φr, however these connections are reversed
in order to measure accessibility in the opposite direction (i.e., co-accessibility). Note that weights
{W`}` are shared across all the networks gθ, φr and φl.
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Considering the definition of accessibility and co-accessibility, one may define layerwise outputs
φ`r := h

(
(φ`−1r φ`

>

l �ψ(W`−1))
> φ`−1r

)
, and φ`l := h

(
(φ`rφ

`+1>

l �ψ(W`))φ
`+1
l

)
being φ1r = 1d1 ,

φLl = 1dL , 1d1 the vector of d1 ones and h the Heaviside activation. With φ`r and φ`l , the non-zero
entries of the matrix (φ`rφ

`+1>

l )� ψ(W`) correspond to selected connections in gθ which are also
accessible and co-accessible. By plugging this matrix into Eq. 1, we redefine our topologically
consistent pruning loss

Le
(
{W` � ψ(W`)� φ`rφ`+1>

l }`
)
+ λ
( L−1∑
`=1

φ`
>

r ψ(W`)φ`+1
l − c

)2
. (2)

It is clear that accessibility networks in Eqs. 2 are interdependent and cannot be modeled using
standard feedforward networks, so more complex (highly recursive and interdependent) networks
should be considered which also lead to exploding gradient. In order to make accessibility and
co-accessibility networks in Eqs. 2 simpler and still trainable with standard feedforward networks,
we constrain entries of ψ(W`) to take non-zero values iff the underlying connections are kept and
accessible/co-accessible; in other words, φ`

>

r ψ(W`)φ
`+1
l should approximate 1>d`ψ(W`)1d`+1

in
order to guarantee that (i) unpruned connections are necessarily accessible/co-accessible and (ii) non
accessible ones are necessarily pruned. Hence, instead of Eqs. 2, a surrogate loss is defined as

Le
(
{W` � ψ(W`)� φ`rφ`+1>

l }`
)
+ λ
( L−1∑
`=1

φ`
>

r ψ(W`)φ`+1
l − c

)2
+η

L−1∑
`=1

[
1>d`ψ(W`)1d`+1

− φr`
>ψ(W`)φ

l
`+1

]
,

(3)

with now φ`r := h
(
ψ(W`−1)

> φ`−1r

)
and φ`l := h

(
ψ(W`) φ

`+1
l

)
.

4.3 Optimization

Let L denote the global loss in Eq. 3, the update of {W`}` is achieved using the gradient of L
obtained by simultaneously backpropagating the gradients through the networks gθ, φr and φl. More
precisely, considering Eq. 3 and φ`r, φ

`
l , the gradient of the global loss w.r.t. W` is obtained as

∂L
∂W`

+

L∑
k=`+1

∂L
∂φkr

φkr
φk−1r

. . .
∂φ`+1

r

∂W`
+
∑̀
k=1

∂L
∂φkl

φkl
φk+1
l

. . .
∂φ`l
∂W`

, (4)

here the left-hand side term in Eq. 4 is obtained by backpropagating the gradient of L from the
output to the input of the network gθ whereas the mid terms are obtained by backpropagating the
gradients of L from different layers to the input of φr. In contrast, the right-hand side terms are
obtained by backpropagating the gradients of L through φl in the opposite direction. Note that the
evaluation of the gradients in Eq. 4 relies on the straight through estimator (STE) [69]; the sigmoid
is used as a differentiable surrogate of h during backpropagation while the initial Heaviside is kept
when evaluating the responses of φr, φl (i.e., forward steps). STE allows training differentiable
accessibility networks while guaranteeing binary responses when evaluating these networks.

5 Experiments

We evaluate our different GCN architectures on the task of action recognition [71, 28, 20] using the
challenging First-Person Hand Action (FPHA) dataset [2]. This dataset, naturally suitable for GCNs,
consists of 1175 skeletons whose ground-truth includes 45 action categories with a high variability in
style, speed and scale as well as viewpoints. Each video, as a sequence of skeletons, is modeled with
a graph G = (V, E) whose given node vj ∈ V corresponds to the j-th hand-joint trajectory (denoted
as {p̂tj}t) and edge (vj , vi) ∈ E exists iff the j-th and the i-th trajectories are spatially neighbors.
Each trajectory in G is described using temporal chunking [65, 10]: this is obtained by first splitting
the total duration of a video sequence into M equally-sized temporal chunks (M = 32 in practice),
and assigning trajectory coordinates {p̂tj}t to the M chunks (depending on their time stamps), and
then concatenating the averages of these chunks in order to produce the raw description (signal) of vj .
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Implementation details and baseline GCN. Our GCNs are trained end-to-end using Adam [1]
for 2,700 epochs with a momentum of 0.9, batch size of 600 and a global learning rate (denoted as
ν(t)) set depending on the change of the loss in Eq. 3; when the latter increases (resp. decreases),
ν(t) decreases as ν(t) ← ν(t− 1)× 0.99 (resp. increases as ν(t) ← ν(t− 1)/0.99). The mixing
parameter η in Eq. 3 is set to 1 and λ is slightly overestimated to 10 in order to guarantee the
implementation of the targeted pruning rates. All these experiments are run on a GeForce GTX 1070
GPU (with 8 GB memory) and classification performances — as average accuracy through action
classes — are evaluated using the protocol in [2] with 600 action sequences for training and 575
for testing. The architecture of our baseline GCN (taken from [65]) consists of an attention layer
of 16 heads applied to skeleton graphs whose nodes are encoded with 32-channels, followed by a
convolutional layer of 128 filters, and a dense fully connected layer. This initial network architecture
is relatively heavy (for a GCN); its includes 2 million parameters and it is accurate compared to the
related work on the FPHA benchmark, as shown in Table 1-left. Considering this GCN baseline
architecture, our goal is to make it lightweight while maintaining its high accuracy as much as possible.

