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Abstract

We develop a novel variance-reduced algorithm to solve a stochastic nonconvex-concave
minimax problem which has various applications in different fields. This problem has several com-
putational challenges due to its nonsmoothness, nonconvexity, nonlinearity, and non-separability
of the objective functions. Our approach relies on a novel combination of recent ideas, including
smoothing and hybrid stochastic variance-reduced techniques. Our algorithm and its variants can
achieve O(T*Q/ 3)-convergence rate in T, and the best-known oracle complexity under standard
assumptions. They have several computational advantages compared to existing methods. They
can also work with both single sample or mini-batch on derivative estimators, with constant or
diminishing step-sizes. We demonstrate the benefits of our algorithms over existing methods
through two numerical examples.

1 Introduction

We study the following stochastic nonconvex-concave saddle-point problem, which covers various
practical problems in different fields, see, e.g., [4, 9] [11]:
i U(z,y) =R Ee|(Ky,F(z, — , 1
min max {¥(z,y) := R(z) + E¢[(Ky, F(,0)] —¥(1)} (1)
where F : RP x ) — R? is a stochastic vector function defined on a probability space (2, P), K € R?*"
is a given matrix, (-,-) is an inner product, and ¢ : R” — RU {400} and R : RP — R U {400} are
proper, closed, and convex functions [3]. Problem is a special case of the nonconvex-concave
minimax problem, where our bifunction H(z,y) = E¢ [(Ky, F(z, €))] is linear in y.
Note that can be reformulated into a general stochastic compositional non-convex problem:

min { Wo(x) = do(F(x)) + R(x) = o (B¢ [F(x,€)]) + R(z) }, 2)

z€RP

where ¢q is a convex, but possibly nonsmooth function, defined as

do(u) = max { (K Tu.y) = ¥(y) } = v* (K Tw), 3)

yEeR™



with ¢* being the Fenchel conjugate of ¥ [3]. Note that problem is completely different
from existing models such as [7, 8], where the expectation is inside the outer function ¢y, i.e.,
b0 (Eg [F(w, & )]) We refer to this setting as a “non-separable" model. The template also covers
penalized formulations of a stochastic constrained optimization problem.

Challenges. Developing numerical methods for solving or faces several challenges. First, it
is often nonconvex, i.e., F' is not affine. Many recent papers consider special cases of when ¥y in
is convex by imposing restrictive conditions, which are unfortunately not realistic in applications.
Second, the max-form ¢q in is often non-smooth if v is not strongly convex. This prevents the use
of gradient-based methods. Third, since the expectation is inside ¢q, it is very challenging to form
an unbiased estimate for [sub|gradients of ®(, making classical stochastic gradient-based methods
inapplicable. Finally, prox-linear operator-based methods as in [7, [, 28 [39] require large mini-batch
evaluations of both function value F and its Jacobian F’, see |28 [37, [39], instead of single sample or
small mini-batch, making them less flexible and more expensive than gradient-based methods.

Related work. Problem has recently attracted considerable attention due to key applications,
e.g., in game theory, robust optimization, and generative adversarial nets (GANs) [4] [0, [11]. Various
first-order methods have been developed to solve during the past decades for both convex-
concave models , e.g., [3, 13, 19, B0] and nonconvex-concave settings [16], 24]. Some recent works
consider a nonnonvex-nonconcave formulation, e.g., [23, 34]. However, they still rely on additional
assumptions to guarantee that the maximization problem in (3]) can globally be solved. One well-
known assumption is the Polyak-Lojasiewicz (PL) condition, which is rather strong and often used
to guarantee linear convergence. A majority of these works focus on deterministic models, while
some methods have been extended to stochastic settings, e.g., [16, 34]. Although is a special
case of a general model in [I6] [34], it almost covers all examples in [I6] 34]. Compared to these, our
algorithm is rather simple with a single loop, and our oracle complexity is significantly improved
over the ones in [16] 34].

Alternatively, the compositional reformulation has been broadly studied in the literature
under both deterministic and stochastic settings, see, e.g., |7, 8, 14, 21, 27, B31]. If ¢ = 1 and
¢o(u) = u, then reduces to the standard stochastic optimization model studied e.g., in [10, 25].
In the deterministic setting, one common method to solve is the prox-linear-type method, which
is also known as a Gauss-Newton method [14] 21]. This method has been studied in several papers,
including [7, 8, [14], 21} 27]. However, the prox-linear operator often does not have a closed form
expression, and its evaluation may require solving a general nonsmooth strongly convex subproblem.

In the stochastic setting as , [311 132] proposed stochastic compositional gradient methods to
solve more general forms than , but they required a set of stronger assumptions than Assump-
tions below, including the smoothness of ¢g. Recent related works include [15, 17, 33] 35 36],
which also rely on similar ideas. For instance, [16] proposed a double loop subgradient-based method
with O (5*6) oracle complexity. Another subgradient-based method was recently proposed in [34]
based on a two-side PL condition. Stochastic methods exploiting prox-linear operators have also
been recently proposed in [28] [39], which are essentially extensions of existing deterministic methods
to . Together with algorithms, convergence guarantees, stochastic oracle complexity bounds have
also been estimated. For instance, [31] obtained O (5_8) oracle complexity for , while it was
improved to O (%) in [32]. Recent works [37, 138] further improved the complexity to O (¢7?).
These methods require the smoothness of both ¢¢ and F', use large batch sizes, and need a double
loop scheme. In contrast, our method has single loop, can work with either single sample
or mini-batch, and allows both constant or diminishing step-sizes. For nonsmooth ¢,
under the same assumptions as [28, 39], our methods achieve O (5*3) Jacobian and O (5*5) function
evaluation complexity as in those papers. However, our method is gradient-based, which only uses



proximal operator of ¢ and R instead of a complex prox-linear operator as in 28], 39]. Moreover, it
can work with both single sample and mini-batch for Jacobian F/ compared to a large batch size as
in 28] 39).

Our contribution. Our main contribution in this paper can be summarized as follows:

(a) We develop a new single-loop hybrid variance-reduced SGD algorithm to solve under As-
sumptions and below. Under the strong convexity of ¢, our algorithm has O ((bT )_2/ 3)
convergence rate to approximate a KKT (Karush-Kuhn-Tucker) point of , where b is the
batch size and T is the iteration counter. We also estimate its O (5*3)—oracle complexity to
obtain an e-KKT point, matching the best-known one as, e.g., in |37, [38]. Our complexity
bound holds for a wide range of b as opposed to a specific choice in [37, [38].

(b) When % is non-strongly convex, we combine our approach with a smoothing technique to
develop a gradient-based variant, that can achieve the best-known O (5*3) Jacobian and
O (5_5) function evaluations of F for finding an e-KKT point of . Moreover, our algorithm
does not require prox-linear operators and large batches for Jacobian as in [28] [39].

(c) We also propose a simple restarting technique without sacrificing convergence guarantees to
accelerate the practical performance of both cases (a) and (b).

Our methods exploit a recent biased hybrid estimators introduced in [29] as opposed to SARAH
ones in [28] 37, [39]. This allows us to simplify our algorithm with a single loop and without large
batches at each iteration compared to [37]. As indicated in [2], our O (¢73) oracle complexity
is optimal under the considered assumptions. If ¢ is non-strongly convex (i.e. ¢ in (2)) can be
nonsmooth), then our algorithm is fundamentally different from the ones in [28] [39] as it does not
use prox-linear operator. Note that evaluating a prox-linear operator requires to solve a general
strongly convex but possible nonsmooth subproblem. In addition, they only work with large batch
sizes of both F and F'.

Content. The rest of this paper is organized as follows. Section [2] states our assumptions and
recalls some mathematical tools. Section |3 develops a new algorithm and analyzes its convergence.
Section [5] provides two numerical examples to compare our methods. All technical details and proofs
are deferred to the appendices.

2 Basic assumptions, KKT points and smoothing technique

Notation. We work with finite-dimensional space RP equipped with standard inner product (-, -)
and Euclidean norm | - ||. For a function ¢ : RP — R U {+o0}, dom(¢) denotes its domain. If ¢
is convex, then prox, denotes its proximal operator, d¢ denotes its subdifferential, and V¢ is its
[sub|gradient, see, e.g., [3]. ¢ is pe-strongly convex with a strongly convex parameter s > 0 if
¢(-) — 52| - ||* remains convex. For a smooth vector function F : R? — R?, F’ denotes its Jacobian.
We use dist (z, X') := infyex ||z — y|| to denote the Euclidean distance from x to a convex set X'

2.1 Model assumptions
Let F(z) := E¢[F(z,€)] denote the expectation function of F and dom(¥y) denote the domain of
Uy. Throughout this paper, we always assume that

W= inf {Wo(a) i= do(F(2)) + R(2)} > —o0

in and R is proper, closed, and convex without recalling them in the sequel. Our goal is to
develop stochastic gradient-based algorithms to solve (|1)) relying on the following assumptions:

Assumption 2.1. The function F in problem or satisfies the following assumptions:



(a) Smoothness: F(-,-) is Lp-average smooth with Lp € (0, +00), i.e.:
2
Ee[|[F(5,€) — 'y, ©)[2] < L3 o — yl?, Vay € dom(Ty). @)
(b) Bounded variance: There exists two constants o, 07 € (0,400) such that
Ee[ |F(z, &) — F(x)||2] <o% and Ee[ HF'(x,g) - F’(ﬂ:)”2] <02, Va € dom(¥y).
(c) Lipschitz continuity: F(-) is Mp-average Lipschitz continuous with Mg € (0, 4+00), i.e.:
2
Ee[||F'(z, )] < ME, Va € dom(¥y). (5)

Note that Assumptions are standard in stochastic nonconvex optimization, see [28, 37, 38|, [39].
If dom(R) is bounded, then dom(Wy) is bounded, and this assumption automatically holds.
For ¢, we only require the following assumption, which is mild and holds for many applications.

Assumption 2.2. The function ¥ in is proper, closed, and convex. Moreover, dom(?)) is
bounded by My, € (0,+00), i.e.: sup{||y|| : y € dom(v)} < M.

