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ABSTRACT

Varying dynamics parameters in simulation is a popular Domain Randomization
(DR) approach for overcoming the reality gap in Reinforcement Learning (RL).
Nevertheless, DR heavily hinges on the choice of the sampling distribution of
the dynamics parameters, since high variability is crucial to regularize the agent’s
behavior but notoriously leads to overly conservative policies when randomiz-
ing excessively. In this paper, we propose a novel approach to address sim-to-
real transfer, which automatically shapes dynamics distributions during training
in simulation without requiring real-world data. We introduce DOmain RAndom-
ization via Entropy MaximizatiON (DORAEMON), a constrained optimization
problem that directly maximizes the entropy of the training distribution while re-
taining generalization capabilities. In achieving this, DORAEMON gradually in-
creases the diversity of sampled dynamics parameters as long as the probability
of success of the current policy is sufficiently high. We empirically validate the
consistent benefits of DORAEMON in obtaining highly adaptive and generaliz-
able policies, i.e. solving the task at hand across the widest range of dynamics
parameters, as opposed to representative baselines from the DR literature. No-
tably, we also demonstrate the Sim2Real applicability of DORAEMON through
its successful zero-shot transfer in a robotic manipulation setup under unknown
real-world parameters.

1 INTRODUCTION

The low sample efficiency of Reinforcement Learning (RL) algorithms and the expensive data col-
lection routine on real hardware have limited the development of fully autonomous robots for the
real world. In addition, trial and error approaches such as RL require random exploration to find op-
timal policies, which raises crucial safety concerns for applications in robotics (Kober et al., 2013).
For these reasons, training in simulation is a promising alternative direction for data-driven robot
learning, providing a safe way to collect data with minimal costs (Zhao et al., 2020). However, the
discrepancy between the simulated environment and the real setup—commonly referred to as the re-
ality gap—ultimately hinders policy transfer (Valassakis et al., 2020). Sim-to-real methods attempt
to close the reality gap in various ways, e.g., inferring simulator parameters from real data (Zhu
et al., 2018), randomizing parameters to encourage policy robustness (Peng et al., 2018; Antonova
et al., 2017), or combining both approaches (Tiboni et al., 2023; Chebotar et al., 2019).

Domain Randomization (DR) is the sim-to-real approach that varies simulator parameters according
to a given distribution at training time (Muratore et al., 2022b), effectively inducing an additional
source of stochasticity over the environment dynamics. Intuitively, DR trades optimality for ro-
bustness (Josifovski et al., 2022): excessively high randomization leads to over-regularized policies
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that are no longer able to reach optimal performance; on the other hand, unnecessarily narrow dis-
tributions may result in policies that fail to generalize. Notably, to address the artificially induced
non-stationarity by DR, we can cast the problem into a partially-observable one, and employ non-
Markovian (e.g., history-dependent) policies to learn adaptive behaviors over the varied dynamics
parameters (Chen et al., 2022). However, DR still requires tedious manual tuning to get candidate
training distributions which would generalize best to the real world (Vuong et al., 2019b).

In response to these issues, various methods in the literature propose to automatize DR for achieving
better zero-shot transfer, in the absence of real-world data. Yu et al. (2018) work around the partially-
observable setting by training dynamics-conditioned policies, but then rely on a test-time parame-
ters search to find an optimal policy. More recent works suggest gradually guiding the training
distribution over time, to maximize the average performance over a fixed reference range of dynam-
ics (Mozian et al., 2020), or over the boundary of the training uniform distribution (Akkaya et al.,
2019). While promising, these works require iteratively testing the policy on out-of-distribution
dynamics or biasing sampled training data towards the boundary of the current distribution. As a
result, considerably more environment interactions than a traditional DR pipeline are needed.

In this paper, we propose a novel method to automatically guide the training dynamics distribution,
without requiring real-world data. We follow the intuition that better generalization can be achieved
with increased diversity of sampled dynamics parameters. Therefore, we propose our method for
DOmain RAndomization via Entropy MaximizatiON (DORAEMON), which directly maximizes
the entropy of the distribution at training time, i.e., gradually solving the task over more diverse
environment dynamics. Crucially, we constrain the growth of entropy by the probability of success
of the current policy, to ensure fair convergence along the process and avoid a performance collapse
from excessive randomization. DORAEMON only requires a notion of task success to be provided
given the task at hand, such as a task-solved return threshold or a success indicator function based
on a custom metric—e.g., distance from a goal location. This way, the DR sampling distribution
can be automatically widened to reach the maximum entropy value such that policy success still
occurs with arbitrarily high probability. As a result, the complexity of the problem shifts from tun-
ing a number of dynamics parameter distributions, to simply defining a binary rule that determines
whether trajectories are considered a success or not. In particular, we found our approach to be
consistently more sample efficient than Mozian et al. (2020) and Akkaya et al. (2019), as no addi-
tional environment interactions are needed for updating the distribution besides episodes naturally
experienced at training time. Our thorough experimental evaluation in simulation demonstrates the
capabilities of DORAEMON to solve common benchmark tasks in a much wider range of dynamics
parameters, hence achieving better generalization than DR baselines. Finally, we show the remark-
able Sim2Real transferability of policies trained through DORAEMON, enabling a 7-DoF robotic
arm to push a box under unknown center of mass, weight, and contact dynamics.

2 RELATED WORK

Domain Randomization (DR) has been widely investigated in recent years as a method to over-
come the reality gap (Muratore et al., 2022b; Zhao et al., 2020). Although initially studied in the
context of randomization for visual properties of simulators (Tobin et al., 2017), our work deals
with the non-stationarity of dynamics distributions—e.g. varying friction coefficients, masses. This
formulation—a.k.a. Dynamics Randomization—generally aims at learning policies that are robust to
changes in dynamics, and demonstrated a number of success stories of zero-shot sim-to-real transfer
for deep DRL (Antonova et al., 2017; Tan et al., 2018; Ding et al., 2021). Interestingly, more recent
works employ history-dependent policies to allow for implicit system identification and adaptive
behavior, which demonstrated superior performance (Peng et al., 2018; Akkaya et al., 2019). This
is permitted by the natural implementation of DR where new dynamics parameters are sampled at
the start of each training episode, effectively inducing latent MDPs (Chen et al., 2022).

Despite better training convergence through adaptivity, training policies with DR still requires con-
siderable manual tuning (Vuong et al., 2019a). For this reason, finding automatic ways to obtain suit-
able training DR distributions would be a promising solution. Simulator-based inference methods
allow the collection of real-world data for estimating posterior distributions over dynamics parame-
ters, which are ultimately used for DR (Tiboni et al., 2023; Chebotar et al., 2019; Tsai et al., 2021;
Muratore et al., 2022a). These methods are often referred to as Adaptive Domain Randomization,
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and generally depart from the inference objective used and/or assumptions over the data collection
routine (Tiboni et al., 2022), i.e. whether only fixed off-policy trajectories are given vs. iteratively
allowing policy evaluation in the real world.

