
MobileAgentBench: An Efficient and User-Friendly Benchmark for
Mobile LLM Agents

Luyuan Wang1, Yongyu Deng2, Yiwei Zha3, Guodong Mao3, Qinmin Wang1, Tianchen Min3,
Wei Chen1, Shoufa Chen4

1Carnegie Mellon University
2University of Michigan
3Northeastern University

4The University of Hong Kong

Abstract

Large Language Model (LLM)-based mobile agents are in-
creasingly popular due to their capability to interact directly
with mobile phone Graphic User Interfaces (GUIs) and their
potential to autonomously manage daily tasks. Despite their
promising prospects in both academic and industrial sectors,
little research has focused on benchmarking the performance
of existing mobile agents, due to the inexhaustible states of
apps and the vague definition of feasible action sequences.
To address this challenge, we propose an efficient and user-
friendly benchmark, MobileAgentBench, designed to allevi-
ate the burden of extensive manual testing. We initially define
100 tasks across 10 open-source apps, categorized by multi-
ple levels of difficulty. Subsequently, we evaluate several ex-
isting mobile agents, including AppAgent and MobileAgent,
to thoroughly and systematically compare their performance.
The source code is accessible on our project webpage at
https://MobileAgentBench.github.io, contributing to the ad-
vancement of both academic and industrial fields.

Introduction
With the recent and rapid emergence of Large Language
Models (LLMs) (Achiam et al. 2023), researchers have
developed various autonomous agents across fields such
as robotics (Bousmalis et al. 2023; Reed et al. 2022),
games (Wang et al. 2023b; Du et al. 2023), and mobile
phones (Yang et al. 2023b; Rawles et al. 2023). Among
these, mobile agents have attracted significant attention due
to their potential to enhance user experiences and provide
intelligent assistance on-the-go.

People have been dreaming of Intelligent Personal Assis-
tants (IPAs) (de Barcelos Silva et al. 2020) that can fully
automate daily tasks for decades. Since Apple introduced
its digital assistant, Siri (Apple 2011) in 2011, almost all
the leading technology companies have launched their own
IPAs, including Microsoft Cortana (Microsoft 2014), Ama-
zon Alexa (Amazon 2014), and Google Assistant (Google
2016). While these digital assistants provide a hands-free
human-computer interaction experience using Natural Lan-
guage Interface (NLI), they can only fulfill relatively simple
tasks, such as setting an alarm clock or sending a text mes-
sage (Li et al. 2024). For third-party apps, developers have

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to follow and implement the application programming in-
terfaces and protocols, such that when a user issues a very
specific command, the system can invoke the corresponding
functionality. This limits the usability of those digital assis-
tants.

LLMs contribute significantly to resolving the persistent
challenge of understanding user intent. The demonstrated
reasoning ability (Qiao et al. 2022) highlights the potential
of LLM-based autonomous agents as next-generation Intel-
ligent Personal Assistants (IPAs), which are not limited by
the programming interfaces since they directly operate on
the Graphic User Interface (GUI) (Wang et al. 2024; Yang
et al. 2023b). The GUI can either be represented by a text-
based view tree to be consumed by a LLM or a screenshot
image that can leverage a Multi-modal LLM (MLLM) (Yin
et al. 2023). The action space of the agents composes a se-
ries of functions to simulate human operations, such as click,
type, swipe, etc. In this way, LLM agents can theoretically
achieve whatever human users can do, without any modifi-
cation of the existing apps.

The promising future of LLM-based smartphone agents
attracts more and more researchers to study this topic. How-
ever, the scope of benchmarks available for evaluating the
performance of these agents remains constrained. Among
the existing benchmarks, several prevalent issues are evi-
dent: 1. Scalability and usability. Researchers need to fully
understand complicated data structures and tools before ex-
tending the benchmark with customized tasks or integrating
it into their own codebases (Zhang et al. 2024). 2. Robust-
ness and Flexibility. Only the annotated task completion
path is considered (Rawles et al. 2023; Xing et al. 2024).
However, there might be multiple paths to successfully com-
plete a task, which may break the task success judgment
logic. 3. Realistic environment. Some benchmarks evalu-
ate the agent’s performance based on a collection of screen-
shots but not real devices. It fails if the agent performs an ab-
normal action and goes to an undefined state (Rawles et al.
2023).

To address the issues described, we propose a robust
benchmark, MobileAgentBench, designed to evaluate the
capabilities of mobile LLM agents within the Android
ecosystem. MobileAgentBench offers several advantages
over previous benchmarks due to its ease of use and mini-
mally invasive nature. Specifically, for standard agents, the



Table 1: Comparison between the proposed and existing benchmarks

Benchmark Fully
Autonomous

Realistic
Environment

Flexible
Success Condition

Low Code
Invasiveness

Large
Scale

AppAgent (Yang et al. 2023b) ✗ ✓ ✓ ✓ ✗
AITW (Rawles et al. 2023) ✓ ✗ ✗ ✗ ✓
AndroidArena (Xing et al. 2024) ✓ ✓ ✗ ✗ ✓
AppBuddy (Shvo et al. 2021) ✓ ✓ ✓ ✗ ✗
AndroidEnv (Toyama et al. 2021) ✓ ✓ ✓ ✗ ✓
B-MoCA (Lee et al. 2024) ✓ ✓ ✓ ✗ ✗
AndroidWorld (Rawles et al. 2024) ✓ ✓ ✓ ✗ ✓
LLamaTouch (Zhang et al. 2024) ✓ ✓ ✓ ✗ ✓
MobileEnv (Zhang et al. 2023) ✓ ✓ ✓ ✗ ✓

MobileAgentBench (ours) ✓ ✓ ✓ ✓ ✓

integration process requires fewer than ten lines of addi-
tional code. The benchmark excels in usability and versa-
tility, supporting a broad spectrum of testing tasks across
various Android operating system versions and executing on
actual devices.