An important special case of ¢ is the indicator of convex and bounded sets. Hitherto, we do
not require ¢g and R in to be smooth or strongly convex. They can be nonsmooth so that
can also cover constrained problems. Note that the boundedness of dom(v) is equivalent to the
Lipschitz continuity of ¢g (Lemma . Simple examples of ¢ include norms and gauge functions.

2.2 KKT points and approximate KKT points
Since is nonconvex-concave, a pair (z*,y*) is said to be a KKT point of if

0 Fl(z*)TKy* + OR(z*)  and  0e K'F(z*) — oy(y). (6)
From (), we have y* € 0¢*(K " F(2*)). Substituting this y* into the first expression, we get
0 € F'(z*) T 0¢o(F(z*)) + OR(z*). (7)

Here, we have used K " 0v* (K "u) = O¢o(u), where ¢q is given by This inclusion shows that x*
is a stationary point of . In the convex-concave case, under mild assumptions, a KKT point is
also a saddle-point of . In particular, if is convex, then z* is also its global optimum of .
However, in practice, we can only find an approximation (Zf, g;) of a KKT point (z*,y*) for (I).
Definition 2.1. Given any tolerance € > 0, (Z§, §g) is called an e-KKT point of if
where &(z,y) :=dist (0, F'(z) " Ky + OR(z)) + dist (0, K " F(z) — 99 (y)) -

Here, the expectation is taken overall the randomness from both model and the algorithm.
Clearly, if E[S(fc("j, gjg)] = 0, then (Z{,7;) is a KKT point of as characterized by @



2.3 Smoothing techniques
Under Assumption ¢¢ defined by can be nonsmooth. Hence, we can smooth ¢q as follows:

¢ (u) := max {{u, Ky) — ¢ (y) —0(y)}, (9)

yeR

where b : dom(¢) — R4 is a continuously differentiable and 1-strongly convex function such that
min, b(y) = 0, and v > 0 is a smoothness parameter. For example, we can choose b(y) := ||y — 9>
for a fixed g or b(y) := log(n) + >_7_, y; log(y;) defined on a standard simplex A,, [20].

Let yv( u) be an optimal solution of the maximization problem in @ which always exists
and is unique. In particular, if b(y) := 2||y —9||?, then Y5 (u) := proxy, (y v KT ) Under
Assumption ¢~ possesses some useful properties as stated in Lemma (Appendix [A.1]).

Given ¢, defined by @D, we consider the following functions:

Py (z) := ¢y (F(2)) = ¢y (E¢[F(2,8)]) and ¥, (z) := Py(z) + R(z). (10)
In this case, under Assumptions and 2.2 ®, is continuously differentiable, and
Vo, (2) = F(2) Voo (F(x) = F'(x) Kyi(F(x)). (11)
Smoothness. Moreover, ®,(-) is Lg,-smooth with Le., := Mg Ly + M7 Ly (sce [38]), i.e

VO, (z) = VO, (2)|| < Lg, ||z — Z||, Vz,Z € dom(¥y), (12)

where My := My||K| and Ly := Eﬂu given in Lemma |A.1

Gradient mapping. Let us recall the following gradient mapping of W, (-) given in (|10)):
Gn(x) := 5 L(z— prox, (x — V&, (z))), for any n > 0. (13)

This mapping will be used to characterize approximate KKT points of in Definition

3 The proposed algorithm and its convergence analysis

First, we introduce a stochastic estimator for V®,. Then, we develop our main algorithm and
analyze its convergence and oracle complexity. Finally, we show how to construct an e-KKT point of

(-

3.1 Stochastic estimators and the algorithm
Since F' is the expectation of a stochastic function F, we exploit the hybrid stochastic estimators
for F' and its Jacobian F’ proposed in [29]. More precisely, given a sequence {z} generated by a
stochastic algorithm, these hybrid stochastic estimators F; and J; are defined as follows:

- - B 1—Be

Fy = BB+ 522 S e [Fla, &) = Fla1,6)] + S S e Fla, ) ”
~ A ~ ) _ ~ ~ 1_ ) _ ~
Jt = ﬂt_lc]t—l + ’82711 ZéiEBtl [F’(xt,gi) — F’(xt_l,&) =+ % Z@EB? F/(xt, Q),

where 8,1, th € [0, 1] are given weights, and the initial estimators Fy and J are defined as
Fo:= 5o Yoeiepo Flxo, &)  and Jo = é 2¢,ep0 F (20, &i)- (15)

Here, B°, BY, B}, Bt, B?, and Bt are mini-batches of sizes by, bo, b1, bl, by, and bg, respectively. We
also require that B} is independent of B2, and B} is independent of B2, but not between the others.



For F; and J; defined by , we introduce a stochastic estimator for the gradient V&, (z;) =
F'(24) "V (F(zt)) of ®4() in at z; as follows:

v = J Voo (F) = J Ky (F). (16)

To evaluate v, we need to solve a strongly convex problem @ to find yv(]:}) which often cheaper

than prox-linear operators. Moreover, due to and (| ., evaluating vy does not require the full

matrix Jo, but a matrix-vector product Jo Ky ( 0), which is often cheaper than evaluating Jo.
Using the new estimator v; of V&, () in , we propose Algorithm (1| to solve .

Algorithm 1 (Smoothing Hybrid Variance-Reduced SGD Algorithm for solving )

Inputs: An arbitrarily initial point zg € dom(¥y).
Input By, Bo € (0,1), v > 0, no > 0, and 90 E (0,1] (specified later).
Initialization: Generate Fy and Jy as in with mini-batch sizes by and b(), respectively.
Solve ([9) to obtain y%(ﬁb). Then, evaluate vo = Jy Ky3, (Fp).
Update &1 := prox,, (o — novo) and x1 := (1 — 6p)zo + Oo21.
Fort:=1,---,T do
Construct Fy and J; as in and v := jJKyi‘;t (F}), where v, (F;) solves (9).
Update 2111 := prox,, g (z; — nivy) and @41 := (1 — Op)zp + Oppia.
Update Bt+1aBt+17 Oir1 € (0,1), M1 > 0, and 441 > 0 if necessary.
EndFor
: Output: Choose Zp randomly from {zg, z1,- - ,zr} with Prob{Zr = x;} =

,_.
@

01/ Lq)Wt
iz bt/Lan,

—_
—_

Algorithm I is designed by adopting the idea in [29], where it can start from two initial mini-
batches B° and B° to generate a good approximation for the search direction vg before getting into
the main loop. However, it has 3 major differences compared to [29]: dual step y3, (F}), estimator vy,
and dynamic parameter updates. Note that Algorithm [I] is single loop, making it easy to implement
in practice compared to SVRG [12] and SARAH [22], but it requires one additional sample in
. Moreover, if we use a diminishing step-size (see Theorems |3.2] n and [3.4] - below), then the initial
mini-batches BO and B° are not required.

3.2 Convergence analysis of Algorithm
Let F; be the o-field generated by Algorithm [I] up to the ¢-th iteration, which is defined as follows:

Fi = o(x0,B°, B, BL, BY, B, B, - B}, B}, B}, B}). (17)

If v is strongly convex, then, without loss of generality, we can assume gy, := 1. Otherwise, we can
rescale it. Moreover, for the sake of our presentation, for a given c¢g > 0, we introduce:

96()

Poo= YRl MEKIP + lidE, Q= 38 |K|(ME|K|P0} + coMfo?). o)
18
K
Lo, := LpMy|| K| + MZ| K|?, and Lg, = LrMy HKH+7F” [

where v > 0, Mp, Ly, o, and o are given in Assumption 2.1 and My is in Assumption [2.2}

(a) The smooth case. Theorem , whose proof is in Appendix , analyzes convergence rate
and complexity of Algorithm [1| for the smooth case of ¢g in (i.e., 9 is strongly convex).



Theorem 3.1 (Constant step-size). Suppose that Assumptz’ons and hold, v 1s puy-strongly
convex with py =1, and P, Q, and Lg, are defined in . Given a mini-batch 0 < b < BO(T +1),
let by := COI;O, by = 132 := b, and by = by := cob. Let {$t}tT:0 be generated by Algom'thm using

L A pl/2 o Lg b3/4 o 9
Y =0, Bt_ﬁt'_l_W’ 9t—9-—ma and m—n-—m, (19)
~ A
provided that w > 2. Let by := ;[b(T + D)]Y/3 for some ¢; > 0. Then, we have
A 24Q
- 2 0 __ *
E[lGy(zr)|I?] < T L where  Ag :=16P\/c1 [Vo(zo) — WG] + o (20)

For a given tolerance £ > 0, the total number of iterations T to obtain E|||Gy(Z1)||?] < €? is at most

3/2

T:= LAbg;g |. The total numbers of function evaluation F(zy, &) and its Jacobian evaluations F'(z4, &)
2 A1/2 A3/2 2 A1/2 A3/2 .

are at most Tp 1= LCOCIE 0+ 300530 J and Ty = Lcl% 43 =3 J, respectively.

Theorem states convergence of Algorithm |1| using diminishing step-size (see Appendix. [B.4)).

Theorem 3.2 (Diminishing step-size). Suppose that Assumptions and hold, 1 is puy-
strongly convex with py =1 (i.e., ¢g in is smooth). Let {x:}]_, be generated by Algom'thm
using the mini-batch sizes as in Theorem and increasing weight and diminishing step-sizes as

— _ B 1 . _LagVb — 2
=0, Bt=p .fl—m, O := W7 and ng = Tag (3H00)° (21)
Then, for all T >0, and (Zr,7jr) chosen as Prob{Gs (Zr) = Gy, (z¢)} = ZTet o> we have
t=0"t
(V2 32P[Wo (20)— V5] 32Q {ﬁ 2(1+log(T+1>>}
E[HgnT(xT)H ] < 3\/5[(T+3)2/3—22/3] 3[(T+3)2/3—22/3] B + b . (22)

1;%(/7;)) with a log(T") factor slower than

. However, it does not require a large initial mini-batch 30 as in Theorem In Theorems
and we do not need to smooth ¢g. Hence, ~; is absent in Algorithm [1} i.e., 7 = 0 for ¢t > 0.

