
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALABLE AND ENHANCED HALLUCINATION DETEC-
TION IN LLMS USING SEMANTIC CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being adopted across various do-
mains, driven by their ability to generate general-purpose and domain-specific
text. However, LLMs can also produce responses that seem plausible but are fac-
tually incorrect—a phenomenon commonly referred to as “hallucination.” This
issue limits the potential and trustworthiness of LLMs, especially in critical fields
such as medicine and law. Among the strategies proposed to address this problem
uncertainty-based methods stand out due to their ease of implementation, indepen-
dence from external data sources, and compatibility with standard LLMs. In this
paper, we present an optimized semantic clustering framework for automated hal-
lucination detection in LLMs, using sentence embeddings and hierarchical clus-
tering. Our proposed method enhances both scalability and performance com-
pared to existing approaches across different LLM models. This results in more
homogeneous clusters, improved entropy scores, and a more accurate reflection
of detected hallucinations. Our approach significantly boosts accuracy on widely
used open and closed-book question-answering datasets such as TriviaQA, NQ,
SQuAD, and BioASQ, achieving AUROC score improvements of up to 9.3% over
the current state-of-the-art (SOTA) semantic entropy method. Further ablation
studies highlight the effectiveness of different components of our approach.

1 INTRODUCTION

Large language models are witnessing rapid integration across a variety of NLP tasks (Bommarito
et al., 2023; Driess et al., 2023; Bang et al., 2023; Zhong et al., 2023; Achiam et al., 2023; Spataro,
2023). However, even widely adopted systems, such as ChatGPT (OpenAI, 2023) and Gemini
(TeamGemini et al., 2023) can sometimes generate content that is illogical or inconsistent with the
given context—commonly referred to as “hallucination” (Ji et al., 2023). As a result, hallucina-
tion detection, which involves the identification of inaccurate information generated by LLMs, has
become a topic of high interest in the literature.

For hallucination detection, the focus is shifted towards capturing the semantic properties of the text,
minimizing reliance on lexical and syntactical features, as our primary goal is to assess the accu-
racy of the generated information, regardless of its phrasing. When sampling multiple responses,
if an LLM produces semantically inconsistent information in response to the same question, it in-
dicates uncertainty from the model, which can be a sign of hallucination. Leveraging the concept
of semantic similarity and uncertainty across meaning distributions to detect hallucinations, (Kuhn
et al., 2023) introduced “Semantic Entropy,” an unsupervised method that identifies hallucinations
by clustering generated responses based on semantic equivalence, followed by calculating the over-
all semantic entropy from the uncertainty within each cluster. This method has been proven highly
effective. However, its main limitation lies in the clustering approach, which relies on Natural Lan-
guage Inference (NLI) to determine semantic equivalence, as NLI struggles to capture the full range
of semantic properties in text (Arakelyan et al., 2024). In addition, NLI models are built using
large-scale transformer-based architectures, causing them to be computationally intensive during
inference (Percha et al., 2021).

To address these limitations, we propose an optimized semantic clustering approach based on se-
mantic similarity to calculate entropy over meanings. Our approach utilizes sentence embedding to
capture nuanced semantic properties in a high-dimensional context, followed by hierarchical clus-
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tering. In doing so, we prioritize the token semantics and efficiently cluster the responses from
language models (LMs). Improvement in the homogeneity of clusters in turn improves the entropy
estimates, resulting in enhanced hallucination detection. The primary contributions of this work are
as follows:

• We introduce a versatile black-box framework for automated hallucination detection across
diverse LLMs, requiring no access to internal model states or external knowledge, and
applicable to any off-the-shelf LM.

• Scalability experiments demonstrate our framework’s superior efficiency, achieving a 60-
fold speedup over SOTA hallucination detection approaches on large-scale settings (e.g.,
200 generations).

• Our approach significantly enhances hallucination detection across a diverse set of well-
established open and closed-book Question Answering (QA) datasets, including TriviaQA,
NQ, SQuAD, and BioASQ. Notably, it achieves up to a 9.3% increase in AUROC on the
NQ dataset using Llama-2-7b-chat.

• Comprehensive ablation studies highlight the critical components driving the optimal per-
formance of our method.

This paper is organized as follows: Section 2 presents an overview of the related works, highlighting
the importance of semantics in NLG. Section 3 explains the methodology, introducing notation,
outlining the problem statement, and describing the technical and theoretical components of our
approach. Section 4 covers the experimental setup, including the datasets and models used, while
Section 5 provides an analysis of the results and ablation studies. Finally, Section 6 summarizes our
findings and suggests potential directions for future research.