A complementary research direction investigates the sim-to-real transfer challenge in the absence of
real data, as in the scope of this work. Muratore et al. (2019) proposed a novel stopping criterion for
training RL policies in simulation by assessing generalizability within the DR distribution with ad-
ditional policy evaluations. Similarly, Mozian et al. (2020) suggest directly optimizing for average
performance over a reference dynamics range but instead propose to train on a moving distribution
which is guided accordingly. Notably, these methods require frequently evaluating policies through
Monte-Carlo rollouts, resulting in poor data efficiency. Alternatively, Mehta et al. (2020) attempt
to deviate from the usual DR formulation and design a learned sampling strategy guided by policy
search itself: a sampler policy is rewarded for choosing dynamics parameters where the task policy
behaves noticeably more differently than normal. Note how the aforementioned approaches still
crucially rely on a reference DR distribution to be provided at training time, as it is necessary for
assessing generalizability. In contrast, Akkaya et al. (2019) promises a fully automated algorithm
for DR, by leveraging the performance of the policy at the boundaries of a uniform distribution as
a proxy for assessing generalizability in each dynamics dimension separately. As a result, however,
this approach is by definition confined to uniform distributions and significantly biases policy train-
ing on dynamics parameters collected at the boundaries (e.g. half the training time in the original
implementation). In comparison, our work relaxes both these assumptions while addressing the
same general setting—no reference DR distribution must be defined. Interestingly, Akkaya et al.
(2019) also demonstrate that the gradual growth of the sampling distribution yields superior overall
performance w.r.t. a fixed target, likely due to an effect of curriculum learning (Bengio et al., 2009).

In the context of RL, curriculum learning has shown promising results by adjusting the task difficulty
over time (Baranes & Oudeyer, 2010; Fournier et al., 2018; Cho et al., 2023)–i.e. the curriculum.
This line of work resembles our setting in that the training environment is non-stationary and guided
to maximally benefit the agent. In particular, self-paced learning approaches recently addressed
the problem of automatically generating a curriculum towards a final target task by ensuring a suf-
ficiently high degree of performance along the process (Klink et al., 2020b;a; 2022; Koprulu &
Topcu, 2023). Although related, our work deviates from self-paced curriculum learning methods by
maximizing the entropy of a distribution over hidden dynamics parameters to facilitate the gener-
alization of learned policies, instead of making an agent proficient on a specified distribution of a
target task—See Appendix B for a thorough comparison of the two problem settings.

3 BACKGROUND

Consider the discrete-time dynamical system described by a Markov Decision Process (MDP)M,
with state space S, action space A, initial state distribution µ:S → R+, transition dynamics dis-
tribution P:S × A × S → R+ and reward function R:S × A × S → R. At each time t, the
environmentM evolves according to the current state st ∈ S and action at ∈ A taken by an agent,
i.e. the decision maker, with initial state s0 ∼ µ(·). As a result of the state transition, a scalar re-
ward signal rt=R(st, at, st+1) is returned. We then formulate the DR problem by modeling the
simulator as a set U of MDPs with tunable latent dynamics parameters ξ ∈ Ξ ⊆ Rnξ . Each MDP
Mξ ∈ U shares the same state space, action space, and reward function, but differs by its asso-
ciated transition dynamics Pξ(st+1|st, at). Dynamics parameters ξ are generally assumed to be
random variables distributed according to a parametric distribution νϕ: Ξ → R+, parametrized by
ϕ ∈ Φ ⊆ Rnϕ . Such distribution defines the sampling probability of environmentsMξ at training
time. In other words, the agent is iteratively presented with a random sample Mξ and can learn
from experience by collecting trajectories τ = {(st, at, rt, st+1)}T−1

t=0 ∈ T , encoding the resulting
state-action-reward tuples visited. Under this formulation, DR for RL addresses the problem of find-
ing an optimal stochastic policy π∗

θ(at|st) such that the expected (discounted) cumulative reward is
maximized, while acting over an unknown distribution of MDPsMξ, induced by ξ ∼ νϕ(·):

J(θ, ϕ) = Eξ∼νϕ(ξ)

[
Eτ∼pθ(τ |ξ)

[∑T−1
t=0 γtR(st, at, st+1)

]]
,

pθ(τ |ξ) = µ(s0)
∏T−1

t=0 Pξ(st+1|st, at)πθ(at|st)
(1)
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with discount factor γ ∈ [0, 1). In particular, notice how πθ is not conditioned on the latent dynamics
parameters ξ. In turn, this formulation limits the capabilities of the policy to adapt its behavior
according to different environment dynamics. As in partial observable environments, we therefore
adopt the standard approach of considering a history of transitions ψ ∈ Ψ, where Ψ is the set of
all possible histories of transitions of the form ψt = {s0, a0, s1, a1, . . . , at−1, st|st ∈ S, at ∈ A},
where s0 ∼ µ(·) and at ∼ πθ(·|ψt).

4 METHOD

Our method learns a policy πθ proficient on a real-world MDPM∗ by training it purely in simula-
tion on a set of MDPsMξ ∈ U . Given that we do not know which parameters ξ∗ correspond to the
real-world MDPM∗, we maximize the chance of good performance inM∗ by training a policy πθ
that generalizes well to the maximum range of environments in U . To effectively measure the degree
of generalizability across U , we leverage a notion of success for the underlying trajectories τ∈T ,
as it gives a better definition of “acceptable” behaviors across tasks. For example, defining suc-
cess through task-specific knowledge is often more natural for real-world tasks in robotics, as done
in (Florensa et al., 2018; 2017). Thus, without loss of generality, we introduce a simple success
indicator function σ: T → {0, 1}, which may be defined through, e.g., distance thresholds from a
target goal location, task-specific tolerance to errors, or a lower bound on the expected return. Based
on the success indicator σ(τ), the probability of success

G(θ, ϕ) = P[σ(τ) = 1|θ, ϕ] (2)

assesses the capabilities of the policy πθ to solve the task in simulation over multiple dynamics
ξ ∼ νϕ(·). The trajectories τ are now effectively distributed according to the marginal distribution
pθ,ϕ(τ) =

∫
νϕ(ξ)pθ(τ |ξ)dξ. Wider dynamics distributions νϕ(ξ) will generally make it harder for

the policy to keep a high success rate G(θ, ϕ). On the other hand, high variability of environments
Mξ sampled at training time will likely lead to better generalization to the real environment dy-
namics. Following this intuition, we introduce Domain Randomization via Entropy Maximization
(DORAEMON), a constrained optimization problem formulated as

max
θ∈Θ,ϕ∈Φ

H(νϕ) s.t. G(θ, ϕ) ≥ α, (3)

withH(νϕ)=−Eξ∼νϕ(ξ)[log νϕ(ξ)] being the (differential) entropy of νϕ, and desired in-distribution
success rate α ∈ [0, 1] ⊂ R.

DORAEMON aims at automatically finding a policy that generalizes well to the widest range of
dynamics parameters ξ. To this end, we propose maximizing the entropy of the training distribu-
tion νϕ(ξ) to gradually increase the diversity of sampled environments, towards assigning equal
(uniform) probability density to each Mξ ∈ U . While doing so, we ensure that the policy is still
able to retain a desired probability of success α, which prevents policy performance from collapsing
due to excessive randomization. In general, νϕ might not converge to the maximum entropy uni-
form distribution—referred to as νmax, assuming bounded support—but, instead, will stop when the
probability of success α may no longer be maintained. It is worth noting that α does not directly
determine the probability of success G(θ, νmax) of the policy across νmax. Notably, policies with
lower in-distribution success rate α may still generalize better thanks to a higher-entropy training
distribution (see success rate vs. entropy trade-off in Sec. 5).