If we set b = by = 1, then our convergence rate is O <

(b) The non-smooth case. Now we consider the case py, = 0, ie., ¢ in is non-smooth.
Theorem [3.3] states convergence of Algorithm [I]in this case, whose proof is in Appendix [Bf]

Theorem 3.3 (Constant step-size). Assume that Assumptions and hold, ) in 18
non-strongly conver (i.e., ¢o is nonsmooth), and P, Q, and Le., are defined in . Let b and by be
two positive integers, co > 0, and {xt}fzo be generated by Algom'thm after T iterations using:

by=by:=b, bi=by:i=L b= BT +1)]Y3, by:=2 4 :=ye(0,1],

72 ’ ,y2 ’ ( )
23
_p bl/2 _p._ _ Lep? 2
A= B =1 e =0 P =S Gy
Then, with By, defined in Lemma [A.1], the following bound holds
A A 240Q
_ 2 0 —
E[lGy(zr)|I?] < BT L R where  Ag := 16,/c1 P(Vo(20)— U+ By) + o (24)



A3/2

The total number of iterations T to achieve E[||G,(Z1)||?] < €2 is at most T := | 23 |. The total

numbers of function evaluations Tr and Jacobian evaluations T; are respectively at most

A1/2 A3/2 A3/2 A1/2 3/2 1.5
L CQAO 3COAO o AO L AO 3A o A
7-F = 725 + 7283 == O 77253 and T] = —+ O .

COA1/2 360A3/2 A3/2
If we choose ~y := coe for some ca > 0, then Tp = =55 + =28~ = O(=% )
2 2

Note that both convergence rate and 77 in Theorem are independent of . The choice
of 7 := c9¢ is to achieve an e-KKT point in the sense of Definition [2.1] by using Lemma [3.1] below.

Alternatively, we can also establish convergence and estimate the complexity of Algorithm [1] with
diminishing step-size in Theorem [3.4] whose proof is in Appendix [B-6]

Theorem 3.4 (Diminishing step-size). Suppose that Assumptions omd hold, 1 is non-
strongly convez (i.e., ¢q is possibly nonsmooth), and P, Q, Lg., are defined by . Given mini-batch
sizes b > 0 and by > 0, let by := ngo, b = bl = %?b, and by = by := b for some co > 0. Let {z}1,
be generated by Algorithm[1] using increasing weight and diminishing step-sizes as

A Lg. b/2
V= W7 Br=pB=1- m7 t = Wa and 1 : m (25)
For (zr,7r) chosen as Prob{Gs. (Zr) =Gy, (z¢)} = [Z;‘F:O(Ht/Lqm)]71(9t/Lq>%), we have
EIGn rIP] < 57asim o (Yolw0) = ¥+ rgiore) (26)

16Q 21/3 | 2(1+log(T+1)) log(T)
+ i (G + ) =0 (R

Note that since v, := m (diminishing) and b% = b}, := %b we have b} = b = cob(t + 2)%/,

which shows that the mini-batch sizes of the function estimation F; are chosen in increasing manner

(Anot fixed at a large size for all ¢), which can save computational cost for F. The batch sizes b and
by in Theorems and must be chosen to guarantee (3, 0; € (0, 1].

Remark 3.1. If we define an approximate gradient mapping g}t for G, in as @,t (z¢) =
771t (zt — prox,, g (x; —nvy)). Clearly, if R = 0, then G, (x¢) = v;, which reduces to an approximation
of the gradient V<I>% (z¢). Then, the update of Algorlthm I becomes X411 1= Ty — ntetgm (x¢). Thus

we can refer to Ht := 0y, as a combined step-size (also called a learning rate). Since 7, :

we have 6, = Lch,Yf(e?f‘i’ot) < 3]-%2:% , which is diminishing to zero in (21]) or (25).

Lq> (3+9t)

3.3 Constructing approximate KKT point for from Algorithm
Existing works such as [37) [39] do not show how to construct an e-KKT point of or an e-stationary
point of (2) from Z7 with E[||Gs,(Z7)||?] < 2. Lemma whose proof is in Appendix shows
how to construct an e-KKT point of in the sense of Definition [2.1| with € := O (¢).

Lemma 3.1. Let T be computed by Algorithm[1] up to an accuracy e > 0 after T iterations. Assume
that we can approvimate F'(Tr), F(Zr), and F(Z3,.), respectively such that

E[|F(zr) — F(r)l] < (uy +1)e, E[I(J(27) = F'(21)) "Véay (F(z1))Il] <,

~ 27
and E[|F(3,) — F(&,)|] <e @)



Let us denote 64)% () := J(21) Voo (F(Z7)) and compute (@5,,95,) as

T, = prox,, g (Tr — 77T6<I>7T (Zr)) and Py, =y, (ﬁ’(:ftf;T)) by (9). (28)

Suppose that E[||Gy,. (Z7)||?] < &2 and 0 < vp < cae for a constant c; > 0. Then
E[E(ZS,,55,)] <€, where €:= (L + BMp||K|]? + c2Dye, (29)
where Dy, is in Lemma and E(+) is given by (§). In other words, (Z3,.,95,) is an e-KKT of (.

If we use stochastic estimators as in to form F(Zr) , J(Zr), and ﬁ'(:i‘%) with batch sizes br,
~ ~ 2 ~ ~ 2
br, and by, respectively, then holds if we choose by := LW:'WJ, br = LZ—{J, and by = LZ—?J
We do not explicitly compute Jacobian J(Zr), but its matrix-vector product J(Zr)" V. (F(zZ7)).
This extra cost is dominated by 7; and Tz in Theorems and For Zr computed by
Theorems [3.1] and we can set yp := 0, or equivalently, ¢ := 0. For Zr computed by Theorem

AY?

eb )

M)

2
since yr := cze and p,, = 0, we have by = L%J <Tp= (’)(
2

4 Restarting variant of Algorithm [1) and its convergence

In this section., we propose a simple restarting variant, Algorithm [2] of Algorithm [I} prove its
convergence, and estimate its oracle complexity bounds for both smooth ¢y and non-smooth ¢
in . For simplicity of our analysis, we only consider the constant step-size case, and omit the
diminishing step-size analysis.

4.1 Restarting variant

Motivation. Since the constant step-size 6 in of Theorem and of Theorem depends
on the number of iterations T'. Clearly, if T is large, then 6 is small. To avoid using small step-size 6,
we can restart Algorithm [1] by frequently resetting its initial point and parameters after 1" iterations.
This variant is described in Algorithm [2] Algorithm [2] has two loops, where each iteration s of the
outer loop is called the s-th stage. Unlike the outer loop in other variance-reduced methods relying
on SVRG or SARAH estimators from the literature, which is mandatory to guarantee convergence,
our outer loop is optional, since without it, Algorithm [2]reduces to Algorithm [I] and it still converges.

Algorithm 2 (Restarting Variant of Algorithm

1: Inputs: An arbitrarily initial point Z° € dom(F), and a fixed number of iterations 7.
: For s:=1,---,5 do

2
: : : : (8) . ~s—1

3 Run Algorithm (1) for T iterations starting from x;” := T°7".

4: Set z° := xg‘,‘f}rl as the last iterate of Algorithm

5: EndFor

6

: OQutput: Choose Ty randomly from {asgs) fjéjﬁ such that Prob (iN = gzgs)) = SZ’%@
j=0"Yj

4.2 The smooth case ¢, with constant step-size
The smoothness of ¢q is equivalent to the p,-strong convexity of ¢ in . The following theorem,
whose proof is in Appendix [C] states convergence rate and estimates oracle complexity of Algorithm



Theorem 4.1. Suppose that Assumptions and- hold, 4 is strongly convex (i.e., pry = 1> 0),
and P, Q, and Lg, are deﬁned by . Let {xt }f 3::% be generated by Algomthm@ usz’ng ~v:=0,

by := cobo, b1 = by := cqb, b1 = b2 = b for some cy > 0 and given batch sizes b > 0 and bo > 0, and
the parameter configuration (|1 . Then, the following estimate holds

16Phy/* 24Q

-0 ‘%0 W .
s+ o ) e (30)

E[[1Gy(zn)]*] <

where Ty s uniformly randomly chosen from {:cts) f_éj%

Given € > 0, if we choose T := L@J and by = L48QJ then after at most S := Lﬁj outer

be? £v/3Q
iterations, we obtain E[[|G,(Zn)|[*] < €. Consequently, the total number of function evaluations Tp

and the total number of Jacobian evaluations Tj are at most Tp = Ty := ngig,mj.

Theorem holds for any mini-batch b such that 1 < b < 4?—2@, which is different from, e.g., [37],
where the complexity result holds under large batches. Moreover, the total oracle calls Ty and Ty
are independent of b. In this case, the weight 8 and the step-size 6 become

b€2 bL@
=1-—— d = —"-"2_.
f=l-5o ™ 4P\/30

Clearly, if b is large, then our step-size 0 is also large.

4.3 The non-smooth ¢, with constant step-size

Finally, we prove the convergence of Algorithm [2f when v is non-strongly convex (i.e., ¢ in is

possibly nonsmooth). The proof of the following theorem is in Appendix

Theorem 4.2. Assume that Assumptions cmd- 2.9 hold, v in is non-strongly convez (i.e.,

u¢ =0), and P, Q, and Lg., are defined by ( . Let {:z:ts)}t &jﬁ? be generated by Algom'thm@ after
= S(T + 1) iterations using:

._ 2cobR 7 7. . 4C()R2 ) ;/
by = by := =050, by =bg:=0b, bo:= -5, boi= 3P

(31)
— € 1 be?
vi= N and [:=1 T
where € > 0 is a given tolerancdl], and
Ry :=16[Wo(3%) — U* + By] and Ry :=24Q. (32)

Then, if we choose T := L@J then after at most S := L V2R J outer iterations, we obtain Tt such

ba\/>
that B[||G,(z7)|?] < €
Consequently, the total number of function evaluations Tr and the total number of Jacobian
evaluations Ty are respectively at most

I

€ g3 g3

Remark 4.1. Note that we do not need to choose the batch sizes and parameters depending on Ry
as in , which is unknown since W§ is unknown, but they are proportional to Ry. In this case, the
complexity bounds in Theorem will only be shifted by a constant factor.

As we can see from Theorem the number of outer iterations S is divided by the batch size b.

~3/2 1/2
However, the terms wﬁcngRO and 6\[};?}2 are independent of b and dominate the complexity

bounds in both 7z and T, respectively.

