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Abstract

We develop a novel variance-reduced algorithm to solve a stochastic nonconvex-concave
minimax problem which has various applications in different fields. This problem has several com-
putational challenges due to its nonsmoothness, nonconvexity, nonlinearity, and non-separability
of the objective functions. Our approach relies on a novel combination of recent ideas, including
smoothing and hybrid stochastic variance-reduced techniques. Our algorithm and its variants can
achieve O(T−2/3)-convergence rate in T , and the best-known oracle complexity under standard
assumptions. They have several computational advantages compared to existing methods. They
can also work with both single sample or mini-batch on derivative estimators, with constant or
diminishing step-sizes. We demonstrate the benefits of our algorithms over existing methods
through two numerical examples.

1 Introduction
We study the following stochastic nonconvex-concave saddle-point problem, which covers various
practical problems in different fields, see, e.g., [4, 9, 11]:

min
x∈Rp

max
y∈Rn

{
Ψ(x, y) := R(x) + Eξ

[
〈Ky,F(x, ξ)〉

]
− ψ(y)

}
, (1)

where F : Rp×Ω→ Rq is a stochastic vector function defined on a probability space (Ω,P), K ∈ Rq×n
is a given matrix, 〈·, ·〉 is an inner product, and ψ : Rn → R ∪ {+∞} and R : Rp → R ∪ {+∞} are
proper, closed, and convex functions [3]. Problem (1) is a special case of the nonconvex-concave
minimax problem, where our bifunction H(x, y) = Eξ

[
〈Ky,F(x, ξ)〉

]
is linear in y.

Note that (1) can be reformulated into a general stochastic compositional non-convex problem:

min
x∈Rp

{
Ψ0(x) := φ0(F (x)) +R(x) ≡ φ0

(
Eξ
[
F(x, ξ)

])
+R(x)

}
, (2)

where φ0 is a convex, but possibly nonsmooth function, defined as

φ0(u) := max
y∈Rn

{
〈K>u, y〉 − ψ(y)

}
≡ ψ∗(K>u), (3)
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with ψ∗ being the Fenchel conjugate of ψ [3]. Note that problem (2) is completely different
from existing models such as [7, 8], where the expectation is inside the outer function φ0, i.e.,
φ0

(
Eξ
[
F(x, ξ)

])
. We refer to this setting as a “non-separable" model. The template (3) also covers

penalized formulations of a stochastic constrained optimization problem.

Challenges. Developing numerical methods for solving (1) or (2) faces several challenges. First, it
is often nonconvex, i.e., F is not affine. Many recent papers consider special cases of (2) when Ψ0 in
(2) is convex by imposing restrictive conditions, which are unfortunately not realistic in applications.
Second, the max-form φ0 in (3) is often non-smooth if ψ is not strongly convex. This prevents the use
of gradient-based methods. Third, since the expectation is inside φ0, it is very challenging to form
an unbiased estimate for [sub]gradients of Φ0, making classical stochastic gradient-based methods
inapplicable. Finally, prox-linear operator-based methods as in [7, 8, 28, 39] require large mini-batch
evaluations of both function value F and its Jacobian F′, see [28, 37, 39], instead of single sample or
small mini-batch, making them less flexible and more expensive than gradient-based methods.

Related work. Problem (1) has recently attracted considerable attention due to key applications,
e.g., in game theory, robust optimization, and generative adversarial nets (GANs) [4, 9, 11]. Various
first-order methods have been developed to solve (1) during the past decades for both convex-
concave models , e.g., [3, 13, 19, 30] and nonconvex-concave settings [16, 24]. Some recent works
consider a nonnonvex-nonconcave formulation, e.g., [23, 34]. However, they still rely on additional
assumptions to guarantee that the maximization problem in (3) can globally be solved. One well-
known assumption is the Polyak-Łojasiewicz (PL) condition, which is rather strong and often used
to guarantee linear convergence. A majority of these works focus on deterministic models, while
some methods have been extended to stochastic settings, e.g., [16, 34]. Although (1) is a special
case of a general model in [16, 34], it almost covers all examples in [16, 34]. Compared to these, our
algorithm is rather simple with a single loop, and our oracle complexity is significantly improved
over the ones in [16, 34].

Alternatively, the compositional reformulation (2) has been broadly studied in the literature
under both deterministic and stochastic settings, see, e.g., [7, 8, 14, 21, 27, 31]. If q = 1 and
φ0(u) = u, then (2) reduces to the standard stochastic optimization model studied e.g., in [10, 25].
In the deterministic setting, one common method to solve (2) is the prox-linear-type method, which
is also known as a Gauss-Newton method [14, 21]. This method has been studied in several papers,
including [7, 8, 14, 21, 27]. However, the prox-linear operator often does not have a closed form
expression, and its evaluation may require solving a general nonsmooth strongly convex subproblem.

In the stochastic setting as (2), [31, 32] proposed stochastic compositional gradient methods to
solve more general forms than (2), but they required a set of stronger assumptions than Assump-
tions 2.1-2.2 below, including the smoothness of φ0. Recent related works include [15, 17, 33, 35, 36],
which also rely on similar ideas. For instance, [16] proposed a double loop subgradient-based method
with O

(
ε−6
)
oracle complexity. Another subgradient-based method was recently proposed in [34]

based on a two-side PL condition. Stochastic methods exploiting prox-linear operators have also
been recently proposed in [28, 39], which are essentially extensions of existing deterministic methods
to (2). Together with algorithms, convergence guarantees, stochastic oracle complexity bounds have
also been estimated. For instance, [31] obtained O

(
ε−8
)
oracle complexity for (2), while it was

improved to O
(
ε−4.5

)
in [32]. Recent works [37, 38] further improved the complexity to O

(
ε−3
)
.

These methods require the smoothness of both φ0 and F , use large batch sizes, and need a double
loop scheme. In contrast, our method has single loop, can work with either single sample
or mini-batch, and allows both constant or diminishing step-sizes. For nonsmooth φ0,
under the same assumptions as [28, 39], our methods achieve O

(
ε−3
)
Jacobian and O

(
ε−5
)
function

evaluation complexity as in those papers. However, our method is gradient-based, which only uses
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proximal operator of ψ and R instead of a complex prox-linear operator as in [28, 39]. Moreover, it
can work with both single sample and mini-batch for Jacobian F′ compared to a large batch size as
in [28, 39].

Our contribution. Our main contribution in this paper can be summarized as follows:
(a) We develop a new single-loop hybrid variance-reduced SGD algorithm to solve (1) under As-

sumptions 2.1 and 2.2 below. Under the strong convexity of ψ, our algorithm has O
(
(bT )−2/3

)
convergence rate to approximate a KKT (Karush-Kuhn-Tucker) point of (1), where b is the
batch size and T is the iteration counter. We also estimate its O

(
ε−3
)
-oracle complexity to

obtain an ε-KKT point, matching the best-known one as, e.g., in [37, 38]. Our complexity
bound holds for a wide range of b as opposed to a specific choice in [37, 38].

(b) When ψ is non-strongly convex, we combine our approach with a smoothing technique to
develop a gradient-based variant, that can achieve the best-known O

(
ε−3
)
Jacobian and

O
(
ε−5
)
function evaluations of F for finding an ε-KKT point of (1). Moreover, our algorithm

does not require prox-linear operators and large batches for Jacobian as in [28, 39].
(c) We also propose a simple restarting technique without sacrificing convergence guarantees to

accelerate the practical performance of both cases (a) and (b).
Our methods exploit a recent biased hybrid estimators introduced in [29] as opposed to SARAH

ones in [28, 37, 39]. This allows us to simplify our algorithm with a single loop and without large
batches at each iteration compared to [37]. As indicated in [2], our O

(
ε−3
)
oracle complexity

is optimal under the considered assumptions. If ψ is non-strongly convex (i.e. φ0 in (2) can be
nonsmooth), then our algorithm is fundamentally different from the ones in [28, 39] as it does not
use prox-linear operator. Note that evaluating a prox-linear operator requires to solve a general
strongly convex but possible nonsmooth subproblem. In addition, they only work with large batch
sizes of both F and F′.

Content. The rest of this paper is organized as follows. Section 2 states our assumptions and
recalls some mathematical tools. Section 3 develops a new algorithm and analyzes its convergence.
Section 5 provides two numerical examples to compare our methods. All technical details and proofs
are deferred to the appendices.

2 Basic assumptions, KKT points and smoothing technique
Notation. We work with finite-dimensional space Rp equipped with standard inner product 〈·, ·〉
and Euclidean norm ‖ · ‖. For a function φ : Rp → R ∪ {+∞}, dom(φ) denotes its domain. If φ
is convex, then proxφ denotes its proximal operator, ∂φ denotes its subdifferential, and ∇φ is its
[sub]gradient, see, e.g., [3]. φ is µφ-strongly convex with a strongly convex parameter µφ > 0 if
φ(·)− µφ

2 ‖ · ‖
2 remains convex. For a smooth vector function F : Rp → Rq, F ′ denotes its Jacobian.

We use dist (x,X ) := infy∈X ‖x− y‖ to denote the Euclidean distance from x to a convex set X .

2.1 Model assumptions
Let F (x) := Eξ

[
F(x, ξ)

]
denote the expectation function of F and dom(Ψ0) denote the domain of

Ψ0. Throughout this paper, we always assume that

Ψ?
0 := inf

x∈Rp
{Ψ0(x) := φ0(F (x)) +R(x)} > −∞

in (2) and R is proper, closed, and convex without recalling them in the sequel. Our goal is to
develop stochastic gradient-based algorithms to solve (1) relying on the following assumptions:

Assumption 2.1. The function F in problem (1) or (2) satisfies the following assumptions:

3



(a) Smoothness: F(·, ·) is LF -average smooth with LF ∈ (0,+∞), i.e.:

Eξ
[ ∥∥F′(x, ξ)− F′(y, ξ)

∥∥2 ] ≤ L2
F ‖x− y‖

2 , ∀x, y ∈ dom(Ψ0). (4)

(b) Bounded variance: There exists two constants σF , σJ ∈ (0,+∞) such that

Eξ
[
‖F(x, ξ)− F (x)‖2

]
≤ σ2

F and Eξ
[ ∥∥F′(x, ξ)− F ′(x)

∥∥2 ] ≤ σ2
J , ∀x ∈ dom(Ψ0).

(c) Lipschitz continuity: F (·) is MF -average Lipschitz continuous with MF ∈ (0,+∞), i.e.:

Eξ
[ ∥∥F′(x, ξ)∥∥2 ] ≤M2

F , ∀x ∈ dom(Ψ0). (5)

Note that Assumptions 2.1 are standard in stochastic nonconvex optimization, see [28, 37, 38, 39].
If dom(R) is bounded, then dom(Ψ0) is bounded, and this assumption automatically holds.

For ψ, we only require the following assumption, which is mild and holds for many applications.

Assumption 2.2. The function ψ in (1) is proper, closed, and convex. Moreover, dom(ψ) is
bounded by Mψ ∈ (0,+∞), i.e.: sup {‖y‖ : y ∈ dom(ψ)} ≤Mψ.

An important special case of ψ is the indicator of convex and bounded sets. Hitherto, we do
not require φ0 and R in (2) to be smooth or strongly convex. They can be nonsmooth so that (2)
can also cover constrained problems. Note that the boundedness of dom(ψ) is equivalent to the
Lipschitz continuity of φ0 (Lemma A.1). Simple examples of φ0 include norms and gauge functions.

2.2 KKT points and approximate KKT points
Since (1) is nonconvex-concave, a pair (x?, y?) is said to be a KKT point of (1) if

0 ∈ F ′(x?)>Ky? + ∂R(x?) and 0 ∈ K>F (x?)− ∂ψ(y?). (6)

From (6), we have y? ∈ ∂ψ∗(K>F (x?)). Substituting this y? into the first expression, we get

0 ∈ F ′(x?)>∂φ0(F (x?)) + ∂R(x?). (7)

Here, we have used K>∂ψ∗(K>u) = ∂φ0(u), where φ0 is given by (3) This inclusion shows that x?

is a stationary point of (2). In the convex-concave case, under mild assumptions, a KKT point is
also a saddle-point of (1). In particular, if (2) is convex, then x? is also its global optimum of (2).

However, in practice, we can only find an approximation (x̃∗0, ỹ
∗
0) of a KKT point (x?, y?) for (1).

Definition 2.1. Given any tolerance ε > 0, (x̃∗0, ỹ
∗
0) is called an ε-KKT point of (1) if

E
[
E(x̃∗0, ỹ

∗
0)
]
≤ ε,

where E(x, y) := dist
(
0, F ′(x)>Ky + ∂R(x)

)
+ dist

(
0,K>F (x)− ∂ψ(y)

)
.