Method Color Depth Pose Accuracy (%)
Two stream-color [4] 3 7 7 61.56
Two stream-flow [4] 3 7 7 69.91
Two stream-all [4] 3 7 7 75.30
HOG2-depth [5] 7 3 7 59.83

HOG2-depth+pose [5] 7 3 3 66.78
HON4D [7] 7 3 7 70.61

Novel View [8] 7 3 7 69.21
1-layer LSTM [9] 7 7 3 78.73
2-layer LSTM [9] 7 7 3 80.14
Moving Pose [13] 7 7 3 56.34

Lie Group [14] 7 7 3 82.69
HBRNN [15] 7 7 3 77.40

Gram Matrix [16] 7 7 3 85.39
TF [17] 7 7 3 80.69

JOULE-color [18] 3 7 7 66.78
JOULE-depth [18] 7 3 7 60.17
JOULE-pose [18] 7 7 3 74.60
JOULE-all [18] 3 3 3 78.78

Huang et al. [19] 7 7 3 84.35
Huang et al. [21] 7 7 3 77.57

Our GCN baseline 7 7 3 86.08

Pruning rates

TC # parameters

% of A-C

Accuracy (%)

Observation

0% NA 1967616 100 86.08 Baseline GCN
50.00% 7 983808 100.0 86.08 MP
50.00% 3 983808 100.0 86.08 TCMP (greedy)
49.99% 3 983836 100.0 84.34 TCMP (our)
75.00% 7 491904 99.40 85.73 MP
75.00% 3 491904 100.0 85.91 TCMP (greedy)
75.19% 3 487990 100.0 85.21 TCMP (our)
95.00% 7 98379 72.30 83.82 MP
95.00% 3 98379 100.0 84.86 TCMP (greedy)
95.45% 3 89453 100.0 85.21 TCMP (our)
99.00% 7 19674 21.20 76.00 MP
99.00% 3 19674 100.0 80.69 TCMP (greedy)
99.01% 3 19285 100.0 82.95 TCMP (our)

Table 1: (Left) Comparison of our baseline GCN architecture against related work on FPHA. (Right) This
table shows an ablation study, without TC (i.e., MP) and with TC (i.e., TCMP), for different pruning rates on
FPHA. We can see how MP, without TC, produces disconnected network architectures for high pruning rates,
and this degrades performances, while TCMP guarantees both Accessibility and Co-Accessibility and also better
generalization. Our ablation and comparison are achieved against MP (without TC) [70] and the greedy method
(with TC) in [35]. A-C stands for percentage of Accessible and Co-Accessible connections.

Lightweight CGNs (Comparison & Ablation). We study the impact of TCMP on the performances
of our lightweight GCNs for different pruning rates. Table. 1-right shows the positive impact of TCMP
especially on highly pruned network architectures. This impact is less important (and sometimes
negative) with low pruning regimes as the resulting architectures have enough (a large number
of) Accessible and Co-accessible (AC) connections, so having a few of these connections neither
accessible nor co-accessible, i.e. removed, produces a well known regularization effect [44] that
enhances performances. In contrast, with high pruning rates and without Topological Consistency
(TC), this leads to over-regularized and very disconnected lightweight architectures that suffer from
under-fitting. With TC, both accessibility and co-accessibility are guaranteed even with very high
pruning regimes, and this also attenuates under-fitting, and ultimately improves generalization as
again shown in table 1-right.

6 Conclusion

We introduce in this paper a novel lightweight architecture design based on Topologically Consistent
Magnitude Pruning (TCMP). The particularity of TCMP resides in its ability to select subnetworks
with only accessible and co-accessible connections. The latter make the learned lightweight sub-
networks topologically consistent and more accurate particularly at very high pruning regimes.
The proposed approach relies on two supervisory networks, that implement accessibility and co-
accessibility, which are trained simultaneously with the lightweight networks using a novel loss
function. Extensive experiments, involving graph convolutional networks, on the challenging task of
skeleton-based recognition show the substantial gain of our method.
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