!The batch sizes and T in this paper must be integer, but for simplicity, we do not write their rounding form.
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5 Numerical experiments

We use two examples to illustrate our algorithm and compare it with existing methods. Our code is
implemented in Python 3.6.3, running on a Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

5.1 Risk-averse portfolio optimization

We consider a risk-averse portfolio optimization problem from [18], and recent used in [38]:

max {Eg [he(z)] — pVare [he(2)] = Ee [he(2)] + pEe [hg(:v)]z — pE¢ [hg(ﬂU)] }» (33)
where p > 0 is a trade-off parameter and h¢(x) is a reward for the portfolio vector z. Following
138], can be reformulated into (2)), where ¢o(u) = uy + puf — pus is smooth, and F(z,§) =
(he(z), hg(:r))T Suppose further that we only consider N periods of time. Then we can view
¢e€{l,---,N} as a discrete random variable and define h;(z) := (r;, x) as a linear reward function,
where r; := (ri1,- - ,m-p)—r and r;; represents the return per unit of j at time 7. We also choose
R(z) := Al|z||1 as a regularizer to promote sparsity as in [38].

x103 Portfolio: N = 49410, p = 29 (8 blocks «10-3Portfolio: N = 49410, p = 37 (8 blocks) «10-3Portfolio: N = 49410, p = 47 (8 blocks)

—— HSCG OT —9—HSCG UT ——HSCG
—8— ASC-PG —0— ASC-PG —8— ASC-PG

LR —y—CIVR LR —y—CIVR ER —y—CIVR

g g g

(9] [ (9]

> -2 22 2 -2

k51 k5t i3]

17} 2 L7}

e} Ke) o)

O3 O3 O3

4 -4 4

150 200

150 200 "o 50 100
Number of Epochs

150 200 0

o

50 100 50 100
Number of Epochs Number of Epochs

Figure 1: Comparison of three algorithms for solving on 3 different datasets.

We implement our algorithm, abbreviated by HSCG (i.e., Hybrid Stochastic Compositional
Gradient for short), and test it on three real-world portfolio datasets, which contain 29, 37, and 47
portfolios, respectively, from the Keneth R. French Data Library [I]. We set p := 0.2 and X := 0.01
as in [38]. For comparison, we also implement 2 methods, called CIVR in [38] and ASC-PG in [32]. The
step-size 7 of all algorithms are well tuned from a set of trials {1,0.5,0.1,0.05,0.01,0.001,0.0001}.
The performance of 3 algorithms are shown in Figure |1f for three datasets using b := LN / SJ (8
blocks).

One can observe from Fig. [I] that both HSCG and CIVR highly outperform ASC-PG due to their
variance-reduced property. HSCG is slightly better than CIVR since it has a flexible step-size ;. Note
that, in theory, CIVR requires a large batch for both function values and Jacobian, which may affect
its performance, while HSCG can work with a wide range of batches, including singe sample.

5.2 Stochastic minimax problem
We consider the following regularized stochastic minimax problem studied, e.g., in [26]:

min { max (B¢ [Fi(r. €)]} + 3l 5

where F; : RP x @ — R, can be taken as the loss function of the i-th model. If we define
¢o(u) = maxi<j<m{u;} and R(x) := %||:c||2, then can be reformulated into (2). Since u; > 0,

11



we have ¢o(u) := maxi<j<m{ui} = [|ulloo = max)y, <1{(u, y)}, which is nonsmooth. Therefore, we
can smooth ¢g as ¢~ (u) := max,|, <1{{u,y) — (v/2)||y||*} using b(y) := Syl

In this example, we employ to solve a model selection problem in binary classification
with nonconvex loss, see, e.g., [40]. Suppose that we have four (m = 4) different nonconvex
losses: Fyi(z,§) := 1 —tanh(b(a, z)), Fa(z, &) :=log(1 + exp(—b{a, z))) — log(1 + exp(—b{a, z) — 1)),
Fs(x,¢) := (1 —1/(exp(=b{a,z)) + 1))2, and Fy(z, &) := log(1 + exp(—bla, x))) (see [40] for more

details), where £ := (a, b) represents examples. We assume that we have N examples of .

i rcvi: N = 20242, p = 47236 (32 blocks) covtype: N = 581012, p = 54 (32 blocks) url: N = 2396130, p = 3231961 (32 blocks)
1 —4—HsCa 101’ —¢—HsCa o —§—HsCa
0.9 —0—SCG —0—SCG ’ —0—SCG
g 0.8 —— Prox-Linear g —y— Prox-Linear g 0.6 —y— Prox-Linear
So7 S S
2os 2 e
© © ©
Zos 2 2
o O 402 O
0.4

200 0 150 200 0 20

50 100 150 50 100 40 60 80
Number of Epochs Number of Epochs Number of Epochs

Figure 2: Comparison of three algorithms for solving on 3 different datasets.

We implement three algorithms: HSCG, SCG in [31], and Prox-Linear in [39]. We test them on
3 datasets from LIBSVM [6]. We set A := 10~* and update our ¢ parameter as 7y := W
The step-size 1 of all algorithms are well tuned from {1,0.5,0.1,0.05,0.01,0.001,0.0001}, and their
performance is shown in Figure [2] for three datasets: revl, covtype, and url with 32 blocks.

One can observe from Figure [2| that HSCG outperforms SCG and Prox-Linear on rcvl and url.
For covtype, since p is very small, allowing us to evaluate the prox-linear operator to a high accuracy,
Prox-Linear slightly performs better than ours and much better than SCG. Note that solving the
subproblem of Prox-Linear is expensive when p is large. Hence, if p is large, Prox-Linear becomes
much slower than HSCG and SCG in terms of time.

6 Conclusions

We have proposed a new single loop hybrid variance-reduced SGD algorithm, Algorithm [I], to solve
a class of nonconvex-concave saddle-point problems. The main idea is to combine both smoothing
idea [20] and hybrid SGD approach in [29] to develop novel algorithms with less tuning effort.
Our algorithm relies on standard assumptions, and can achieve the best-known oracle complexity,
and in some cases, the optimal oracle complexity. It also has several computational advantages
compared to existing methods such as avoiding expensive subproblems, working with both single
sample and mini-batches, and using constant and diminishing step-sizes. We have also proposed
a simple restarting variant, Algorithm [2| in Appendix [4] to improve practical performance in the
constant step-size case without sacrificing complexity bounds. We believe that both algorithms and
theoretical results are new, even in the smooth case, compared to 28], 37, [39]. Our future plan is
to exploit this approach to solve some interesting applications, such as robust optimization and
learning, and GANs.

Appendix

A Some technical results and proof of Lemma (3.1

In this appendix, we provide some useful properties of ¢g in and its smoothed approximation ¢,
defined by @D in Section [2l Then we recall and prove some bounds of variance for Fy, J;, and v.

12



Finally, we prove Lemma [3.1] in the main text.

A.1 Properties of the smoothed function ¢,
Under Assumption , ¢p in and ¢, defined by @ have the following properties.

Lemma A.1. Let ¢g be defined by and ¢~ be defined by @D Then, the following statements
hold:

(a) dom(v) is bounded by My, iff o is Mgy, -Lipschitz continuous with My, := My K]||.

(b) dom(v)) is bounded by My iff ¢, is Lipschitz continuous with Mgy, = Myl K.

(

) 2
_ x|l
c% ¢ 1s convex and Ly -smooth with L, = Yy

(d) It holds that ¢~(u) < ¢o(u) < ¢7( ) + By for all u € R?, where v > 0 and By :=
sup {b(y) | y € dom(v)}. In addition, we have Dy = max,cdom(y) || V()| < 400.
(e) We have ¢ (u) < ¢4(u) + (5 = V)b (u) < ¢5(u) + (5 =) By for all ¥ =~ > 0.

Proof. The statement (a) can be found in [3, Corollary 17.19|.

Since Vo, (u) = Ky3(u) with y*(u) € dom(y), we have [V ()| < |KIy ()| < Myl K.
Applying again [3, Corollary 17.19] we prove (b).

The statement (c) holds due to the well-known Baillon-Haddad theorem [3, Corollary 18.17].

The proof of the first part of (d) can be found in [20]. Under Assumption [2.2{ and the continuous
differentiability of b, we have Dy, := maX,ecdom(y) [| V()| < 400.

Finally, for any v and y, since s(v;u,y) := (u Ky) — ¢(y) — vb(y) is linear in 7. Therefore,
¢ (u) := maxyern 5(7v;u,y) is convex in v and dvqﬁv( u) = —b(y;(u)) < 0. Consequently, we have

Py () + g0y (W) (F = 7) = &y () = (F = Nb(y;(w)) < d5(u), which implies (e). 0

One common example of 1 in Assumption is ¥ (z) := dx(x), the indicator of a nonempty,
closed, bounded, and convex set X'. For instance, X := {y € R" | ||yl < 1} is a unit ball in the dual
norm ||-||, of [|-]|. Then, we have ¢o(u) := ||u||, which is clearly Lipschitz continuous. In particular,
if & :={y € R" | [|ylloc <1}, then go(u) := [[ul];-

A.2 Key bounds on the variance of estimators .
Next, we provide some useful bounds for the estimators F; and J; defined in . The following
lemma can be found in [29].

Lemma A.2. Let F, and J; be defined by , and Fy be defined by , Then

Eg g2y [I1F = Fa)l?] = BEillFi1 = Flae)l? = B | F (@) — F(x-1)|?
+ (1= Be1)*Ege [[|F (24, G) — F(4)[)?]

SR [|[F (21, €) — Flai1, &2,

E gy g (1 — F'@0l?] = Bl et = Fla)I? = B 1P (@) — F(ay)|P
+ (1= 1B [P (20,G) = F'(an)|?]

+ B, [P0, €) - P, 7).

(35)

Furthermore, we can bound the variance of the estimator v; of V®,,(z;) defined in as
follows.