4.1 ALGORITHMIC IMPLEMENTATION

The objective in (3) requires the joint optimization of the training distribution νϕ and the policy πθ.
In practice, we consider a decoupled optimization of the policy with any RL subroutine of choice,
which interleaves dynamics distribution updates. Therefore, we conveniently rewrite (3) as

max
ϕi+1∈Φ

H(νϕi+1) s.t. G(θi, ϕi+1) ≥ α DKL(νϕi+1∥νϕi) ≤ ϵ, (4)

where πθi has been trained on dynamics parameters drawn from ξ ∼ νϕi
(·). Importantly, πθi

is conditioned on a fixed-length history over previous state-action pairs to account for the non-
observability of environment parameters ξ. In this work, we train policies with Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), and additionally condition the critic network with the true dynamics
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parameters, as in Peng et al. (2018); Akkaya et al. (2019), to further mitigate the non-stationarity
induced by sampling dynamics from νϕ. We then constrain the Kullback-Leibler (KL) divergence
between subsequent dynamics distribution updates. The resulting trust region around νϕi

prevents
abrupt changes and controls the growth of the training distribution during the optimization process.
Note that the probability of success G(θ, ϕ) is equal to Eτ [σ(τ)], as σ(τ) is effectively distributed as
a Bernoulli random variable. Thus, we can approximate the success rate G(θi, ϕi+1) in (4) through
the importance sampling (IS) estimator

Ĝ(θi, ϕi, ϕi+1) =
1

K

K∑
k=1

νϕi+1(ξk)

νϕi(ξk)
· 1{τ∈T : σ(τ)=1}(τk). (5)

In turn, this allows the optimization problem in (4) to be solved using only the set of data
{(ξk, τk)}Kk=1 naturally collected while training the policy πθi for K episodes. In principle, one
could collect additional Monte-Carlo evaluations of the policy to approximate G(θi, ϕi+1) with the
most recent parameters θi+1. However, recycling training data works sufficiently well throughout
our experiments and consequently leads to a more efficient pipeline.

While convenient, approximating the probability of success G(θi, ϕi+1) through IS may lead to over-
estimation of the real success rate under the new distribution ϕi+1, resulting in a violated constraint
when trying to solve (4) at the next iteration. This occurrence may be particularly troublesome for
DR settings, as there are no guarantees that a policy may solve the task over the entire set of MDPs U .
To account for potential constraint violations, we introduce a back-up optimization problem which
attempts to find a new feasible starting solution ϕBi within the current trust region, formulated as

ϕBi = argmax
ϕ′
i∈Φ

Ĝ(θi, ϕi, ϕ′i) s.t. DKL(νϕ′
i
∥vϕi) ≤ ϵ. (6)

In simple words, we find a sufficiently close distribution that has maximum (approximated) in-
distribution success rate. We observed this addition to be crucial for recovering policy performance
by backtracking the distribution entropy, which would otherwise be prevented. The overall practical
implementation of DORAEMON is summarized in Algorithm 1.

In this work, we parameterize νϕ(ξ) as uncorrelated univariate Beta distributions, allowing for sim-
pler comparison with methods that require bounded support. In addition, dynamics parameters are
often inherently bounded due to physical constraints–such as positive values for masses and friction
coefficients–making Beta distributions a reasonable choice. However, the formulation is not re-
stricted to a particular family of parametric distributions or even continuous random variables (See
Sec. A.4)–e.g., discrete distributions over object shapes could be used.

4.2 TOY PROBLEM

We report a practical example of DORAEMON in a toy problem to convey a clear intuition of our
method. Let us consider a frictionless inclined plane, with inclination angle ω (Fig. 1a). An actuated
cart (i.e. the agent) is placed on the plane surface and is subject to gravity force Fg . The cart’s goal
is to apply a counter force at ∈ [−amax, amax] to fight gravity and balance itself around the center
of the plane. In this setting, ξ := ω ∈ [−π

2 ,
π
2 ] ⊂ R is the underlying dynamics parameter for

our problem. Therefore, the objective is to learn a dynamics-agnostic policy πθ which can balance
the cart across the widest range of inclinations ω. First, note how the policy benefits from keeping
a history of past actions and observations for solving the task (see Sec. 3), as ω can be implicitly
inferred from previous state-transitions. The agent can only successfully solve the task for instances
of ω where gravity has a sufficiently low impact. This represents the general problem of learning
under potentially infeasible dynamics in DR settings as the distribution gets wider and wider. There-
fore, we use DORAEMON to automatically find the maximum entropy distribution where the task
may still be solved with probability α without requiring additional domain knowledge. Notably,
the simple task at hand allows us to analytically compute the feasibility boundaries of ω, namely
|ω| ≤ ωc = arcsin amax

Fg
assuming 0 ≤ amax ≤ Fg . This makes it easy to assess the capabilities of

DORAEMON to solve the task over all parameters across the true, feasible range.

We report the results of policies trained with our method in Fig. 1, together with an illustration of
the underlying task. We highlight the effect of the hyperparameter α in shaping the final distribution
(colored in dark blue): policies with lower α values encounter infeasible tasks more often while
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Algorithm 1: Domain Randomization via Entropy Maximization (DORAEMON)
input : Initialize dynamics distribution ϕ1, policy parameters θ1, trust region size ϵ, trajectories

per distribution update K, number of iterations M , success indicator function σ(τ).
output: Generalizable policy πθM

1 for i = 1, . . . ,M do
2 Sample K dynamics parameters {ξk}Kk=1 , ξk ∼ νϕi

(ξ)

3 Collect K associated trajectories {τk}Kk=1 , τk ∼ pθi(τ |ξk)
4 Policy update:
5 Obtain θi+1 through any RL algorithm on collected data {τk}Kk=1
6 Dynamics distribution update:
7 if Ĝ(θi, ϕi, ϕi) < α then
8 Obtain ϕBi by optimizing (6)
9 if Ĝ(θi, ϕi, ϕBi ) < α then jump to next iteration with ϕi+1 ← ϕBi ;

10 ϕstart
i ← ϕBi

11 else
12 ϕstart

i ← ϕi
13 end
14 Obtain νϕi+1

by optimizing (4) with G ≈ Ĝ(θi, ϕstart
i , ϕi+1) (Eq. 5)

15 end

(a) Task illustration

2 c c +2
Angle 

(b) α = 0.5

2 c c +2
Angle 

(c) α = 0.75

2 c c +2
Angle 

(d) α = 0.9

Figure 1: DORAEMON’s moving Beta distributions over the plane inclination angle ω, for different
values of in-distribution success rate α. The converged “max-entropy” distribution is such that the
policy can solve the task with probability α (green for success, red for failure). The physically
infeasible dynamics region is highlighted with a red background.

training, whereas higher α lead to a more conservative final entropy. For each policy, we finally
sample 50 dynamics parameters from the converged final distribution and display them as green
dots to indicate success and red for failure. Here, we define a trajectory to be successful if the agent
balances the cart around the center of the plane for at least 25 timesteps. Overall, regardless of the
in-distribution success rate, all policies learn to solve the task across the widest range of feasible
parameters ω ∈ [−ωc, ωc], which is our ultimate goal.

5 EXPERIMENTS

5.1 BASELINE METHODS

No-DR. We refer to policies trained on a single simulator instance with fixed dynamics parameters
as No-Domain Randomization (No-DR). This naive approach reflects the baseline capabilities to
generalize to the range of environments in U when no randomization is applied.
Fixed-DR. As our method guides the sampling DR distribution over time, we compare it with the
simple popular approach of keeping a fixed distribution at training time. We consider a set of para-
metric MDPs U with bounded support and train Fixed-DR policies with a uniform distribution that
covers the whole range U , i.e. the maximum entropy distribution νmax.
LSDR. Mozian et al. (2020) introduce a novel method to guide DR distributions. In contrast to DO-
RAEMON, LSDR requires a reference DR distribution to be given. Then, a (multivariate Gaussian)
training distribution νϕ is found such that maximum generalization to the reference distribution is
achieved. In our experiments, we set the entropy of the initial distribution to be the same as DO-
RAEMON’s, and we set νmax as the reference distribution.
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Figure 2: Sim-to-Sim results: global success rate computed on the maximum-entropy uniform distri-
bution (top) and entropy of the current training DR distribution (bottom). The number of randomized
parameter dimensions is reported in parenthesis (see Table 2 for details).
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Figure 3: Average test return across 2 dynamics parameters, in the HalfCheetah environment (10
seeds). The green outline highlights the region of cells where a success occurs (σ(τ) = 1).