(8)

Here, the expectation is taken overall the randomness from both model (1) and the algorithm.
Clearly, if E

[
E(x̃∗0, ỹ

∗
0)
]

= 0, then (x̃∗0, ỹ
∗
0) is a KKT point of (1) as characterized by (6).
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2.3 Smoothing techniques
Under Assumption 2.2, φ0 defined by (3) can be nonsmooth. Hence, we can smooth φ0 as follows:

φγ(u) := max
y∈Rn

{〈u,Ky〉 − ψ(y)− γb(y)} , (9)

where b : dom(ψ)→ R+ is a continuously differentiable and 1-strongly convex function such that
miny b(y) = 0, and γ > 0 is a smoothness parameter. For example, we can choose b(y) := 1

2‖y − ẏ‖
2

for a fixed ẏ or b(y) := log(n) +
∑n

j=1 yj log(yj) defined on a standard simplex ∆n [20].
Let y∗γ(u) be an optimal solution of the maximization problem in (9), which always exists

and is unique. In particular, if b(y) := 1
2‖y − ẏ‖

2, then y∗γ(u) := proxψ/γ
(
ẏ − γ−1K>u

)
. Under

Assumption 2.2, φγ possesses some useful properties as stated in Lemma A.1 (Appendix A.1).
Given φγ defined by (9), we consider the following functions:

Φγ(x) := φγ(F (x)) = φγ
(
Eξ
[
F(x, ξ)

])
and Ψγ(x) := Φγ(x) +R(x). (10)

In this case, under Assumptions 2.1 and 2.2, Φγ is continuously differentiable, and

∇Φγ(x) = F ′(x)>∇φγ(F (x)) = F ′(x)>Ky∗γ(F (x)). (11)

Smoothness. Moreover, Φγ(·) is LΦγ -smooth with LΦγ := MφγLF +M2
FLφγ (see [38]), i.e.:

‖∇Φγ(x)−∇Φγ(x̂)‖ ≤ LΦγ‖x− x̂‖, ∀x, x̂ ∈ dom(Ψ0), (12)

where Mφγ := Mψ‖K‖ and Lφγ := ‖K‖2
γ+µψ

given in Lemma A.1.

Gradient mapping. Let us recall the following gradient mapping of Ψγ(·) given in (10):

Gη(x) := 1
η

(
x− proxηR(x−∇Φγ(x))

)
, for any η > 0. (13)

This mapping will be used to characterize approximate KKT points of (1) in Definition 2.1.

3 The proposed algorithm and its convergence analysis
First, we introduce a stochastic estimator for ∇Φγ . Then, we develop our main algorithm and
analyze its convergence and oracle complexity. Finally, we show how to construct an ε-KKT point of
(1).

3.1 Stochastic estimators and the algorithm
Since F is the expectation of a stochastic function F, we exploit the hybrid stochastic estimators
for F and its Jacobian F ′ proposed in [29]. More precisely, given a sequence {xt} generated by a
stochastic algorithm, these hybrid stochastic estimators F̃t and J̃t are defined as follows: F̃t := βt−1F̃t−1 + βt−1

b1

∑
ξi∈B1

t
[F(xt, ξi)− F(xt−1, ξi)] + (1−βt−1)

b2

∑
ζi∈B2

t
F(xt, ζi)

J̃t := β̂t−1J̃t−1 + β̂t−1

b̂1

∑
ξ̂i∈B̂1

t

[
F′(xt, ξ̂i)− F′(xt−1, ξ̂i)

]
+ (1−β̂t−1)

b̂2

∑
ζ̂i∈B̂2

t
F′(xt, ζ̂i),

(14)

where βt−1, β̂t−1 ∈ [0, 1] are given weights, and the initial estimators F̃0 and J̃0 are defined as

F̃0 := 1
b0

∑
ξi∈B0 F(x0, ξi) and J̃0 := 1

b̂0

∑
ξ̂i∈B̂0 F

′(x0, ξ̂i). (15)

Here, B0, B̂0, B1
t , B̂1

t , B2
t , and B̂2

t are mini-batches of sizes b0, b̂0, b1, b̂1, b2, and b̂2, respectively. We
also require that B1

t is independent of B2
t , and B̂1

t is independent of B̂2
t , but not between the others.
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For F̃t and J̃t defined by (14), we introduce a stochastic estimator for the gradient ∇Φγ(xt) =
F ′(xt)

>∇φγ(F (xt)) of Φγ(·) in (10) at xt as follows:

vt := J̃>t ∇φγ(F̃t) ≡ J̃>t Ky∗γ(F̃t). (16)

To evaluate vt, we need to solve a strongly convex problem (9) to find y∗γ(F̃t), which often cheaper
than prox-linear operators. Moreover, due to (15) and (16), evaluating v0 does not require the full
matrix J̃0, but a matrix-vector product J̃>0 Ky∗γ(F̃0), which is often cheaper than evaluating J̃0.

Using the new estimator vt of ∇Φγ(xt) in (16), we propose Algorithm 1 to solve (1).

Algorithm 1 (Smoothing Hybrid Variance-Reduced SGD Algorithm for solving (1))

1: Inputs: An arbitrarily initial point x0 ∈ dom(Ψ0).
2: Input β0, β̂0 ∈ (0, 1), γ0 ≥ 0, η0 > 0, and θ0 ∈ (0, 1] (specified later).
3: Initialization: Generate F̃0 and J̃0 as in (15) with mini-batch sizes b0 and b̂0, respectively.
4: Solve (9) to obtain y∗γ0

(F̃0). Then, evaluate v0 := J̃>0 Ky
∗
γ0

(F̃0).
5: Update x̂1 := proxη0R (x0 − η0v0) and x1 := (1− θ0)x0 + θ0x̂1.
6: For t := 1, · · · , T do
7: Construct F̃t and J̃t as in (14) and vt := J̃>t Ky

∗
γt(F̃t), where y

∗
γt(F̃t) solves (9).

8: Update x̂t+1 := proxηtR (xt − ηtvt) and xt+1 := (1− θt)xt + θtx̂t+1.
9: Update βt+1, β̂t+1, θt+1 ∈ (0, 1), ηt+1 > 0, and γt+1 ≥ 0 if necessary.

10: EndFor
11: Output: Choose x̄T randomly from {x0, x1, · · · , xT } with Prob{x̄T = xt} =

θt/LΦγt∑T
t=0 θt/LΦγt

.

Algorithm 1 is designed by adopting the idea in [29], where it can start from two initial mini-
batches B0 and B̂0 to generate a good approximation for the search direction v0 before getting into
the main loop. However, it has 3 major differences compared to [29]: dual step y∗γt(F̃t), estimator vt,
and dynamic parameter updates. Note that Algorithm 1 is single loop, making it easy to implement
in practice compared to SVRG [12] and SARAH [22], but it requires one additional sample in
(14). Moreover, if we use a diminishing step-size (see Theorems 3.2 and 3.4 below), then the initial
mini-batches B0 and B̂0 are not required.

3.2 Convergence analysis of Algorithm 1
Let Ft be the σ-field generated by Algorithm 1 up to the t-th iteration, which is defined as follows:

Ft := σ
(
x0,B0, B̂0,B1

1, B̂1
1,B2

1, B̂2
1, · · · ,B1

t , B̂1
t ,B2

t , B̂2
t

)
. (17)

If ψ is strongly convex, then, without loss of generality, we can assume µψ := 1. Otherwise, we can
rescale it. Moreover, for the sake of our presentation, for a given c0 > 0, we introduce:

P :=
√

26‖K‖
3
√
c0

√
M4
F ‖K‖2 + c0L2

FM
2
ψ, Q := 26

9c0
‖K‖2

(
M4
F ‖K‖2σ2

F + c0M
2
ψσ

2
J

)
,

LΦ0 :=LFMψ‖K‖+M2
F ‖K‖2, and LΦγ :=LFMψ‖K‖+

M2
F ‖K‖

2

γ ,
(18)

where γ > 0, MF , LF , σF , and σJ are given in Assumption 2.1 and Mψ is in Assumption 2.2.

(a) The smooth case. Theorem 3.1, whose proof is in Appendix B.3, analyzes convergence rate
and complexity of Algorithm 1 for the smooth case of φ0 in (2) (i.e., ψ is strongly convex).
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Theorem 3.1 (Constant step-size). Suppose that Assumptions 2.1 and 2.2 hold, ψ is µψ-strongly
convex with µψ := 1, and P , Q, and LΦ0 are defined in (18). Given a mini-batch 0 < b ≤ b̂0(T + 1),
let b0 := c0b̂0, b̂1 = b̂2 := b, and b1 = b2 := c0b. Let {xt}Tt=0 be generated by Algorithm 1 using

γt := 0, βt = β̂t := 1− b1/2

[b̂0(T+1)]1/2
, θt = θ :=

LΦ0
b3/4

P [b̂0(T+1)]1/4
, and ηt = η := 2

LΦ0
(3+θ) , (19)

provided that b̂0(T+1)
b3

>
L4

Φ0
P 4 . Let b0 := c2

1[b(T + 1)]1/3 for some c1 > 0. Then, we have

E
[
‖Gη(x̄T )‖2

]
≤ ∆0

[b(T + 1)]2/3
, where ∆0 := 16P

√
c1

[
Ψ0(x0)−Ψ?

0

]
+

24Q

c1
. (20)

For a given tolerance ε > 0, the total number of iterations T to obtain E
[
‖Gη(x̄T )‖2

]
≤ ε2 is at most

T :=
⌊∆

3/2
0
bε3

⌋
. The total numbers of function evaluation F(xt, ξ) and its Jacobian evaluations F′(xt, ξ)

are at most TF :=
⌊ c0c21∆

1/2
0

ε +
3c0∆

3/2
0

ε3

⌋
and TJ :=

⌊ c21∆
1/2
0
ε +

3∆
3/2
0
ε3

⌋
, respectively.

Theorem 3.2 states convergence of Algorithm 1 using diminishing step-size (see Appendix. B.4).

Theorem 3.2 (Diminishing step-size). Suppose that Assumptions 2.1 and 2.2 hold, ψ is µψ-
strongly convex with µψ := 1 (i.e., φ0 in (2) is smooth). Let {xt}Tt=0 be generated by Algorithm 1
using the mini-batch sizes as in Theorem 3.1, and increasing weight and diminishing step-sizes as

γt := 0, βt = β̂t := 1− 1
(t+2)2/3 , θt :=

LΦ0

√
b

P (t+2)1/3 , and ηt := 2
LΦ0

(3+θt)
, (21)

Then, for all T ≥ 0, and (x̄T , η̄T ) chosen as Prob
{
Gη̄T (x̄T ) = Gηt(xt)

}
= θt∑T

t=0 θt
, we have

E
[
‖Gη̄T (x̄T )‖2

]
≤ 32P [Ψ0(x0)−Ψ?0]

3
√
b
[
(T+3)2/3−22/3

] + 32Q

3
[
(T+3)2/3−22/3

] [21/3

b̂0
+ 2(1+log(T+1))

b

]
. (22)

If we set b = b̂0 = 1, then our convergence rate is O
(

log(T )

T 2/3

)
with a log(T ) factor slower than

(20). However, it does not require a large initial mini-batch b̂0 as in Theorem 3.1. In Theorems 3.1
and 3.2, we do not need to smooth φ0. Hence, γt is absent in Algorithm 1, i.e., γt = 0 for t ≥ 0.

(b) The non-smooth case. Now we consider the case µψ = 0, i.e., φ0 in (2) is non-smooth.
Theorem 3.3 states convergence of Algorithm 1 in this case, whose proof is in Appendix B.5.

Theorem 3.3 (Constant step-size). Assume that Assumptions 2.1 and 2.2 hold, ψ in (1) is
non-strongly convex (i.e., φ0 is nonsmooth), and P , Q, and LΦγ are defined in (18). Let b and b̂0 be
two positive integers, c0 > 0, and {xt}Tt=0 be generated by Algorithm 1 after T iterations using:
b̂1 = b̂2 := b, b1 = b2 := c0b

γ2 , b̂0 := c2
1[b(T + 1)]1/3, b0 := c0b̂0

γ2 , γt := γ ∈ (0, 1],

βt = β̂t = 1− b1/2

[b̂0(T+1)]1/2
, θt = θ :=

LΦγ b
3/4

P [b̂0(T+1)]1/4
, and ηt = η := 2

LΦγ (3+θ) .
(23)

Then, with Bψ defined in Lemma A.1, the following bound holds

E
[
‖Gη(x̄T )‖2

]
≤ ∆̂0

[b(T + 1)]2/3
, where ∆̂0 := 16

√
c1P

(
Ψ0(x0)−Ψ?

0+Bψ
)

+
24Q

c1
. (24)
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The total number of iterations T to achieve E
[
‖Gη(x̄T )‖2

]
≤ ε2 is at most T :=

⌊ ∆̂
3/2
0
bε3

⌋
. The total

numbers of function evaluations TF and Jacobian evaluations TJ are respectively at most

TF :=
c0∆̂

1/2
0

γ2ε
+

3c0∆̂
3/2
0

γ2ε3
= O

(
∆̂

3/2
0

γ2ε3

)
and TJ :=

∆̂
1/2
0
ε +

3∆̂
3/2
0
ε3

= O
(

∆̂1.5
0
ε3

)
.