In this initial release, we offer 100 built-in benchmark-
ing tasks spanning ten open-source applications. Notably,
MobileAgentBench diverges from traditional approaches
by simplifying the extension process. Third-party devel-
opers can specify the conditions for task success using
just a few lines of Python code, without needing exten-
sive knowledge in Android development. This accessibil-
ity makes MobileAgentBench more conducive to developers
and researchers from non-Android Development communi-
ties. Furthermore, we introduce an innovative method for
determining the task-terminating state, rendering the bench-
mark resistant to the complexities of tracking multiple po-
tential success pathways. This approach ensures that Mo-
bileAgentBench provides reliable and precise benchmarking
outcomes.

The comparison between the proposed and existing
benchmarks is listed in Tab. 1, where fully autonomous rep-
resents if the benchmark does not need human supervision
or judgment, realistic environment represents the tasks can
be run on real devices, success condition flexibility repre-
sents it takes all possible success paths into consideration,
low code invasiveness represents integrating the benchmark
into existing agents does not need significant code changes.

Our contributions are summarized as follows:
• We propose a benchmark framework for mobile LLM

agents. The new approach addresses common issues of
existing benchmarks, making the evaluation process fully
autonomous and reliable.

• We implement and test 100 benchmarking tasks with dif-
ferent levels of difficulty. The benchmark is plug-and-play
and easy for both developing new agents and evaluating
existing agents.

• We evaluate the performance of state-of-the-art mobile
LLM agents and perform a solid and systematic compar-
ison with the new benchmark, providing baseline data to
the community.

Related Work
Mobile LLM Agents
Studies before the LLM-era employed reinforcement learn-
ing (RL) to solve the autonomous GUI navigation prob-
lem (Gur et al. 2018). The recent advancement of LLM and
MLLM becomes the dominant agent paradigm because of
the greater ability of UI understanding and reasoning. Early
studies focused on web agents, which achieve task automa-
tion within browsers (Deng et al. 2024; Zhou et al. 2023).
Recently, more and more studies started to investigate agents
on mobile devices, especially on the Android platform, as
Android smartphones are the most widely used personal
computing devices.

Mobile LLM agents share a similar algorithm. The in-
put prompt often consists of four main components: the task
description, the current UI view hierarchy (VH), the action
function list, and historical information. Specifically, the ac-
tion list mainly includes click, swipe, type, and other com-
mon UI operations. If MLLM is used, the current screenshot
is also a part of the input. The LLM/MLLM is asked to think
of the next action based on the current and historical states
and call the correct function to perform the given task step by
step. The agent finally parses the model response and sends
control signals to the Android device using Android Debug
Bridge (ADB) 1, UIAutomator 2, or other higher-level UI
automation frameworks.

Despite the similarity of the high-level ideas, researchers
have developed different techniques to improve performance
and efficiency. Among these works, AndroidArena (Xing
et al. 2024) transforms the long and overwhelming view
hierarchy XML into a compressed representation and as-
signed UI elements with unique node IDs, which short-
ens the prompt and makes the system more efficient. Mo-
bileAgent (Wang et al. 2024) observes that GPT-4V lacks the
capability of UI element localization, and employs an Opti-
cal Character Recognition (OCR) model to locate and local-
ize text views. Moreover, it uses the CLIP (Radford et al.
1 https://developer.android.com/tools/adb
2 https://developer.android.com/training/testing/other-

components/ui-automator



2021) and Grounding DINO (Liu et al. 2023) models to de-
tect icons. AppAgent (Yang et al. 2023b) uses SoM (Yang
et al. 2023a) prompts to localize UI elements and breaks
tasks into two phases, exploration, and deployment. During
the exploration phase, the agent automatically interacts with
the apps and summarizes the observations into a document.
In the deployment phase, it employs the Retrieval Aug-
mented Generation (RAG) (Lewis et al. 2020) technique to
utilize the summarized knowledge and improve success rate.
CogAgent (Hong et al. 2023) proposes its own highly effi-
cient 18B-parameter MLLM, which can be loaded on a sin-
gle commercial GPU. Furthermore, Octopus v2 (Chen and
Li 2024) proposes a compact 3B-parameter model, which
unlocks the potential to run mobile LLM agents on-device
in an efficient and privacy-preserving manner.

Benchmarks for Mobile LLM Agents
Since the Mobile LLM agent is a newly emerging research
field, the choice of benchmarks is very limited. Some studies
rely on verifying the task execution status manually to eval-
uate the performance (Yang et al. 2023b), which is tedious
and time-consuming. To expedite the agent development, we
need a fully autonomous benchmarking system to report var-
ious metrics, especially the task success rate. However, auto-
matically judging if a task is completed successfully is non-
trivial. The main challenge is caused by the dynamic nature
of the GUI navigation task – the agent may perform random
actions and drive the app to an unknown state.

AITW (Rawles et al. 2023) is a popular benchmark for
mobile LLM agents. It has a large scale, but it’s based on
static screenshot images. Thinking of each app state (screen-
shot) as a node, and each action as an edge, we can build
a State Transferring Graph (STG) based on the screenshots
and the human-annotated actions. It fails immediately if the
agent performs actions in a non-considered sequence and
leads the STG to a non-existent node, even if the agent can
eventually complete the task.

The only solution is to identify task successes on real de-
vices. One approach is to match the agent’s actions with the
annotated ground truth (GT). A step-wise matching algo-
rithm is not accurate, because the agent may not finish the
task exactly in the same order with GT. AndroidArena (Xing
et al. 2024) proposes an adaptive method of calculating the
longest common subsequence of the agent and GT action se-
quences, which is illustrated as follows, where a and â are
the GT and actual actions, respectively. The common subse-
quences are marked in red.

a = ABC (1)
â = AXY BUCVW (2)

AndroidArena (Xing et al. 2024) treats a task as success-
ful if the GT is a subsequence of the actual action sequence.
It addresses the issue of redundant actions but is still not
optimal. A simple counter-example can be navigating from
the page 1 to page 3 by clicking the next page button two
times. If the agent performs the following sequence of ac-
tions: clicking the next page button, clicking the previous

Button

Extended Touchable Area

1 2 3

Button View Border

Figure 1: Extended touchable area.

page button, and clicking the next page button, it doesn’t
navigate to the correct page but is still a subsequence of the
GT. This method gives false positive results if the redundant
action has a side effect.