AutoDR. Automatic Domain Randomization (AutoDR) by Akkaya et al. (2019) gradually increases
the entropy of a uniform DR distribution according to the performance of the policy measured at
the boundaries. Analogously to our work, a notion of success is defined through an average return
threshold, which determines whether the uniform bounds may be widened. As in the original paper,
the sampling distribution νϕ is initialized to approach zero variance and located at the center of U .

5.2 SIM-TO-SIM TRANSFER

We conduct a thorough experimental evaluation of DORAEMON on six benchmark tasks in simu-
lation, from the OpenAI Gym (Brockman et al., 2016) MuJoCo environments. We define a specific
set of randomized dynamics parameters Ξ tailored to each environment–e.g. link masses and sizes,
surface friction coefficients–together with an associated success indicator function σ(τ). We define
success through a lower bound on the trajectory return, to allow a fair comparison with AutoDR and
LSDR which have not been tested before on performance metrics beyond the reward function (see
Appendix A for the full details). We then conveniently use σ(τ) to measure the generalization of
each method across all MDPs ∈ U—namely G(·, νmax)—referred to as the Global Success Rate.

Effect of entropy maximization on policy generalization. The core results of our evaluation are
illustrated in Fig 2. During training, we progressively report the entropy of the (moving) distri-
butions and the global success rate of the policies on the maximum entropy νmax distribution (10
seeds per method). In general, we observe that policies trained with DORAEMON demonstrate a
consistent trend of better and/or faster convergence across all tasks. We found LSDR to steadily
converge to intermediate entropy values as a consequence of their opt. problem formulated as an
M-projection (see Appendix B for details). In contrast, AutoDR was able to regularly increase the
training distribution entropy, albeit with considerably higher variance across different seeds. Yet,
DORAEMON outperforms AutoDR in all environments. We suspect AutoDR shortcomings are due
to inefficient use of training data: collected returns can only be used to update one dimension of
the uniform distribution (at most), or even discarded if the performance threshold is not met. Con-
versely, DORAEMON makes use of all sampled dynamics parameters to update νϕi

, acting on all
parameter dimensions in Φ at the same time. Interestingly, the degradation in performance over time
in the Walker2D and Swimmer tasks is likely due to the agent’s exposure to harder/infeasible param-
eters, which destabilize training. To mitigate this effect, we track the best-performing policy during
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Figure 4: Analysis on the impact of the hyperparameter α (a), and of the provided lower bound
return threshold JLB for defining success (b) in the Hopper environment.

training in terms of global success rate. Finally, we report the performance of the best-performing
policies on the HalfCheetah environment in Fig. 3, by testing on a discretized 2D-slice of the dy-
namics space—the remaining parameters are kept fixed at the nominal values. The figure attests the
ability of DORAEMON to solve the task over the widest range of dynamics parameters.

Effect of curriculum on policy training. Comparing the performances of DORAEMON with
Fixed-DR policies in Fig. 2 sheds light on the importance of gradually widening the training dis-
tribution, rather than sampling parameters from the maximum entropy one directly. DORAEMON
always outperforms Fixed-DR policies—even when it eventually converges to νmax—likely due to
an induced curriculum over dynamics parameters, in line with findings in Akkaya et al. (2019).

Success rate vs. Entropy trade-off. The in-distribution success rate α regulates the trade-off be-
tween increasing distribution entropy and exposing the agent to dynamics that may not be solved
yet. Limiting the distribution entropy to encompass only successful tasks may stabilize training but,
on the other hand, prevent generalization to out-of-distribution dynamics that have never been seen.
We study this trade-off and report the results for the Hopper environment in Fig. 4a. We find that the
value of α = 0.5 generalizes sufficiently well—likely due to training on higher entropy values—and
selected this value for all our experiments. This way, we assure that a desirably high median return
is maintained. Notably, the median is not affected by the value of catastrophic returns collected
on infeasible dynamics parameters, as a plain average would. This further motivates the use of the
success rate as a metric to guide our entropy maximization objective, rather than the average return.

Performance vs. Entropy trade-off. While α is a hyperparameter of our method, the success in-
dicator function σ(τ) should be defined through domain knowledge. The algorithm should behave
agnostically w.r.t σ(τ), hence tracking the desired success rate α equally well, regardless of the
success threshold defined. Fig. 4b illustrates this behavior for the Hopper environment, by setting
σ(τ) = 1{τ∈T : J(τ)≥JLB}(τk), for three performance lower bounds JLB={1400, 1600, 1800}, with
fixed α=0.5. We report the median performance and study the ability of DORAEMON to collect
returns J(τ) ≥ JLB at least half the time along the process. We observe that the algorithm success-
fully exploits the success indicator to drop below optimal performance as much as the respective
thresholds allow, trading performance for robustness to wider dynamics (i.e., higher entropy).

5.3 SIM-TO-REAL TRANSFER

We finally assess the proposed method in obtaining policies that can transfer well to the real world.
To this end, we design a novel dynamics-sensitive task tailored to the study of learning generalizable
policies across unobservable dynamics. We introduce the PandaPush environment, a 7DoF robotic
manipulation task with the goal of pushing a square box with unknown center-of-mass towards a
target location1. We reproduce the real setup in simulation with MuJoCo’s physics engine (Todorov
et al., 2012) and use DORAEMON to train a single policy that can be successfully deployed over
different center-of-mass configurations (see Appendix C for details).

We consider a total number of 17 dynamics parameters to mitigate the reality gap, including box
mass (1), surface friction coefficient (1), joint damping and friction (14), and center of mass (1)
along the perpendicular axis to the pushing direction. We remark that adding the randomization
of more parameters besides the center of mass is crucial to get a smooth deployment of policies in
the real world. We report the results of our method compared to the baselines in Tab. 1. Notably,
we observe impressive behavior both in simulation and on the real setup when deploying policies
trained with DORAEMON (cf. Fig 6).

1Videos available on the project website https://gabrieletiboni.github.io/doraemon/.
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No-DR Fixed-DR LSDR AutoDR DORAEMON (ours)
Sim2Sim success rate 15.06% 0.02% 37.77% 30.45% 66.57%

distance to target (cm) 11.66± 6.55 21.04± 2.70 8.30± 7.38 8.27± 6.39 3.17± 3.04
Sim2Real success rate 13.33% 0% 46.67% 26.67% 60%

distance to target (cm) 8.08± 6.28 23.26± 2.25 7.38± 8.69 4.17± 2.07 2.68± 1.01

Table 1: PandaPush task: success rate and final distance of box w.r.t. goal (cm) tested for the maxi-
mum entropy distribution averaged over 10000 rollouts for Sim2Sim, and 30 rollouts for Sim2Real.
The task is successfully solved if the agent pushes the box within a 3cm radius of the goal.

Figure 6: Illustration of a real-world rollout when deploying a policy trained with DORAEMON, at
four snapshots during the 6-second trajectory. The history-based policy shows impressive behavior
right from the start, as slightly touching the box reveals the shifted center of mass, hence the gripper
is promptly moved accordingly (second snapshot figure). The green dot highlights the goal location.

Figure 5: PandaPush setup: the 7DoF
robot arm needs to push a box of vary-
ing center-of-mass to a desired location.