2 RELATED WORK

Proliferation of LMs in real-world scenarios, e.g., medical and legal domain, is significantly limited
due to their ability to fabricate seemingly plausible but unsubstantiated content (Pal et al., 2023; Dahl
et al., 2024). Consequently, researchers have addressed this problem from different perspectives,
and the majority of approaches can be broadly categorized as black-box, white-box, or gray-box
methods.

Black-box methods depend on the output text generated by LMs. For instance, Manakul et al.
(2023) hypothesized that if an LM has adequate knowledge of a concept, sampled responses to
queries will likely be more consistent and agreeable, whereas significant contradictions/divergence
amongst responses indicate hallucination. White-box methods explicitly use the internal states of the
models, e.g., hidden layer activations, to detect and mitigate hallucinatory responses (Burns et al.,
2022; Li et al., 2024; Azaria and Mitchell, 2023). Gray-box approaches act as a middle ground
and remain oblivious to the internal state of the model while using token probabilities to derive
additional metrics, such as confidence scores or predictive uncertainty for detecting hallucinations
(Xiong et al., 2023; Xiao and Wang, 2021; Yuan et al., 2021). Another category of approaches
aims to detect hallucination by comparing the LLM output with external knowledge sources to
verify the truthfulness of the claim (Thorne et al., 2018; Guo et al., 2022). However, these methods
introduce dependency on an external source, while being limited by the scope and accuracy of facts
in the knowledge repositories. Furthermore, hallucinations also involve subtle reasoning errors that
surpass simple fact verification (Kryscinski et al., 2019; Maynez et al., 2020).

Though white-box methods have outperformed black/gray-box tools (Zhu et al., 2024), the improve-
ment is marginal (Xiong et al., 2023), and there is exclusive dependence on the internal state of the
model. These are not readily available to users with restricted API usage, and practically challenging
to obtain with proprietary LM systems. In contrast, black/gray-box methods offer a viable alterna-
tive due to their implementation simplicity, compatibility with off-the-shelf LMs, and independence
from model-intrinsic parameters and extrinsic knowledge bases. However, these methods depend on
the output text or token probabilities, while ignoring the text semantics. Lately, Kuhn et al. (2023)
showed that the accuracy of gray-box based hallucination detection can be improved by considering
the underlying text semantics. Particularly, ‘semantic entropy’ was introduced to measure model
uncertainty by adjusting for the meaning of a text. This idea of semantic entropy has proven to be

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

very effective in hallucination detection, and we introduce a brief background on the importance of
semantics in Natural Language Generation (NLG).

Semantics in NLG The complexities associated with natural language mean that identical subjects
can be expressed in many different ways. It is essential to first distinguish between semantics,
syntax, and lexical content. As defined in the literature, syntax involves the grammatical properties
of the text, lexical content involves the words used within the text, while semantics involves the
overall intended meaning (Lyons, 1995). In NLG, particularly within the context of hallucination
detection, we prioritize the semantic properties of the text, to determine the likelihood of potential
inaccuracies and/or inconsistencies. When presented with a question, a model is able to address this
question in more ways than one, while still maintaining a level of reliability and accuracy. As a
result, it is important for us to effectively capture and understand semantic properties of text as an
indication of generation reliability.

Significance of Semantics in Estimating Model Uncertainty Kuhn et al. (2023) proposed an
interesting viewpoint for estimating the uncertainty in LM models, specifically where different sen-
tences can mean the same thing and ‘syntactic difference may not imply different semantics’. A
sentence can be phrased differently and have different form or syntax, without changing its un-
derlying semantics - a phenomenon referred to as ‘semantic equivalence’. For example, the two
sentences: ‘rhinovirus are the predominant cause of common cold’ and ‘common cold is caused by
rhinovirus’ have the same meaning. However, at the level of token likelihood, if the model is uncer-
tain about which sentence to generate, this uncertainty is semantically insignificant. Consequently,
Kuhn et al. (2023) used semantic equivalence to induce a probability distribution over the meaning
of tokens (instead of lexical structure) to capture the semantic uncertainty. Farquhar et al. (2024)
extended this idea and introduced discrete semantic entropy to work in black-box settings without
access to token probabilities.