A concurrent work, LlamaTouch (Zhang et al. 2024), ad-
dresses this problem by examining the final UI state, which
is similar to our approach. We observe that despite the in-
finite feasible action sequences, the final success state con-
vergence to one. The success or failure can be determined
by checking the final UI state. An edge case is that some
tasks may not have a direct UI representation, for example,
the result of a network request triggered by a button may
not be directly reflected on the current UI page. Thus, only
checking the UI state is not sufficient and we need to incor-
porate actions, such as the clicking event, into consideration.
LlamaTouch (Zhang et al. 2024) matches the click action
by mapping the coordinate to a UI element, based on the
view bounding boxes. However, it may not always be accu-
rate. The process of finding the correct view to respond to
a clicking event is called a hit test, and it’s only accurate if
performed by the Android UI system. This is because app
developers can modify the touchable area, making it differ-
ent from the view border to get better user experience.

Fig. 1 shows an example of enlarging the touchable area
of a button view. In Fig. 1, touching point 1, the button
does not respond because it’s outside of the touchable area.
Touching point 2, the button responds because it’s inside
the button view. Touching point 3, although it’s outside of
the visible button view, the button still responds because it’s
inside the extended touchable area. To overcome this diffi-
culty, we utilize the Android Accessibility Service 3 to cap-
ture app events faithfully and forward them to the bench-
mark server. The details of our implementation are described
in the Method section.

Another concurrent work, AndroidWorld(Rawles et al.
2024), offers 126 tasks across 20 apps and has its own
agent, M3A, which is benchmarked against others using
automatic evaluations and precise rewards. We all empha-
size the importance of real-device benchmarks to truly re-
flect performance and employ Python to gauge task suc-
cess. This enhances flexibility and accuracy by capturing dy-
namic system states instead of relying on static UI matching.
However, our approach differs significantly: we prioritize
agent-centric development while AndroidWorld focuses on

3 https://developer.android.com/reference/android/
accessibilityservice/AccessibilityService



Task Prompt:
Create a new task "Laundry"

Action 1: click

Action 2: click

Action 3: type
Action 4: click

Task Complete

Android Accessibility Service

Android Debug Bridge (ADB)Inter-Device
Communication

App Event

VH Control
Screenshot

VH
...

Control

Task Prompt

Runtime Info
Benchmarking

App
Event

Listener
Benchmark
Orchestrator

Mobile LLM
Agent

Host Machine

Physical
Android
Device

Android
Emulator

Device Farm

Figure 2: Overview of the MobileAgentBench architecture.

benchmark-centric strategies. Our MobileAgentBench inte-
grates seamlessly with minimal code adjustments, support-
ing existing agents’ action spaces through the Android Ac-
cessibility Framework. This enables less intrusive adapta-
tions and broader evaluations beyond mere success rates, fa-
cilitating a more detailed assessment.

MobileAgentBench
Method
MobileAgentBench runs on real Android devices, support-
ing both physical devices and emulators. It sets up environ-
ment and then invokes the agent execution function. While
the agent is operating the device, MobileAgentBench judges
the task success status in real time without any side effects.
After the agent stops or exceeds the maximum steps, Mo-

bileAgentBench automatically switches to the next task. The
whole process is fully automated and requires no human su-
pervision.

The task success judgment mechanism is implemented by
matching the final UI state, instead of examining the action
sequence. This is because there might be multiple paths to-
wards task completion, but the final success state converges
to one. For example, if the task is to go to the settings page,
agents may mistakenly open random pages before they cor-
rectly find the desired settings page. Matching the action se-
quence is difficult because of the randomness. On the con-
trary, checking if the top page is the settings page is easy and
reliable. No matter what operations the agent does, we treat
it as a success as long as the settings page is detected. ADB
and UIAutomator are used to fetch the VH information. For
each task, there is a Python file that defines the task suc-



cess criteria, making it easy to extend and customize tasks
for third-party developers.

As some tasks may not have a direct reflection on the
current UI page, only checking the VH information is not
sufficient. An example can be editing a note and saving the
changes. Clicking the save button, the app may only pop up
a temporary alert to indicate the save action has succeeded
and stays on the current page. When the benchmark checks
the current view state, it doesn’t know if the save button is
clicked or not. As a benchmark, it cannot go to other pages
because it may change the app state and affect the next action
of the agent. Since we want to determine the task success
in real-time to collect how many steps the agent takes, it is
not feasible to check UI states of other pages after the agent
stops. Besides, some agents have the problem of not being
able to stop gracefully even the task is completed. We ad-
dress this issue by incorporating app events, especially but-
ton click action signals. For the above-mentioned task, we
can use the view hierarchy to check if the note is edited cor-
rectly, and then mark the task as a success if the save button
clicking signal is received afterwards.

To faithfully receive the app event signals, we make an
Android app using the Android Accessibility Service. An-
droid Accessibility Service was originally designed to help
people with disabilities. It runs in the background and in-
vokes a callback function when the Android system fires an
accessibility event. Such events include most UI state tran-
sitions by the user (agent) interactions, such as button click-
ing, window changing, etc, which fulfills the needs of the
proposed benchmark.

The overview of MobileAgentBench is shown in Fig. 2.
The benchmarking apps run on devices from a device farm,
which may consist of either physical devices or emulators.
The device talks to the host machine of the benchmark and
the agent via ADB. The benchmark and the agent use ADB
to retrieve app state information, such as screenshots and
VH, and send control signals. The benchmark invokes the
agent with the current task prompt and collects runtime in-
formation from the agent, including the LLM input and out-
put. Whenever the event listener app receives an app event,
it forwards the event to the benchmark server via a socket, so
the benchmark can assess the task success status using both
VH and the actions. At the top of Fig. 2, we show a sample
task workflow, “Create a new task Laundry” with the Calen-
dar app. The agent needs to perform 4 actions to complete
the task: clicking the add button, clicking the task button,
typing the task name “Laundry”, and clicking the save but-
ton. The benchmark checks the content of the task name in-
put box view and listens to the save button clicking event to
determine if the task is finished successfully.