Importantly, we find LSDR to be poorly scalable
to our 17-dimensional dynamics space—the computa-
tional complexity for approximating J(θ, νmax) through
Monte-Carlo policy evaluations grows exponentially with
the number of randomized dynamics—leading to higher
variance across multiple seeds. Analogously, AutoDR
shows limited performances, which we attribute to the
data-inefficient growth of the uniform distribution, i.e.
slower pace than DORAEMON. In turn, this prevented
AutoDR policies from encompassing enough variability
in the dynamic space to generalize well to the real world.
Finally, all 10 policies trained on a fixed wide DR dis-
tribution (Fixed-DR) are unable to learn any meaningful
behavior, highlighting the problem of learning on excessively diverse dynamics.

6 CONCLUSION AND DISCUSSION

We presented a novel method for Domain Randomization via Entropy Maximization (DORAE-
MON), which constitutes a significant step in addressing the sim-to-real transfer gap in Reinforce-
ment Learning (RL). DORAEMON automates the selection of simulator dynamics parameters at
training time by progressively widening the sampling distribution, alleviating the need for costly
real-world data and manual tuning. Importantly, we constrain the entropy maximization such that
sufficiently high policy performance is maintained along the process. In turn, DORAEMON profi-
ciently balances the trade-off between policy convergence and generalization, i.e. a common chal-
lenge in domain randomization. Our empirical results, both in Sim2Sim control tasks and a versatile
Sim2Real manipulation task with a 7DoF robotic arm, showcased the superior performance of DO-
RAEMON w.r.t. representative baselines, underscoring its potential in narrowing the reality gap.

Limitations. We suspect DORAEMON performance might suffer from collapsing to some “easy”
region of the optimization landscape when backtracking from the current distribution—see Ap-
pendix B for details. Adding a KL constraint between the current policy and the best-performing
policy found during training could perhaps prevent catastrophic forgetting in these cases. Moreover,
if prior knowledge of the dynamics is given, it may be beneficial to bias the growth of the distribution
to stay around it, despite being a harder optimization problem to solve.
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Parameters Boundaries JLB threshold

CartPole, SwingUpCartpole (2D) Gravity (1D) [2.39, 17.21] 400, 4200Pole length (1D) [0.12, 0.88]

Hopper (7D)
Link masses (4D) [0.35, 9.75]

1600Joint damping (3D) [0.17, 2.93]
Surface Friction (1D) [0.17, 2.93]

Walker2D (13D)

Torso mass (1D) [0.88, 6.19]

1600

Thigh masses (2D) [0.98, 6.87]
Leg masses (2D) [0.68, 4.75]
Foot masses (2D) [0.74, 5.15]
Torso size (1D) [0.10, 0.70]
Thigh sizes (1D) [0.11, 0.79]
Leg sizes (1D) [0.15, 1.05]
Foot sizes (1D) [0.05, 0.35]
Friction Left Foot (1D) [0.48, 3.32]
Friction Right Foot (1D) [0.22, 1.58]

HalfCheetah (8D)

Torso mass (1D) [0.32, 12.4]

5000

Back thigh mass (1D) [0.08, 2.99]
Back shin mass (1D) [0.08, 3.08]
Back foot mass (1D) [0.05, 2.08]
Front thigh mass (1D) [0.07, 2.78]
Front shin mass (1D) [0.06, 2.30]
Front foot mass (1D) [0.04, 1.66]
Surface friction (1D) [0.02, 0.78]

Swimmer (7D)
Link masses (3D) [28.42, 40.70]

112Link sizes (3D) [0.08, 0.12]
Viscosity coefficient (1D) [0.08, 0.12]

Table 2: Search space boundaries for all the randomized parameters of the considered simulation
tasks, together with the lower bound return threshold used for defining success.

A SIM-TO-SIM EXPERIMENTS

Here, we describe the details of the experimental setting carried in simulation, on 6 tasks from the
OpenAI gym suite of environments.

A.1 SIMULATION ENVIRONMENTS SPECIFICATIONS

For each test environment, we select a number of dynamics parameters to formulate the Domain
Randomization problem tailored to the properties of the task. The number of randomized param-
eters ultimately define the optimization space for LSDR, AutoDR and DORAEMON. Moreover,
we define finite boundaries for each environment search space, such that a well-defined maximum
entropy distribution exists for benchmark purposes. This allows the comparison of our method with
Fixed-DR and LSDR—which require a reference target distribution to be defined—and allows deal-
ing with inherently physically bounded parameters (e.g. positive values for friction coefficients).

We report the list of randomized properties for each task, together with the search space boundaries
considered, in Tab. 2.

In general, we designed the boundaries to be as wide as possible, while being centered in the nominal
parameter values and avoiding unstable values—e.g. masses or link sizes that are too close to zero.
We therefore optimize policies with DORAEMON using Beta distributions Be(a, b) defined in such
ranges, with initial shape parameters Be(a = 100, b = 100). However, in principle, any distribution
may be used. For LSDR, we stick to the original implementation setting which uses Multivariate
Gaussian distributions, and set an initial diagonal covariance matrix such that the entropy is equal to
the starting distribution entropy of DORAEMON. Note that LSDR required an entropy computation
that follows from truncated Gaussian probability density function, as we resample parameters that
lie outside of the search space. For optimization stability and consistency across different parameter
scales, each dimension is rescaled to the interval [0, 1] at optimization time for all methods. All dis-
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Figure 7: Different random configurations of the Walker2D environment when sampling dynamics
parameters from the maximum entropy distribution.

tributions are initialized to the center of the corresponding search space. We illustrate an example of
randomized configurations for the Walker2D environment in Fig. 7. Finally, an environment-specific
success notion has been defined in order to run AutoDR and DORAEMON, and consequently used
to measure the success rate of all methods. As stated in the main manuscript, the success notion
can be freely defined given domain knowledge and tolerance to errors. Throughout our sim-to-sim
experiments, we define success by means of a simple lower bound on the trajectory return, which
we report in Tab. 2. We design threshold values JLB corresponding to acceptably good qualitative
results—e.g. Cartpole being balanced, Hopper jumping forward)—and such that we roughly stay
around 80% of the performance of a policy trained without DR on the nominal parameters.

A.2 HYPERPARAMETERS CHOICE

We benchmark all methods by training on the same RL subroutine, i.e. with SAC, with identical
hyperparameters. In particular, policies are given the additional information on the 5 most recent
state-action pairs, whereas critic networks are conditioned with the privileged information of the true
dynamics parameters, which get rescaled before being fed to the network. We then individually tune
the hyperparameters of the considered baselines for a fair comparison: for each method, we perform
a grid-search over its hyperparameters to obtain optimal average performance across all tasks; then,
we separately tune a single selected hyperparameter per method on each environment individually.
In particular, we choose to separately tune α for LSDR, ∆ for AutoDR, and ϵ for DORAEMON—
the notation here is referring to the respective papers notation. Note that these parameters generally
regulate the pace of the growing distribution. Fig. 8 demonstrates an illustrative example of the
tuning process of ϵ for DORAEMON. We observe that higher values allow the distribution to grow
faster, but may lead to excessive update steps which hinder policy training and generalization. Inter-
estingly, regardless of the choice of the trust region size ϵ, the backup optimization problem in (6)
allows the entropy to be adjusted—e.g. slightly reduced—to maintain the desired in-distribution
success rate α = 0.5. As a side note, this effect is however harder to notice for distributions that
are close to the max-entropy uniform state, as even considerable changes to the distribution param-
eters only marginally affect the entropy in this region—i.e. the derivative of the entropy w.r.t. the
Beta parameters Be(a, b) approaches zero as (a, b)→(1, 1). With this in mind, in Fig. 9 we observe
an example of noticeably different Beta distributions, despite seemingly having the same entropy
according to Fig. 8. Exceptionally for LSDR, we also vary the number of Monte Carlo (MC) evalu-
ations in the reference distribution, as it’s crucially affected by the dimensionality of the dynamics
space. We then set LSDR to collect 20 · nξ episode returns—where nξ is the number of randomized
parameters—which is in line with the original paper experimental setting. Importantly, notice that
while a higher number of evaluations generally leads to a better approximation, this translates to a
much higher number of environment interactions w.r.t. the baselines. In the case of AutoDR, we
also have the flexibility to choose a ”low” return threshold value tL, used to backtrack the uniform
distribution when average boundary performance falls below tL—the analogous mechanism the we
induce with our backup optimization problem in (6). In contrast to our implementation, however,
this required an additional parameter to be selected for AutoDR: we then set tL to be half of the
return threshold JLB throughout our experiments, as done in the original work (Akkaya et al., 2019).
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Figure 8: Sensitivity analysis of the trust region size ϵ on Hopper (top), Walker2D (middle), and
HalfCheetah (bottom) environments, with α=0.5. DORAEMON is able to consistently maintain
the in-distribution success rate even for larger trust region sizes. SR stands for success rate.
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Figure 9: Comparison of Beta distributions at different times during training with DORAEMON on
the Walker2D environment with ϵ = 0.05 (see Fig. 8b for comparison). The green Beta distribution
obtained after 5M timesteps (entropy=9.93) is adjusted along the process to maintain the desired
in-distribution success rate, and eventually converges to the orange distribution after 15M training
timesteps (entropy=8.46).

