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Abstract

This paper introduces NetDiff, an expressive graph denois-
ing diffusion probabilistic architecture that generates high-
performance link topologies for wireless ad hoc networks.
Such networks, with directional antennas, can achieve un-
matched throughput and scalability when the communication
links are designed to provide good geometric properties, no-
tably by reducing interference between these links while re-
specting diverse physical constraints. How to craft such a link
assignment algorithm remains a real problem. Deep graph
generation offers multiple advantages compared to traditional
approaches: it allows to relieve the network nodes of the com-
munication burden caused by the search of viable links and
to avoid resorting to heavy combinatorial methods to find a
good link topology. Given that graph neural networks some-
times tend to struggle with global, structural properties, we
augment the popular graph transformer with cross-attentive
modulation tokens in order to improve global control over
the predicted topology. We also incorporate simple node and
edge features, as well as additional loss terms, to facilitate the
compliance with the network topology physical constraints.
A network evolution algorithm based on partial diffusion is
proposed to maintain the network topology over time when
the nodes are moving. Our results show that the generated
topologies are realistic, require only minor correction steps
to be operational, and establish NetDiff as a viable solution
for maximizing the benefits offered by directional antennas.

Introduction
Ad hoc networks allow to overcome the need for a cen-
tralized router or access point, and rely on node to node
communication where each node is both a receiver and
a transmitter and can relay data for other nodes. Such
networks can be difficult to manage, and often rely on
combinatorial optimization techniques to avoid interference
between communications. These occur when a receiving
antenna enters the emission beam of a node with which it is
not supposed to communicate. When the nodes are mobile,
most optimization methods become irrelevant because of
their heavy computation time and routing network protocols
such as OLSR (Jacquet et al. 2001) or AODV (Perkins and
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Royer 1999) with omnidirectional antennas are generally
the preferred solution. Such protocols are widely used
and present many practical advantages, but are limited in
terms of achievable throughput, notably because of the
high interference brought about by the omnidirectional
antennas (Gupta and Kumar 2000). Using directional
antennas allows for higher theoretical performance (Yi, Pei,
and Kalyanaraman 2003), but requires making coherent
antenna steering decisions, which have to be planned and
computed interdependently. In order to be valid, the links
motivating the antenna steering decisions should also
respect several physical constraints, such as the placement
of the antennas on the nodes, or a maximum emission
range. Traditionally, optimizing such networks aims at
scheduling the communications, or at finding appropriate
routing schemes for the network packets. The rise of
Software-Defined Networking (Kreutz et al. 2014) allows
to access, gather and process all the nodes’ information.
The use of directional antennas allows for high throughput
and reduced antenna emission beams. The combination
of these two improvements makes it possible to optimize
the performance of a network by directly searching for
an efficient geometric configuration of the link topology:
the carefully selected links would natively provide global
connectedness, low interference and good network perfor-
mance, even with minimal temporal scheduling and simple,
straightforward routing. While it is often done, for static
ground networks, using combinatorial optimization (Feng
et al. 2016; Benhamiche, da Silva Coelho, and Perrot 2019),
it requires a computationally heavy algorithm to converge,
which is not suitable for most application cases where real
time computation is needed, and nearly impossible when
the nodes are moving. Even when using strong heuristics,
the execution time of such methods can hardly be achieved
in less than a few dozens of seconds because of the high
number of variables and the interdependence between
them. Designing a static link assignment algorithm between
nodes should also fail since it would not be viable as
soon as the nodes move and swap places. Luckily, graph
neural networks are permutation invariant. Using deep
graph neural networks to escape the combinatorial nature
of the problem by leveraging efficient pattern learning to
capture viable graph properties and reproduce them hence
seems a particularly good solution to this problem. Our



framework consists in setting up a dataset of viable network
link topologies, obtained by computationally expen-
sive algorithms, and learning to replicate their construction
patterns for new unseen sets of nodes, with a neural network.

We propose to extend the denoising diffusion (Ho,
Jain, and Abbeel 2020) framework to solve the problem by
• Enriching the nodes and edges with intermediate-level

features
• Proposing additional loss terms to facilitate the compli-

ance with the constraints
• Deriving a novel graph-level mechanism, Cross-

Attentive Modulation (CAM) tokens, to enable more
expressive and deeper structural and global control over
the inferred edges

• Introducing a simple way to extend our framework to
cover the temporal evolution of the network where small
topology reconfigurations are needed because of the
nodes’ movement.

