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Abstract

In recent years, facial recognition technology has made
significant progress. However, it also faces challenges in
common scenarios of daily life. For example, facial acces-
sories such as masks, glasses, and hats have a negative im-
pact on recognition accuracy. This paper introduces a fa-
cial data synthesis pipeline based on the diffusion model,
which combines the text-to-image generation method with
Mask-ControlNet. The pipeline can generate various com-
mon facial occlusions, achieving diverse and high-fidelity
facial image generation. By comparing the performance of
different models trained with synthetic and real images, ex-
tensive experimental results confirm the effectiveness of this
method in enhancing the robustness of facial recognition.

1. Introduction
Facial recognition is a technology that matches faces in dig-
ital images or videos with faces stored in a database. Cur-
rently, facial recognition based on deep convolutional net-
works such as DeepFace [1], FaceNet [2], and OpenFace [3]
are widely used, and they typically achieve high accuracy
on normal faces. However, in daily life, factors such as
hairstyles, accessories, and clothing may affect recognition
performance. The reason is that the collected samples are
relatively single and limited in quantity.

To tackle these challenges, researchers have proposed
some data augmentation methods. As shown in the first
row of Fig 1, they manipulate original images by rotat-
ing, flipping, scaling, cropping, adding noise, etc. to gen-
erate additional training samples. In addition, some GAN-
based methods, such as DiscoGAN [4] and BeautyGAN [5].
These methods can be used for hairstyle transfer and fa-
cial makeup transfer. As shown in the second row of Fig
1, diffusion-based generative models like DiFaReli [6] and
Diffusionrig [7] have also been utilized for facial image
restoration and augmentation.

Before data augmentation, these generative models may

Figure 1. Left column is original data. The right shows the images
after data augmentation. The upper row is based on geometric
transformations and pixel operations. Lower is showing various
transfers using Diffusionrig [7].

need to first obtain prior knowledge of a person’s face
in order to have a high degree of restoration, such as
DreamBooth[8]. Inpainting methods[9], although having
high object fidelity without additional training, may result
in facial disharmony in the generated images.

Our method solves this problem by introducing an ad-
ditional mask prompt. We fine-tune the pre-trained diffu-
sion model without prior knowledge of specific faces. With
the great advancements of large vision models like SAM
[10], the facial mask can be easily obtained. Specifically,
the reference image is first fed to SAM to produce a mask
to segment the regions of the face. Then, the resultant im-
age is concatenated with the reference image as the condi-
tional information for image synthesis. The additional mask
prompt facilitates the network to better maintain the facial
details and model the pixel relationship of segmented edges,
resulting in higher-quality synthetic images.

The main contributions are summarized as below:

1) We propose a framework termed Mask-ControlNet to
achieve higher-quality facial image generation by intro-
ducing an additional mask prompt. With the help of
this mask prompt, different accessories and hairstyles can
be synthesized for facial data, while maintaining high-



fidelity facial features.
2) We conduct extensive comparative experiments to test the

data augmentation effect of generated images. Quantita-
tive and qualitative results show that our framework can
generate diverse and high-quality datasets, which can ef-
fectively improve the robustness of facial recognition.

2. Related work

In this section, we introduce some common methods of fa-
cial recognition and related datasets. Next, we briefly re-
view recent advances in generative models that can be used
for facial data augmentation.

2.1. Facial Recognition Models

Over the past few years, significant advancements in deep
neural networks, coupled with the employment of extensive
facial datasets, have markedly improved the performance
of facial recognition systems. State-of-the-art facial recog-
nition models [11–15] use large-scale face datasets such as
DeepFace [1], FaceNet [2], and VGGFace2 [16] to optimize
the performance [17–22]. To avert overfitting and to en-
hance the robustness of these systems, the training dataset
needs to simulate the diversity and unpredictability of the
real world.

2.2. Generative Models for synthesizing faces

Due to privacy concerns and resource limitations associ-
ated with collecting real facial datasets, there are techni-
cal challenges in gathering diverse facial images. Recent
research has pivoted towards employing synthetic data as
a substitute for real data in the training of facial recogni-
tion systems. Major deep generative models, such as Vari-
ational Autoencoders (VAE) [23], Generative Adversarial
Networks (GAN) [24, 25], Autoregressive Models [26], and
Diffusion Models [27–29], are capable of sampling from
existing data distributions to generate synthetic data that
closely resembles real-world data. Specific GANs [30–32],
including CONFIG [33], DiscoGAN [34], VecGAN [35],
and Face-ID-GAN [36], can use predefined attributes to
regenerate multiple faces of an existing one. In addition,
Stable Diffusion [37] has been shown to generate diverse
and photorealistic faces, enriching datasets and improving
model performance as demonstrated by a recent quantita-
tive analysis [38].