Task Description
In our initial version of the benchmark, we implement 100
tasks over 10 daily apps. The 10 apps are from SimpleMo-
bileTools 4, an open-source project of Android apps. These
apps have simple and straightforward user interfaces, with-
out any advertisements or unnecessary permissions, and thus

4 https://simplemobiletools.com, GPL-3.0

are great for benchmarking use cases. The full list of app
names is shown in Fig. 3b.

We carefully design the benchmarking tasks, so that they
can simulate a normal user’s daily activity and have multi-
level difficulties. The distribution of task difficulty levels is
shown in Fig. 3. Difficulties are defined by the minimum
steps to finish a task, which is cross-verified by 3 human
experts independently. A task would be classified as an easy
task if it can be done within 2 steps, medium if greater or
equal to 3 while less than 6, and otherwise, hard.

Usage
The benchmark APIs are designed to be user-friendly and as
less invasive as possible. For a standard agent, it takes less
than 10 lines of additional code to integrate. List. 1 shows the
pseudo-code of the benchmark usage. First, we need to im-
port the benchmark Python library and initialize the bench-
mark orchestrator. Next, the main agent entrance function
should be defined. It takes and only takes one parameter, the
task prompt. The agent iteratively performs actions to finish
the task. Before and after the agent performs one action, the
orchestrator functions are called, so information such as the
time spent and LLM output can be collected. The program
starts with the orchestrator run function. It calls the agent
entrance function with each task prompt and automatically
switches to the next task after the task finishes. The task suc-
cess status is judged on the fly.

1 from mobile_agent_benchmark.
task_orchestrator import
TaskOrchestrator

2 orchestrator = TaskOrchestrator() # the
MobileAgentBench orchestrator

3 # the agent entrance function
4 def agent_run(task_prompt):
5 while not done:
6 orchestrator.before_one_action()
7 # the agent invokes a LLM to

think about the next action
8 action = llm_think(task_prompt,

screenshot)
9 agent_perform(action)

10 orchestrator.after_one_action(
action)

11 orchestrator.run(agent_run)

Listing 1: Pseudo code of integrating MobileAgentBench
into an existing Mobile LLM Agent.

Experiments and Agent Evaluations
Metrics
We define 6 metrics to comprehensively benchmarking mo-
bile agents:

• Success Rate (SR): SR = Nsuccess/Mtasks, where
Nsuccess is the number of successful tasks, judged by the
benchmark system. Mtasks is the number of total bench-
marking tasks. This metric reflects the agent’s ability to
correctly finish a task end-to-end.

• Step-wise Efficiency (SE). SE = Sactual/Smin, where
Sactual is the number of actual steps the agent takes to



Easy

23%

Medium 55%

Hard

22%

(a) Distribution over all tasks.

File
Man

ag
er

Calc
ula

tor

Cale
nd

ar

Con
tac

ts

Gall
ery

Reco
rde

r

Musi
cP

lay
er

Lau
nc

he
r

Note
bo

ok

Mess
ag

er
0

2

4

6

8

C
ou

nt
s

Easy
Medium
Hard

(b) Distribution over each app.

Figure 3: The distribution of task difficulty levels.

successfully finish a task, and Smin is the minimum num-
ber of steps. This metric tells us if the agent performs un-
necessary or redundant actions and reflects the efficiency
of the agent. Failure tasks are not taken into account.

• Latency. The average time spent in seconds before and
after one action. This metric tells us how long a user
needs to wait between two actions.

• Tokens. The average number of LLM input and out-
put tokens used per task. For simplicity, we use the
GPT-4V (gpt-4-vision-preview) standard (Ope-
nAI 2024) to calculate the number of tokens for all mod-
els, which gives us a rough estimation of the LLM cost.
For text, 1 token is 4 characters. For an image, it’s di-
vided into multiple 512× 512 tiles, and each tile is 170
tokens. 85 base tokens are applied to each image as well.
Only the number of tokens associated with LLMs are ac-
counted for; tokens from other models, including OCR
models, are disregarded.

• False Finish Rate (FFR). FFR = Nearly/Mfailure,
where Nearly is the number of early stopped tasks and
Mfailure is the total number of failure tasks. This met-
ric represents how likely the agent falsely thinks it has
finished the task and stopped early.

• Over Execution Rate (OER). OER = Nlate/Msuccess,
where Nlate is the number of late stopped tasks and
Msuccess is the total number of successful tasks. Sym-
metricly to FFR, this metric reveals how likely the agent
falsely thinks the task is not finished successfully.

Environment Setup
Five popular mobile LLM agents, AndroidArena (Xing
et al. 2024), AutoDroid (Wen et al. 2023), AppAgent (Yang
et al. 2023b), CogAgent (Hong et al. 2023), and Mo-
bileAgent (Wang et al. 2024) are evaluated with the pro-
posed benchmark. The models utilized in these agents
are not pre-trained on any benchmarking applications. We
choose the Google Pixel 3a emulator and Android 14 oper-
ating system to run the benchmarking apps. Specially, An-
droid 9 is used for AutoDroid as some of the dependency

libraries are not compatible with newer Android systems.
As there are no local neural networks used in An-

droidArena, AutoDroid, and AppAgents, these agents are
executed on an Apple Macbook Pro with the M1 Max chip.
CogAgent and MobileAgent require local model referenc-
ing, so they are executed on a workstation equipped with a
single Nvidia RTX 4090 GPU, with 24 GB GPU memory.

The self-exploration feature is turned on for AppAgent.
When performing a task, it can reference the previously
summarized document. For CogAgent, we use 4-bit quan-
tization to load the model due to GPU memory limitation.
CogAgent is implemented in its vanilla flavor, i.e., given the
current screenshot, ask for the next action. No history infor-
mation is provided.

Results
The main experiment results are shown in Tab. 2. We ob-
serve that AppAgent has the highest success rate, benefit-
ing from the self-exploration mechanism. CogAgent has the
lowest success rate, most likely caused by the naive agent
implementation, which limits the usage of history informa-
tion. Although AutoDroid has a similar success rate to Mo-
bileAgent, the step-wise efficiency is significantly lower,
possibly caused by the weaker reasoning capability of the
GPT-3.5 model used by AutoDroid. Latency-wise, both Au-
toDroid and CogAgent have low latency, indicating the high
inferencing cost with the GPT-4V model. AppAgent needs
to look up the app document, thus consuming more tokens
than others. On the other hand, because of the naive agent
implementation of CogAgent, it consumes the least number
of tokens. AutoDroid and CogAgent have high FFR, indicat-
ing they always stop early when the task is not finished yet.
AppAgent, although having the highest task success rate,
is not good at determining the task success. It cannot stop
gracefully after finishing a task and has a high OER.