Related Work
Inferring a set of links corresponding to a set of nodes is
often treated as a generative problem in order to capture the
joint distribution of the links, and grasp the graph as a whole,
better than multiple standard link predictions would. It can
then be modeled as a probabilistic problem that implies es-
timating the conditional joint distribution of the edges E
knowing V , which is a classical formulation for conditional
generative models. As discussed in (Zhu et al. 2022), graph
generative models can be divided into five categories: au-
toregressive models, variational autoencoders, normalizing
flows, generative adversarial networks and denoising diffu-
sion probabilistic models (DDPMs). Autoregressive models
rely on implicitly inducing a node ordering in order to pro-
cess them sequentially, which (You et al. 2018) does by op-
erating a breadth-first search to learn and generate coher-
ent sequences of nodes and conform edges. In (Cao and
Kipf 2022), the authors use a generative adversarial net-
work helped by objective-driven reinforcement learning, an
iterative is proposed in (Wang et al. 2017). Such a method
relies on manipulating noise with a multilayer perceptron
that does not fulfill node-conditioned architectures’ need for
permutation equivariance. In (Martinkus et al. 2022), au-
thors propose to generate spectral properties before gener-
ating the graph accordingly, unfortunately, the sampling and
generation process is once again not fully fitted for node-
conditioned generation. Flow-based models, such as autore-
gressive (Shi et al. 2020) are also a possible solution for
graph generation. Such iterative methods are generally in-
compatible or sub-optimal for node-conditioned generation
as the iterative sampling or sequential node generation pro-
cess does not allow for proper node-conditioning. Several
variational methods such as (Kipf and Welling 2016) or (Si-
monovsky and Komodakis 2018) have been proposed. The
first one relies on a node-level sampling procedure that as-
sumes nodes’ independence, the second one uses a graph
level latent space that is then decoded into a graph. The
main difficulty of such a method is that it requires complex

matching algorithms to compare the reconstructed nodes and
edges with the labeled ones. When the decoding is node-
conditioned, where each node is concatenated with the la-
tent vector and the decoding processed at node level, the
conditioning signal can serve as a node identifier (a recon-
structed node to which an attribute ak is concatenated will
be compared to the labeled node with attribute ak if the at-
tributes are unique). Such decoding can help to avoid the
matching process and keep the permutation equivariance,
but the model then suffers from the bottlenecks attached
to such a simple architecture, especially given that the de-
coder linear layers should be applied at node level. More
recently, Langevinesque (Welling and Teh 2011) variational
methods have become popular to generate graphs, in par-
ticular denoising diffusion probablistic models, as seen in
(Hoogeboom et al. 2022), (Vignac et al. 2023b) or (Vi-
gnac et al. 2023a) that respectively provide rotation invari-
ance and adaptative discrete noise schedule. In (Wang et al.
2024a), authors use an autoencoder architecture to encode
rich molecular properties into a latent space that is decoded
using diffusion. Graph neural networks have been applied
to the field of communication networks in various ways,
one of the most famous ones being RouteNet (Rusek et al.
2020; Ferriol-Galmés et al. 2023) which allows to forecast
the performance of a network, or (Azzouni, Boutaba, and
Pujolle 2017) which infers routing schemes based on the
evolution of a network. While fewer works have proposed
building network topologies, (Lei et al. 2019) provides a
temporal generative framework that aims at refining a net-
work’s topology based on its previous states, and (Wang
et al. 2024b) uses a DDPM to optimize the link topology
of a small sensors and communication network. DDPMs are
particularly powerful to grasp the interdependence of the in-
ferred links, as the intermediate diffusion steps allow the
model to iteratively consult and adjust them. Many graph
neural networks (Scarselli et al. 2009; Li et al. 2017) have
been proposed, from graph convolutional networks (Kipf
and Welling 2017) to graph attention networks (Veličković
et al. 2018), or the expressive (Maron et al. 2020). Re-
cently, graph transformers (Dwivedi and Bresson 2021) have
proven to be the go-to architecture in DDPM frameworks.
Their edge-conditioned attention-based message passing is
particularly powerful in modeling interdependent relation-
ships between nodes and edges. Such models, despite their
expressiveness, tend to struggle to capture global features.
To alleviate this issue, in (Vignac et al. 2023a), authors use
statistical features, or graph properties, to condition FiLM
(Perez et al. 2017; Brockschmidt 2020) layers applied on the
nodes and edges. For similar reasons, (Darcet et al. 2023)
introduces registers to serve as attention relays for image
patches to store and retrieve information.