Semantic entropy is shown to perform better than standard entropy and outperforms SOTA tools
based on model self-evaluation and embedding regression (Kadavath et al., 2022). However, the
limitation with this approach is the bidirectional NLI-based semantic clustering. NLI is designed
to identify the presence of an entailment or contradictory relationship between two pieces of text.
Linguistic phenomena can be complex and nuanced (Naik et al., 2018), and in this case, such a rigid
binary classification can sometimes fail to accurately capture semantic similarity due to its continu-
ous nature. Semantic clustering requires multi-dimensional comparison between text pairs to detect
any degree of semantic similarity, regardless of whether they are fully an entailment or a contradic-
tion of one another. Furthermore, NLI has been shown to use lexical properties of the text as the
main factor in identifying entailment, while heavily relying on specific words in its classification
(Arakelyan et al., 2024). Another major limitation of NLI models is their scalability. These models
depend on large-scale transformer-based architectures, making them computationally expensive at
inference time (Percha et al., 2021).

Therefore, we introduce an optimized semantic clustering approach for efficient and accurate cap-
turing of potentially complex semantic relationships within generations of an LLM, resulting in an
improved hallucination detection performance.

3 METHODOLOGY

In this section, we provide a detailed description of our approach to automatic black-box hallucina-
tion detection in LLMs. To determine semantic equivalence, we apply a fully automated non-prompt
based clustering approach, followed by the black-box version of the entropy calculation (Farquhar
et al., 2024) to determine the level of uncertainty in the outputs of the LLM. An illustration of the
methodology is shown in Figure 1.

Notation and Problem Statement The main task involves automatic detection of hallucination
in NLG, particularly for QA benchmarks. The process involves prompting an LLM with a ques-
tion, denoted as q, with a generation, g, representing the output. To leverage the idea of uncertainty
within generations in LLMs, the LLM is prompted P times, resulting in G = {g1, g2, . . . , gP }. We
concatenate q with each gi ∈ G, with a separator token, [SEP ], between them, to create a repre-
sentative string ‘q ◦ [SEP ] ◦ gi’, represented by si, ∀gi ∈ G. To detect potential hallucination, we
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Earth

I think it could 
be EarthMars

Part 1: Generating Responses Part 2: Semantic Clustering

It is not 
Earth, it's 

Saturn

Query

LLM

Generated 
Answers

Sentence 
Embeddings
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Matrix
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1.0  .   .   .   . .   .   .   . Mars
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C2

C3
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Part 3: Calculating Entropy

It is not 
Earth, it's 

Saturn

Figure 1: Illustration of our proposed Natural Language Generation hallucination detection frame-
work, involving our optimized semantic clustering approach of multiple generations to calculate
semantic entropy. Part 1 involves generating multiple generations to the same question. Part 2 then
processes the generations and clusters them using sentence embeddings and hierarchical agglomer-
ative clustering. Part 3 calculates the overall entropy score using the generated clusters.

generate a sentence embedding, using a sentence similarity model, Emb, which results in Emb(si)
with a dimension of d.

Iterative Generation of Outputs The first part involves iteratively prompting the LLM P times
with the question q, resulting in multiple generations of the same query. These generations are
independent of each other, ensuring that subsequent LM responses are not related to previously
generated responses.

Generating Embeddings To generate an embedding for every generated answer, we first concate-
nate q with every gi with a separator token between them, resulting in si, to ensure that each gi is
captured within the context of q. Text embedding Emb(si) are generated by a transformer-based
model fine-tuned on the sentence similarity task. Cosine similarity (Rahutomo et al., 2012) is used
to estimate the extent of similarity between embeddings as shown below:

cos sim(Emb(si), Emb(sj)) =
⟨Emb(si), Emb(sj)⟩
∥Emb(si)∥ · ∥Emb(sj)∥

(1)

In this case, cosine similarity is a suitable measure for capturing the overlap between two semantic
embeddings due to:

• Focus on direction: It primarily focuses on direction rather than magnitude by emphasizing
the angle, θ, between two vectors to calculate similarity (Mikolov et al., 2013).

• Applicability to high-dimensional vectors: Due to the high dimensionality of embeddings,
sparsity becomes somewhat of an issue, but with the focus being mainly on θ, cosine sim-
ilarity is able to capture semantic similarity regardless of the dimensionality (Turney and
Pantel, 2010).

• Length-invariant normalization: Normalization disregards any potential differences in
lengths, effectively capturing the semantic relationship between the two vectors (Turney
and Pantel, 2010).