The task success rates for each agent with difficulty lev-
els are shown in Fig. 4a. From Fig. 4a, we observe that
most agents achieve higher success rates when handling eas-
ier tasks, as expected.. Interestingly, AppAgent has a higher
success rate when performing medium-level tasks. This is



Table 2: Agent performance results with multiple metrics

Agent Models SR ↑ SE ↓ Latency ↓ Tokens ↓ FFR ↓ OER ↓

AndroidArena
(Xing et al. 2024) GPT4-V (Achiam et al. 2023) 0.22 1.13 18.61 750.47 0.09 0.33

AutoDroid
(Wen et al. 2023)

GPT3.5
Instructor (Su et al. 2022) 0.27 3.10 4.85 963.48 0.93 0.01

AppAgent
(Yang et al. 2023b) GPT4-V (Achiam et al. 2023) 0.40 1.29 26.09 1505.09 0.17 0.40

CogAgent
(Hong et al. 2023) CogVLM (Wang et al. 2023a) 0.08 2.42 6.76 579.84 1.00 0.04

MobileAgent
(Wang et al. 2024)

GPT4-V (Achiam et al. 2023)
GroundingDINO (Liu et al. 2023)

ViT-B/32 (Radford et al. 2021)
DamoOCR (Wang, Da, and Yao 2022)

0.26 1.33 15.91 1236.88 0.19 0.31

Easy Medium Hard
0.0

0.1

0.2

0.3

0.4

0.5 CogAgent
AutoDroid
AndroidArena
MobileAgent
AppAgent

(a) Task success rate with difficulty levels.

CogVLM GPT-3.5 GPT-4V
0.0

0.1

0.2

0.3

0.4

0.08

0.27

0.22
0.26

0.4
CogAgent
AutoDroid
AndroidArena
MobileAgent
AppAgent

(b) Task success rate with LLMs.

Figure 4: Task success rate.

because we set the maximum execution steps as twice the
minimum steps, which would make the agents have very

limited steps to correct their earlier steps for easy tasks. For
example, an agent can only use 1 additional step to cor-
rect and finish the task for a 1-step easy task. However, for
medium and hard tasks, there is significantly more space to
correct the previous actions.

Fig. 4b shows the averaged task success rate over the
backbone LLM models. It is interesting that AutoDroid,
although using a text-based GPT-3.5 model, outperforms
some other agents that use the more advanced GPT-4V
model. This reveals that the textual view hierarchy contains
the most important information for GUI navigation tasks.
However, we believe that visual screenshots are helpful for
other types of tasks, for example, if the task involves recog-
nizing an image on the screen.

Limitations and Future Work
While the proposed MobileAgentBench is efficient, user-
friendly, and addresses many issues of the existing bench-
marks for mobile LLM agents, there is a limitation that the
authors would like to improve in the future. Although the use
of Python code snippets as the configuration of task success
conditions is easy for researchers in the AI/ML community,
it is still difficult for people without a technical background.
We will explore new methods to automatically build the task
configuration without writing any code in the future work.

Conclusion
In this paper, we propose a new benchmark, MobileAgent-
Bench, for mobile LLM agents on the Android platform.
With the 100 built-in benchmarking tasks, researchers can
test and evaluate existing and new agents automatically on
real Android devices. Extending the benchmark to support
customized tasks is also easy, as only basic Python coding
skills are needed. Leveraging the Android Accessibility Ser-
vices and only checking the final app state, MobileAgent-
Bench can detect task completion status faithfully. We re-
port the evaluation results of 5 popular agents across mul-
tiple metrics, and they can be used as strong baselines to
advance future mobile LLM agent development.



References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.
Amazon. 2014. Alexa. https://alexa.amazon.com.
Apple. 2011. Siri. https://www.apple.com/siri/.
Bousmalis, K.; Vezzani, G.; Rao, D.; Devin, C.; Lee, A. X.;
Bauza, M.; Davchev, T.; Zhou, Y.; Gupta, A.; Raju, A.;
et al. 2023. Robocat: A self-improving foundation agent for
robotic manipulation. arXiv preprint arXiv:2306.11706.
Chen, W.; and Li, Z. 2024. Octopus v2: On-device language
model for super agent. arXiv preprint arXiv:2404.01744.
de Barcelos Silva, A.; Gomes, M. M.; da Costa, C. A.;
da Rosa Righi, R.; Barbosa, J. L. V.; Pessin, G.; De Don-
cker, G.; and Federizzi, G. 2020. Intelligent personal assis-
tants: A systematic literature review. Expert Systems with
Applications, 147: 113193.
Deng, X.; Gu, Y.; Zheng, B.; Chen, S.; Stevens, S.; Wang,
B.; Sun, H.; and Su, Y. 2024. Mind2web: Towards a gen-
eralist agent for the web. Advances in Neural Information
Processing Systems, 36.
Du, Y.; Watkins, O.; Wang, Z.; Colas, C.; Darrell, T.;
Abbeel, P.; Gupta, A.; and Andreas, J. 2023. Guiding pre-
training in reinforcement learning with large language mod-
els. In International Conference on Machine Learning,
8657–8677. PMLR.
Google. 2016. Google Assistant. https://assistant.google.
com.
Gur, I.; Rueckert, U.; Faust, A.; and Hakkani-Tur, D.
2018. Learning to navigate the web. arXiv preprint
arXiv:1812.09195.
Hong, W.; Wang, W.; Lv, Q.; Xu, J.; Yu, W.; Ji, J.; Wang,
Y.; Wang, Z.; Dong, Y.; Ding, M.; et al. 2023. Cogagent:
A visual language model for gui agents. arXiv preprint
arXiv:2312.08914.
Lee, J.; Min, T.; An, M.; Kim, C.; and Lee, K. 2024. Bench-
marking Mobile Device Control Agents across Diverse Con-
figurations. arXiv preprint arXiv:2404.16660.
Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.;
Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.-t.; Rocktäschel,
T.; et al. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Infor-
mation Processing Systems, 33: 9459–9474.
Li, Y.; Wen, H.; Wang, W.; Li, X.; Yuan, Y.; Liu, G.; Liu,
J.; Xu, W.; Wang, X.; Sun, Y.; et al. 2024. Personal llm
agents: Insights and survey about the capability, efficiency
and security. arXiv preprint arXiv:2401.05459.
Liu, S.; Zeng, Z.; Ren, T.; Li, F.; Zhang, H.; Yang, J.; Li,
C.; Yang, J.; Su, H.; Zhu, J.; et al. 2023. Grounding dino:
Marrying dino with grounded pre-training for open-set ob-
ject detection. arXiv preprint arXiv:2303.05499.
Microsoft. 2014. Cortana. https://www.microsoft.com/en-
us/cortana.
OpenAI. 2024. GPT token calculation. https://openai.com/
api/pricing/.