Background
Our problem
The ad hoc directional antennas networks we seek to build
must provide connectedness, high throughput capability and
hence incorporate interference constraints in their topology
generation algorithm. In depth link topology optimization



allows to aim for a light, fast transmitting/emitting 2-slot
scheduling, with virtually no further temporal scheduling,
which grants high theoretical performance. It is translated in
the graph problem as a parity label P on the nodes, and as
a constraint on the links, which are hence only possible be-
tween odd pairs of nodes. Our nodes also feature antennas,
which are needed to form links. We consider each node to
have four orthogonal antennas, each of which covering a π

2
angle. Two links in a single antenna sector imply that the an-
tenna must schedule its communications to use alternatively
each link. Our approach then consists in imitating the results
of a greedy iterative network topology algorithm. Without
entering technical details, the process can be sketched as fol-
lows:

Algorithm 1: Greedy Network Topology Algorithm

1: Initialize the set of all possible links.
2: while the graph is not connected do
3: while there are links to examine do
4: Select the best link according to a heuristic

(e.g., link length).
5: if the interference from other links

is below the threshold then
6: Connect the nodes with the pair of antennas

offering the best throughput.
7: else
8: Abandon the link.

While its greedy nature makes it far less computationally
expensive than exact methods, it is still at least O(m2), with
m the number of physically possible links, even when sim-
plifying some of the computations and loops. While differ-
ent kinds of algorithms can be used for similar purposes,
iterative episodes of interference computation, as well as
systematic constraints checks, are necessarily computation
heavy. We then seek to find a neural network that outputs
a set of edges E = {e1,1, e1,2, ..., en,n} and the corre-
sponding parity P ∈ J0, 1Kn, from the nodes information
V = {v1, v2v..., vn}, which together constitute the graphG,
with n being the number of nodes. The nodes are described
by their spatial coordinates c and their rotation.

Node-conditioned Denoising Diffusion
Probabilistic Model
Recent works have proven Denoising Diffusion Proba-
bilistic Models (DDPMs) to be particularly effective to
tackle the task of generating plausible graphs. In order to
approximate the distribution that we assume our data to
follow, graph DDPMs propose, in the continuous setting, to
search for a ptθ(G

t−1|Gt) that approximates a markovian
reverse noise process. This, contrary to directly maximizing
the likelihood of pθ(E|V ), is directly tractable. In our case,
we want to compute the edges E given the nodes V , hence
we apply the denoising process on edges only. We would
then wish to find ptθ(E

t−1|Et, V ) = ptθ(E
t−1|Gt).

NetDiff relies on discrete denoising with data-aware state
transition matrices, as it proved to be the most effective

method in (Vignac et al. 2023a). We then directly model
ptθ(E|Gt). The noise is applied to uniform state transition
matrices Q defining the evolution of the edges through the
diffusion process. Our transition matricesQ are proportional
to a scalar m that is correlated with the true distribution of
the dataset links.

The transition matrix at step t is given by Q̄t = ᾱtI + β̄tm,
where ᾱt = cos(0.5π(t/T + s)/(1 + s))2 with a small s
and β̄t = 1− ᾱt.
The learning procedure solely resides in minimizing∑

ij lBCE(E, p(θ,t,ij)(G
t)).

Sampling with the DDPM to generate new graphs it-
eratively follows

Et−1 ∼
∏
ij

p̂E(θ,t,ij)(G
t)Q(et−1

ij |eij = e, etij), (1)

with p̂θ being an estimation of p by a neural network
parametrized by θ, Q representing the distribution of the
scheduled noisy transition matrix.
This formulation is particularly valuable since the making
of intermediate graph predictions at each timestep t allows
each edge and node to adjust its value depending upon the
last observed prediction, which can help modeling the in-
terdependence between the edges. We follow the same pro-
cedure to denoise a noisy parity label. For a training step
t, we seek to minimize

∑
ij lBCE(Pij(G), P̂θ,ij(G

t)). The
trained model is given as inputs the noisy edges Et, the
nodes information V , and the normalized timestep t. Even
though DDPMs denoise each edge independently, the de-
noising decisions should depend on the other edges in order
to grasp the interdependence between them while iterating
towards realistic solutions, which implies that the chosen
model should model both edge to node and edge to edge
dependencies. We choose to follow this framework without
using an encoder-based architecture (using a graph neural
network followed by a graph pooling layer) as our graphs
did not seem to detain sufficient information (especially con-
sidering that the nodes should not be encoded in the latent
space, the model being conditioned on the nodes), to be con-
tinuously encoded in an efficient manner.