If we choose γ := c2ε for some c2 > 0, then TF =
c0∆̂

1/2
0

c22ε
3 +

3c0∆̂
3/2
0

c22ε
5 = O

( ∆̂
3/2
0
ε5

)
.

Note that both convergence rate (24) and TJ in Theorem 3.3 are independent of γ. The choice
of γ := c2ε is to achieve an ε-KKT point in the sense of Definition 2.1 by using Lemma 3.1 below.

Alternatively, we can also establish convergence and estimate the complexity of Algorithm 1 with
diminishing step-size in Theorem 3.4, whose proof is in Appendix B.6.

Theorem 3.4 (Diminishing step-size). Suppose that Assumptions 2.1 and 2.2 hold, ψ is non-
strongly convex (i.e., φ0 is possibly nonsmooth), and P , Q, LΦγt

are defined by (18). Given mini-batch

sizes b > 0 and b̂0 > 0, let b0 := c0b̂0
γ2

0
, bt1 = bt2 := c0b

γ2
t
, and b̂1 = b̂2 := b for some c0 > 0. Let {xt}Tt=0

be generated by Algorithm 1 using increasing weight and diminishing step-sizes as

γt := 1
(t+2)1/3 , βt = β̂t := 1− 1

(t+2)2/3 , θt :=
LΦγt

b1/2

P (t+2)1/3 , and ηt := 2
LΦγt

(3+θt)
. (25)

For (x̄T , η̄T ) chosen as Prob
{
Gη̄T (x̄T )=Gηt(xt)

}
=
[∑T

t=0(θt/LΦγt
)
]−1

(θt/LΦγt
), we have

E
[
‖Gη̄T (x̄T )‖2

]
≤ 32P

3
√
b[(T+3)2/3−22/3]

(
Ψ0(x0)−Ψ?

0 +
Bψ

(T+2)1/3

)
+ 16Q

3[(T+3)2/3−22/3]

(
21/3

b̂0
+ 2(1+log(T+1))

b

)
= O

(
log(T )

T 2/3

)
.

(26)

Note that since γt := 1
(t+2)1/3 (diminishing) and bt1 = bt2 := c0b

γ2
t
, we have bt1 = bt2 = c0b(t+ 2)2/3,

which shows that the mini-batch sizes of the function estimation F̃t are chosen in increasing manner
(not fixed at a large size for all t), which can save computational cost for F . The batch sizes b and
b̂0 in Theorems 3.3 and 3.4 must be chosen to guarantee βt, θt ∈ (0, 1].

Remark 3.1. If we define an approximate gradient mapping G̃ηt for Gη in (13) as G̃ηt(xt) :=
1
ηt

(
xt − proxηtR (xt − ηtvt)

)
. Clearly, ifR = 0, then G̃ηt(xt) = vt, which reduces to an approximation

of the gradient ∇Φγt(xt). Then, the update of Algorithm 1 becomes xt+1 := xt − ηtθtG̃ηt(xt). Thus
we can refer to θ̂t := θtηt as a combined step-size (also called a learning rate). Since ηt := 2

LΦγt
(3+θt)

we have θ̂t = 2θt
LΦγt

(3+θt)
≤ 2θt

3LΦγt

, which is diminishing to zero in (21) or (25).

3.3 Constructing approximate KKT point for (1) from Algorithm 1
Existing works such as [37, 39] do not show how to construct an ε-KKT point of (1) or an ε-stationary
point of (2) from x̄T with E

[
‖Gη̄T (x̄T )‖2

]
≤ ε2. Lemma 3.1, whose proof is in Appendix A.3, shows

how to construct an ε-KKT point of (1) in the sense of Definition 2.1 with ε := O (ε).

Lemma 3.1. Let x̄T be computed by Algorithm 1 up to an accuracy ε > 0 after T iterations. Assume
that we can approximate F ′(x̄T ), F (x̄T ), and F (x̃∗γT ), respectively such that

E
[
‖F̃ (x̄T )− F (x̄T )‖

]
≤ (µψ + γT )ε, E

[
‖(J̃(x̄T )− F ′(x̄T ))>∇φγT (F̃ (x̄T ))‖

]
≤ ε,

and E
[
‖F̃ (x̃∗γT )− F (x̃∗γT )‖

]
≤ ε.

(27)
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Let us denote ∇̃ΦγT (x̄T ) := J̃(x̄T )>∇φγ(F̃ (x̄T )) and compute (x̃∗γT , ỹ
∗
γT

) as

x̃∗γT := proxηTR(x̄T − ηT ∇̃ΦγT (x̄T )) and ỹ∗γT := y∗γT (F̃ (x̃∗γT )) by (9). (28)

Suppose that E
[
‖GηT (x̄T )‖2

]
≤ ε2 and 0 ≤ γT ≤ c2ε for a constant c2 ≥ 0. Then

E
[
E(x̃∗γT , ỹ

∗
γT

)
]
≤ ε, where ε :=

[
13
3 + 8

3MF ‖K‖2 + c2Dψ

]
ε, (29)

where Dψ is in Lemma A.1 and E(·) is given by (8). In other words, (x̃∗γT , ỹ
∗
γT

) is an ε-KKT of (1).

If we use stochastic estimators as in (15) to form F̃ (x̄T ) , J̃(x̄T ), and F̃ (x̃∗γT ) with batch sizes bT ,

b̂T , and b̃T , respectively, then (27) holds if we choose bT :=
⌊ σ2

F
(µψ+γT )2ε2

⌋
, b̂T :=

⌊σ2
J
ε2

⌋
, and b̃T :=

⌊σ2
F
ε2

⌋
.

We do not explicitly compute Jacobian J̃(x̄T ), but its matrix-vector product J̃(x̄T )>∇φγT (F̃ (x̄T )).
This extra cost is dominated by TJ and TF in Theorems 3.1, 3.2, 3.3, and 3.4. For x̄T computed by
Theorems 3.1 and 3.2, we can set γT := 0, or equivalently, c2 := 0. For x̄T computed by Theorem 3.3,

since γT := c2ε and µψ = 0, we have bT =
⌊ σ2

F

c22ε
4

⌋
< TF = O

( ∆̂
3/2
0
ε5

)
.

4 Restarting variant of Algorithm 1 and its convergence
In this section., we propose a simple restarting variant, Algorithm 2, of Algorithm 1, prove its
convergence, and estimate its oracle complexity bounds for both smooth φ0 and non-smooth φ0

in (2). For simplicity of our analysis, we only consider the constant step-size case, and omit the
diminishing step-size analysis.

4.1 Restarting variant
Motivation. Since the constant step-size θ in (19) of Theorem 3.1 and (23) of Theorem 3.3 depends
on the number of iterations T . Clearly, if T is large, then θ is small. To avoid using small step-size θ,
we can restart Algorithm 1 by frequently resetting its initial point and parameters after T iterations.
This variant is described in Algorithm 2. Algorithm 2 has two loops, where each iteration s of the
outer loop is called the s-th stage. Unlike the outer loop in other variance-reduced methods relying
on SVRG or SARAH estimators from the literature, which is mandatory to guarantee convergence,
our outer loop is optional, since without it, Algorithm 2 reduces to Algorithm 1, and it still converges.

Algorithm 2 (Restarting Variant of Algorithm 1)

1: Inputs: An arbitrarily initial point x̃0 ∈ dom(F ), and a fixed number of iterations T .
2: For s := 1, · · · , S do

3: Run Algorithm 1 for T iterations starting from x
(s)
0 := x̃s−1.

4: Set x̃s := x
(s)
T+1 as the last iterate of Algorithm 1.

5: EndFor
6: Output: Choose x̄N randomly from {x(s)

t }s=1→S
t=0→T such that Prob

(
x̄N = x

(s)
t

)
= θt

S
∑T
j=0 θj

.

4.2 The smooth case φ0 with constant step-size
The smoothness of φ0 is equivalent to the µψ-strong convexity of ψ in (1). The following theorem,
whose proof is in Appendix C, states convergence rate and estimates oracle complexity of Algorithm 2.
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Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold, ψ is strongly convex (i.e., µψ = 1 > 0),
and P , Q, and LΦ0 are defined by (18). Let {x(s)

t }s=1→S
t=0→T be generated by Algorithm 2 using γ := 0,

b0 := c0b̂0, b1 = b2 := c0b, b̂1 = b̂2 = b for some c0 > 0 and given batch sizes b > 0 and b̂0 > 0, and
the parameter configuration (19). Then, the following estimate holds

E
[
‖Gη(x̄N )‖2

]
≤ 16P b̂

1/4
0

S[b(T + 1)]3/4
[
Ψ0(x̃0)−Ψ?

0

]
+

24Q

[b̂0b(T + 1)]1/2
, (30)

where x̄N is uniformly randomly chosen from {x(s)
t }s=1→S

t=0→T .
Given ε > 0, if we choose T :=

⌊48Q
bε2

⌋
and b̂0 :=

⌊48Q
ε2

⌋
, then after at most S :=

⌊
8P

ε
√

3Q

⌋
outer

iterations, we obtain E
[
‖Gη(x̄N )‖2

]
≤ ε2. Consequently, the total number of function evaluations TF

and the total number of Jacobian evaluations TJ are at most TF = TJ :=
⌊400P

√
3Q

ε3

⌋
.

Theorem 4.1 holds for any mini-batch b such that 1 ≤ b ≤ 48Q
ε2

, which is different from, e.g., [37],
where the complexity result holds under large batches. Moreover, the total oracle calls TF and TJ
are independent of b. In this case, the weight β and the step-size θ become

β := 1− bε2

48Q
and θ :=

bLΦ0

4Pε
√

3Q
.

Clearly, if b is large, then our step-size θ is also large.

4.3 The non-smooth φ0 with constant step-size
Finally, we prove the convergence of Algorithm 2 when ψ is non-strongly convex (i.e., φ0 in (2) is
possibly nonsmooth). The proof of the following theorem is in Appendix C.

Theorem 4.2. Assume that Assumptions 2.1 and 2.2 hold, ψ in (1) is non-strongly convex (i.e.,
µψ = 0), and P , Q, and LΦγ are defined by (18). Let {x(s)

t }s=1→S
t=0→T be generated by Algorithm 2 after

N := S(T + 1) iterations using: b1 = b2 := 2c0bR̂0
ε2

, b̂1 = b̂2 := b, b0 :=
4c0R̂2

0
ε4

, b̂0 := 2R̂0
ε2
,

γ := ε√
2R̂0

, and β := 1− bε2

2R̂0
.

(31)

where ε > 0 is a given tolerance1, and

R0 := 16
[
Ψ0(x̃0)−Ψ? +Bψ

]
and R̂0 := 24Q. (32)

Then, if we choose T :=
⌊

2R̂0
ε2

⌋
, then after at most S :=

⌊ √
2R0

bε
√
R̂0

⌋
outer iterations, we obtain x̄T such

that E
[
‖Gη(x̄T )‖2

]
≤ ε2.

Consequently, the total number of function evaluations TF and the total number of Jacobian
evaluations TJ are respectively at most

TF :=
4
√

2c0R0R̂
3/2
0 (3+b−1)

ε5
= O

(
R0R̂

3/2
0

ε5

)
and TJ :=

2
√

2R0R̂
1/2
0 (3+b−1)

ε3
= O

(
R0R̂

1/2
0

ε3

)
.

Remark 4.1. Note that we do not need to choose the batch sizes and parameters depending on R0

as in (31), which is unknown since Ψ?
0 is unknown, but they are proportional to R0. In this case, the

complexity bounds in Theorem 4.2 will only be shifted by a constant factor.
As we can see from Theorem 4.2, the number of outer iterations S is divided by the batch size b.

However, the terms 12
√

2c0R0R̂
3/2
0

ε5
and 6

√
2R0R̂

1/2
0

ε3
are independent of b and dominate the complexity

bounds in both TF and TJ , respectively.
1The batch sizes and T in this paper must be integer, but for simplicity, we do not write their rounding form.
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5 Numerical experiments
We use two examples to illustrate our algorithm and compare it with existing methods. Our code is
implemented in Python 3.6.3, running on a Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

5.1 Risk-averse portfolio optimization

We consider a risk-averse portfolio optimization problem from [18], and recent used in [38]:

max
x∈Rp

{
Eξ
[
hξ(x)

]
− ρVarξ

[
hξ(x)

]
≡ Eξ

[
hξ(x)

]
+ ρEξ

[
hξ(x)

]2 − ρEξ[h2
ξ(x)

]}
, (33)

where ρ > 0 is a trade-off parameter and hξ(x) is a reward for the portfolio vector x. Following
[38], (33) can be reformulated into (2), where φ0(u) = u1 + ρu2

1 − ρu2 is smooth, and F(x, ξ) =
(hξ(x), h2

ξ(x))>. Suppose further that we only consider N periods of time. Then we can view
ξ ∈ {1, · · · , N} as a discrete random variable and define hi(x) := 〈ri, x〉 as a linear reward function,
where ri := (ri1, · · · , rip)> and rij represents the return per unit of j at time i. We also choose
R(x) := λ‖x‖1 as a regularizer to promote sparsity as in [38].
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Figure 1: Comparison of three algorithms for solving (33) on 3 different datasets.