13



Lemma A.3. Let ®, and v; be defined by and , respectively. Then, under Assumptions
and[2-2, we have

E[llve = V@q (20)|*] < 2MELE E[|IF; — F(a)|’] +2M7 E[||J — F'(20)|?]. (36)
Proof. First, by the composition rule of derivatives, we can derive
lor = Vo, (@)II* = |} Vo, (Fr) — F' () "V o, (F(a0)) ||
= [|J" Vo, (Fr) = F'(20) "V oy (F) + F'(20) 'V oy (F)
= F/(a) Von (F(a))]*
(@) ~ - -
< 2/|(Je = F'(2)) TV on, (F)|1? + 20 F'(20) T (Vb (Fy) — Vo (F(20))|I?
< 2|V (F)IPIIJe = F' (@)1 + 2V bn, (Fr) = Ve, (F () P F” () ||
(i1) - -
< 2MG e — F'(zo)|I” + 203 ME|Fy — F(@)|)*.

Here, we use [la + b||* < 2|[al|* + 2[|b]|* in (i) and the M, -Lipschitz continuity, Ly -smoothness of
¢+, and (5)) in (4i). Taking expectation over F;4q on both sides the last 1nequahty, we obtain

E[Hvt = V@, (a)|”] < 2MEPLE E[[|F; — F(ze)|?] + 2M E[|l; — F'(z0) %],

which proves . O

A.3 The construction of approximate KKT points for (1)
Recall from that ®.,(z) = ¢, (F(x)) and V&, (z) = F'(2) "V, (F(z)), where ¢ is defined by
@. We define a smoothed approximation problem of as follows:

min {\I/,y(a:) =D () + R(z) = ¢ (F(z)) + R(z)}. (37)

z€RP
Clearly, if v = 0, then reduces to . The optimality condition of becomes
0€ Vo, (25) + IR(2) = F/(ZL‘;)TVQZ)»Y(F(I';)) + OR(22). (38)
Here, 77 is called a stationary point of . Therefore, an e-stationary point #7 is defined as

E [dist (0, V@, (Z}) + OR(T3)) | <e. (39)

Again, the expectation E[ ] is taken over all the randomness generated by the model and the
algorithm for finding 77
Alternatively, using the definition of ¢ in @ problem (37]) can be written as

min max { R(z) + (F(z), Ky) ~ ¥(y) - vb(y)}- (40)

TERP ycR™

Its optimality condition becomes
0 € OR(a?) + F'(a2)Kys and 0€ KT F(a}) — op(yl) — vVb(y2). (41)
Using the definition of &€ in (8)), we have

E(a?,y?) i= dist (0,0R(a2) + F'(a2) Ky?) + dist (o,KTF(x;) _a¢(y;)) <Dy (42)

14



Here, we use the fact that |[Vb(y})|| < Dy, as stated in Lemma

Given Z € dom(¥y), let F(-) and J(-) be a stochastic approximation of F'(-) and F'(-), respectively.

We define (77,y3) as follows:

# = proxp (:E—U@I)W(i)» where V. (7) = J(3) Ve, (F(Z)),
B = w(F() = arsmin ((KTF@).y) — 0y) ~ ) }

Note that % only depends on z, while §3 depends on both z and z7. Hence, we first compute &

and then compute 3.
The following lemma provides key estimates to prove Lemma [3.1] in the main text.

(43)

*

v

Lemma A.4. Under Assumptions and for given T and n > 0, =7, defined by satisfies

dist (0, V&, (&%) + OR(22)) < (1 +nLa,) [Gy(@)]| + (2 + 1La., )| VO, (Z) — VO, ()]

Let (73, 75) be computed by [@3), and E(x,y) be defined by (8). Then, we have
E@,7) < (1+nLe,) [Gy(@)| + Dy + [IK[||| F(&3) — F(33)|
+ (2+nLs,) [I(J(z) = F'(2)) 'V, (F(2)[| + Ly, Mp|| F(z) — F(2)|],
where Dy, is defined in Lemma [A.1]

Proof. From (43)), we have T — n%@v(afz) € &3 + ndR(F%), which is equivalent to
)+ (VO (&%) — V(7)) € VO, (Z2) + IR(E).

We can bound r} in as follows:
Izl < 5117 = 3l + V24 (35) = VO, ()| + [VE4(7) — VO, (2)]
< (Ut nLe, )35 = 2]l + [ Vy(3) — V(7))
Next, from (13)), let us define Z* := z — 1G, (Z) = prox, (z — nV®,(z)). Then, we have
25—zl < [l25 =25 + |25 — 2|

= [lprox,z(z = nV®,(Z)) — prox,z (z — nV+(Z))|| + (|G, ()|

< [V (2) = VO, (2)[| + 1l|Gy (2]
Substituting this estimate into , we obtain

Izl < (4L, ) 1Gy(@)] + (2 +1Le, ) [VE(2) — VO, ()]

Combining this inequality and , we obtain (44)).

Now, since g5 = y5(F'(73)), by the optimality condition of (9, we have
ry = V() + KT (F (&%) — F(2%)) € KT F(&) — 0v (i)

Utilizing Lemma (d), we can bound r;; defined by as

Iyl < AV + KNI F(E) — F@)I| < vDy + | KIF (@) — F@)])-

15
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Combining this estimate and , we get
aist (0. KT F(#) — 00(@) ) < | K[[F() ~ F@E)] +7Dy. (50)
On the other hand, using the definition of %@7(-) from , we can show that

IV®, (@) = Vo, ()| = | J(2) Vo (F()) — F'(2) Vr (F (@)

< (@) = F'(@) Vo, (F@)] + |F'(2)T (Vo (F(2) = Ve (F () |
< (@)~ F'(2) TV, (F@))ll + [V (E(@)) — Voo (F(@)) | F' ()
< I(J(z) = F'(2)) Vs (F@) + Lo, | F (@)l F () — F(2)]

I(J(2) = F'(@)) "V o (F(2)]| + Lo, M| F(z) = F(z)]].

Here, we have used the L -smoothness of ¢, in (i).
Finally, combining the last estimate, , and , and using the definition of £ from , we
have

E(&,5%) = dist (0, V(&%) + OR(E)) + dist (0, KT F(&%) — 0v(32))

< (1+nLs,) 1G:(2)] + 2+ nLa,) VD, (Z) — VO,(2)]
+ K NIF (@) — F(@3)] + 7Dy
(1+nLa,) 1Gy(@)|l + Dy + [|K|[| F(33) — F(@5)]]
+ (2+nLa,) [I(J(2) = F'(2)TVé,(F(2))|| + Lo, Mp | F(z) — F(2)|]],
which proves . O
The proof of Lemma [3.1] For notational simplicity, we drop the subscript 7" in this proof. Since

IN

My, = My| K| and Ly = l/lfl!i, using the conditions in Lemma and (27), we can derive from

after taking the full expectation that

E[£(%5,55)] < (1+nLe,) E[IG,(@)]] + (2 +nLe,) E[II(J(2) — F'(z)) Vo, (F(2))]]

+IKIE[IF@) - F@I) + 2+ nLae,) EEMER [ B(z) - P@)]] + 4D,

Now, by the Jensen inequality E[Hgn(_)H] (E [Hgn z)|| ])1/2 <e In addition by @7, we

also have 0 < 7 < e, E[|((@) - F'(a DTV (F@)I] < & E[IF@ )] < e, and
Mw+7 E[||F () — F(Z )] < e. By the update rule of  in Theorems |3 l, ﬁ E and 3 we have
nLe, = Lo < since 0 € (0, 1]. Substituting these expressions into the last 1nequahty, we finally
arrive at

E[E(@, 52)] < (14 2)e+ c2Dye + || Klle + (2 + 3)(1 + || K ||* Mp)e,
which is exactly . O

B Convergence analysis of Algorithm (1] in Section

This appendix provides the full analysis of Algorithm [I} including convergence rates and oracle
complexity for both strongly convex and non-strongly convex cases of ¥ (or equivalently, the
smoothness and the non-smoothness of ¢, respectively).
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B.1 Preparing technical results
Let us first recall and prove some technical results to prepare for our convergence analysis.

Lemma B.1. Let {z:} be generated by Algorithm |1, Lo, be defined by (12), and By be given in
Lemma . Then, under Assumptions and for any ny > 0 and 0; € [0, 1], we have

0. (1+L2 n?
E[V,,(z141)] < E[¥,,_, (z:)] + WE[qu)% (z¢) — vel?] + (ve—1 — 1) By

L 9t t
= PR Gy ) I2) — § (3~ Lo, 8~ 2L ) BlJerss — ael?)

(51)

Proof. Following the same line of proof of [29, Lemma 5|, we can show that
0 ( 14 n
B[ (rsn)] < B[] + Lt D00, (o) - o]

Lo, 020 N
_ M [”gm (.%'t)H ] (% — L‘b’net — 2Lq>7t) E[th_,_l — J;tH2].

Finally, since E[W., (z)] < E[V,,_, (z¢)] + (74—1 — V) By due to Lemma (e), substituting this
expression into the last inequality, we obtain . O

The Lyapunov function. To analyze Algorithm [I] we introduce the following Lyapunov function:

Voo () := B[, _, (24)] + %E[HE — F(xy)|?] + %E[Hjt — F'(z)|?], (52)

where a; > 0 and &; > 0 are given parameters, and the expectation is taken over F;y;. Lemma
provides a key bound to estimate convergence rates and complexity bounds.

Lemma B.2. Let {x;} be generated by Algorz'thm and V., be the Lyapunov function defined by
(52). Suppose further that the following conditions hold:

2 22 2 22 ~
2 > Ly, 0 + 2Lg,, + “ESIOLL 4 LpOCAr

. " (53)
LG v Tt 2 +L‘I>7t e A 32 < &
QMFL¢ Qt(i) + at—l—lﬁt < O and 2M Ht (7) + at—‘,—lﬁt < Q.
"/t 'Vt
Then, for all t > 0, one has
Lg., 020 (1—8:)2 o2 1-B1)26s 1102
Valorn) < V(o) = =B Gy (ar) 7] + E0gesh o ERhmes
+ (V-1 — 1) By-
Proof. First of all, by combining and , we obtain
IE[\I/% (33”1)] < E[‘I’wq(xt)] - % (% —Le,,0: — 2L@W> E[Hfﬁtﬂ - ﬂft||2]
L., n20
— 2 E[|Gy (@) 2] + (-1 = %) By (55)

L? - ~
+ 0 (%) <M%L3>%E[||Ft — F(a)|?] + M2 E[|lJ; - F’(:rt)||2]) .