Solution architecture
Graph Transformer with CAM tokens
We use a graph transformer, which takes the noisy edges
Et , the nodes V , and the diffusion timestep t as inputs,
and outputs a prediction of the correct edges E, and a
corresponding parity P . The timestep t is incorporated to
the model using a FiLM (Perez et al. 2017) layer. Graph
transformers are O(n2) complex and parallelizable, which
guarantees much better scalability with the number of
nodes than the at least O(m2) complex greedy algorithm
1. Attention-based mechanisms can even be made to be
O(n log(n)) complex, using masked attention for lighter,
sparse computations. Graph transformers use the input
edges to modulate node attention and modulate back these
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Figure 1: NetDiff iteratively denoises edges to form a plausible topology, nodes are not applied any noise.

edges as a function of the node attention product, which
proves to be a great asset to compute coherent sets of links.

We augment the model with CAM tokens, which cross-
attend to the graph and modulate (Perez et al. 2017;
Brockschmidt 2020) the model’s features accordingly in
order to improve its global awareness. We use CAM tokens
to modulate both nodes and edges. We hereby derive the
CAM computations for nodes, they apply similarly to edges.

The value of a CAM token is initialized as

Hℓ=0
CAM = ω0, (2)

which is a learnable parameter.
In order to gather information across the graph, CAM token
updates its value following

Hℓ
CAM = CrossAttn(Qℓ−1

CAM,K, V ) +Hℓ−1
CAM, . (3)

We use standard cross attention, which is expressed by

CrossAttn(Qℓ−1
CAM ,K, V ) =

Qℓ−1
CAMK

T

√
dk

V, (4)

with Qℓ
CAM = WQHℓ−1

CAM, K = WKH, V = WVH,
H being the nodes’ embeddings.

The token value is then mapped to a modulation as in
(Perez et al. 2017). We choose γ and β to be simple affine
layers. The modulation is conditioned by the product
between the CAM token value Hℓ

CAM and the value of each
node.
Hence we have

γℓ(Hℓ
CAM, H) =W γℓ

(WHH(WCAMH
ℓ
CAM)T ) + bγ

ℓ

, (5)

βℓ(Hℓ
CAM, H) =W βℓ

(WHH(WCAMH
ℓ
CAM)T ) + bβ

ℓ

. (6)

A simplified CAM update of the nodes (ignoring the specific
architecture and activation function used) is then

Hupdated = γℓH + βℓ. (7)

A CAM token incorporating node and edge features follows

Hℓ
CAM = FFN(CrossAttn(Qℓ−1

CAM,K, V ),

CrossAttn(Qℓ−1
CAM,Kedges, Vedges)) +Hℓ−1

CAM. (8)
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Figure 2: Architecture of a CAM token



CAM tokens then consist, for a light computational cost,
in incorporating an expressive global mechanism which can
help tracking important graph-level properties and adapting
the behavior of the model accordingly. On the one hand,
these tokens are valuable to relieve the nodes of the need
to feature long range, high-level feature message passing,
and could hence reduce oversmoothing (Wu et al. 2024). On
the other hand, conditioning the features of the model on
the observed graph enables more flexibility and facilitates
the processing of difficult node layouts or unbalanced edges
that tend to distort the attention-based message passing.

Additional features and loss components
We concatenate to each node the number of links that it fea-
tures on each cardinal antenna sector. We penalize the model
when a node features more than 1 link in an antenna sector.
If nsi =

∑
j eij · δ(s(i, j) = s), with δ(s(i, j) = s) being

the indicative function equal to 1 if eij is in sector s, 0 oth-
erwise, is the number of links on a given sector of a node i,
the penalty for this node is then given by

Lsectors
i =

4∑
s=1

ReLU(nis − 1). (9)

We concatenate to each edge its angle with the horizontal
axis. The angle attribute for a given edge eij is then given by

ψ(eij) = arctan
(

cyj−cyi
cxj −cxi

)
. We apply a cosine loss, as used

in (Garrido et al. 2022), in order to penalize acute angles,
which are globally rare in the dataset since they physically
correspond to sub-optimal links.
It is computed following

Lcos = 1− 1

n

∑
h∈H

2

k(k − 1)

∑
1≤i<j≤k

(cj − ch) · (ch − ci)

∥cj − ch∥ · ∥ch − ci∥
,

(10)
with k the number of neighbors of the node h.
The added features and loss functions mostly aim at facili-
tating the respect of the physical placement of the antennas.
Finally, we add a parity-related loss term that penalizes links
between nodes of the same predicted parity:

Lodd =

∑
(i,j)∈E êij ·

(
1−

∣∣∣P̂ (i)− P̂ (j)
∣∣∣)

1 +
∑

(i,j)∈E êij
. (11)

During training, we start by optimizing the reconstruction
BCE for 5 to 10 epochs. We then add the parity-related loss
terms so that they weigh as much as the main loss. After
another 5 to 10 epochs, the main BCE is generally stable
and close to 0, we then add the cosine and sector loss terms
and gradually increase them for at least 10 epochs.