Hierarchical Agglomerative Clustering We employ hierarchical agglomerative clustering
to partition the responses into an optimal number of groups. Initially, each embedding
{Emb(s1), Emb(s2), . . . , Emb(sP )} forms its own cluster, denoted as C1, C2, . . . , CP , where
Ci = {Emb(si)}. The algorithm proceeds iteratively, merging the closest clusters based on a dis-
tance function, dis(Ci, Cj), which is defined according to a chosen linkage criterion. The distance
threshold, in this case, is set to 0.05 throughout the paper. This process continues until a predefined
stopping condition is met. Single linkage may inadvertently connect unrelated clusters, whereas
complete linkage is overly sensitive to outliers (Ramos Emmendorfer and de Paula Canuto, 2021).
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To mitigate these issues, we adopt average linkage, offering a more balanced distance measure. The
distance between embeddings si and sj is defined as:

dis(Emb(si), Emb(sj)) = 1− cos sim(Emb(si), Emb(sj))

The pseudocode of the algorithm is provided in Appendix B.

Agglomerative Clustering Creates More Uniform Partitions We show that, compared to bidirec-
tional NLI-clustering, hierarchical agglomerative clustering can generate more homogeneous clus-
ters. For instance, consider the example: q = ‘In our solar system, which is the third planet from the
sun?’ and G = [‘It is Earth’, ‘The answer is Saturn’,‘The answer is Earth’, ‘Mars’, ‘It is not Earth,
it’s Saturn’, ‘I think it could be Earth’]. Ideally, we should obtain three clusters representing {Earth,
Saturn, Mars}. Clusters obtained from agglomerative clustering are shown in Fig. 2 (a). NLI clus-
tering output is illustrated in Fig. 2 (b). Evidently, agglomerative clustering correctly partition the
answers into 3 clusters, whereas NLI results in 5 individual clusters.

(a) Dendogram of Our Clustering.

'It is Earth'

'The answer is 
Earth'

'The answer is Saturn'

'Mars'

'It is not Eath, 
It's Saturn'

'I think it could
be Earth'

Earth Saturn

Bidirectional Entailment

Mars

(b) Bidirectional NLI Clustering.

Figure 2: Visualization of clusters obtained through agglomerative and NLI based clustering for the
same sample.

Our approach successfully identifies that ‘I think it could be Earth’ belongs with ‘It is Earth’,‘The
answer is Earth’, and ‘It is not Earth, it’s Saturn’ belongs with ‘The answer is Saturn’, while Bidi-
rectional NLI failed to do so. If we examine the second case, we see that ‘The answer is Saturn’
is a straightforward affirmative statement, while ‘It is not Earth, it’s Saturn’ consists of two parts:
one negating Earth as the answer and the other confirming Saturn as correct. Therefore, in the bidi-
rectional entailment comparison, ‘It is not Earth, it’s Saturn’ entails ‘The answer is Saturn’, since it
logically implies Saturn as the answer, but the reverse is not true because the negation of Earth is
not mentioned in the latter statement. In this case, our focus is to cluster based on the final intended
answer, without being influenced by other elements of the response, and bidirectional NLI clustering
fails to accomplish this.

Complexity Analysis Our approach consists of three steps, a) generating sentence embeddings, b)
calculating the similarity between embeddings, and c) clustering the generated embeddings. For the
first step, we consider that each input question has P answers, which involves tokenization and a
forward pass through transformer model. This step has cost O(P · L2 · d), where L is the number
of tokens in the answer, and d is the dimensionality of the resulting embedding. Computing the
pairwise cosine similarity between the embeddings cost P (P − 1)/2 comparisons, and taking into
consideration the dimensionality of the embeddings, this amounts to a complexity of O(P 2 · d).
Finally, agglomerative clustering has a complexity of O(P 2 · log P ). The overall complexity of our
framework is assessed by adding the cost of individual steps O(P · L2 · d) +O(P 2(d+ log P )).

Scalability Analysis To compare the scalability of our clustering approach with the NLI-based
clustering approach, we perform a scalability analysis by reporting the runtime of both approaches
over a varying number of generations. For this analysis, we recreate the NLI-based approach using

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the DeBERTa-large model 1, as detailed by Kuhn et al. (2023). The results show that our approach
is significantly better than NLI-based clustering.

Figure 3: Runtime Analysis of NLI and agglomerative clustering over varying number of genera-
tions.