Due to the mini-batch estimators in , it is well-known that
2 2
EBE [HF(xtv Gt) — F(l‘t)H?} = E[Hé Zgiegg F(x¢, G) — F(l‘t)H } = %

Egs [IF' (20, &) = F'(20)lP] = E[[[£ Lgep Flwn &) = Flan)|”]

N

IA
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Substituting these bounds and xy11 — x¢y = 04(Z4+1 — ) into and taking full expectation the
resulting inequality over F;41, we obtain

~ ~ 0 M?2 — 252
BB — Fzn)|?] < BPE[|F — F(ay)|?] + Z90ME LBl oe

E[|Jo — F(es)|?] < B B[ — F'(z0)]?] +

E[[| &1 — =] +
07L3 1-6¢)%0%
5z FE[HQUH—I — 2| ] (1 i;) i

Multiplying these inequalities by a1 > 0 and G441 > 0, respectively, and adding the results to ,
we can further derive

(2 N . L
Vo (zi1) = B[y, (me41)] + SR Frgr — Flze)?] + “LE[|| i1 — F'(we41)]]

1+1L2 n? ~
< E[W,, ,(n)] + [M%Lwt( Lot t)+°‘“55t]E[uFt—F<xt>|H

1+L2 73 L. 1?0
*W«%ﬁt( )“t“ﬂf] (17 = F/(a) ] = =4 E[[Gn, (a2) ]

Tt

0, [ 2 M2B320;a L2.3260,4 N
- é (7775 o ch'ytet o 2L¢”Yz - tblt it tint t+1> E[Hwt+1 o xtHZ]

+ (1-Bt)? oy 10% + (1—l§z)fdt+103 +(

5 Ye—1 — Ve)By-

b

Let us choose a; > 0 and &; > 0 and impose three conditions as in , le.:

2 M32B20raq1 L%B?Qtdt+1
o = Lo, b0i+2Le,, + ; e
1+L%  n? 1+L%_ 77 . A N
QM%LQ 015(77%) + atJrlBtQ S g, and 2M2 Ht(#) + OétJrlﬁtg S Q.
t t

Then, by using , the last inequality can be further upper bounded as

Ln@ 152 2
Vi (2e41) < Vi, (20) — Z2 R [||G,, (20)|2] + U2 001k

1—54)26 o
+ (Bt)b% + (Y¢—=1 — ) By,

which proves . O

B.2 A general key bound for Algorithm
Now, we are ready to prove one key result, Theorem[B.1] for oracle complexity analysis of Algorithm [I}
To simplify our expressions, let us introduce the following notations in advance:

( o o L T
wp = Ta, and X7 =), ,wi,
MZIL2 /26b1by
@t = = 1/2

4712 2 2
3(MELE bi+M2 L3bi)

M. = /26616, <M§L§>WOU% +M27003> (56)
0 )1/2 7 )

o - bo b
472 2 A2 0
3(bs MALS +biL3M2
Iy = V 26b1 by ( %Liw U% + gw 02 >
: N 172 by B .
472 2 272 2
\ 3(bs MAL3 +b1L3M, )
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Theorem B.1. Suppose that Assumptions[2-1] and[2.9 hold, and wy, Y7, O, Ily, and Ty are defined
by . Let {xt}t o be generated by Algomthml using the following step-sizes:

- 1/2
3L, |b1b1(1 — 2
6, = :I:wQ[ 1A1( ft)] . and 15 = T PEaY (57)
V26(MELE b+ M2 Libi) @, (3+01)
where B, Bt € (0,1] are chosen such that 5y = Bt; 0 <vp1 <y, and
BEL—B) 1—By _1—p MpLy o LRMG
o < o2, < o and [y >max<0,1— 9L§,% ( 2t 4 = “/t) ) (58)
Let 7 be randomly chosen between {xq,---,xr} such that Prob (zr =x;) = g—;, and T be
corresponding to ny of Tp. Then, the following estimate holds:
16 Cip1(1— Br)?
E[||G: —(\I/x—\II*—i— By) + 59
[H 77T( )H ] S [ 0( 0) 0] YT Doy » \/? Z m ( )
The proof of Theorem [B.1] First, the conditions in can be simplified as follows:
M232a 124, 4 9
Léwet‘FQLcD% +( Fbtl t+1 4+ ZF %1 t+1)9t < z,
2MpLy (1+ L3 7)o < La,, (o — Bfags1), (60)
2M3 (1+ L3, ni)o: < Lo, (& — BPaen).
- 2 :
Let us update n; := GH00La,, as . Since 6; € (0, 1], we have
1 2 13
o o d 1<1+L2 n? <=,
2Lg, =M 3L, M SITlesy
Next, let us choose ¢, S, Bt, oy, and &y such that
M? M, M.
A ~ o2 Pyip1 Dy Qi
615 = ﬁt € (07 1]7 Q= 9 2t Qt, < ) and 0 < oy < Q41 < —. (61)
MFL(ﬁ»Yt L¢’Yf+1 Ld”yt Bt
Then, we have
o — a1 > (1= B) >0,
. M2 2 M2
A 24 _ ¢ 2 Py, ¢ 2
and ap — ﬂt Qg1 = WL%;%& - 515 M%Liiz;at‘*‘l > M%Lﬂg% (Oét - Bt at+1)
M3 R
Z ﬁ(l — 615)0% = (1 — Bt)at > 0
F ¢y
By using the last two inequalities, we can show that the conditions in hold, if we have
9Ls., ot (1—Pt) 9Ls., 6t (1—Pt)
0<9t§2&f/11%7[/;%, O<9t_;é]\47£%, (62)
M2a; | L26:)\ L
and  0< 0, < Lo, (ME2 4+ 2E%)
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Therefore, the three conditions in hold if we choose

R 2 272 272
(1 — B _ du(1— B) and M7}27‘ + LFM¢W¢ _ 26MFL¢%
MRLZ Mz, b MRLZ b 9ai(1 = Br)
These conditions show that we can choose
M2 (_)t ]\42 L2 \/m
o = 1@th and Gy : Wa where ©; := e 72"

3(MELE bi+M2 L3bi)
Clearly, this ©; is exactly given by . With this choice of oy and &y, we obtain

9Ls,, 0/ (1 — B) _ 3Lg,, bli)l(l — Bt)
272 = 7 :
26MFL¢% \/%(Mj‘;Li% by + Mq%% L2by)1/?

O<9t§§t::

We then choose #; := ; at the upper bound as in .
Now, to guarantee that 0 < 6; < 1, we impose the following condition as in , ie.:

M4 L2 L2 M2
26 F ¢y e
Bt >max{0,1 i3, ( T 5 .

Due to the choice of a4, the condition ay < ayy1 < 4t in is equivalent to

Bt
»33(1*5t)<1*5t+1 1—5
o7 - e, - o7’

which is the first condition of (58). Moreover, since My, = My||K| and Ly, = Jﬁ'% due to

Lemma , the third condition of reduces to y;+1 < 4, which is one of the conditions in
Theorem [B.1l

Next, under the choice of a; and &, and 1 > 55—, (54)) implies

16[@ [Hgm( )HZ] < V’Yt—l(xt) - V% (xt—&-l) + (V-1 — 'Yt)Bw
+ \/26b1 b1 (M%L?b’n+lo-% + M‘i"/t-&-l 0‘27> (1-p1)? (63)
)1/2

~ [ 5 (1_,3 )1/2 .
472 2 272 2 t+1
3(b1MFL¢’“rt+1 +b1LFM¢“/t+1

Note that since W, (x0) < ¥o(xo) due to Lemma and vy_1 = 79 by convention, we have
Vio(zo) = E[Wo(20)] + SE[[|Fo — F(0)l1*] + LE[||Jo — F'(x0)|1?]

= M2 L2 0.2 M2 0.2 64
< E[Wo(zo)] + — V200101 7 < T £ 4t > TR (64)
6(biMELs +biL3M2 ) 0 0

Moreover, by Lemma [A.1fd), we have

Vip(2r41) > E[\II'YT («TT+1)] > E[\I’O(ﬂfTH)] — 1By 2 5 — Y1 By (65)
Let us define I'; and Ilj as , ie.:
o M2 L2 0.2 M2 0.2
Ft = RN 42 2Gblb12 5 1/2 < z bq;'y o + d);; )7
s(bMprs +biL3M2 )

= M2 L2 0.2 M2 0.2
V 26b1b F ®
I, := — )1/2 < + — .

N bO b
472 2 2 0
3 (blMFLfb'yO +b1LFM¢’Y0
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Then, summing up from ¢t := 0 to ¢t := T, and using these expressions, , and , we get

T

0, Lyp1(1—fr)? Lo
3 el o] Bt i) +or SO T

Dividing this inequality by El—g, where X7 1= Z?:O w = Zt 0 L , we obtain

T
5y ekl (w0?) < g (Blwaten) — wE] +780) +

81,
(1 — Bo)t/?

T
16 Lyp1(1— By)?
+ Y

Sr = (1= Ber)/?

Finally, due to the choice of Zr and fr, we have ¢ ZtT:O wiB (|G, (z)]1?] = E[||G5, (Z7)|?]. This
relation together with the above estimate prove ([59)). O

B.3 The proof of Theorem The smooth case with constant step-size

Now, we prove our first main result in the main text.

The proof of Theorem in the main text. First, since py = 1 > 0, we can set 7 := 0 for
all ¢ > 0. That means, we do not need to smooth ¢g in . Hence, from , 0, = Oy =

M2 Ly, \/ 26b1b .
Eooo V20l o and g = o, where Lg, is defined by (T8).
3(MALZ bi+M3 L3b1) T Yo

Next, given a batch size b > 0, let us choose the mini-batch sizes by := col;o > 0, by =by:=b> 0,
and by = by := ¢ob for some ¢y > 0. We also choose a constant step-size 6, := 6 € (0, 1] and a
constant weight 3; := 5 € (0, 1] for all ¢ > 0. We also recall P, @, and Lg, defined by .