3. Methodology

Given a facial image of a certain person, our goal is to
generate an image that maintains high fidelity of facial de-
tails, while synthesizing different contexts and composi-
tions based on text prompts.

3.1. Training-time Framework

As shown in Fig. 2, our framework is built on top of a diffu-
sion model and is trained in a self-supervised manner. First,
the input image is fed to the VAE encoder to obtain feature
maps F and then the noise is progressively added, result-
ing in Ft. Here, t represents the number of times noise is
added. Afterward, the noisy feature maps Ft are passed to
the diffusion model to predict the noise and reconstruct the
input image.

In parallel to the main path, our framework has an image
branch and a text branch to provide additional conditions
for the diffusion model. In the image branch, the input im-
age and text prompt are first fed to GroundingDINO [39]
to obtain object detection, which is a kind of box prompt
used for SAM [10] to produce the object mask. Then, the
resultant mask is used to segment the object in the image.
Next, the concatenation of the object image and the image
is passed to an adapter layer. Afterward, a VAE encoder and
ControlNet are employed to control the diffusion model to
reconstruct the input image. In the text branch, BLIP[40] is
adopted to extract textual descriptions of the input image.
Then, the extracted text prompt is fed to CLIP [41] to pro-
vide additional control to the diffusion model. Finally, the
features extracted from the text and image prompts are con-
nected to the diffusion model with zero convolution layers.

During optimization, only the adapter layer and the Con-
trolNet are trainable while the diffusion model is frozen.
The loss function used is defined as:

L = Ez0,t,ct,cf ,ϵ∼N(0,1)||ϵ− ϵθ(zt, t, ct, cf )||22, (1)

where z0 represents the data in the latent space, ct and cf
are the text condition and the latent condition, respectively.

3.2. Inference-time Framework

When synthesizing facial data for model training, there are
two methods. The first is to preserve facial features and
change people’s clothing and hairstyle. This requires feed-
ing reference images to SAM to produce a mask to segment
the face. Another approach is to generate occlusions on the
face, which requires the use of the facial keypoint detection
method (MTCNN [42]). For example, if we want to gener-
ate a face with a mask, we first need to detect the position of
the nose, mask the facial area below the center of the nose,
and imply in the text prompt that the person in the image
is wearing a mask. In addition, sunglasses, forehead bangs,
etc. can also be batch generated through this method. The
synthesis effect can be shown in Fig. 4. Then, the concate-
nation of the mask and the segmented face image is passed
to the VAE encoder. Meanwhile, the text that describes the
context of the generated image is fed to CLIP. Next, the
features extracted from the image and the text prompt are



Figure 2. An illustration of our framework during the training phase.

passed through ControlNet and used as conditions for the
diffusion model to synthesize an image from a noise im-
age.

4. Experiments

In this section, we first introduce the experimental setup and
visualize some face data synthesized by Mask-ControlNet.
Next, we conduct several comparative studies to test the
performance of different models in face recognition tasks,
demonstrating the effectiveness of synthesized images in
data augmentation.

4.1. Experimental Setup

During the training phase, we collected 18,000 images from
numerous websites using keywords such as people, cosmet-
ics, art photos, and clothing. In addition, we selected 20,000
images from the SA1B and COCO datasets. Mask types in-
clude people, faces, clothing, various accessories, etc. After
data cleaning and annotation, a total of 38,000 valid images
and approximately 50,000 valid masks are obtained as the
training set.

In the face recognition task, our training and testing sets
are sourced from the facial recognition dataset collected
from Pinterest. To test the robustness of the model, there
are a total of 105 people, each has 100-200 facial images
with significant differences, making facial recognition chal-
lenging.

We perform various types of enhancements on each face
in the training set, including changing hairstyles and cloth-
ing, adding facial accessories, and randomly generating fa-
cial features. The synthetic images generated by Mask-

Figure 3. Comparison of synthesized images among Mask-
ControlNet, Inpaint-ControlNet [9] and BrushNet [43]

ControlNet were created using 10-20 images per individ-
ual. These synthesized training data are used to train the
facial recognition model, and then we test the performance
of these models using closed set recognition.