Overall, we select the best configuration found in terms of global success rate. Refer to our public
code implementation at https://gabrieletiboni.github.io/doraemon/ for the full
reproducibility of our experimental evaluation.

A.3 SUCCESS RATE VS. ENTROPY TRADE-OFF

This section augments and summarizes the homonymous analysis in the main experimental section
(Sec. 5.2) with further experiments and considerations on the trade-off between the hyperparameter
α and its effect on policy training and generalization. We illustrate the overall results of this analysis
in Fig. 10. To interpret the figures effectively, we shall look at the evolution of in-distribution success
rate w.r.t. the growth of entropy, and ultimately how these policies generalize by means of global
success rate. Intuitively, a higher value of α=0.9 constrains DORAEMON to be conservative with
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Figure 10: Analysis on the impact of the hyperparameter α on Hopper (top), Walker2D (middle), and
HalfCheetah (bottom) environments. The desired in-distribution success rate α={0.5, 0.75, 0.9} is
tracked effectively by DORAEMON.

the increase of entropy, leading to policies that likely overfit on in-distribution dynamics and poorly
generalize. On the contrary, a less restrictive value α=0.5—i.e. allowing the policy to encounter
more failure cases on diverse dynamics parameters—proved to be more effective, a result that we
attribute to the higher entropy value reached at convergence. Overall, note how DORAEMON is
able to consistently maintain the desired in-distribution success rate regardless of the chosen value.
This capability can be mostly attributed to the backup optimization problem in (6), as demonstrated
by our ablation study in Fig. 13.

A.4 BEYOND BETA DISTRIBUTIONS

DORAEMON’s optimization problem as defined in (4) is not limited to a particular family of para-
metric distributions. While bounded-support distributions—such as Beta’s—are particularly well
suited for the Domain Randomization setting, DORAEMON may work with any family whose en-
tropy (for the objective function) and KL-divergence (for the trust region constraint) may be conve-
niently computed. We therefore compare our method with an implementation that parameterizes the
DR distribution as an independent Multivariate Gaussian (i.e. unbounded). Although not generally
necessary, we still resample dynamics parameters at training time that fall outside of the search space
boundaries defined in Tab. 22, in order to fairly compare the results w.r.t. the Beta family. Overall,
DORAEMON simply maximizes the entropy of the Gaussian distribution, which is allowed to grow
in variance indefinitely. Note how this is in contrast with the KL-divergence term of LSDR’s ob-
jective, which considers the M-projection formulation. As a result, LSDR optimization problem is
analogous to a maximum likelihood objective, rather than a maximum entropy one—assuming tar-
get uniforms. We illustrate the comparison of DORAEMON implemented with Beta vs. Gaussian
distributions in Fig. 11. The two implementations generally exhibit similar behavior, but may still

2The Truncated Gaussian implementation of the Scipy library is used for this purpose, as naive consecutive
resampling may become increasingly more time consuming as the entropy of the Gaussian increases.
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entropy of the current training DR distribution (bottom), for distributions parametrized as inde-
pendent Beta vs. Gaussian. The number of randomized dynamics parameters per environment is
reported in parenthesis.
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Figure 12: Comparison of Beta vs. Gaussian distributions at different times during training with
DORAEMON on the Walker2D environment (training timesteps in parenthesis). When considering
fixed feasible boundaries for DR parameters, a Beta distribution proves to be more suitable as it can
inherently converge to a uniform distribution over the defined boundaries.

be chosen according to the specific task at hand. In particular, we depict an example of distributions
encountered during the training process in Fig. 12, respectively for the two parametric families. De-
spite showing a similar global success rate, it is likely that the Gaussian parametrization may bias
the learner around the mean of the distribution, resulting in poorer generalization towards the corner
of the boundaries considered.

B CONNECTIONS WITH CURRICULUM LEARNING

The idea of training reinforcement learning agents under moving MDPs isn’t confined to the do-
main randomization setting in sim-to-real problems, and, e.g., has been concurrently explored in the
field of curriculum learning (CL). In particular for the latter setting, self-paced algorithms (Klink
et al., 2020b;a) are formulated as constrained optimization problems that automatically increase the
difficulty of the task—i.e. they find a curriculum over the task space—allowing the agent to progres-
sively learn complex target tasks that would otherwise be unfeasible to solve from scratch. Likewise,
Huang et al. (2022) and Klink et al. (2022) recently proposed framing CL as interpolations between
a source (initial) and a target task distribution by formulating it as an optimal transport problem.
Interestingly, the curriculum learning problem shares similarities with the DR setting, as different
simulation parameters may be analogously considered as different tasks—see Sec. 4.1 of the recent
survey by Muratore et al. (2022b). This becomes particularly clear when considering curricula over
MDPs that share the same state and action space, and only differ by transition dynamics. However,
the DR problem importantly departs in that (1) no target task distribution is given, and that (2) the
current underlying task is unknown to the agent at test time—real-world dynamics parameters are
unknown. In turn, DR asks for agents that must not forget previously learned tasks, and that exhibit
generalizable behaviors among latent dynamics parameters.
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Despite the different problem formulations and assumptions, DORAEMON draws inspiration from
the curriculum learning literature and follows the intuition that more complex tasks may be obtained
with increased diversity of dynamics parameters at training time. As a result, DORAEMON is able
to cope with the lack of assumptions in the sim-to-real problem w.r.t. a standard CL formulation,
while leveraging the flexibility of the self-paced optimization problem for automatically adjusting
the DR distribution.

In this section, we therefore summarize the connections between CL and DR settings, and conse-
quently those between self-paced and DORAEMON algorithms. As we break the discussion down
into paragraphs for the sake of clarity, we will refer to Fig. 13 to support the stated claims with
empirical results.