We implement our algorithm, abbreviated by HSCG (i.e., Hybrid Stochastic Compositional
Gradient for short), and test it on three real-world portfolio datasets, which contain 29, 37, and 47
portfolios, respectively, from the Keneth R. French Data Library [1]. We set ρ := 0.2 and λ := 0.01
as in [38]. For comparison, we also implement 2 methods, called CIVR in [38] and ASC-PG in [32]. The
step-size η of all algorithms are well tuned from a set of trials {1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}.
The performance of 3 algorithms are shown in Figure 1 for three datasets using b :=

⌊
N/8

⌋
(8

blocks).
One can observe from Fig. 1 that both HSCG and CIVR highly outperform ASC-PG due to their

variance-reduced property. HSCG is slightly better than CIVR since it has a flexible step-size θt. Note
that, in theory, CIVR requires a large batch for both function values and Jacobian, which may affect
its performance, while HSCG can work with a wide range of batches, including singe sample.

5.2 Stochastic minimax problem
We consider the following regularized stochastic minimax problem studied, e.g., in [26]:

min
x∈Rp

{
max

1≤i≤m
{Eξ
[
Fi(x, ξ)

]
}+ λ

2‖x‖
2
}
, (34)

where Fi : Rp × Ω → R+ can be taken as the loss function of the i-th model. If we define
φ0(u) := max1≤i≤m{ui} and R(x) := λ

2‖x‖
2, then (34) can be reformulated into (2). Since ui ≥ 0,
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we have φ0(u) := max1≤i≤m{ui} = ‖u‖∞ = max‖y‖1≤1{〈u, y〉}, which is nonsmooth. Therefore, we
can smooth φ0 as φγ(u) := max‖y‖1≤1{〈u, y〉 − (γ/2)‖y‖2} using b(y) := 1

2‖y‖
2.

In this example, we employ (34) to solve a model selection problem in binary classification
with nonconvex loss, see, e.g., [40]. Suppose that we have four (m = 4) different nonconvex
losses: F1(x, ξ) := 1− tanh(b〈a, x〉), F2(x, ξ) := log(1 + exp(−b〈a, x〉))− log(1 + exp(−b〈a, x〉 − 1)),
F3(x, ξ) := (1− 1/(exp(−b〈a, x〉) + 1))2, and F4(x, ξ) := log(1 + exp(−b〈a, x〉)) (see [40] for more
details), where ξ := (a, b) represents examples. We assume that we have N examples of ξ.
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Figure 2: Comparison of three algorithms for solving (34) on 3 different datasets.

We implement three algorithms: HSCG, SCG in [31], and Prox-Linear in [39]. We test them on
3 datasets from LIBSVM [6]. We set λ := 10−4 and update our γt parameter as γt := 1

2(t+1)1/3 .
The step-size η of all algorithms are well tuned from {1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}, and their
performance is shown in Figure 2 for three datasets: rcv1, covtype, and url with 32 blocks.

One can observe from Figure 2 that HSCG outperforms SCG and Prox-Linear on rcv1 and url.
For covtype, since p is very small, allowing us to evaluate the prox-linear operator to a high accuracy,
Prox-Linear slightly performs better than ours and much better than SCG. Note that solving the
subproblem of Prox-Linear is expensive when p is large. Hence, if p is large, Prox-Linear becomes
much slower than HSCG and SCG in terms of time.

6 Conclusions
We have proposed a new single loop hybrid variance-reduced SGD algorithm, Algorithm 1, to solve
a class of nonconvex-concave saddle-point problems. The main idea is to combine both smoothing
idea [20] and hybrid SGD approach in [29] to develop novel algorithms with less tuning effort.
Our algorithm relies on standard assumptions, and can achieve the best-known oracle complexity,
and in some cases, the optimal oracle complexity. It also has several computational advantages
compared to existing methods such as avoiding expensive subproblems, working with both single
sample and mini-batches, and using constant and diminishing step-sizes. We have also proposed
a simple restarting variant, Algorithm 2, in Appendix 4 to improve practical performance in the
constant step-size case without sacrificing complexity bounds. We believe that both algorithms and
theoretical results are new, even in the smooth case, compared to [28, 37, 39]. Our future plan is
to exploit this approach to solve some interesting applications, such as robust optimization and
learning, and GANs.

Appendix

A Some technical results and proof of Lemma 3.1
In this appendix, we provide some useful properties of φ0 in (3) and its smoothed approximation φγ
defined by (9) in Section 2. Then we recall and prove some bounds of variance for F̃t, J̃t, and vt.
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Finally, we prove Lemma 3.1 in the main text.

A.1 Properties of the smoothed function φγ
Under Assumption 2.2, φ0 in (3) and φγ defined by (9) have the following properties.

Lemma A.1. Let φ0 be defined by (3) and φγ be defined by (9). Then, the following statements
hold:

(a) dom(ψ) is bounded by Mψ iff φ0 is Mφ0-Lipschitz continuous with Mφ0 := Mψ‖K‖.
(b) dom(ψ) is bounded by Mψ iff φγ is Lipschitz continuous with Mφγ := Mψ‖K‖.
(c) φγ is convex and Lφγ -smooth with Lφγ := ‖K‖2

γ+µψ
.

(d) It holds that φγ(u) ≤ φ0(u) ≤ φγ(u) + γBψ for all u ∈ Rq, where γ > 0 and Bψ :=
sup {b(y) | y ∈ dom(ψ)}. In addition, we have Dψ := maxv∈dom(ψ) ‖∇b(v)‖ < +∞.

(e) We have φγ(u) ≤ φγ̂(u) + (γ̂ − γ)b(y∗γ(u)) ≤ φγ̂(u) + (γ̂ − γ)Bψ for all γ̂ ≥ γ > 0.

Proof. The statement (a) can be found in [3, Corollary 17.19].
Since ∇φγ(u) = Ky∗γ(u) with y∗γ(u) ∈ dom(ψ), we have ‖∇φγ(u)‖ ≤ ‖K‖‖y∗γ(u)‖ ≤ Mψ‖K‖.

Applying again [3, Corollary 17.19] we prove (b).
The statement (c) holds due to the well-known Baillon-Haddad theorem [3, Corollary 18.17].
The proof of the first part of (d) can be found in [20]. Under Assumption 2.2 and the continuous

differentiability of b, we have Dψ := maxv∈dom(ψ) ‖∇b(v)‖ < +∞.
Finally, for any u and y, since s(γ;u, y) := 〈u,Ky〉 − ψ(y) − γb(y) is linear in γ. Therefore,

φγ(u) := maxy∈Rn s(γ;u, y) is convex in γ and d
dγφγ(u) = −b(y∗γ(u)) ≤ 0. Consequently, we have

φγ(u) + d
dγφγ(u)(γ̂ − γ) = φγ(u)− (γ̂ − γ)b(y∗γ(u)) ≤ φγ̂(u), which implies (e).

One common example of ψ in Assumption 2.2 is ψ(x) := δX (x), the indicator of a nonempty,
closed, bounded, and convex set X . For instance, X := {y ∈ Rn | ‖y‖∗ ≤ 1} is a unit ball in the dual
norm ‖·‖∗ of ‖·‖. Then, we have φ0(u) := ‖u‖, which is clearly Lipschitz continuous. In particular,
if X := {y ∈ Rn | ‖y‖∞ ≤ 1}, then φ0(u) := ‖u‖1.

A.2 Key bounds on the variance of estimators
Next, we provide some useful bounds for the estimators F̃t and J̃t defined in (14). The following
lemma can be found in [29].

Lemma A.2. Let F̃t and J̃t be defined by (14), and Ft be defined by (17). Then

E(B1
t ,B2

t )

[
‖F̃t − F (xt)‖2

]
= β2

t−1‖F̃t−1 − F (xt−1)‖2 − β2
t−1‖F (xt)− F (xt−1)‖2

+ (1− βt−1)2EB2
t

[
‖F(xt, ζt)− F (xt)‖2

]
+

β2
t−1

b1
Eξ
[
‖F(xt, ξ)− F(xt−1, ξ)‖2

]
,

E(B̂1
t ,B̂2

t )

[
‖J̃t − F ′(xt)‖2

]
= β̂2

t−1‖J̃t−1 − F ′(xt−1)‖2 − β̂2
t−1‖F ′(xt)− F ′(xt−1)‖2

+ (1− β̂t−1)2EB̂2
t

[
‖F′(xt, ζ̂t)− F ′(xt)‖2

]
+

β̂2
t−1

b̂1
Eξ̂
[
‖F′(xt, ξ̂)− F′(xt−1, ξ̂)‖2

]
.

(35)

Furthermore, we can bound the variance of the estimator vt of ∇Φγt(xt) defined in (16) as
follows.
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Lemma A.3. Let Φγ and vt be defined by (10) and (16), respectively. Then, under Assumptions 2.1
and 2.2, we have

E
[
‖vt −∇Φγt(xt)‖2

]
≤ 2M2

FL
2
φγt

E
[
‖F̃t − F (xt)‖2

]
+ 2M2

φγt
E
[
‖J̃t − F ′(xt)‖2

]
. (36)

Proof. First, by the composition rule of derivatives, we can derive

‖vt −∇Φγt(xt)‖
2 = ‖J̃>t ∇φγt(F̃t)− F ′(xt)>∇φγt(F (xt))‖2

=
∥∥J̃>t ∇φγt(F̃t)− F ′(xt)>∇φγt(F̃t) + F ′(xt)

>∇φγt(F̃t)

− F ′(xt)
>∇φγt(F (xt))

∥∥2

(i)

≤ 2‖(J̃t − F ′(xt))>∇φγt(F̃t)‖2 + 2‖F ′(xt)>
(
∇φγt(F̃t)−∇φγt(F (xt)

)
‖2

≤ 2‖∇φγt(F̃t)‖2‖J̃t − F ′(xt)‖2 + 2‖∇φγt(F̃t)−∇φγt(F (xt))‖2‖F ′(xt)‖2

(ii)

≤ 2M2
φγt
‖J̃t − F ′(xt)‖2 + 2L2

φγt
M2
F ‖F̃t − F (xt)‖2.

Here, we use ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 in (i) and the Mφγt
-Lipschitz continuity, Lφγt -smoothness of

φγt , and (5) in (ii). Taking expectation over Ft+1 on both sides the last inequality, we obtain

E
[
‖vt −∇Φγt(xt)‖2

]
≤ 2M2

FL
2
φγt

E
[
‖F̃t − F (xt)‖2

]
+ 2M2

φγt
E
[
‖J̃t − F ′(xt)‖2

]
,

which proves (36).

A.3 The construction of approximate KKT points for (1)
Recall from (10) that Φγ(x) = φγ(F (x)) and ∇Φγ(x) = F ′(x)>∇φγ(F (x)), where φγ is defined by
(9). We define a smoothed approximation problem of (2) as follows:

min
x∈Rp

{
Ψγ(x) := Φγ(x) +R(x) ≡ φγ(F (x)) +R(x)

}
. (37)

Clearly, if γ = 0, then (37) reduces to (2). The optimality condition of (37) becomes

0 ∈ ∇Φγ(x?γ) + ∂R(x?γ) ≡ F ′(x?γ)>∇φγ(F (x?γ)) + ∂R(x?γ). (38)

Here, x?γ is called a stationary point of (37). Therefore, an ε-stationary point x̃∗γ is defined as

E
[
dist

(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

) ]
≤ ε. (39)

Again, the expectation E
[
·
]
is taken over all the randomness generated by the model (37) and the

algorithm for finding x̃∗γ .
Alternatively, using the definition of φγ in (9), problem (37) can be written as

min
x∈Rp

max
y∈Rn

{
R(x) + 〈F (x),Ky〉 − ψ(y)− γb(y)

}
. (40)

Its optimality condition becomes

0 ∈ ∂R(x?γ) + F ′(x?γ)Ky?γ and 0 ∈ K>F (x?γ)− ∂ψ(y?γ)− γ∇b(y?γ). (41)

Using the definition of E in (8), we have

E(x?γ , y
?
γ) := dist

(
0, ∂R(x?γ) + F ′(x?γ)Ky?γ

)
+ dist

(
0,K>F (x?γ)− ∂ψ(y?γ)

)
≤ γDψ. (42)
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Here, we use the fact that ‖∇b(y?γ)‖ ≤ Dψ as stated in Lemma A.1.
Given x̄ ∈ dom(Ψ0), let F̃ (·) and J̃(·) be a stochastic approximation of F (·) and F ′(·), respectively.