Calculating Entropy Score Entropy score of semantic clusters is calculated as shown in Eq. 2.

ES = −
∑
i

p (ci|x) log p (ci|x) (2)

Our formulation is designed for black-box hallucination detection, i.e., we do not need access to
internal model state(s) or token probabilities. Hence, entropy can be calculated by using only output
tokens.

4 EXPERIMENTS

We demonstrate the effectiveness of our approach through a comprehensive experimental set-up.

Data The proposed approach is evaluated using four widely-used QA datasets from the literature.
These include TriviaQA (Joshi et al., 2017), a trivia-style QA dataset, and Natural Questions (NQ)
(Kwiatkowski et al., 2019), which consists of questions derived from Google searches; both are
closed-book datasets typically featuring short, one or two-word answers. Additionally, SQuAD (Ra-
jpurkar et al., 2016), a general knowledge open-book QA dataset with longer answers, and BioASQ
(Tsatsaronis et al., 2015), a life sciences QA dataset containing either binary (yes/no) or long sen-
tence answers, are utilized. Representative samples for each dataset are provided in Appendix A.

Models The proposed methodology is applied to several SOTA LMs, including Llama 2 (Touvron
et al., 2023), Mistral (Jiang et al., 2023), and Falcon (Almazrouei et al., 2023). Specifically, the
focus is on fine-tuned and instruction-tuned versions, such as Llama-2-7b-chat, LLaMa-2-13b-chat,
Falcon-7b-instruct, and Mistral-7b-instruct. To show that the approach works with any off-the-shelf
LM, no additional fine-tuning is done; instead, the open-source pretrained versions and their corre-
sponding tokenizers available on the Hugging Face website are utilized.

Comparison with Robust Baselines and SOTA The proposed approach is compared against four
methods as implemented by Farquhar et al. (2024)2. In addition to the current SOTA semantic
entropy, a comparison is made with a supervised embedding regression approach (Kadavath et al.,

1https://huggingface.co/microsoft/deberta-large-mnli
2https://github.com/jlko/semantic uncertainty
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2022), which uses a regression model trained on LLM hidden states to predict hallucinations. For
baselines, the approach is compared to naive entropy, which calculates entropy without accounting
for semantic similarity across answers that may use different words or phrases to describe the same
concept. Additionally, a comparison is made with p(true) (Kadavath et al., 2022), which employs a
few-shot prompt-based method to estimate the accuracy of LM outputs.

Automated Ground-Truth Label A single “best answer” for each question is generated by setting
the model temperature to 0.1. To automatically assess the correctness of LLM-generated output
against the ground truth, a semantic similarity measure is used, following the automatic clustering
approach proposed in this paper, which incorporates both semantic and cosine similarity for compar-
ison. Embeddings for the ground truth and model answers are generated using the all-MiniLM-L6-v2
model, chosen for its effectiveness in capturing semantic similarity, particularly in the main experi-
mental clustering setup described in Section 3. The generated response is classified as accurate if the
cosine similarity between the embeddings exceeds 0.95, while lower values indicate hallucination.

Evaluation Metric In line with prior work, the Area Under the Receiver Operating Characteristic
Curve (AUROC) is used as the primary evaluation metric. The ROC curve plots the true positive
rate against the false positive rate across various thresholds, making AUROC an appropriate measure
for this binary classification task. An AUROC score approaching 1 indicates a strong relationship
between the entropy measure and hallucination, whereas an AUROC of 0.5 suggests no meaningful
relationship. Higher AUROC values signify better performance.

5 RESULTS

Results (Table 1 ) indicate that the proposed approach consistently outperforms baselines in nearly
all model-dataset combinations. Specifically, compared to the SOTA semantic entropy approach,
the proposed method achieves improvements of up to 7.6% on TriviaQA, 9.3% on NQ, 9.1% on
SQuAD, and 4.8% on BioASQ.

For datasets like TriviaQA, NQ, and SQuAD, which feature short responses, the approach excels in
capturing subtle semantic differences in minimal inputs. The use of advanced sentence embeddings
allows for a deeper understanding of semantic nuances, enhancing clustering performance even in
concise textual contexts. The results demonstrate the effectiveness of the proposed method in iden-
tifying semantic relationships between generated answers, producing an entropy score that serves as
an informative indicator of potential hallucination.