Unknown target distribution. The CL problem assumes that a target task distribution is given,
indicating the desired tasks that we are ultimately interested in solving. This fundamentally departs
from the DR problem setting, where simulator parameters are randomized to seek generalization to
unknown real-world task distributions. To cope with this, LSDR proposed considering target uni-
form distributions that should be designed to be as wide as possible, making it a hyperparameter
of the algorithm. In contrast, AutoDR removed the dependence on target distributions, and simply
attempts to converge to a uniform distribution that approaches infinite support. Overall, the un-
known target distribution therefore makes CL algorithms impractical to be applied to the DR setting
directly. A common ground between the two settings may still be identified when restricting the
problem to bounded domains of dynamics parameters, and assuming uninformative—i.e. uniform—
target distributions for CL. In such case, both problems would effectively aim to gradually solve all
tasks within the predefined boundaries, with no bias towards any region in particular. As this re-
striction is made throughout our experimental analysis to allow for comparison with LSDR—which
requires a target distribution to be defined in the first place—we can directly compare the results
of DORAEMON with, e.g., SPDL (Klink et al., 2020b). Nevertheless, non-trivial adaptations of
SPDL must still be made to cope with non-observability of dynamics parameters, as clarified in the
following paragraph.

Contextual MDPs vs. Latent MDPs. The CL problem assumes to work with contextual
MDPs (Modi et al., 2018), where an observable context variable—namely the underlying task
parameters—augments the environment and determines the underlying transition dynamics. This
assumption fundamentally differs from a sim-to-real problem, where dynamics parameters are un-
known to the agent at inference time. In turn, solving a sim-to-real problem requires finding an opti-
mal context-agnostic policy of the form π(a|s), in contrast to the conventional context-conditioned
policies learned in CL π(a|s, ξ). Domain Randomization may indeed be conveniently formulated
by introducing Latent MDPs (LMDPs), as recently proposed by the theoretical study in (Chen et al.,
2022). It’s worth noting that context-conditioned policies may still be learned—as simulators offer
full information—but would end up being impractical for deployment in the real world. Previous
work has, e.g., attempted to work around this by inferring dynamics parameters at test time (Yu
et al., 2018). However, the more popular approach is to leverage memory-based policies to gain
information on the underlying transition dynamics, and therefore implicitly on the latent parameters
(see Sec. 9 in Akkaya et al. (2019)). Furthermore, tailored implementation tricks to the sim-to-real
problem setting such as asymmetric actor-critic have been introduced to additionally ease the train-
ing process under partial observability, namely by providing full information to the learned critic
networks which are nevertheless not queried at test time (Akkaya et al., 2019). As reported in our
method Section 4, such implementation details are already included in DORAEMON, but may be
easily overlooked when simply comparing our optimization problem to self-paced methods. We
therefore report a thorough analysis on the effect of each of these components in Fig. 13, as we
show a detailed ablation of DORAEMON from the perspective of SPDL optimization problem. Our
empirical evaluation demonstrates the contribution of each added component, highlighting the im-
portance of accurately dealing with the different assumptions induced by the DR problem setting.
In particular, we notice that history-based policies (SPDL + History) may at times even hinder pol-
icy training w.r.t. standard Markovian policies (SPDL), and only become particularly effective when
combined with asymmetric actor-critic (SPDL + History + Asymmetric). Finally, we report an SPDL
Oracle baseline which reflects the performance of dynamics-conditioned policies π(a|s, ξ) as in a
contextual MDP setting, despite being of little help to solve our problem. Interestingly enough, such
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policies sometimes appear to poorly generalize to out-of-distribution dynamics (see global success
rate curves), likely due to overfitting to the dynamics observed at training time.

I-projection vs. M-projection. Non-trivial connections among DORAEMON, LSDR, AutoDR
and the self-paced methods can also be observed when solely focusing on their optimization prob-
lems. As all these methods attempt to either minimize a KL-divergence objective or maximize
entropy (implicitly for AutoDR and explicitly for DORAEMON), we attempt to study their differ-
ences and similarities from a conceptual and technical viewpoint. Interestingly, self-paced methods
rely on the I-projection objective, which effectively becomes equivalent to a maximum entropy ob-
jective when considering target uniform distributions. On the other hand, however, the I-projection
formulation limits the choice of parametric distributions to be of bounded support that is fully in-
cluded within the target. This limitation led us to design a novel implementation of SPDL with
Beta distributions for the analysis in Fig. 13, departing from the original paper implementation. In
contrast, LSDR proposes an M-projection objective for the DR setting, likely to avoid restricting the
optimization parameters to bounded distributions when considering uniform targets. By doing so,
however, the optimization fundamentally switches to a maximum likelihood objective, providing an
easy explanation as to why Gaussian distributions by LSDR do not converge to high entropy values
in Fig. 2. Overall, DORAEMON does not rely on a KL-divergence objective, hence both (1) does
not need to specify a target uniform and (2) can be implemented with any parametric family (see
Sec. A.4 for DORAEMON with Gaussian distributions). In turn, DORAEMON may be considered
a hybrid formulation that bridges self-paced methods for the DR setting in sim-to-real, conceptually
achieving the best of both worlds. Finally, notice how AutoDR also drops the dependency on the
target distribution, but crucially comes with a number of inherent limitations: it’s confined to uni-
form DR distributions only, may only adjust the distribution curriculum with fixed ∆ steps (limited
flexibility w.r.t. self-paced methods), and may only update one dimension at a time (inefficient use
of training samples).

Effect of the backup optimization problem. Lastly, we discuss the contribution of the backup
optimization problem defined in Eq. (6), the final distinctive technical novelty in DORAEMON’s
formulation w.r.t. self-paced methods. Despite the clean theoretical formulation, the practical imple-
mentation of SPDL must consider approximations of the performance constraint, which could lead
to unfeasible regions of the optimization landscape at the following iteration—namely, experience
an in-distribution success rate lower than α. This aspect has not been explicitly addressed in prior
self-paced works, which simply keep training the current policy when this occurs. However, we sus-
pect this problem to be particularly important to overcome in the DR setting, as it’s harder to assume
that policy performance would increase as we keep training. Conversely, it’s likely that problematic
dynamics parameters may even catastrophically affect the learning process. To this end, we propose
backtracking the entropy distribution by directly looking for maximum in-distribution success rate
within the current trust region. Our empirical analysis in Fig. 13 shows impressive tracking of the α
hyperparameter when the backup optimization problem is included (DORAEMON), which holds for
different environments, different trust region sizes, and different α values (also refer to Fig. 10). In-
deed, notice that all other ablations struggle to keep a feasible performance constraint as the entropy
of the distribution grows (see in-distribution SR curves entering the red-shaded, unfeasible area). As
a side note, we noticed that such addition would not necessarily translate to better global success
rates. After further investigation (see Fig. 9), we conclude that, as DORAEMON gradually attempts
to find easier regions of the dynamics space through backtracking, policies would occasionally suf-
fer from catastrophic forgetting and struggle to retain good performance over previously experienced
dynamics. Future work may investigate more sophisticated ways to track the in-distribution success
rate, while ensuring that critically useful skills for generalization shall not be forgotten. While out
of the scope of this work, multimodal distributions may also be leveraged to isolate problematic
regions in the dynamics space, yet maintain generalizability over feasible dynamics.

C PANDAPUSH TASK

The details of our experimental setting for the PandaPush environment are reported here.

We consider the 7-DoF Franka Panda robotic arm mounted on a table and tasked with pushing a
perfectly squared box of size 10cm per side. We analyze the setting where the center of mass of
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(d) Walker2D (ϵ=0.005)
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(e) Walker2D (ϵ=0.01)

0.25 0.50 0.75 1.00 1.25 1.50
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

In
-d

ist
rib

ut
io

n 
SR

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Timesteps 1e7

15

10

5

0

5

10

En
tro

py

0.25 0.50 0.75 1.00 1.25 1.50
Timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Gl
ob

al
 S

R

SPDL
SPDL + History

SPDL + History + Asymmetric
DORAEMON

SPDL (Oracle)

(f) Walker2D (ϵ=0.05)

Figure 13: Ablation of DORAEMON from the perspective of self-paced methods in curriculum
learning (SPDL). The results demonstrate that all components of DORAEMON are vital to maintain
the desired in-distribution success rate α, while achieving high generalization. The red-shaded area
indicates the region where the performance constraint is violated, i.e. in-distribution success rate
lower than α. SR stands for success rate.
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the box is unknown; hence, pushing the box will result in unpredictable behavior. Notably, policies
are conditioned on a history of state-action pairs, which may be used as information to compensate
for the unknown parameter. Therefore, we aim to learn versatile policies that can solve the task
for a varying center of mass through robust (to the reality gap) and adaptive (to dynamics changes)
behavior. For the sake of clarity, we break down the task implementation into the following points.