Qiao, S.; Ou, Y.; Zhang, N.; Chen, X.; Yao, Y.; Deng,
S.; Tan, C.; Huang, F.; and Chen, H. 2022. Reasoning
with language model prompting: A survey. arXiv preprint
arXiv:2212.09597.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Rawles, C.; Clinckemaillie, S.; Chang, Y.; Waltz, J.; Lau,
G.; Fair, M.; Li, A.; Bishop, W.; Li, W.; Campbell-Ajala,
F.; et al. 2024. AndroidWorld: A dynamic benchmark-
ing environment for autonomous agents. arXiv preprint
arXiv:2405.14573.
Rawles, C.; Li, A.; Rodriguez, D.; Riva, O.; and Lillicrap, T.
2023. Android in the wild: A large-scale dataset for android
device control. arXiv preprint arXiv:2307.10088.
Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S. G.;
Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.;
Kay, J.; Springenberg, J. T.; et al. 2022. A generalist agent.
arXiv preprint arXiv:2205.06175.
Shvo, M.; Hu, Z.; Icarte, R. T.; Mohomed, I.; Jepson, A. D.;
and McIlraith, S. A. 2021. AppBuddy: Learning to Accom-
plish Tasks in Mobile Apps via Reinforcement Learning. In
Canadian AI.
Su, H.; Shi, W.; Kasai, J.; Wang, Y.; Hu, Y.; Ostendorf, M.;
Yih, W.-t.; Smith, N. A.; Zettlemoyer, L.; and Yu, T. 2022.
One embedder, any task: Instruction-finetuned text embed-
dings. arXiv preprint arXiv:2212.09741.
Toyama, D.; Hamel, P.; Gergely, A.; Comanici, G.; Glaese,
A.; Ahmed, Z.; Jackson, T.; Mourad, S.; and Precup, D.
2021. Androidenv: A reinforcement learning platform for
android. arXiv preprint arXiv:2105.13231.
Wang, J.; Xu, H.; Ye, J.; Yan, M.; Shen, W.; Zhang, J.;
Huang, F.; and Sang, J. 2024. Mobile-Agent: Autonomous
multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158.
Wang, P.; Da, C.; and Yao, C. 2022. Multi-granularity pre-
diction for scene text recognition. In European Conference
on Computer Vision, 339–355. Springer.
Wang, W.; Lv, Q.; Yu, W.; Hong, W.; Qi, J.; Wang, Y.; Ji,
J.; Yang, Z.; Zhao, L.; Song, X.; et al. 2023a. Cogvlm: Vi-
sual expert for pretrained language models. arXiv preprint
arXiv:2311.03079.
Wang, Z.; Cai, S.; Chen, G.; Liu, A.; Ma, X.; and Liang, Y.
2023b. Describe, explain, plan and select: Interactive plan-
ning with large language models enables open-world multi-
task agents. arXiv preprint arXiv:2302.01560.
Wen, H.; Li, Y.; Liu, G.; Zhao, S.; Yu, T.; Li, T. J.-J.; Jiang,
S.; Liu, Y.; Zhang, Y.; and Liu, Y. 2023. Empowering llm
to use smartphone for intelligent task automation. arXiv
preprint arXiv:2308.15272.
Xing, M.; Zhang, R.; Xue, H.; Chen, Q.; Yang, F.; and
Xiao, Z. 2024. Understanding the Weakness of Large Lan-
guage Model Agents within a Complex Android Environ-
ment. arXiv preprint arXiv:2402.06596.



Yang, J.; Zhang, H.; Li, F.; Zou, X.; Li, C.; and Gao, J.
2023a. Set-of-mark prompting unleashes extraordinary vi-
sual grounding in gpt-4v. arXiv preprint arXiv:2310.11441.
Yang, Z.; Liu, J.; Han, Y.; Chen, X.; Huang, Z.; Fu, B.; and
Yu, G. 2023b. Appagent: Multimodal agents as smartphone
users. arXiv preprint arXiv:2312.13771.
Yin, S.; Fu, C.; Zhao, S.; Li, K.; Sun, X.; Xu, T.; and Chen,
E. 2023. A survey on multimodal large language models.
arXiv preprint arXiv:2306.13549.
Zhang, D.; Xu, H.; Zhao, Z.; Chen, L.; Cao, R.; and Yu, K.
2023. Mobile-env: an evaluation platform and benchmark
for LLM-GUI interaction. arXiv preprint arXiv:2305.08144.
Zhang, L.; Wang, S.; Jia, X.; Zheng, Z.; Yan, Y.; Gao, L.; Li,
Y.; and Xu, M. 2024. LlamaTouch: A Faithful and Scalable
Testbed for Mobile UI Automation Task Evaluation. arXiv
preprint arXiv:2404.16054.
Zhou, S.; Xu, F. F.; Zhu, H.; Zhou, X.; Lo, R.; Sridhar,
A.; Cheng, X.; Bisk, Y.; Fried, D.; Alon, U.; et al. 2023.
Webarena: A realistic web environment for building au-
tonomous agents. arXiv preprint arXiv:2307.13854.