We define (x̃∗γ , y
∗
γ) as follows:

x̃∗γ := proxηR

(
x̄− η∇̃Φγ(x̄)

)
, where ∇̃Φγ(x̄) := J̃(x̄)>∇φγ(F̃ (x̄)),

ỹ∗γ := y∗γ(F̃ (x̃∗γ)) ≡ arg min
y∈Rn

{
〈K>F̃ (x̃∗γ), y〉 − ψ(y)− γb(y)

}
,

(43)

Note that x̃∗γ only depends on x̄, while ỹ∗γ depends on both x̄ and x̃∗γ . Hence, we first compute x̃∗γ
and then compute ỹ∗γ .

The following lemma provides key estimates to prove Lemma 3.1 in the main text.

Lemma A.4. Under Assumptions 2.1 and 2.2, for given x̄ and η > 0, x̃∗γ defined by (43) satisfies

dist
(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

)
≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖. (44)

Let (x̃∗γ , ỹ
∗
γ) be computed by (43), and E(x, y) be defined by (8). Then, we have

E(x̃∗γ , ỹ
∗
γ) ≤

(
1 + ηLΦγ

)
‖Gη(x̄)‖+ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖

+
(
2 + ηLΦγ

) [
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄)‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖

]
,

(45)

where Dψ is defined in Lemma A.1.

Proof. From (43), we have x̄− η∇̃Φγ(x̄) ∈ x̃∗γ + η∂R(x̃∗γ), which is equivalent to

r∗x :=
1

η
(x̄− x̃∗γ) +

(
∇Φγ(x̃∗γ)− ∇̃Φγ(x̄)

)
∈ ∇Φγ(x̃∗γ) + ∂R(x̃∗γ). (46)

We can bound r∗x in (46) as follows:

‖r∗x‖ ≤ 1
η‖x̄− x̃

∗
γ‖+ ‖∇Φγ(x̃∗γ)−∇Φγ(x̄)‖+ ‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖

≤ 1
η

(
1 + ηLΦγ

)
‖x̃∗γ − x̄‖+ ‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖.

(47)

Next, from (13), let us define x̄∗γ := x̄− ηGη(x̄) = proxηR(x̄− η∇Φγ(x̄)). Then, we have

‖x̃∗γ − x̄‖ ≤ ‖x̃∗γ − x̄∗γ‖+ ‖x̄∗γ − x̄‖

= ‖proxηR(x̄− η∇̃Φγ(x̄))− proxηR(x̄− η∇Φγ(x̄))‖+ η‖Gη(x̄)‖

≤ η‖∇̃Φγ(x̄)−∇Φγ(x̄)‖+ η‖Gη(x̄)‖.

(48)

Substituting this estimate into (47), we obtain

‖r∗x‖ ≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖.

Combining this inequality and (46), we obtain (44).
Now, since ỹ∗γ = y∗γ(F̃ (x̃∗γ)), by the optimality condition of (9), we have

r∗y := γ∇b(ỹ∗γ) +K>(F (x̃∗γ)− F̃ (x̃∗γ)) ∈ K>F (x̃∗γ)− ∂ψ(ỹ∗γ). (49)

Utilizing Lemma A.1(d), we can bound r∗y defined by (49) as

‖r∗y‖ ≤ γ‖∇b(ỹ∗γ)‖+ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖ ≤ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖.

15



Combining this estimate and (49), we get

dist
(

0,K>F (x̃∗γ)− ∂ψ(ỹ∗γ)
)
≤ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖+ γDψ. (50)

On the other hand, using the definition of ∇̃Φγ(·) from (43), we can show that

‖∇̃Φγ(x̄)−∇Φγ(x̄)‖ = ‖J̃(x̄)>∇φγ(F̃ (x̄))− F ′(x̄)>∇φγ(F (x̄))‖

≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ ‖F ′(x̄)>
(
∇φγ(F̃ (x̄))−∇φγ(F (x̄)

)
‖

≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ ‖∇φγ(F̃ (x̄))−∇φγ(F (x̄))‖‖F ′(x̄)‖
(i)

≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ Lφγ‖F ′(x̄)‖‖F̃ (x̄)− F (x̄)‖
(5)
≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖.

Here, we have used the Lφγ -smoothness of φγ in (i).
Finally, combining the last estimate, (44), and (50), and using the definition of E from (8), we

have

E(x̃∗γ , ỹ
∗
γ) := dist

(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

)
+ dist

(
0,K>F (x̃∗γ)− ∂ψ(ỹ∗γ)

)
≤

(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖

+ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖+ γDψ

≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖

+
(
2 + ηLΦγ

) [
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖

]
,

which proves (45).

The proof of Lemma 3.1. For notational simplicity, we drop the subscript T in this proof. Since
Mφγ = Mψ‖K‖ and Lφγ = ‖K‖2

γ+µψ
, using the conditions in Lemma 3.1 and (27), we can derive from

(45) after taking the full expectation that

E
[
E(x̃∗γ , ỹ

∗
γ)
]
≤
(
1 + ηLΦγ

)
E
[
‖Gη(x̄)‖

]
+
(
2 + ηLΦγ

)
E
[
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖

]
+ ‖K‖E

[
‖F (x̃∗γ)− F̃ (x̃∗γ)‖

]
+
(
2 + ηLΦγ

) ‖K‖2MF

µψ+γ E
[
‖F̃ (x̄)− F (x̄)‖

]
+ γDψ.

Now, by the Jensen inequality E
[
‖Gη(x̄)‖

]
≤
(
E
[
‖Gη(x̄)‖2

])1/2 ≤ ε. In addition, by (27), we
also have 0 < γ ≤ c2ε, E

[
‖(J̃(x̄) − F ′(x̄))>∇φγ(F̃ (x̄))‖

]
≤ ε, E

[
‖F (x̃∗γ) − F̃ (x̃∗γ)‖

]
≤ ε, and

1
µψ+γE

[
‖F̃ (x̄) − F (x̄)‖

]
≤ ε. By the update rule of η in Theorems 3.1, 3.2, 3.3, and 3.4, we have

ηLΦγ = 2
3+θ ≤

2
3 since θ ∈ (0, 1]. Substituting these expressions into the last inequality, we finally

arrive at
E
[
E(x̃∗γ , ỹ

∗
γ)
]
≤ (1 + 2

3)ε+ c2Dψε+ ‖K‖ε+ (2 + 2
3)(1 + ‖K‖2MF )ε,

which is exactly (29).

B Convergence analysis of Algorithm 1 in Section 3
This appendix provides the full analysis of Algorithm 1, including convergence rates and oracle
complexity for both strongly convex and non-strongly convex cases of ψ (or equivalently, the
smoothness and the non-smoothness of φ0, respectively).
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B.1 Preparing technical results
Let us first recall and prove some technical results to prepare for our convergence analysis.

Lemma B.1. Let {xt} be generated by Algorithm 1, LΦγt
be defined by (12), and Bψ be given in

Lemma A.1. Then, under Assumptions 2.1 and 2.2, for any ηt > 0 and θt ∈ [0, 1], we have

E
[
Ψγt(xt+1)

]
≤ E

[
Ψγt−1(xt)

]
+

θt
(

1+L2
Φγt

η2
t

)
2LΦγt

E
[
‖∇Φγt(xt)− vt‖2

]
+ (γt−1 − γt)Bψ

− LΦγt
η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
.

(51)

Proof. Following the same line of proof of [29, Lemma 5], we can show that

E
[
Ψγt(xt+1)

]
≤ E

[
Ψγt(xt)

]
+

θt
(

1+L2
Φγt

η2
t

)
2LΦγt

E
[
‖∇Φγt(xt)− vt‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
.

Finally, since E
[
Ψγt(xt)

]
≤ E

[
Ψγt−1(xt)

]
+ (γt−1 − γt)Bψ due to Lemma A.1(e), substituting this

expression into the last inequality, we obtain (51).

The Lyapunov function. To analyze Algorithm 1, we introduce the following Lyapunov function:

Vγt−1(xt) := E
[
Ψγt−1(xt)

]
+
αt
2
E
[
‖F̃t − F (xt)‖2

]
+
α̂t
2
E
[
‖J̃t − F ′(xt)‖2

]
, (52)

where αt > 0 and α̂t > 0 are given parameters, and the expectation is taken over Ft+1. Lemma B.2
provides a key bound to estimate convergence rates and complexity bounds.

Lemma B.2. Let {xt} be generated by Algorithm 1, and Vγt be the Lyapunov function defined by
(52). Suppose further that the following conditions hold:

2
ηt
≥ LΦγt

θt + 2LΦγt
+

M2
F β

2
t θtαt+1

b1
+

L2
F β̂

2
t θtα̂t+1

b̂1

2M2
FL

2
φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+ αt+1β

2
t ≤ αt and 2M2

φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+ α̂t+1β̂

2
t ≤ α̂t.

(53)

Then, for all t ≥ 0, one has

Vγt(xt+1) ≤ Vγt−1(xt)−
LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+

(1−βt)2αt+1σ2
F

b2
+

(1−β̂t)2α̂t+1σ2
J

b̂2

+ (γt−1 − γt)Bψ.
(54)

Proof. First of all, by combining (36) and (51), we obtain

E
[
Ψγt(xt+1)

]
≤E

[
Ψγt−1(xt)

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+ (γt−1 − γt)Bψ

+ θt

(1+L2
Φγt

η2
t

LΦγt

)(
M2
FL

2
φγt

E
[
‖F̃t − F (xt)‖2

]
+M2

φγt
E
[
‖J̃t − F ′(xt)‖2

])
.

(55)

Due to the mini-batch estimators in (14), it is well-known that

EB2
t

[
‖F(xt, ζt)− F (xt)‖2

]
= E

[∥∥ 1
b2

∑
ζi∈B2

t
F(xt, ζi)− F (xt)

∥∥2] ≤ σ2
F
b2

EB̂2
t

[
‖F′(xt, ζ̂t)− F ′(xt)‖2

]
= E

[∥∥ 1
b̂2

∑
ζ̂i∈B̂2 F

′(xt, ζ̂i)− F ′(xt)
∥∥2] ≤ σ2

J

b̂2
.
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Substituting these bounds and xt+1 − xt = θt(x̂t+1 − xt) into (35) and taking full expectation the
resulting inequality over Ft+1, we obtain

E
[
‖F̃t+1 − F (xt+1)‖2

]
≤ β2

t E
[
‖F̃t − F (xt)‖2

]
+

β2
t θ

2
tM

2
F

b1
E
[
‖x̂t+1 − xt‖2

]
+

(1−βt)2σ2
F

b2

E
[
‖J̃t+1 − F ′(xt+1)‖2

]
≤ β̂t

2E
[
‖J̃t − F ′(xt)‖2

]
+

β̂2
t θ

2
tL

2
F

b̂1
E
[
‖x̂t+1 − xt‖2

]
+

(1−β̂t)2σ2
J

b̂2
.

Multiplying these inequalities by αt+1 > 0 and α̂t+1 > 0, respectively, and adding the results to (55),
we can further derive

Vγt(xt+1)
(52)
:= E

[
Ψγt(xt+1)

]
+ αt+1

2 E
[
‖F̃t+1 − F (xt+1)‖2

]
+ α̂t+1

2 E
[
‖J̃t+1 − F ′(xt+1)‖2

]
≤ E

[
Ψγt−1(xt)

]
+

[
M2
FL

2
φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+

αt+1β2
t

2

]
E
[
‖F̃t − F (xt)‖2

]
+

[
M2
φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+

α̂t+1β̂2
t

2

]
E
[
‖J̃t − F ′(xt)‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt
− M2

F β
2
t θtαt+1

b1
− L2

F β̂
2
t θtα̂t+1

b̂1

)
E
[
‖x̂t+1 − xt‖2

]
+

(1−βt)2αt+1σ2
F

b2
+

(1−β̂t)2α̂t+1σ2
J

b̂2
+ (γt−1 − γt)Bψ.

Let us choose αt > 0 and α̂t > 0 and impose three conditions as in (53), i.e.:
2
ηt
≥ LΦγt

θt + 2LΦγt
+

M2
F β

2
t θtαt+1

b1
+

L2
F β̂

2
t θtα̂t+1

b̂1
,

2M2
FL

2
φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+ αt+1β

2
t ≤ αt, and 2M2

φγt
θt

(1+L2
Φγt

η2
t

LΦγt

)
+ α̂t+1β̂

2
t ≤ α̂t.

Then, by using (52), the last inequality can be further upper bounded as

Vγt(xt+1) ≤ Vγt−1(xt)−
LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+

(1−βt)2αt+1σ2
F

b2

+
(1−β̂t)2α̂t+1σ2

J

b̂2
+ (γt−1 − γt)Bψ,

which proves (54).