State space and initialization. The underlying MDP considers a 20-dim state space, which in-
cludes joint positions (7D), joint velocities (7D), box position on the table (2D), box rotation angle
z about the z-axis (2D encoded as sin(z), cos(z)), and goal position (2D). We initialize the robotic
arm as shown in Fig. 15, such that it is already sufficiently close to the box. The initial location of the
box is randomized with a uniform noise of ±1cm, and we further slightly randomize the box height
by 10cm ± 0.005cm to regularize the learned behavior against specification gaming3—i.e., avoid
cases where the agent would undesirably rely on the box corners or edges to maximize the return.
Finally, we apply a mild Gaussian noise with σ = 0.0011 to the joint velocity observations—an
informed guess based on the noise estimated on the real system.

Action space and controller. The agent interacts with the environment by sending joint acceler-
ation commands, in normalized space [−1, 1] for each joint. We then denormalize the commands
by multiplying for the predefined joint acceleration limits—namely, [6, 3, 4, 5, 6, 8, 8]—and inte-
grate the commanded acceleration forward in time to get a desired trajectory to follow, given the
current joint position and velocity. We then track such trajectory through a PD controller and a feed-
forward term—which is trivially computed by multiplying the inertia matrix by the commanded
acceleration. Overall, we query the policy at a frequency of 50Hz, and follow the resulting low-
level 20ms-trajectory at 1000Hz.

Reward function and success notion. We reward the agent with the current (negative) squared
distance of the box from the goal location, to drive a pushing motion. We further engineer the
reward function to encourage adjustments in close proximity of the goal where the squared distance
alone would be considerably flat. Therefore, we finally design a reward function of the form −d2 −
log(d2+0.01), with d being the distance from the target. The obtained reward signal is then rescaled
such that it starts at a value of zero, given the initial distance to the target. Finally, we additionally
penalize the magnitude of the accelerations commanded by the agent to encourage smooth and
safe execution of the policies. For running DORAEMON and AutoDR, we then define a notion of
success based on the box distance directly. Indeed, note that a desired lower bound on the return
may be cumbersome to define with shaped reward formulations. We therefore denote success for
trajectories where the final location of the box falls within a 3cm distance to the goal.

Domain Randomization. We randomize a total of 17 dynamics parameters to cross the reality
gap in the PandaPush environment. As for the sim2sim experiments, we define a bounded search
space over the parameters to keep a notion of a maximum entropy distribution, used for assessing
generalizability across the baselines. The boundaries of each randomized parameter are reported in
Tab. 3. In particular, we designed them with minimal prior knowledge, and no automatic system
identification. Rather, our goal is to train on maximally wide distributions, such that generalization
can be achieved even without careful estimation of the real parameters. Notably, we set the starting
distribution of LSDR, AutoDR, and DORAEMON to be centered around the values of 0.1 for all
joint damping and friction parameters, which is considerable lower than the center of the search
space. We observe that higher values of these parameters yield to a higher task difficulty, especially
at the early stages of training—i.e. higher friction values make it harder for the agent to start col-
lecting rewards from pushing the box. Interestingly, Fixed-DR policies—which are trained over a
uniform distribution that spans the whole search space—were unable to learn despite including both
low and high friction values.

Evaluation setting. We found the PandaPush environment to be more challenging to learn from
a pure RL perspective, leading to more unstable training curves w.r.t. the MuJoCo testbed envi-
ronments. However, good performing policies were still retained by iteratively evaluating the per-
formance at training time over the maximum entropy distribution, and keeping track of the best-

3Read more on specification gaming at Blog post https://www.deepmind.com/blog/
specification-gaming-the-flip-side-of-ai-ingenuity
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Parameters Boundaries

PandaPush (17D)

Box mass (1D) [0.2, 0.6]
Surface Friction (1D) [0.03, 0.5]
Joint damping (7D) [0.025, 2.5]
Joint friction (7D) [0.03, 3]
Center of mass (1D) [−0.05, 0.05]

Table 3: Search space boundaries for the 17 dynamics parameters randomized in the PandaPush
environment. The center of mass boundaries refer to the shift in centimeters from the geometrical
center, along the perpendicular axis of the pushing direction.

(a) Easy CoM, low friction (b) Hard CoM, low friction (c) Hard CoM, high friction

Figure 14: Illustration of the three configuration settings used for evaluating PandaPush policies in
the real world. We adjust the center of mass (CoM) by replacing the steel bolts inside the box, and
we increase the sliding friction by changing the table top (c).

performing policies by means of highest global success rate. Finally, we compare each baseline by
evaluating the average return and success rate of the best-performing policy across 10000 episodes
in simulation (1000 episodes for 10 seeds), and 30 rollouts in the real world (3 rollouts for 10 seeds).
In particular, we carry out the tests on the real setup by varying the surface friction and center of
mass of the box, resulting in 3 test configuration for which we collect one rollout each (see Fig. 14).

Supplementary results and discussion. We complete the experimental evaluation of the Panda-
Push task by reporting the training curves for all benchmark methods in Fig. 17, averaged over 10
seeds. The training curves reflect the final results in Tab. 1 of the main manuscript, as we observe
a much higher performance of DORAEMON’s policies. We attribute this to the capability of our
optimization problem to efficiently guide the distribution towards high-entropy regions, while main-
taining a steady increase of the global success rate. Interestingly, the performances seem to degrade
significantly when the maximum-entropy distribution is approached (see DORAEMON curves in
Fig. 17 at timesteps 3.5M). In this scenario, DORAEMON finds it hard to quickly recover from
such occurence, opening avenue for future work directions to mitigate such behavior. We then in-
vestigate the moving Beta distribution of DORAEMON during training, and illustrate the history of
encountered distributions in Fig. 16 for a subset of 5 parameters. We find that, while our method
converges to a near maximum-entropy uniform (yellow curve), best generalization is achieved for an
intermediate entropy distribution (green curve). This is analogous to the case of the Walker2D and
Swimmer tasks in Sec. 5.2. We remind that, regardless of the drop in performance due to increased
diversity of the dynamics parameters, for all baselines we keep track of the best-performing policy
while training by means of global success rate, and use this one for real-world evaluation.
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Figure 15: Three random configurations of the PandaPush setup in simulation: the center of mass
(CoM) of the box is randomized along the axis perpendicular to the pushing direction of the box.
This makes it a particularly interesting setup for studying the adaptivity of the learned history-based
policies. The green dot highlights the goal location.
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Figure 16: DORAEMON’s Beta moving distribution across five representative dynamics param-
eters of the PandaPush task (blue curves are more opaque for more recent iterations). The final
converged distribution (yellow) and the best distribution by means of global success rate (green) are
also reported. ”CoM”, ”J. Damping [0]”, and ”J. Friction [0]” abbreviate Center of Mass, first-joint
damping, and first-joint friction respectively.
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Figure 17: PandaPush sim-to-sim results: global success rate computed on the maximum-entropy
uniform distribution (right) and entropy of the current training DR distribution (left).
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