Appendix
Benchmarking Apps and Task Description
We choose 10 open-source daily apps from SimpleMobile-
Tools5 in our initial benchmark, a collection of simple An-
droid apps without advertisements or unnecessary permis-
sions. However, users can easily add their customized tasks
with other apps. The reason that we choose open-source
apps is that they are static and reproducible. Commercial
apps often employ online A/B testing (Xu et al. 2015) mech-
anisms and may display UI elements and functionalities dif-
ferently to different users, or change them over time.

The full list of tasks is shown in Tab. 4. All tasks are care-
fully designed to reflect the functions of the corresponding
app, with different difficulty levels. The difficulty levels are
determined by the minimum steps to accomplish the task.

Customization
The 100 built-in tasks make the benchmark work out of
the box. However, third-party researchers may want to im-
plement their customized tasks. For example, benchmark-
ing their agent performance on commercial apps. This can
be done easily without modifying the benchmark library.
First, implement the customized task class inheriting the
Task class provided by the benchmark framework. The most
important method to implement is check finish, which
defines how to judge if the given task is finished success-
fully. If necessary, the setup and teardown function can
also be implemented to prepare and reset the environment to
execute the current task. Then, add the task names to a JSON
file and pass it to the benchmark’s task orchestrator. When
running, the task orchestrator will invoke each task (built-in
or customized) one by one, automatically.

Experiments with Online Apps
In this paper, we use open-source and offline apps because
we want to create a fully controlled and reproducible envi-
ronment for all agents. We picked apps such as Calendar and
SMS that are commonly used by people for everyday tasks.
Online apps, on the contrary, have dynamic content, which
may make the agent’s performance non-deterministic. Fur-
thermore, even if the online app versions are the same (e.g.
installing apps with the same APK), modern apps often have
online A/B testing systems, which means the functionality
or even UI appearance may not be the same for every user.

However, some researchers might be interested in bench-
marking their agents with online apps. The proposed bench-
mark is designed to be easy to extend, so researchers
can freely add their customized tasks with online apps.
To demonstrate the extensibility of MobileAgentBench, we
have implemented 6 tasks across 3 popular online apps:
CNN News, Amazon Shopping, and Google Maps. Here is
the full list of the currently implemented tasks.
• [Google Map] navigate from Bellevue, WA to Redmond,

WA
• [Google Map] search Redmond, WA
• [Amazon Shopping] search nike and then show me shoes

5 https://simplemobiletools.com

• [Amazon Shopping] show me the size guide for nike shoes
• [CNN News] show news under the climate section
• [CNN News] enable the CNN sound effect when opening

the app
Tab. 3 shows experiment results on the subset of online apps.
The metrics are the same as defined in the Metrics section.

Task Success Condition
List 2 shows a simple example of the check finish func-
tion. To eliminate the difficulty of dealing with multiple pos-
sible action paths to success, we determine if the task is suc-
cessful by only observing the final state. In this example, the
task is to open the About page of the current app. We check
if the Frequently Asked Questions text view (a child view in
the About page) exists in the current UI page. If it exists, it
means the About page is opened successfully and the task is
completed. Otherwise, the task is not completed yet. It gives
faithful results no matter how many ways there are to open
the About page.

MobileAgentBench automatically invokes the
check finish function at the proper time: after
one agent action, and when getting one app event. The
check finish function can be either stateless or stateful,
depending on the task. The function has two parameters,
the view client and the app event. view client
provides a set of useful functions to obtain the current page’s
view hierarchy. app event provides the most recent user
action sent from the Android Accessibility Service, such as
a button-clicking event. It helps to check the task-finishing
status when it’s not directly reflected in the current UI view.

1 def check_finish(self, view_client,
app_event) -> bool:

2 title_views = view_client.
findViewWithText("Frequently asked
questions")

3 if title_views is not None:
4 return True
5 return False

Listing 2: A simple example of the check finish
function

View Hierarchy and Accessibility Events
MobileAgentBench utilizes AndroidViewClient, a popular
Android automation framework, to obtain view hierarchy.
AndroidViewClient has multiple backends, including UIAu-
tomator, ViewServer, and CulebraTester2. In this paper, we
use the UIAutomator as the backend to conduct experiments.
However, it’s worth exploring other backends that may have
better performance. After getting the view hierarchy, the
benchmark can access the properties of the views displayed
on the screen. This provides a strong signal to check the cur-
rent app status. For example, the benchmark can check if the
query was correctly entered in a search bar.

To listen to the Android UI events, including button
clicks, page changes, etc., we implement an Android app,
AndroidEventListener. It uses the AccessibilityService and
registers an event handler. Before launching the benchmark,
the AndroidEventLinstener needs to be turned on on the sys-
tem settings, accessibility page. Then the process runs in the



Table 3: Agent performance results on Online Apps

Agent SR ↑ SE ↓ Latency ↓ Tokens ↓ FFR ↓ OER ↓

AndroidArena (Xing et al. 2024) 0.33 2.40 13.95 2305.31 1.00 0.50

AutoDroid (Wen et al. 2023) 0.00 N/A 2.49 524.96 N/A 0.00
AppAgent (Yang et al. 2023b) 0.50 1.78 19.8 1518.62 0.33 0.33

CogAgent (Hong et al. 2023) 0.17 2.33 7.23 587.91 1.00 0.00
MobileAgent (Wang et al. 2024) 0.50 1.33 13.65 1225.67 0.33 0.00

background and does not affect the foreground testing apps.
Once an event is captured, it serializes the event object into
JSON and sends it to the benchmark server using a socket.
The benchmark consumes all events one by one after the
agent performs an action.

References
Xu, Y.; Chen, N.; Fernandez, A.; Sinno, O.; and Bhasin, A.
2015. From infrastructure to culture: A/B testing challenges
in large scale social networks. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge dis-
covery and data mining, 2227–2236.