B.2 A general key bound for Algorithm 1
Now, we are ready to prove one key result, Theorem B.1, for oracle complexity analysis of Algorithm 1.
To simplify our expressions, let us introduce the following notations in advance:

ωt := θt
LΦγt

and ΣT :=
∑T

t=0 ωt,

Θt :=
M2
FL

2
φγt

√
26b1b̂1

3
(
M4
FL

2
φγt

b̂1+M2
φγt

L2
F b1
)1/2 ,

Π0 :=

√
26b1b̂1

3
(
b̂1M4

FL
2
φγ0

+b1L2
FM

2
φγ0

)1/2

(
M2
FL

2
φγ0

σ2
F

b0
+

M2
φγ0

σ2
J

b̂0

)
,

Γt :=

√
26b1b̂1

3
(
b̂1M4

FL
2
φγt

+b1L2
FM

2
φγt

)1/2

(
M2
FL

2
φγt

σ2
F

b2
+

M2
φγt

σ2
J

b̂2

)
.

(56)
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Theorem B.1. Suppose that Assumptions 2.1 and 2.2 hold, and ωt, ΣT , Θt, Π0, and Γt are defined
by (56). Let {xt}Tt=0 be generated by Algorithm 1 using the following step-sizes:

θt :=
3LΦγt

[
b1b̂1(1− βt)

]1/2
√

26(M4
FL

2
φγt
b̂1 +M2

φγt
L2
F b1)1/2

and ηt :=
2

LΦγt
(3 + θt)

, (57)

where βt, β̂t ∈ (0, 1] are chosen such that βt = β̂t, 0 ≤ γt+1 ≤ γt, and

β2
t (1− βt)

Θ2
t

≤ 1− βt+1

Θ2
t+1

≤ 1− βt
Θ2
t

and βt > max

{
0, 1− 26

9L2
Φγt

(M4
FL

2
φγt

b1
+

L2
FM

2
φγt

b̂1

)}
. (58)

Let x̄T be randomly chosen between {x0, · · · , xT } such that Prob (x̄T = xt) = ωt
ΣT

, and η̄T be
corresponding to ηt of x̄T . Then, the following estimate holds:

E
[
‖Gη̄T (x̄T )‖2

]
≤ 16

ΣT

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γTBψ

)
+

8Π0

ΣT
√

1− β0
+

16

ΣT

T∑
t=0

Γt+1(1− βt)2√
1− βt+1

. (59)

The proof of Theorem B.1. First, the conditions in (53) can be simplified as follows:
LΦγt

θt + 2LΦγt
+
(M2

F β
2
t αt+1

b1
+

L2
F β̂t

2
α̂t+1

b̂1

)
θt ≤ 2

ηt
,

2M2
FL

2
φγt

(1 + L2
Φγt

η2
t )θt ≤ LΦγt

(αt − β2
t αt+1),

2M2
φγt

(1 + L2
Φγt

η2
t )θt ≤ LΦγt

(α̂t − β̂2
t α̂t+1).

(60)

Let us update ηt := 2
(3+θt)LΦγt

as (57). Since θt ∈ (0, 1], we have

1

2LΦγt

≤ ηt <
2

3LΦγt

and 1 ≤ 1 + L2
Φγt

η2
t <

13

9
.

Next, let us choose γt, βt, β̂t, αt, and α̂t such that

β̂t = βt ∈ (0, 1], α̂t =
M2
φγt

M2
FL

2
φγt

αt,
Mφγt+1

Lφγt+1

≤
Mφγt

Lφγt
, and 0 < αt ≤ αt+1 ≤

αt
βt
. (61)

Then, we have

αt − αt+1β
2
t ≥ αt(1− βt) > 0,

and α̂t − β̂2
t α̂t+1 =

M2
φγt

M2
FL

2
φγt

αt − β2
t

M2
φγt+1

M2
FL

2
φγt+1

αt+1 ≥
M2
φγt

M2
FL

2
φγt

(αt − β2
t αt+1)

≥
M2
φγt

M2
FL

2
φγt

(1− βt)αt = (1− βt)α̂t > 0.

By using the last two inequalities, we can show that the conditions in (60) hold, if we have

0 < θt ≤
9LΦγt

αt(1−βt)
26M2

FL
2
φγt

, 0 < θt ≤
9LΦγt

α̂t(1−βt)
26M2

φγt

,

and 0 < θt ≤ LΦγt

(
M2
Fαt
b1

+
L2
F α̂t

b̂1

)−1
.

(62)
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Therefore, the three conditions in (62) hold if we choose

αt(1− βt)
M2
FL

2
φγt

=
α̂t(1− βt)
M2
φγt

and

(
M2
F

b1
+

L2
FM

2
φγt

M2
FL

2
φγt
b̂1

)
αt =

26M2
FL

2
φγt

9αt(1− βt)
.

These conditions show that we can choose

αt := Θt√
1−βt

and α̂t :=
M2
φγt

Θt

M2
FL

2
φγt

√
1−βt

, where Θt :=
M2
FL

2
φγt

√
26b1b̂1

3
(
M4
FL

2
φγt

b̂1+M2
φγt

L2
F b1
)1/2 .

Clearly, this Θt is exactly given by (56). With this choice of αt and α̂t, we obtain

0 < θt ≤ θ̄t :=
9LΦγt

Θt

√
(1− βt)

26M2
FL

2
φγt

=
3LΦγt

√
b1b̂1(1− βt)

√
26(M4

FL
2
φγt
b̂1 +M2

φγt
L2
F b1)1/2

.

We then choose θt := θ̄t at the upper bound as in (57).
Now, to guarantee that 0 < θ̄t ≤ 1, we impose the following condition as in (58), i.e.:

βt > max

{
0, 1− 26

9L2
Φγt

(
M4
FL

2
φγt

b1
+

L2
FM

2
φγt

b̂1

)}
.

Due to the choice of αt, the condition αt ≤ αt+1 ≤ αt
βt

in (61) is equivalent to

β2
t (1− βt)

Θ2
t

≤ 1− βt+1

Θ2
t+1

≤ 1− βt
Θ2
t

,

which is the first condition of (58). Moreover, since Mφγt
= Mψ‖K‖ and Lφγt = ‖K‖2

µψ+γt
due to

Lemma A.1, the third condition of (61) reduces to γt+1 ≤ γt, which is one of the conditions in
Theorem B.1.

Next, under the choice of αt and α̂t, and ηt ≥ 1
2LΦγt

, (54) implies

θt
16LΦγt

E
[
‖Gηt(xt)‖2

]
≤ Vγt−1(xt)− Vγt(xt+1) + (γt−1 − γt)Bψ

+

√
26b1b̂1

3
(
b̂1M4

FL
2
φγt+1

+b1L2
FM

2
φγt+1

)1/2

(
M2
FL

2
φγt+1

σ2
F

b2
+

M2
φγt+1

σ2
J

b̂2

)
(1−βt)2

(1−βt+1)1/2 .
(63)

Note that since Ψγ0(x0) ≤ Ψ0(x0) due to Lemma A.1, and γ−1 = γ0 by convention, we have

Vγ0(x0) = E
[
Ψγ0(x0)

]
+ α0

2 E
[
‖F̃0 − F (x0)‖2

]
+ α̂0

2 E
[
‖J̃0 − F ′(x0)‖2

]
≤ E

[
Ψ0(x0)

]
+

√
26b1b̂1

6
(
b̂1M4

FL
2
φγ0

+b1L2
FM

2
φγ0

)1/2

(
M2
FL

2
φγ0

σ2
F

b0
+

M2
φγ0

σ2
J

b̂0

)
1

(1−β0)1/2 .
(64)

Moreover, by Lemma A.1(d), we have

VγT (xT+1) ≥ E
[
ΨγT (xT+1)

]
≥ E

[
Ψ0(xT+1)

]
− γTBψ ≥ Ψ?

0 − γTBψ. (65)

Let us define Γt and Π0 as (56), i.e.:
Γt :=

√
26b1b̂1

3
(
b̂1M4

FL
2
φγt

+b1L2
FM

2
φγt

)1/2

(
M2
FL

2
φγt

σ2
F

b2
+

M2
φγt

σ2
J

b̂2

)
,

Π0 :=

√
26b1b̂1

3
(
b̂1M4

FL
2
φγ0

+b1L2
FM

2
φγ0

)1/2

(
M2
FL

2
φγ0

σ2
F

b0
+

M2
φγ0

σ2
J

b̂0

)
.
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Then, summing up (63) from t := 0 to t := T , and using these expressions, (64), and (65), we get

T∑
t=0

θt
16LΦγt

E
[
‖Gηt(xt)‖2

]
≤ E

[
Ψ0(x0)−Ψ?

0

]
+ γTBψ +

T∑
t=0

Γt+1(1− βt)2

(1− βt+1)1/2
+

Π0

2(1− β0)1/2
.

Dividing this inequality by ΣT
16 , where ΣT :=

∑T
t=0 ωt ≡

∑T
t=0

θt
LΦγt

, we obtain

1

ΣT

T∑
t=0

ωtE
[
‖Gηt(xt)‖2

]
≤ 16

ΣT

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γTBψ

)
+

8Π0

ΣT (1− β0)1/2

+
16

ΣT

T∑
t=0

Γt+1(1− βt)2

(1− βt+1)1/2
.

Finally, due to the choice of x̄T and η̄T , we have 1
ΣT

∑T
t=0 ωtE

[
‖Gηt(xt)‖2

]
= E

[
‖Gη̄T (x̄T )‖2

]
. This

relation together with the above estimate prove (59).

B.3 The proof of Theorem 3.1: The smooth case with constant step-size
Now, we prove our first main result in the main text.

The proof of Theorem 3.1 in the main text. First, since µψ = 1 > 0, we can set γt := 0 for
all t ≥ 0. That means, we do not need to smooth φ0 in (2). Hence, from (56), Θt = Θ0 =

M2
FLφ0

√
26b1b̂1

3
(
M4
FL

2
φ0
b̂1+M2

φ0
L2
F b1
)1/2 and ωt

ΣT
= θt∑T

t=0 θt
, where LΦ0 is defined by (18).

Next, given a batch size b > 0, let us choose the mini-batch sizes b0 := c0b̂0 > 0, b̂1 = b̂2 := b > 0,
and b1 = b2 := c0b for some c0 > 0. We also choose a constant step-size θt := θ ∈ (0, 1] and a
constant weight βt := β ∈ (0, 1] for all t ≥ 0. We also recall P , Q, and LΦ0 defined by (18).

With this configuration, the first condition of (58) and 0 ≤ γt+1 ≤ γt are automatically satisfied,
while the second one becomes

β > max

{
0, 1− 26

9c0L2
Φ0
b

(
M4
F ‖K‖4 + c0‖K‖2L2

FM
2
ψ

)}
= max

{
0, 1− P 2

L2
Φ0
b

}
. (66)

Moreover, we also obtain from (56), (57), and (18) that

θt = θ =
3LΦ0

√
c0b(1−β)√

26(M4
F ‖K‖4+c0‖K‖2M2

ψL
2
F )1/2

(18)
=

LΦ0
[b(1−β)]1/2

P ,

Γt = Γ =

√
26(M2

F ‖K‖
4σ2
F+c0‖K‖2M2

ψσ
2
J)

3
√
c0b
(
M4
F ‖K‖4+c0‖K‖2L2

FM
2
ψ

)1/2

(18)
= Q

P
√
b
,

Π0 =

√
26b(M2

F ‖K‖
4σ2
F+c0‖K‖2M2

ψσ
2
J)

3
√
c0b̂0
(
M4
F ‖K‖4+c0‖K‖2L2

FM
2
ψ

)1/2

(18)
= Q

√
b

P b̂0
,

ΣT =
∑T

t=0
θ

LΦ0
= θ(T+1)

LΦ0
= (T+1)[b(1−β)]1/2

P .

Furthermore, with these expressions of Γt, Π0, and ΣT , (59) reduces to

E
[
‖Gη(x̄T )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2
E
[
Ψ0(x0)−Ψ?

0

]
+ 8Q

b̂0(T+1)(1−β)
+ 16Q(1−β)

b .
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Trading-off the term 1
b̂0(1−β)(T+1)

+ 2(1−β)
b over β ∈ (0, 1], we obtain β := 1− b1/2

[b̂0(T+1)]1/2
, which has

shown in (19). In this case, θt = θ =
LΦ0

[b(1−β)]1/2

P =
LΦ0

b3/4

P [b̂0(T+1)]1/4
as shown in (19).

Now, let us choose b̂0 := c2
1[b(T + 1)]1/3 for some c1 > 0. Then, the last inequality leads to

E
[
‖Gη(x̄T )‖2

]
≤ 16P

√
c1

[b(T+1)]2/3

[
Ψ0(x0)−Ψ?

0

]
+ 24Q

2c1[b(T+1)]2/3
.

Hence, if we define ∆0 as in (20), i.e.:

∆0 := 16P
√
c1

[
Ψ0(x0)−Ψ?

0

]
+

24Q

c1
,

then we obtain from the last inequality that (20) holds, i.e.:

E
[
‖Gη(x̄T )‖2

]
≤ ∆0

[b(T + 1)]2/3
.