Network evolution
Totally reconfiguring the whole network at every slight
movement, every few seconds, could cause an important
degradation of the quality of service as the packets would
always be rerouted. The solution would also be computa-
tionally ineffective. Signaling resulting from a change in
link topology would also cause a significant communication

overhead. In order to solve this issue, we simply extend
the diffusion paradigm to provide a simple yet efficient
way to quickly update the network without causing drastic
topology changes. The network topology simply follows
an adapted denoising diffusion process with the last link
topology Eprevious as a starting point, using the updated
nodes’ positions. It does not inherently differ from a
standard noisy graph given that the matrix m used to apply
noise is proportional to the real distribution of the edges and
that we assume the movement-caused change of links to be
uniform and homogeneous to our noise model. We quantify
the total normalized amount of node movement and make
the number of steps of diffusion to be proportional to that
amount of movement. We choose not to apply any noise
when the movement is sufficiently small, meaning that the
network update diffusion process only uses the last topology
and its new iterative predictions to generate the new graph.
The process for significant reconfigurations then consists in
sampling

Et−1 ∼
∏
ij

p̂E(θ,t,ij)(G
t)Q(et−1

ij |eij = e, etij), (12)

with Et=T = Eprevious, T being proportional with the
quantity of nodes’ movement measured since the previous
reconfiguration. When nodes have only slightly moved, we
use R̄t = ᾱtI + β̄tEprevious in the noise schedule. The
sampling then follows

Et−1 ∼
∏
ij

p̂E(θ,t,ij)(G
t)R(et−1

ij |eij = e, etij). (13)

We also follow the guided sampling diffusion frame-
work introduced in (Dhariwal and Nichol 2021), with∑

ij lBCE(E
previous
ij , Êij

t
) replacing the classifier loss,

with a scaling factor depending on the amount of nodes’
movement since the last reconfiguration. Graphs obtained
using this method present properties similar to the ones ob-
tained using the general framework. They are also about 21
% more similar to the previous link topology than if they had
been produced using the general framework. For a typical
mobility scenario (where each node randomly moves with a
maximal amplitude of 3/10th of the diagonal of the opera-
tional zones), we obtain satisfactory results following only
10 to 15 diffusion steps, resulting in 3.3 to 5 times faster
computation. Using the minor reconfiguration framework,
which replaces noise with the previous topology, we pro-
duce 41 % more similar graphs than if using the general
framework, and obtain satisfactory results following only 7
to 10 diffusion steps. Experimental results and observations
are to be found in the appendix 1.

Results
Benchmarks
NetDiff follows 50 diffusion steps. The graph transformer
that we use features 10 graph transformer blocks. We
trained our models on 22k samples, using Pytorch (Paszke
et al. 2019), AdamW (Loshchilov and Hutter 2019) with
high (0.1 to 0.17) weight decay to avoid overfitting on our



Model Efficiency ↑ Connectedness ↑ Isolated nodes ↓ Saturated nodes ↓ Parity ↑ Length ↑
NetDiff 1.99 99.13 % 0.29 % 12.31 % 98.65 % 98.97 %
NetDiff (no features) 1.89 99.07 % 0.32 % 14.83 % 98.64 % 99.01 %
DDPM-GT 1.78 98.12 % 0.34 % 17.08 % 98.59 % 98.87 %
GraphVAE 0.66 99.82 % 0.12 % 96.08 % 61.33 % 84.87 %
GT-VAE 1.16 98.82 % 0.39 % 49.71 % 93.48 % 97.93 %