Table 4: Sample task prompts with their difficulty levels

App Name Difficulty Level Task Prompt

Calculator Medium Calculate the result of ‘3 + 5’

Calculator Medium Use Unit converter function to
calculate how many kilometers 1mile is equal to

Calculator Medium Calculate the result of ‘3 ∧ 3’

Calculator Medium Calculate the result of ‘12 ÷ 3’

Calculator Medium Calculate the result of ‘12 - 4’

Calculator Hard Calculate the result of ‘18+(24×3)-(9÷3)’

Calculator Medium Calculate the result of ‘12*4’

Calculator Hard Calculate the result of ‘19.7 - 81.3’

Calculator Medium

Calculate the result of ‘12 × 5’.
However, during the input process,

the number ‘4’ was mistakenly entered instead of ‘5’.
Correct this by first enter ‘C’ to delete ‘4’

and re-entering ‘5’ and then perform the calculation

Calculator Medium Calculate the result of ‘
√
16 + 3’

Calendar Medium Create a new event ‘laundry’ and then search for it

Calendar Easy switch to daily view

Calendar Medium Show events in simple event list,
delete the laundry and meeting events.

Calendar Medium Create a new event ‘laundry’

Calendar Medium
Create a new task, named ‘laundry’,

with the description of ‘wash all my clothes’.
Mark it as all-day.

Calendar Easy show events of next month

Calendar Easy open about page

Calendar Easy search event ‘laundry’

Calendar Medium change snooze time to 1 minute

Calendar Medium go to settings and make weeks start on Monday

Contacts Easy open About View

Contacts Medium
Create a new contact,

his First Name is Yuzai, and his Phone Number is
123456789

Contacts Medium Delete contact Yuzai

Contacts Easy Set the contact Yuzai to Favorite

Contacts Medium
Change phone filter,

which means don’t show phone storage
in contacts view

Contacts Medium Set not show contact’s Email in the contact profile screen

Contacts Medium Change the contact Yuzai’s number to
987654321 and save it



Contacts Medium Remove the dialog button,
and then return to the main view

Contacts Easy Search contact Yuzai

Contacts Medium Sort contacts by Data created time, Descending

File Manager Easy open the folder ‘Downloads’ and
check the properties of the file ‘testfile.txt’

File Manager Easy check the storage page

File Manager Medium Create a new file named ‘testfile.txt’ in the ‘Downloads’ folder

File Manager Medium Delete file named ‘testfile.txt’ in the ‘Downloads’ folder

File Manager Medium Delete the txt file in Download folder

File Manager Hard Delete all videos in Download folder

File Manager Medium Hide the folder named ‘hidden’
and make sure File Manager Stop showing hidden media

File Manager Medium open the folder ‘Downloads’
and rename the file ‘Testfile.txt’ to ‘testfile1.txt’

File Manager Easy Search a file named ‘testfile.txt’

File Manager Medium In the main page, sort the folder by size in descending order

Gallery Medium filter media in the gallery and only show images and videos

Gallery Medium Go to the downloads folder, group the images by file type

Gallery Medium Change the view type to list view

Gallery Medium Go to Gallery settings and enable play videos automatically

Gallery Medium Enable remember the last video playback position in settings

Gallery Medium Go to Downloads Folder and set the first image as favorite

Gallery Medium Go to Downloads Folder
and set the first image as Home screen wallpaper

Gallery Medium show hidden items in the gallery in settings

Gallery Medium sort the gallery by size ascendingly

Gallery Medium Change the date and time format to
24-hour format in gallery settings

App Launcher Medium Add Chrome and Camera to launcher

App Launcher Medium Check who is the contributor of the app

App Launcher Easy Hide app name in Launcher

App Launcher Medium Open About page and go Frequently Asked Questions

App Launcher Medium Remove Chrome from Launcher

App Launcher Medium Rename Chrome in Launcher to MyChrome

App Launcher Easy Search for Chrome in Launcher

App Launcher Medium Change Setting Close this app at launching a different one to false

App Launcher Medium Sort apps by custom

App Launcher Medium Sort apps by title descending

SMS Messenger Medium Add a number ‘123456789’ to block list

SMS Messenger Medium Change the Font size to ‘Large’ in the settings interface



SMS Messenger Medium open the conversation with contact number ‘123456789’,
and check for a random message’s properties

SMS Messenger Hard start a conversation with number ‘123456789’,
send a message ‘i luv u’, and check for message properties

SMS Messenger Hard

start a conversation with number ‘123456789’,
and send a message ‘i luv u’,

back to the main page and
search for the contact ‘123456789’

SMS Messenger Medium make the conversation with number ‘123456789’ archived

SMS Messenger Easy search for the contact ‘123456789’ at top search bar

SMS Messenger Easy search message ‘i luv u’ at the top search bar

SMS Messenger Easy show me the archived conversations

SMS Messenger Hard start a conversation with number ‘123456789’,
and send a message ‘i luv u’

Music Player Medium sort the album by ‘year’

Music Player Medium config equalizer to Heavy Metal

Music Player Medium create a new playlist:test

Music Player Hard create a new playlist: test, and search for it

Music Player Hard create a new playlist: test,
and sort all playlist by descending order

Music Player Medium open faq page

Music Player Easy open setting page

Music Player Medium sort the playlist by ‘desc’

Music Player Easy rescan media files

Music Player Easy search playlist ‘Test’

Notes Medium add a new note named ‘TODO List’

Notes Medium delete the “to do list” and “meeting” note

Notes Easy Check the item ‘eggs’ for shopping list

Notes Medium use the pin ‘2580’ to open the locked note ‘password list’

Notes Medium add a new Checklist named ‘TODO List’

Notes Hard create a checklist named
‘Shopping list’ and add an item named ‘Milk’

Notes Easy open the note ‘meeting’

Notes Easy open about page

Notes Medium rename the current note to ‘finished task’

Notes Easy search ‘secret’ in note ‘Charles’s secrets’

Voice Recorder Medium change bitrate to 32 kbps

Voice Recorder Medium delete the last recorded audio

Voice Recorder Hard delete all recorded audio

Voice Recorder Medium go to settings and empty the recycle bin

Voice Recorder Medium use mp3 as the format for new recordings

Voice Recorder Easy go to recycle bin page



Voice Recorder Medium change settings, so that the deleted items
will not go to recycle bin

Voice Recorder Medium rename the first audio to ‘voice.m4a’

Voice Recorder Hard rename all audio to voice1.m4a, voice2.m4a, and so on

Voice Recorder Medium change app theme to dark red