Consequently, for a given tolerance ε > 0, to obtain E
[
‖Gη(x̄T )‖2

]
≤ ε2, we need at most T :=

⌊∆
3/2
0
bε3

⌋
iterations. In this case, the total number of function evaluations F(xt, ξ) is at most

TF := b0 + (T + 1)(2b1 + b2) = c0c
2
1[b(T + 1)]1/3 + 3c0(T + 1)b =

c0c
2
1∆

1/2
0

ε
+

3c0∆
3/2
0

ε3
.

Alternatively, the total number of Jacobian evaluations F′(xt, ξ) is at most

TJ := b̂0 + (T + 1)(2b̂1 + b̂2) = c2
1[b(T + 1)]1/3 + 3(T + 1)b =

c2
1∆

1/2
0

ε
+

3∆
3/2
0

ε3
.

Finally, since β := 1− b1/2

[b̂0(T+1)]1/2
, the condition (66) leads to b1/2

[b̂0(T+1)]1/2
< P 2

L2
Φ0
b
, which is equivalent

to b̂0(T+1)
b3

>
L4

Φ0
P 4 as shown in Theorem 3.1.

B.4 The proof of Theorem 3.2: The smooth case with diminishing step-size
The proof of Theorem 3.2 in the main text. Similar to the proof of Theorem 3.1, with µψ =

1 > 0, we set γt = 0. Hence, we obtain Θt = Θ0 =
M2
FLφ0

√
26b1b̂1

3
(
M4
FL

2
φ0
b̂1+M2

φ0
L2
F b1
)1/2 and ωt

ΣT
= θt∑T

t=0 θt
.

Next, given a mini-batch size b > 0, let us choose the mini-batch sizes b0 := c0b̂0, b̂1 = b̂2 := b,
and b1 = b2 := c0b > 0 for some c0 > 0. With these choices, the condition (58) becomes

β2
t (1− βt) ≤ 1− βt+1 ≤ 1− βt and βt > max

{
0, 1− 26

9c0L2
Φ0
b

(
c0M

4
FL

2
φ0

+ L2
FM

2
φ0

)}
. (67)

Moreover, from (56) and (57), we have

θt =
3LΦ0

√
c0b(1−βt)√

26(M4
F ‖K‖4+c0‖K‖2M2

ψL
2
F )1/2

(18)
=

LΦ0
[b(1−βt)]1/2

P ,

Γt = Γ =

√
26(M2

F ‖K‖
4σ2
F+c0‖K‖2M2

ψσ
2
J)

3
√
c0b
(
M4
F ‖K‖4+c0‖K‖2L2

FM
2
ψ

)1/2

(18)
= Q

P
√
b
,

Π0 =

√
26b(M2

F ‖K‖
4σ2
F+c0‖K‖2M2

ψσ
2
J)

3
√
c0b̂0
(
M4
F ‖K‖4+c0‖K‖2L2

FM
2
ψ

)1/2

(18)
= Q

√
b

P b̂0
,

ΣT =
∑T

t=0 ωt =
∑T

t=0
θt
LΦ0

=
√
b
P

∑T
t=0

√
1− βt.
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Furthermore, with these expressions of Γt, Π0, and ΣT , (59) reduces to

1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
≤ 16P√

b
∑T
t=0

√
1−βt

[
Ψ0(x0)−Ψ?

0

]
+ 8Q

b̂0
√

1−β0
∑T
t=0

√
1−βt

+ 16Q

b
∑T
t=0

√
1−βt

∑T
t=0

(1−βt)2

(1−βt+1)1/2 .
(68)

Let us choose βt := 1 − 1
(t+2)2/3 ∈ (0, 1) as in (21). Then, it is easy to check that β2

t (1 − βt) ≤
1− βt+1 ≤ 1− βt after a few elementary calculations.

Moreover, we have θt :=
LΦ0

√
b

P (t+2)1/3 as (21). In addition, one can easily show that
∑T

t=0

√
1− βt =

∑T
t=0

1
(t+2)1/3 ≥

∫ T+3
2

ds
s1/3

= 3
2 [(T + 3)2/3 − 22/3],∑T

t=0
(1−βt)2√

1−βt+1
=
∑T

t=0
(t+3)1/3

(t+2)4/3 ≤
∑T

t=0
1

(t+1) ≤ 1 + log(T + 1).

Here, we use the fact that
∫ t+1
t r(s)ds ≤ r(t) ≤

∫ t
t−1 r(s)ds for a nonnegative and monotonically

decreasing function r.
Substituting these estimates and

√
1− β0 = 1

21/3 into (68), we eventually obtain

1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
≤ 32P

3
√
b
[
(T+3)2/3−22/3

][Ψ0(x0)−Ψ?
0

]
+ 16Q

3
[
(T+3)2/3−22/3

] [21/3

b̂0
+ 2(1+log(T+1))

b

]
.

Combining this inequality and 1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
= E

[
‖Gη̄T (x̄T )‖2

]
, we have proved (22)

for T ≥ 0.

B.5 The proof of Theorem 3.3: The non-smooth case with constant step-size
The proof of Theorem 3.3 in the main text. Since µψ = 0, let us fix the smoothness parameter
γt = γ > 0 and the weights βt = β̂t = β ∈ (0, 1] for all t ≥ 0. By Lemma A.1, we have

Mφγ = Mψ‖K‖, Lφγ =
‖K‖2

γ
, and LΦγ = LFMψ‖K‖+

M2
F ‖K‖2

γ
.

Given batch sizes b > 0 and b̂0 > 0, for some c0 > 0, let us also choose the mini-batch sizes as

b̂1 = b̂2 := b, b1 = b2 :=
c0b

γ2
, and b0 :=

c0b̂0
γ2

.

Recall that P , Q, and LΦγ are defined by (18). In this case, the quantities in (56) become

Θt := Θ =
M2
FLφγ

√
26b1b̂1

3
(
M4
FL

2
φγ
b̂1+M2

φγ
L2
F b1
)1/2 =

√
26c0bM2

F ‖K‖
2

3γ(M4
F ‖K‖4+c0‖K‖2M2

ψL
2
F )1/2

(18)
=

M2
F ‖K‖

2b1/2

γP ,

Γt := Γ =

√
26b1b̂1

3
(
b̂1M4

FL
2
φγ

+b1L2
FM

2
φγ

)1/2

(
M2
FL

2
φγ
σ2
F

b2
+

M2
φγ
σ2
J

b̂2

)
(18)
= Q

P
√
b
,

Π0 :=

√
26b1b̂1

3
(
b̂1M4

FL
2
φγ

+b1L2
FM

2
φγ

)1/2

(
M2
FL

2
φγ
σ2
F

b0
+

M2
φγ
σ2
J

b̂0

)
(18)
= Q

√
b

P b̂0
.
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Furthermore, the step-sizes in (57) also become
θt := θ =

3LΦγ [b1b̂1(1−β)]1/2
√

26(M4
FL

2
φγ
b̂1+M2

φγ
L2
F b1)1/2

(18)
=

LΦγ [b(1−β)]1/2

P ,

ηt := η = 2
LΦγ (3+θ) .

Therefore, we have ωt := θ
LΦγ

and

ΣT :=
∑T

t=0 ωt = θ(T+1)
LΦγ

= (T+1)[b(1−β)]1/2

P .

Substituting these expressions into (59), we can further derive

E
[
‖Gη(x̄T )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γBψ

)
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

(69)

From the last term of (69), we can choose β as β = 1− b1/2

[b̂0(T+1)]1/2
. In this case, (69) reduces to

E
[
‖Gη(x̄T )‖2

]
≤ 16P b̂

1/4
0

[b(T + 1)]3/4

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γBψ

)
+

24Q

[bb̂0(T + 1)]1/2
. (70)

Clearly, from (70), to achieve the best convergence rate, we need to choose b̂0 := c2
1[b(T + 1)]1/3.

Then, since we choose 0 < γ ≤ 1 and E
[
Ψ0(x0)

]
= Ψ0(x0), (70) can be overestimated as

E
[
‖Gη(x̄T )‖2

]
≤ ∆̂0

[b(T + 1)]2/3
,

which proves (24), where ∆̂0 is defined by (24), i.e.:

∆̂0 := 16P
√
c1

(
Ψ0(x0)−Ψ?

0 +Bψ
)

+ 24Q
c1
.

Now, for any tolerance ε > 0, to obtain E
[
‖Gη(x̄T )‖2

]
≤ ε2, we require at most T :=

⌊
∆̂

3/2
0
bε3

⌋
iterations. In this case, the total number of function evaluations TF is at most

TF := b0 + (T + 1)(2b1 + b2) = c0
γ2 c

2
1[b(T + 1)]1/3 + 3c0

γ2 [b(T + 1)] =
c0c21∆̂

1/2
0

γ2ε
+

3c0∆̂
3/2
0

γ2ε3
.

Alternatively, the total number of Jacobian evaluations TJ is at most

TJ := b̂0 + (T + 1)(2b̂1 + b̂2) = c1[b(T + 1)]1/3 + 3b(T + 1) =
c21∆̂

1/2
0
ε +

3∆̂
3/2
0
ε3

.

If we choose γ := c2ε for some c2 > 0, then

TF :=
c0c

2
1∆̂

1/2
0

c2
2ε

3
+

3c0∆̂
3/2
0

c2
2ε

5
= O

(
∆̂

3/2
0

ε5

)
,

which proves the last statement.
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B.6 The proof of Theorem 3.4: The nonsmooth case with diminishing step-size
The proof of Theorem 3.4 in the main text. Using the fact that µψ = 0, from Lemma A.1,
we have

Mφγt
= Mψ‖K‖, Lφγt =

‖K‖2

γt
, and LΦγt

= LFMψ‖K‖+
M2
F ‖K‖2

γt
,

where γt > 0, which will be appropriately updated. Moreover, let us choose b0 := c0b̂0
γ2

0
, b̂1 = b̂2 := b,

and bt1 = bt2 := c0b
γ2
t
> 0, for some b > 0 and c0 > 0. We also recall P , Q, and LΦγ from (18).

With these expressions, the quantities defined by (56) and (57) become

θt :=
3LΦγt

[bt1b̂1(1−βt)]1/2√
26(M4

FL
2
φγt

b̂1+M2
φγt

L2
F b
t
1)1/2

(18)
=

LΦγt
[b(1−βt)]1/2

P ,

Θt :=
M2
FLφγt

√
26bt1b̂1

3
(
M4
FL

2
φγt

b̂1+M2
φγt

L2
F b
t
1

)1/2

(18)
=

M2
F ‖K‖

2b1/2

γtP
,

Γt :=

√
26bt1b̂1

3
(
b̂1M4

FL
2
φγt

+bt1L
2
FM

2
φγt

)1/2

(
M2
FL

2
φγt

σ2
F

bt2
+

M2
φγt

σ2
J

b̂2

)
(18)
= Q

P
√
b
,

Π0 :=

√
26b01b̂1

3
(
b̂1M4

FL
2
φγ0

+b01L
2
FM

2
φγ0

)1/2

(
M2
FL

2
φγ0

σ2
F

b0
+

M2
φγ0

σ2
J

b̂0

)
(18)
= Q

√
b

P b̂0
.

Let us choose βt := 1− 1
(t+2)2/3 ∈ (0, 1) and γt := 1

(t+2)1/3 as in (25). Then, it is easy to check that

β2
t (1− βt)

Θ2
t

≤ 1− βt+1

Θ2
t+1

≤ 1− βt
Θ2
t

.

In addition, as before, one can show that
∑T

t=0

√
1− βt =

∑T
t=0

1
(t+2)1/3 ≥

∫ T+3
2

ds
s1/3

= 3
2 [(T + 3)2/3 − 22/3],∑T

t=0
(1−βt)2√

1−βt+1
=
∑T

t=0
(t+3)1/3

(t+2)4/3 ≤
∑T

t=0
1

(t+1) ≤ 1 + log(T + 1).

Using these estimates, we can easily prove ΣT :=
∑T

t=0 ωt =
√
b
P

∑T
t=0

√
1− βt ≥ 3

√
b[(T+3)2/3−22/3]

2P ,∑T
t=0

Γt+1(1−βt)2√
1−βt+1

≤ Q[1+log(T+1)]

P
√
b

Substituting these inequalities into (59) and using
√

1− β0 = 1
21/3 , we further upper bound

E
[
‖Gη(x̄T )‖2

]
≤ 32P

3
√
b[(T+3)2/3−22/3]

(
Ψ0(x0)−Ψ?