With this configuration, the first condition of and 0 < .41 < ¢ are automatically satisfied,
while the second one becomes

ﬁ>max{0,1 5 L2 (ME|K|* + col| K|IPLE )}:max{Ol PQb}. (66)

Moreover, we also obtain from , , and that

(6, = 0= 8Ly /cob(1—5) Lag[b(1-8)]"/2
VSR |+l K [PMELE) 72 I
P, — o YBMEIEPRralKPME) @ o
3v/ab(MA K [[*+eo K 2L3.012) PVb?
M, — V26b( M2||K || Yo% +co K |2 M3 02) @ o
3/asbo (MK [4+eo | K202 02) Pho ’
YXr = Zt 0 E = 9(2“;;1) — w_

Furthermore, with these expressions of I'y, Ily, and %7, reduces to

_ * 8 16Q(1-5
E[IG,@I?] < g g ElYol@o) — W8] + s + 452,
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. 1 2(1-8) n =1 b/
Trading-off the term W p@ T 5 over B € (0,1], we obtain 8 :=1 o (T2
L, b®/*

. . Loy [b(1—p)]'/? .
shown in . In this case, 8; = 0 = ] (P W= Plo(T 1 ] as shown in .
Now, let us choose by := ¢Z[b(T + 1)]'/? for some ¢; > 0. Then, the last inequality leads to

which has

_ 16P/c 24
E[l1Gy(@0)|I?] < ﬁ[@o(m) — 5] + W

Hence, if we define Ag as in 7 ie.:
24
Ag = 16P\/a[\110(560) — ‘110] + le’

then we obtain from the last inequality that holds, i.e.:

) A
E[16n)IP) < 5 T

3/2
Consequently, for a given tolerance € > 0, to obtain E[||G,(Z7)||?] < €2, we need at most 7" := L%J

iterations. In this case, the total number of function evaluations F(z¢, &) is at most

coc%Aé/Z n 360A3/2.

Tr = bo + (T + 1)(2bs + b2) = cof [B(T + 1)]'/* + 3eo(T + 1)b = =3

Alternatively, the total number of Jacobian evaluations F/(z¢, ) is at most

27\ 1/2 3A3/2
€189 n 0

Ty i=bo + (T + 1)(2b1 + b2) = AB(T + 1)]"/° + 3(T + 1)b = s

. . 1/2 . 1/2 2 . . .
Finally, since 8 :=1— W, the condition leads to 7 (Tb+1)]1 7z < LI?: b which is equivalent
~ L4
to bo(fgﬂ) > % as shown in Theorem O

B.4 The proof of Theorem The smooth case with diminishing step-size
The proof of Theorem in the main text. Similar to the proof of Theorem with puy, =
M2 L\ 26b1by and @t — 0

1> 0, we set 4 = 0. Hence, we obtain ©; = ©p = - 73 SE =
3(M§L§Ob1+M§OL2Fb1) T Y i—ob

Next, given a mini-batch size b > 0, let us choose the mini-batch sizes by := 00130, by = by 1= b,
and by = by := cpb > 0 for some ¢y > 0. With these choices, the condition becomes

B7(1— ) <1—Bp1 < 1— By and B; > max {0, 1- ﬁ%&,(COMéLéO + L%Mio)} : (67)

Moreover, from and , we have

o, = 3Lay+/cob(1—Pt) Lag [b(1—=B0)]'2
VE6(ME K| +eol K [2ML3) /2 P ’
r, = r- YRRl kP @ g
3v/eb (MA|[K||*+eo| K [2L2M2) b
M, = _RURIEIoErlkPM) @ oy
3sbo (MANK|-+eoll K[2L3.0M3) Pho
| X7 = ZtT:owt:ZtT:o%O - %Zfzo\/@-
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Furthermore, with these expressions of I'y, Iy, and X7, reduces to

T 16P O 8Q
w75 =0 OE[IGn (@) IP] < e T [Yolwo) = W] + 5 oo,

o 16Q (1-Be)?
+ bZszo /717 Zt 0(1 ﬁt+1)1/2

(68)

Let us choose §; := 1 — W € (0,1) as in (21). Then, it is easy to check that S7(1 — ;) <
1 — Bir1 <1 — 5, after a few elementary calculations.

Moreover, we have 6; := P(L%Q\){/g as . In addition, one can easily show that
T T+3
2t=0 m Zt 0 t+21)1/3 2 RYE %[(T + 3)2/3 — 22/3],

(t43)1/3
Zt 0 m Zt 0 (t+2)4/3 > Zt 0 5D <1+log(T +1).

Here, we use the fact that f Ly (s)ds < r(t) < ft ,7(s)ds for a nonnegative and monotonically
decreasing function 7.
Substituting these estimates and /1 — 5y = 21% into , we eventually obtain

T
fogt > im0 OE[I1Gn, (z0)[?] < 3\/5[(T+332)1;/3722/3} [Wo(x0) — W)
s[(r+3)2/3—22/3] L ko b :

Combining this inequality and ﬁ Z?:o OE[||Gn, (ze)||1?] = E[l|Gsr(21)|?], we have proved
for T > 0. O

B.5 The proof of Theorem The non-smooth case with constant step-size

The proof of Theorem [3.3 in the main text. Since j,;, = 0, let us fix the smoothness parameter
v =~ > 0 and the weights 8; = By = 8 € (0,1] for all ¢ > 0. By Lemma , we have

1K ME||IK|P?

Mg, = My|K||, Ly, = o and Lg, = LpMy| K| + ———.

Given batch sizes b > 0 and i)o > 0, for some ¢y > 0, let us also choose the mini-batch sizes as

v gl

Recall that P, @, and Lg_ are defined by . In this case, the quantities in become

0, — 0= M3 L.,/ 26b1b, = ] @M%HI;HZ - @ M127||K||2b1/2’
3(M§L%¢WIA’1+M§WL2Fb1) 3yY(Mz | K|[*+col KI[I* Mg L%) P
I's =T = \/26b1 by - (M%’Lbiv”% + M%a,"%) lb &,
3(biMALS +b113.M3) 2 b PV
Oy = \/26b1 by - (M%Lbi 012” + M;,U%) ' Q\[.
3(biMALS +b113.M3) 0 bo Pbo
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Furthermore, the step-sizes in (57)) also become

0, = o= SLelnbi(-B)2 La, [b(1-B)]"/?
b VRO(Mp LY, b+ M, Liby)!/2 P ’
= = 72
M= T T (370)
Therefore, we have wy := % and

~

0 b(1-pB)]'/?
Y= ZtT:o wp = (g’;l) - (T+1)[g 12)) e

Substituting these expressions into (59)), we can further derive

E[lG,(z7)|”] < W(E[‘I’O(%) — Ug] +’wa)

1 2(1-p) (69)
+8Q | +
From the last term of , we can choose S as =1 — m. In this case, reduces to
B[1GEnI?) < P () - i) ) + 2L (70)
! = T+ W bl (T + 1)

Clearly, from ([70), to achieve the best convergence rate, we need to choose by = A[b(T + 1)]*/3.
Then, since we choose 0 < v < 1 and E[Wo(zo)] = ¥o(20), (70) can be overestimated as
Ao

E[)|Gy(z1)|?] < (T + 12"

which proves , where Ag is defined by , ie.

Ao :=16P /e (Wo(zo) — U§ + By) + <.

C1

A3/2
Now, for any tolerance ¢ > 0, to obtain E[[|G,(Z7)||*] < €2, we require at most T := {Abgg,J

iterations. In this case, the total number of function evaluations 7 is at most

3co AS/Q
~2Ze3

Al/2
CoC%AO/
yie

_l’_

Te = bo+ (T +1)(201 +b2) = BAB(T + )]V + 22[0(T + 1)] =
Alternatively, the total number of Jacobian evaluations 7Ty is at most

- . . A1/2 A3/2
Ty = bo+ (T +1)(2by + bo) = cr[b(T + 1)]V/3 + 36(T + 1) = G20 | 3807

€ g3

If we choose vy := coe for some ¢y > 0, then

Al/2 A3/2 A3/2
Tr = oty +3COA°/ =O<AO/ )

2.3 2.5 5
c5€ c5€ €

which proves the last statement. O
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B.6 The proof of Theorem [3.4: The nonsmooth case with diminishing step-size

The proof of Theorem in the main text. Using the fact that py = 0, from Lemma [A.T]
we have

1K |2 ME| K]
Md,% = ]\4,;,”}(”7 L(z,% ’)/t , and Lq,% = LFM¢||K” + i 1 el L

)

where 4 > 0, which will be appropriately updated. Moreover, let us choose by := CS/BO by = by == b,
0

and b} = b} := Cob > 0, for some b > 0 and cg > 0. We also recall P, Q, and Lg. from (18).
With these expresmons the quantities defined by (56)) and . become

6, - BLay, (Db (1-60)])"/2 @ Loy, OOI
t = —

V26(MELY bi+Mg L3bi)/2 ’
0, — M3 L., 1/ 260} b1 (18) MZ| K| %bt/2

N 1/2 — v P ’
472 2 123t
3(MFL¢% b1+M¢7z LFbl)

7 2712 2 2 2
. (M ) @ o
: - 1/2 b 5 Vb’
4712 tr2 2 2 2
s(bamprs +virzmz )
7 2712 2 2 2
o /26695, (MFL%UF N M¢WOUJ> 18) Qvb
= 72\ b b = b
4712 or2 2 0 0
S(blMFL¢WO+b1LFM¢WO)

Let us choose 5 := 1 — m € (0,1) and  := W as in (25)). Then, it is easy to check that

Bg(l_ﬁt)<l_5t+l<1_/3t.
e ~ o, ~ ©f

In addition, as before, one can show that
T T T+3
Y=o V1~ Bt = Yo Gy 2 o 3?73 = 3[(T +3)%/® — 22/9],
t+3)1/3
Zt 0 m Zt 0 (t+2)4/3 = Zt 0 5D <14 log(T +1).