Table 1: Constraint respect of different architectures

rather small dataset, and learning rates between 1e-4 and
1e-7. We conduct our experiments with an Intel Xeon(R)
E5-2650v3 at 2.30 GHz CPU and a Tesla T4 GPU. The
entire diffusion runs in ∼ 480 ms on GPU and 2 seconds on
CPU without any optimization. We use a noise schedule that
pushes the model to rather create supernumerary links than
the contrary, as it is easier to remove links afterwards than to
create new links manually. The benchmarks are conducted
using thousands of random sets of 16 nodes, unseen during
training. Although the model is theoretically agnostic to
the number of nodes, featuring sets of different numbers
of nodes in the dataset allows for better generalization and
scalability, as detailed in the appendix 2. We compare NetD-
iff to the existing node-conditioned generative architectures:
a standard graph transformer DDPM baseline, similar to
the (Vignac et al. 2023a), GraphVAE (Simonovsky and Ko-
modakis 2018) and another graph variational autoencoder,
GT-VAE, using a more expressive graph-transformer-based
decoder. NetDiff (no features) refers to our architecture
without the handcrafted features and additional loss terms.

A crucial aspect of our problem is to respect the strict
constraints that govern the dataset networks. In Table 1,
“Efficiency” refers to the proportion of connected graphs
normalized by the number of predicted links. It is an
important metric since, while the topologies have to be
connected, generating too many links creates saturation
and interferences. The target algorithm has a 2.28 effi-
ciency. “Connected” describes the absolute proportion
of connected graphs, “Isolated nodes” - the proportion
of nodes that do not feature any link, “Saturated nodes”
- the proportion of nodes that feature more than 4 links,
“Parity” - the proportion of links that respect the generated
parity, “Length” - the proportion of links that respect the
maximal possible range. We observe that NetDiff respects
most of the constraints faithfully, provides high efficiency
and only shows minor difficulties to respect the maximal
amount of links per node. While it could be improved,
it is also due to the decision to push the generation to
generate slightly more links in order to facilitate graph
post-processing. Individual link constraints seem easier to
respect. Our model outperforms vanilla graph transformer
DDPM by a consequent margin, especially in structural
connectivity-related constraints such as node saturation. The
handcrafted features, in addition to the CAM token, also
seem to improve the performance of the model. Variational-
autoencoder-based architectures struggle at modeling the

Omnidirectional GT-VAE NetDiff
Throughput ↑ 50.16 66.31 95.05

Table 3: Avg instantaneous throughput upper bound (Mbps)

desired graphs: while the vanilla version does not seem to be
able to even distinguish plausible edges and nearly predicts
every possible link, GT-VAE predicts individually plausible
edges but does not use them to form fully coherent graphs.
We found that the encoded latent was nearly ignored which,
as mentioned previously, is probably due to the node-
conditional nature of the generation task. It should be noted
that GraphVAE performs best in connectedness and isolated
nodes because it predicts such a disproportionately high
number of links that the predicted topologies are inherently
connected. NetDiff then brings substantial improvements
over a standard discrete denoising graph transformer and
vastly outperforms one-shot variational methods.

Property NetDiff DDPM-GT GraphVAE GT-VAE Target
Number of links 49.74 55.22 151.81 85.67 43.90
Average link length 1.04 1.05 1.51 1.07 0.85
Link throughput 1.60 1.49 0.67 1.33 1.72
Saturated antennas 16.19 % 24.59 % 90.04 % 42.71 % 9.74 %

Table 2: Some properties of the generated graphs compared
to the original ones

In Table 2, we highlight in bold the model whose the
evaluated property is the most similar to the target’s.
NetDiff stands out as a clear improvement over the other
benchmarked models. Generated graphs feature more links
than the dataset samples, but their links are rather similar
in terms of length. Our model generates graphs whose
simulated per-link throughput (in Mbps, using 10 Mbps
as the source node throughput) lies close to the original
graphs’, despite showing almost twice as many saturated
antennas (antenna sectors which feature more than one
link). The results show the capacity of our architecture to
capture high-level connectivity pattern rules since NetDiff
shows significant improvement in the number of links and
the amount of saturated antennas. GraphVAE does not seem
to discriminate links in an efficient manner, GT-VAE also
seems overoptimistic in its predictions.