0 +
Bψ

(T+2)1/3

)
+ 16Q

3[(T+3)2/3−22/3]

(
21/3

b̂0
+ 2(1+log(T+1))

b

)
,

which proves (26).
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C The proof of technical results in Section 4: Restarting variant
The proof of Theorem 4.1: Restarting variant. Since γ := 0, b̂1 = b̂2 := b and b1 = b2 := c0b,
from (63), using the superscript “(s)” for the outer iteration s, and P and Q from (18), we have

θ

16LΦ0

E
[
‖Gη(x(s)

t )‖2
]
≤ V0(x

(s)
t )− V0(x

(s)
t+1) +

Q(1− β)3/2

Pb1/2
,

Summing up this inequality from t := 0 to t := T , and using the fact that x̃s−1 := x
(s)
0 and

x̃s := x
(s)
T+1, we get

θ

16LΦ0

T∑
t=0

E
[
‖Gη(x(s)

t )‖2
]
≤ V0(x̃s−1)− V0(x̃s) +

Q(T + 1)(1− β)3/2

Pb1/2
.

Using the choice b0 := c0b̂0, similar to the proof of (64), we can show that

V0(x̃s−1) = E
[
Ψ0(x̃s−1)

]
+ α

2E
[
‖F̃ (s)

0 − F (x̃s−1)‖2
]

+ α̂
2E
[
‖J̃ (s)

0 − F ′(x̃s−1)‖2
]

≤ E
[
Ψ0(x̃s−1)

]
+ Qb1/2

2P b̂0
√

1−β
.

Using this estimate and and V0(x̃s) ≥ Ψ0(x̃s) into above inequality, we can further derive

1
(T+1)

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]
≤ 16LΦ0

θ(T+1)

[
Ψ0(x̃s−1)−Ψ0(x̃s)

]
+

16QLΦ0
(1−β)3/2

Pθb1/2

+
8QLΦ0

b1/2

Pθ(T+1)b̂0
√

1−β
.

Due to the choice of b1 and b̂1, it follows from (19) that β := 1− b1/2

[b̂0(T+1)]1/2
and θ :=

LΦ0
b3/4

P [b̂0(T+1)]1/4
.

Therefore, the last inequality becomes

1

(T + 1)

T∑
t=0

E
[
‖Gη(x(s)

t )‖2
]
≤ 16P b̂

1/4
0

[b(T + 1)]3/4
[
Ψ0(x̃s−1)−Ψ0(x̃s)

]
+

24Q

[b̂0b(T + 1)]1/2
.

Summing up this inequality from s := 1 to s := S and multiplying the result by 1
S , we get

1

S(T + 1)

S∑
s=1

T∑
t=0

E
[
‖Gη(x(s)

t )‖2
]
≤ 16P b̂

1/4
0

S[b(T + 1)]3/4
[
Ψ0(x̃0)−Ψ0(x̃S)

]
+

24Q

[b̂0b(T + 1)]1/2
.

Substituting Ψ0(x̃S) ≥ Ψ?
0 into the last inequality, and using the fact that E

[
‖Gη(x̄N )‖2

]
=

1
S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]
, we obtain

E
[
‖Gη(x̄N )‖2

]
= 1

S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]

≤ 16P b̂
1/4
0

S[b(T+1)]3/4

[
Ψ0(x̃0)−Ψ?

0

]
+ 24Q

[b̂0b(T+1)]1/2
,

which is exactly (30).
Now, for a given tolerance ε > 0, to obtain E

[
‖Gη(x̄K)‖2

]
≤ ε2, we need to impose

16P b̂
1/4
0

S[b(T + 1)]3/4
=
ε2

2
and

24Q

[b̂0b(T + 1)]1/2
=
ε2

2
.
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This condition leads to N = S(T + 1) = 32P [b̂0(T+1)]1/4

b3/4ε2
and b̂0b(T + 1) = 482Q2

ε4
. Hence, the total

number of iterations is N := S(T + 1) = 32P [b̂0b(T+1)]1/4

bε2
= 128P

√
3Q

bε3
.

Clearly, to optimize the oracle complexity, we need to choose T + 1 := 48Q
bε2

, then b̂0 := 48Q
ε2

and
S := 8P√

3Qε
. In this case, the total number of function evaluations is at most

TF := b0S + 3bS(T + 1) =
48Q

ε2
· 8P√

3Qε
+ 3bN =

16P
√

3Q

ε3
+

384P
√

3Q

ε3
=

400P
√

3Q

ε3
.

This is also the total number of Jacobian evaluations TJ .

The proof of Theorem 4.2. Let us first choose b̂1 = b̂2 := b, b1 = b2 := c0b
γ2 , and b0 := c0b̂0

γ2 . With
the same line as the proof of (69), we can show that

1
(T+1)

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]
≤ 16P

(T+1)[b(1−β)]1/2

[
E
[
Ψ0(x

(s)
0 )
]
− E

[
Ψ0(x

(s)
T+1)

]
+ γBψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Here, we use the superscript “(s)” to present the outer iteration s. Moreover, instead of Ψ∗0, we keep
Ψ0(x

(s)
T+1) from (65). Now, using the fact that x̃s−1 = x

(s)
0 and x̃s = x

(s)
T+1, we can further derive

from the above inequality that

1
(T+1)

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]
≤ 16P

(T+1)[b(1−β)]1/2

[
E
[
Ψ0(x̃s−1)

]
− E

[
Ψ0(x̃s)

]
+ γBψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Summing up this inequality from s := 1 to s := S, and multiplying the result by 1
S , and

then using 0 < γ ≤ 1, E
[
Ψ0(x̃0)

]
= Ψ0(x̃0), Ψ0(x̃S) ≥ Ψ?

0 > −∞, and E
[
‖Gη(x̄N )‖2

]
=

1
S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]
, we arrive at

E
[
‖Gη(x̄N )‖2

]
= 1

(T+1)S

∑S
s=1

∑T
t=0 E

[
‖Gη(x(s)

t )‖2
]

≤ 16P
S(T+1)[b(1−β)]1/2

[
Ψ0(x̃0)−Ψ? +Bψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Next, let us choose β := 1− b
(T+1) and b̂0 := (T + 1). Then, the above estimate becomes

E
[
‖Gη(x̄N )‖2

]
≤ 16P

bS(T + 1)1/2

[
Ψ0(x̃0)−Ψ? +Bψ

]
+

24Q

T + 1
.

Let us define R0 and R̂0 as in (32), i.e.:

R0 := 16P
[
Ψ0(x̃0)−Ψ? +Bψ

]
and R̂0 := 24Q.

In this case, for a given tolerance ε > 0, to achieve E
[
‖Gη(x̄N )‖2

]
≤ ε2, we can impose

R0

bS(T + 1)1/2
=
ε2

2
and

R̂0

(T + 1)
=
ε2

2
.
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These conditions lead to T + 1 = 2R̂0
ε2

and S := 2R0

b(T+1)1/2ε2
=
√

2R0

bε
√
R̂0

. Let us also choose γ := ε√
2R̂0

.

Then, we also obtain the parameters as in (31), i.e.: b1 = b2 := 2c0bR̂0
ε2

, b̂1 = b̂2 := b, b0 :=
4c0R̂2

0
ε4

, b̂0 := 2R̂0
ε2
,

γ := ε√
2R̂0

, and β := 1− bε2

2R̂0
.

The total number TF of function evaluations F(x
(s)
t , ξt) is at most

TF := S[b0 + (T + 1)(2b1 + b2)] =

√
2R0

bε
√
R̂0

[4c0R̂
2
0

ε4
+

2R̂0

ε2

6c0bR̂0

ε2

]
=

4
√

2c0R0R̂
3/2
0

ε5

(
1

b
+ 3

)
.

The total number TJ of Jacobian evaluations F′(x(s)
t , ξt) is at most

TJ := S[b̂0 + (T + 1)(2b̂1 + b̂2)] =

√
2R0

bε
√
R̂0

[2R̂0

ε2
+

6bR̂0

ε2

]
=

2
√

2R0R̂
1/2
0

bε3
+

6
√

2R0R̂
1/2
0

ε3
.

These prove the last statement of Theorem 4.2.

D Experiment setup and additional experiments
This appendix provides the details of configuration for our experiments in Section 5, and presents
more numerical experiments to support our algorithms and theoretical results. As mentioned in the
main text, all the algorithms used in this paper have been implemented in Python 3.6.3., running on
a Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

Let us provide more details of our experiment configuration. We shorten the name of our
algorithm, either Algorithm 1 or Algorithm 2, by Hybrid Stochastic Compositional Gradient, and
abbreviate it by HSCG for both cases. We have implemented CIVR in [38] and ASC-PG in [32] to
compare the smooth case of φ0. For the nonsmooth case of φ0, we have implemented two other
algorithms, SCG in [31], and Prox-Linear in [28, 39]. While SCG only works for smooth φ0, we
have smoothed it as in our method, and used the estimator as well as the algorithm in [31], but
update the smoothness parameter as in our method. We also omit comparison in terms of time
since Prox-Linear becomes slower if p is large due to its expensive subproblem for evaluating the
prox-linear operator. We only compare these algorithms in terms of epoch (i.e., the number of data
passes).

Since both CIVR and ASC-PG are double loop, to be fair, we compare them with our restarting
variant, Algorithm 2. To compare with SCG and Prox-Linear, we simply use Algorithm 1 since
SCG has single loop. Since Prox-Linear requires to solve a nonsmooth convex subproblem, we
have implemented a first-order primal-dual method in [5] to solve it. This algorithm has shown its
efficiency in our test.

Note that the batch size b is determined as b :=
⌊
N
nb

⌋
, where N is the number of data points, and

nb is the number of blocks. In our experiments, we have varied the number of blocks nb to observe
the performance of these algorithms. Since we want to obtain the best performance, instead of using
their theoretical step-sizes, we have carefully tuned the step-size η of three algorithms in a given set
of candidates {1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}. For our algorithms, we have another step-size θt,
which is also flexibly chosen from {0.1, 0.5, 1}. For the nonsmooth case, we update our smoothness
parameter as γt := 1

2(t+1)1/3 , which is proportional to the value in Theorems 3.2 and 3.4.
To further compare our algorithms with their competitors, we provide in the following subsections

additional experiments for the two problems in the main text.
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D.1 Risk-averse portfolio optimization: Additional experiments
Figure 1 in the main text has shown the performance of three algorithms on three different datasets
using 8 blocks, i.e., nb = 8. Unfortunately, since ASC-PG does not work well when the number of
blocks is larger than 8, we skip showing it in our comparison. To obverse more performance of HSCG
and CIVR, we have increased the number of blocks nb from 8 to 32, 64, and 128. The convergence of
the two algorithms is shown in Figure 3. As we can observe, HSCG remains slightly better than CIVR
if nb = 32 or 64. When nb = 128, CIVR improves its performance and is slightly better than HSCG.
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Figure 3: Comparison of two algorithms for solving (33) on larger blocks.

D.2 Stochastic minimax problem: Additional experiments
For the stochastic minimax problem (34), Figure 2 has shown the progress of the objective values
of three algorithms on three different datasets. Figure 4 simultaneously shows both the objective
values and the gradient mapping norms of this experiment.

Now, let us keep the same configuration as in Figure 2, but run one more case, where the number
of blocks is increased to nb = 64. The results are shown in Figure 5.

We again see that HSCG still highly outperforms the other two methods: SCG and Prox-Linear
on rcv1. For url, HSCG is still slightly better than Prox-Linear as we have observed in Figure 2.
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Figure 4: Comparison of three algorithms for solving (34) on 3 different datasets in Figure 2 with
both objective values and gradient mapping norms.

However, for covtype, again, Prox-Linear shows a better performance than the other two com-
petitors. Note that since p = 54 in this dataset, we can solve the subproblem in Prox-Linear up
to a high accuracy without incurring too much computational cost. Therefore, the inexactness of
evaluating the prox-linear operator does not really affect the performance in this example.
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Figure 5: Comparison of three algorithms for solving (34) on 64 blocks.

Finally, we test three algorithms: HSCG, SCG, and Prox-Linear on other three datasets: w8a,
phishing, and mushrooms from LIBSVM [6]. We use the same number of blocks nb = 32, and
the results are reported in Figure 6. Figure 6 shows that HSCG highly outperforms both SCG and
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Prox-Linear on w8a and phishing. However, Prox-Linear becomes better than the other two on
the mushrooms dataset.

0 50 100 150 200

Number of Epochs

0.2

0.4

0.6

0.8

1

O
b
je

c
ti
v
e
 V

a
lu

e

w8a: N = 49749, p = 300 (32 blocks)

0 50 100 150 200

Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b
je

c
ti
v
e
 V

a
lu

e

phishing: N = 6365, p = 68 (32 blocks)

0 50 100 150 200

Number of Epochs

10-3

10-2

10-1

100

O
b
je

c
ti
v
e
 V

a
lu

e

mushrooms: N = 8124, p = 112 (32 blocks)

0 50 100 150 200

Number of Epochs

10-4

10-3

10-2

10-1

w8a: N = 49749, p = 300 (32 blocks)

0 50 100 150 200

Number of Epochs

10-5

10-4

10-3

10-2

phishing: N = 6365, p = 68 (32 blocks)

0 50 100 150 200

Number of Epochs

10-5

100

mushrooms: N = 8124, p = 112 (32 blocks)

Figure 6: Comparison of three algorithms for solving (34) on three more different datasets.
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