Using these estimates, we can easily prove

2/3_92/3
Y= ZtT:O we = g ZtT:O V1—05 > 3\/5[(T+g}3 2,
T Typ1(1-5¢)? < Q[1+log(T+1)]
=0 B PVb

Substituting these inequalities into and using /1 — By = 21%, we further upper bound

. B
E[19,(20) 2] < 5z (Yolwo) = V5 + s

16Q 91/3 | 2(1+log(T+1))
+ st (5 + )

)

which proves . O
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C The proof of technical results in Section 4} Restarting variant

The proof of Theorem [{.1: Restarting variant. Since v := 0, by = by := b and by = by := cob,
from , using the superscript «“(s)” for the outer iteration s, and P and Q from , we have

4 (s) (), QUL—p)32
toze ELIG 1P < Votaf”) —Votaf) + =,
Summing up this inequality from ¢ := 0 to ¢t := T, and using the fact that #°~! := xés) and
%= ngil, we get
T
51 oy, QT 1)1 - B2
Z (162§ I2) < Vo(@*!) = Vo@*) + 2 o

Using the choice bg := col;o, similar to the proof of , we can show that

V(@) = E[Wo( )] + SE[|IEyY — F@@Y)|?] + SE[|IFSY — F/(z5 )2

< E[Wo(#- )]+2P§Obj//L

Using this estimate and and Vp(2%) > Uy(Z°) into above inequality, we can further derive

16L s 16QLa, (1—B)3/2
ﬁZ?O G (=1 < gy [Po(@71) — o (a)] +%
" 8QL4,Qb1/2
PO(T+1)bo/1-8"
3/4
Due to the choice of by and bl, it follows from ) that 3 :=1— % and 6 := Wil)]l/“'
0
Therefore, the last inequality becomes
16Phy/* 240
g —— 0 (W25 — U (7%)] + ————.
> Bl I < gy ol@) = @]+ oS

Summing up this inequality from s :=1 to s := S and multiplying the result by %, we get

S T 16Pb1/4 ~ _ 24Q)
T+ 5 ZZE Gy (2 ] W[Wo(xo) _ \Ifo(g;s)] + W.

s:l t=0
Substituting Uo(z%) > \Ila into the last inequality, and using the fact that E[[|G,(zn)|*] =
S(T+1 Zs 1Et =0 [Hgﬂ( H ] we obtain

E[1G, @I = sy Tomt Do E[IGn (2)]?]
16Phy*

~ * 24
swers e [0(3°) — ] ¥

Bob(T+D)]1/2°

which is exactly .
Now, for a given tolerance ¢ > 0, to obtain E[||G,(Zk)||?] < &2, we need to impose

16Phy/* £2 240 £2
=— and ——7——— = .

S[b(T + 1)]3/4 2 [bob(T 4+ 1)]1/2 2
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This condition leads to N = S(T' + 1) = ;pr&# and bob(T + 1) = 48 Q . Hence, the total

32P[bob(T+1)]*/* _ 128P\/3Q
be? - be3 )

number of iterations is N := S(T'+ 1) =

Clearly, to optimize the oracle complexity, we need to choose T'+ 1 := 489 then by == 4%9 and

b€2 I
S = \/83%5. In this case, the total number of function evaluations is at most
48Q 8P 16P+/3Q 384P\/3Q 400P+/3Q)
=05 +3S(T"+1)=—- —— 4+ 3bN =
Tr 08 +3bS(T +1) ez /3Q¢ * g3 g3 g3
This is also the total number of Jacobian evaluations 7. O

@‘>

The proof of Theorem [{.2 Let us first choose by =by:=0b, by = by := Cob , and by 1=
the same line as the proof of (| ., we can show that

. With

70 S BlIG,@P] < ot [E[Yo(af)] — E[Wo(a),)] + 7By

1 2(1-8)
+ 8¢ [éo(l—ﬂ)(T+1)+ b }

Here, we use the superscript “(9)” to present the outer iteration s. Moreover, instead of ¥¥, we keep
\Ilo(ngi_l) from . Now, using the fact that 257! = xés) and Z° = mgf_)i_l, we can further derive
from the above inequality that

7 S EllG )P < W[ﬂ‘:[%(ﬁ_l)] —E[¥o(2°)] + vBy]

+8Q [ + 52

Summing up this inequality from s := 1 to s := S, and multiplying the result by %, and
then using 0 < v < 1, ]E[\IIO(NO)] = Wy(z°), ¥o(z%) > ¥} > —oo, and E[||G,(zn)?]

S(T+1 Zs IZt 0 [Hgn( )H ] we arrive at

E[IG,@I2] = aiys S S E[IG () 2]

16P -0

< sarmpag PoE°) — ¥ + By

2(1-5)
+8Q | + 52

Next, let us choose f5:= 1 - (T+1) and by := (T + 1). Then, the above estimate becomes

16 P 240

" o7 (Yo() = U+ By] +

[Gn(@)I) < bS(T + 1)1/2[ 0(z") + By| + T

Let us define Ry and Ry as in , ie.

Ry := 16P [\Ilo(:i‘o) —U* 4+ B¢] and Ro:= 24Q).

In this case, for a given tolerance € > 0, to achieve E[[|G,(Zn)||*] < €2, we can impose

Ro _ 62 d
bS(T+ 072 2 ™ T+1)~ 2
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e _ 2Ry - 2R _ V2R — €
These conditions lead to 7'+ 1 = <3 and S := BT+DIZE = oo R Let us also choose v := o
Then, we also obtain the parameters as in , ie.

. 2cobR 7 - . AcoR _ 2R
blzbg.:%, by = by :=b, by:= 0, pg:= 2o

e — 1 b2
and (:=1 A

Y= 2R07 2

The total number 7r of function evaluations F(mgs),ft) is at most

2Ry rdcoR2 2Ry 6cobR A2e0RoRY? (1

. S+ 3
be/Ry b € g2 g2 €5

b
The total number T of Jacobian evaluations F’ (xgs), &) is at most

Ty = S[bo + (T + 1)(2b1 + bo)] =

\/§R0 |:2R0 n 6bR0:| _ 2\/§R0R(1)/2 i 6\/§R0Ré/2
ber/ Ry be3 g3 '

These prove the last statement of Theorem [4.2] O

g2 g2

D Experiment setup and additional experiments

This appendix provides the details of configuration for our experiments in Section [, and presents
more numerical experiments to support our algorithms and theoretical results. As mentioned in the
main text, all the algorithms used in this paper have been implemented in Python 3.6.3., running on
a Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

Let us provide more details of our experiment configuration. We shorten the name of our
algorithm, either Algorithm [I] or Algorithm [2] by Hybrid Stochastic Compositional Gradient, and
abbreviate it by HSCG for both cases. We have implemented CIVR in [38] and ASC-PG in [32] to
compare the smooth case of ¢g. For the nonsmooth case of ¢, we have implemented two other
algorithms, SCG in [3I], and Prox-Linear in [28], 39]. While SCG only works for smooth ¢, we
have smoothed it as in our method, and used the estimator as well as the algorithm in [31], but
update the smoothness parameter as in our method. We also omit comparison in terms of time
since Prox-Linear becomes slower if p is large due to its expensive subproblem for evaluating the
prox-linear operator. We only compare these algorithms in terms of epoch (i.e., the number of data
passes).

Since both CIVR and ASC-PG are double loop, to be fair, we compare them with our restarting
variant, Algorithm [2] To compare with SCG and Prox-Linear, we simply use Algorithm [I] since
SCG has single loop. Since Prox-Linear requires to solve a nonsmooth convex subproblem, we
have implemented a first-order primal-dual method in [5] to solve it. This algorithm has shown its
efficiency in our test.

Note that the batch size b is determined as b := L%J, where N is the number of data points, and
nyp is the number of blocks. In our experiments, we have varied the number of blocks ny to observe
the performance of these algorithms. Since we want to obtain the best performance, instead of using
their theoretical step-sizes, we have carefully tuned the step-size 1 of three algorithms in a given set
of candidates {1,0.5,0.1,0.05,0.01,0.001,0.0001}. For our algorithms, we have another step-size 6;,
which is also flexibly chosen from {0.1,0.5,1}. For the nonsmooth case, we update our smoothness
parameter as 7y := W, which is proportional to the value in Theorems and

To further compare our algorithms with their competitors, we provide in the following subsections
additional experiments for the two problems in the main text.
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D.1 Risk-averse portfolio optimization: Additional experiments

Figure [l in the main text has shown the performance of three algorithms on three different datasets
using 8 blocks, i.e., ny = 8. Unfortunately, since ASC-PG does not work well when the number of
blocks is larger than 8, we skip showing it in our comparison. To obverse more performance of HSCG
and CIVR, we have increased the number of blocks n; from 8 to 32, 64, and 128. The convergence of
the two algorithms is shown in Figure [3] As we can observe, HSCG remains slightly better than CIVR
if ny = 32 or 64. When n; = 128, CIVR improves its performance and is slightly better than HSCG.
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Figure 3: Comparison of two algorithms for solving on larger blocks.

D.2 Stochastic minimax problem: Additional experiments
For the stochastic minimax problem , Figure [2| has shown the progress of the objective values
of three algorithms on three different datasets. Figure [4 simultaneously shows both the objective
values and the gradient mapping norms of this experiment.

Now, let us keep the same configuration as in Figure[2] but run one more case, where the number
of blocks is increased to ny = 64. The results are shown in Figure

We again see that HSCG still highly outperforms the other two methods: SCG and Prox-Linear
on rcvl. For url, HSCG is still slightly better than Prox-Linear as we have observed in Figure
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Figure 4: Comparison of three algorithms for solving on 3 different datasets in Figure [2| with
both objective values and gradient mapping norms.

However, for covtype, again, Prox-Linear shows a better performance than the other two com-
petitors. Note that since p = 54 in this dataset, we can solve the subproblem in Prox-Linear up
to a high accuracy without incurring too much computational cost. Therefore, the inexactness of
evaluating the prox-linear operator does not really affect the performance in this example.
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Figure 5: Comparison of three algorithms for solving on 64 blocks.

Finally, we test three algorithms: HSCG, SCG, and Prox-Linear on other three datasets: w8a,
phishing, and mushrooms from LIBSVM [6]. We use the same number of blocks n, = 32, and
the results are reported in Figure[6] Figure [6] shows that HSCG highly outperforms both SCG and
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Prox-Linear on w8a and phishing. However, Prox-Linear becomes better than the other two on

the

o

Objective Value

o

o

mushrooms dataset.
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Figure 6: Comparison of three algorithms for solving on three more different datasets.
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