In Table 3, we showcase theoretical instantaneous through-
puts corresponding to an upper bound of the amount of infor-
mation that the network can exchange at the same time. We
do not feature any scheduling or routing, as they are outside
of our scope. We seek to measure in what extent NetDiff-
generated networks do respect the theoretical assumptions
made in (Yi, Pei, and Kalyanaraman 2003; Gupta and Kumar
2000) regarding the performance of directional antennas. We
use similar geometrical constructions for interference pat-
terns. The omnidirectional protocol is based on a simpli-
fied OLSR where the nodes are considered to communicate
with all the neighbors in their range, which is about 1/4th
of the distance between the two most distant nodes in the
graph. We consider that the received interference decreases
quadratically with the distance to the interfering emitter. If
the interference is too high, the link is required to delay its
communication and is hence considered inactive at the on-
going timestep. We use a single available frequency, a di-
rectional antenna beamwidth of π

3 for NetDiff and GT-VAE,
and Shannon’s capacity as the theoretical upper bound for
channel performance. We consider the directional antenna
gain to be 2 times superior to the omnidirectional one.
NetDiff provides significantly higher instantaneous through-
put upper-bounds than the omnidirectional counterpart. This
measurement primarily depends on, and is inversely propor-
tional to, the level of interference and the number of links de-
activated to mitigate interference. It confirms that the created
topologies feature a sufficient amount of low-interference
links to achieve the expected throughput improvement com-
pared to the omnidirectional approach. The poorer GT-VAE-
based topologies do not stand out as a great improvement
over the omnidirectional counterpart, and suggest that direc-
tional antennas do indeed require a proper link topology to
obtain an important performance improvement. NetDiff also
scales much better than the omnidirectional counterparts by
design, results in appendix).

Constraint Our Loss Standard BCE
Saturated antennas ↓ 16.19 % 23.38 %
Parity ↑ 98.65 % 67.07 %

Table 4: Zoom on loss functions effects

Our additional loss function terms greatly fulfill their task,
displaying important improvement on the model’s ability to
respect the constraint they refer to. The cosine and sector
loss terms seem to diminish antenna-wise supernumerary
links by a significant amount, while the parity respect loss
term appears mandatory for the model to respect the parity
link constraint. Hence, we observe NetDiff, equipped with
CAM tokens, shows great control over the connectivity of
the generated graphs, and that the additional features and
loss terms are valuable in order to respect the constraints
of the problem. It greatly outperforms a graph transformer
DDPM and displays convincing results, close to the original
graphs’, while providing higher throughput than reference
network protocols.

Operational use

In order for NetDiff to be robust, we implement a simple
algorithm to correct the network provided by the DDPM. Its
execution time is at most 250 ms in our experiments.

Algorithm 2: Correction Algorithm

1: for each node in the graph do
2: Assign each link to the sector it belongs to

based on its angle.
3: Delete wrong parity links.
4: if multiple links are present in the same sector then
5: Keep only the shortest one.
6: Check if the graph is connected.
7: while the graph is not connected do
8: for each pair of disconnected components do
9: Connect the closest pair of nodes with

opposing free sectors.

As mentioned in the prelude of the section, we push our
model to generate more links than in the dataset graphs, as
removing a few redundant ones is not computationally ex-
pensive, while having to add them is a bit more difficult. We
could check, for each removed link, if the removal would
disconnect the graph, though, in practice it almost never
does and would be corrected by the components-connecting
loop. We can accept having a few saturated antennas as they
will simply alternatively serve each of their links depending
on the demand, resulting in a minor loss of throughput.

Conclusion

In conclusion, NetDiff provides a flexible and expressive
denoising diffusion architecture to imitate network topolo-
gies obtained with a heavy algorithm. Such topologies
grant optimized connectivity patterns to avoid interference
and achieve high network performance using directional
antennas. Compared to their omnidirectional counterparts,
NetDiff-generated topologies achieve substantially higher
instantaneous throughputs, fully leveraging the potential of
directional antennas. This enables scheduling with really
few time frames and facilitates a straightforward routing
process. The presented architecture benefits from cross-
attentive modulation tokens, which help generating coher-
ent graphs with realistic structural properties. The additional
loss terms greatly facilitate the enforcement of the con-
straints and are particularly effective in ensuring the parity of
communications. Futhermore, our partial diffusion method
provides a significant computational gain and enhances net-
work stability, especially for minor reconfigurations. Our
empirical results show that the proposed architecture en-
ables significant improvements over the popular denoising
graph transformer, and vastly outperforms one-shot genera-
tive methods. Future work will explore further optimizations
in link verification processes and incorporate NetDiff in re-
alistic network environments.



Appendices

A Mobility model, results and observations
We conduct the following experiments in order to evaluate
the same properties as the ones evaluated in the general
framework. We apply gaussian noise to the nodes’ coordi-
nates of true topologies, and apply NetDiff on the new set
of nodes, with the previous set of edges as the starting point
of the diffusion. The standard evolution corresponds to a
noisy partial reconfiguration of 15 steps with a normalized
gaussian movement of maximum amplitude of 0.3 and the
minor evolution to the less noisy small reconfiguration of 10
steps with a normalized gaussian movement of maximum
amplitude of 0.1. We chose the number of steps that seemed
to offer the best computation time/performance ratio.