4.2. Performance Evaluation

(1) Facial Data Synthesis
As shown in the first row of Fig. 3, compared to Inpaint-

ControlNet [9], our method can generate more diverse and
coordinated images, but the background generated by In-
paint is relatively single and the glasses are also very un-
coordinated. Compared to BrushNet [43], our method can
generate more real and restored images. As shown in Fig. 4,
we only need to provide the model with a segmented fa-
cial image and a text prompt to control the redrawing of
the entire image. From the figure, it is evident that within
the mask region, a variety of occlusions, clothing, and
hairstyles can be realistically synthesized, while in the non-
mask area, the key facial features are still high fidelity.



Figure 4. Four ways to synthesize images. The left of each ex-
ample serves as the input for Mask ControlNet, while the right
contains some images generated under the guidance of the text
prompt.

When synthesizing large-scale datasets, the human face
can be accurately segmented, but the areas of the eyes, fore-
head, and mouth are difficult to accurately mask. At present,
we only generate glasses, masks, etc. roughly near the key
points, which may interfere with training performance. In
the following work, we will focus on improving the process
of this part to enhance the quality of data synthesis.

(2) Quantitative Results
First, we evaluated the performance of two augmenta-

tion methods(random and Mask-ControlNet augmentation)
on the three models. Specifically, we trained VGG19 [44]
and ResNet50 [45] from scratch and fine-tuned ViT [46]
(ViT-B). We compared the test metrics across three levels
of dataset augmentation, where the expanded datasets were
proportionally scaled to 1x, 2x, and 4x the size of the initial
dataset.

The outcomes presented in Tab. 1 demonstrate that,
across different dataset augmentation ratios, the Mask-
ControlNet augmentation (MCA) consistently achieves su-
perior results compared to random augmentation for all
three models. As the proportion of the MCA datasets
increases, the effectiveness also improves progressively.
However, random enhancement methods such as cropping
and rotation can easily lead to overfitting during training.
Consequently, we have grounds to believe that our MCA
plays a beneficial role in expanding the dataset.

Additionally, we compared four representative face
recognition methods: FaceNet [2], ResNet50 [45], Incep-
tionResnetV1 [47, 48], and ViT [46]. The experimental
data consists of 100×105 real images and 100×105 gener-
ated images. Mask ControlNet generates occlusion of ran-
dom areas on the face by generating accessories, with the
ratio of accessories to face area set to 0%, 20%, and 40%,
respectively. We trained FaceNet and fine-tuned the other
three models and evaluated their recognition accuracy on
the same test set. Additionally, we compared the similarity
between the feature vectors(ViT-B encoded) of the gener-

Table 1. Comparison of accuracy across different data augmenta-
tion methods and dataset enhancement proportions in two models.
The ratio in the table denotes the ratio of the original dataset to
the augmented dataset. RA indicates data enhancement using the
Random Augmentation method, while MCA refers to augmenta-
tion employing Mask-ControlNet.

1:1 1:2 1:4

RA MCA RA MCA RA MCA

VGG19 0.386 0.403 0.377 0.466 0.453 0.483
ResNet50 0.404 0.592 0.519 0.622 0.511 0.656

ViT 0.875 0.886 0.890 0.912 0.914 0.929

Table 2. Comparison of feature similarity and accuracy on four
models for synthetic data with different proportions of mask. IRV1
in the table represents InceptionResnetV1. 0% of the mask indi-
cates that the face in the original image has been regenerated with-
out any changes.

Mask Similarity FaceNet↑ ResNet↑ IRV1↑ ViT↑
0% 68.94 0.257 0.947 0.865 0.887

20% 65.40 0.251 0.958 0.903 0.931
40% 62.25 0.225 0.953 0.856 0.906

ated images and the original images.
As shown in Tab. 2, as the area of the mask increases, the

similarity between images gradually decreases, but the dif-
ference is not significant, indicating that the synthesized im-
age can still retain most features of the face. Among the four
methods, except for simple networks like FaceNet(CNN)
which perform slightly worse than the original data (0.251
vs 0.257), all other methods perform best on synthetic faces
with a mask of 20%. This indicates that masking a smaller
portion of the face is of great help in supplementing the
dataset, while masking a larger area of the face may intro-
duce some noise, thereby interfering with the training of the
model.

5. Conclusion
In this paper, we present a simple yet effective framework
to synthesize high-quality facial images with an additional
mask prompt. With this conditional information, the net-
work can well capture the relationship between object edge
pixels. From the quality of generated images, our method
can synthesize real and high-fidelity facial images, includ-
ing various facial occlusions, clothing, and hairstyles. Ex-
tensive experiments demonstrate the effectiveness of our
synthesized data. Additionally, we expect to explore how
to more accurately recognize different regions of the face
and achieve more efficient and high-quality facial data syn-
thesis in the future.
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