Reconfiguration Connected ↑ Isolated nodes ↓ Saturated nodes ↓ Parity ↑ Length ↑
Standard reconfiguration 98.85 % 0.33 % 14.09 % 98.50 % 98.04 %
Minor reconfiguration 98.87 % 0.33 % 12.89 % 98.64 % 99.01 %

Table 5: Constraint adherence with and without architectural augmentations

We can observe that constraint adherence is close to the one
observed using the standard framework, with only a slight
degradation when using the standard reconfiguration. We
found out the added continuity-enforcing guidance to be re-
sponsible of most of this loss of performance.

Property Standard reconfiguration Minor reconfiguration
Number of links 49.84 47.62
Average link length 1.06 1.04
Link throughput 1.49 1.55
Saturated antennas 16.70 % 15.68 %
Continuity 33.21 % 38.72 %
Diffusion steps 15 10

Table 6: Properties of the generated graphs using the two
evolutional diffusion algorithms

The generated graphs have properties that seem close to
the ones obtained using the general framework. Continuity
measures the proportion of links that were also present
in the previous topology. Using the general diffusion
framework, we would obtain a 27.43% continuity score.
We applied a rather weak guidance that we empirically
found not to affect the quality of the generated graphs.
The performance/guidance trade-off could be addressed
following the framework developed in (Li et al. 2022). The
small number of diffusion steps allows for up to 5 times
faster graph generation.

We hereby provide two examples of graphs obtained
using the mobility methods: the first one using the standard
noisy partial reconfiguration, the second one using the

minor reconfiguration.

Figure 3: A true network topology (on the left) follows a
standard reconfiguration of 15 diffusion steps. While the
generated topology shares structural similarities with the
base topology, important changes have been made (0.3 nor-
malized node movement).

Figure 4: A true network topology (on the left) follows a
minor reconfiguration of 10 diffusion steps. Very few links
have been changed during the reconfiguration (0.1 normal-
ized node movement).

For each of the above reconfigurations, a correction algo-
rithm following guidelines operated one link change/re-
moval. The predicted graphs were then almost natively cor-
rect, resulting in a ∼ (500 for inference + 50 for correction)
ms execution time.

B Network size flexibility
While our framework is theoretically agnostic to the size of
the input networks, obtaining similar performance on 16 or
32-node networks does require the model to “see” 32-node-
networks in the training stage. We then trained the model in
order to provide similar performances as the ones detailed
in Tables 1 and 2 for 16-node-networks while generalizing
better to 32-node-networks (40+ nodes networks need to be
partitioned for communication stability so the case is not
covered in this work). We used a reduced dataset of 16 and
32-node networks with a 60/40 ratio to retrain our model.
Since the training on various sizes could not be batched, we
only retrained our model for an equivalent of 2 epochs on
15k samples.



Model Connected ↑ Isolated nodes ↓ Saturated nodes ↓ Parity ↑ Length ↑
NetDiff (32) 98.76 % 0.37 % 19.06 % 96.74 % 99.20%

Table 7: Constraint adherence for 32 node-networks

The created topologies grant similar constraint adherence as
their 16-node-counterparts except for the node saturation,
which seems harder to respect there.

Property NetDiff (32) Target
Number of links 108.75 96.44
Average link length 0.81 0.70
Link throughput 2.69 3.13
Saturated antennas 20.89 % 9.91 %

Table 8: Some properties of the generated graphs compared
to the original ones

The model tends to create proportionally more supernumer-
ary links than for 16-node-networks, which suggests that the
model tends to be a bit biased by the number of nodes. It ob-
viously affects the antenna saturation metric and explains the
node saturation observed beforehand. NetDiff still provides
satisfactory link lengths and simulated throughput. Creating
a more balanced and continuous dataset between 16 and 32-
node-networks would greatly improve the results. The link
throughput is higher than in the 16-node-scenarii because
the nodes are closer to each other, resulting in better signal
to noise ratios.

Omnidirectional NetDiff
Throughput ↑ 92.34 288.70

Table 9: Avg instantaneous throughput upper bound (Mbps)

NetDiff, which relies on advanced spatial reuse to provide
high-performance link topologies, seems to provide much
better scaling than the omnidirectional-antenna-based net-
works, which suffer from a significant interference increase.
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