It is important to note that the results for the BioASQ dataset are relatively higher for both the
proposed approach and the semantic entropy approach compared to other datasets. This can be
attributed to the fact that some answers are binary (yes/no) (Appendix A.4). Such binary responses
intuitively simplify the separation and clustering process, unlike other datasets where variations in
wording can lead to more complex semantic distinctions.

5.1 ABLATION STUDIES

An empirical analysis is conducted to determine the optimal values for various hyperparameters,
algorithms, and transformer models used in the experiments.

Number of Generations Number of generations (P ) is an important factor to consider to achieve
optimal results. To observe the impact of P on AUROC, we experimented with P values in the
range {2, 4, 6, 8, 10, 12, 14} across the four datasets. Fig. 4a shows that AUROC values generally
increase with an increase in P . However, when P > 10, the increase is limited and the AUROC
starts to level off. Consequently, we set P = 10 through our experiments. Apart from achieving
the best AUROC, a lower P also reduces the inference costs associated with a higher number of
generations.

Cosine Similarity Threshold for Clustering We experimented with similarity thresholds in the
range {0.70, 0.80, 0.85, 0.90, 0.95}. The experimental results are shown in Fig. 4b. The results
indicate that higher similarity thresholds improve clustering effectiveness, leading to higher AUROC
scores across all datasets. Therefore, we use the threshold of 0.95 in our experiments. Choosing a
threshold past 0.95 decreases performance, as it imposes a threshold that is too rigid, negatively

7
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Table 1: Evaluation of hallucination detection on open-form QA datasets and 4 representative LLM
models. AUROC values are reported. Best performance for each experiment is highlighted in bold.

Models Methods
Datasets

TriviaQA NQ SQuAD BioASQ

Llama-2-7b-chat

p(True) 0.642 0.646 0.607 0.786

Embedding Regression 0.631 0.578 0.621 0.714

Naive Entropy 0.731 0.723 0.715 0.680

Semantic Entropy 0.763 0.739 0.764 0.870

Ours 0.807 0.832 0.830 0.928

LLaMa-2-13b-chat

p(True) 0.788 0.731 0.711 0.773

Embedding Regression 0.695 0.698 0.592 0.732

Naive Entropy 0.701 0.695 0.655 0.603

Semantic Entropy 0.803 0.742 0.754 0.881

Ours 0.810 0.759 0.845 0.915

falcon-7b-instruct

p(True) 0.630 0.518 0.535 0.403

Embedding Regression 0.733 0.656 0.633 0.842

Naive Entropy 0.767 0.732 0.649 0.697

Semantic Entropy 0.786 0.736 0.710 0.861

Ours 0.807 0.821 0.797 0.909

mistral-7b-instruct

p(True) 0.758 0.730 0.643 0.757

Embedding Regression 0.681 0.598 0.615 0.797

Naive Entropy 0.764 0.739 0.687 0.765

Semantic Entropy 0.793 0.788 0.733 0.882

Ours 0.869 0.785 0.771 0.925

(a) (b)

Figure 4: Ablation experiments of LLaMa-2-13b-chat on all datasets for (a) Different number of
initial generations. (b) Sensitivity of cosine similarity threshold used for semantic clustering.

impacting the quality of the resulting clusters. This is further illustrated on the TriviaQA dataset in
Appendix D.

Sentence Transformer Model for Semantic Similarity Clustering To effectively capture seman-
tic similarity between clusters, there are several models that produce meaningful semantically rich
embeddings for comparison. To test their effectiveness for our set-up, we experimented with the
most popular models (based on download statistics) fine-tuned for the sentence similarity task found
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on Hugging Face, including {all-MiniLM-L6-v23, all-mpnet-base-v24, Alibaba-NLP/gte-large-en-
v1.55, paraphrase-multilingual-MiniLM-L12-v26}. We report the results on LLaMa-2-13b-chat and
TriviaQA dataset in Fig. 5. Fig. 5a present the AUROC scores achieved across different models.
Additionally, we also show the model efficiency by comparing their runtime in Fig. 5b. Results
demonstrate that all-MiniLM-L6-v2 performed the best in accuracy and runtime efficiency.

(a) (b)

Figure 5: (a) AUROC results when using different sentence similarity models. (b) Runtime analysis
for generating embeddings using each model.

Figure 6: Comparison of AUROC obtained with clustering algorithms.

Clustering Algorithm To determine the optimal clustering algorithm based on the cosine similar-
ity comparison between the embeddings, we experimented with Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), and Ordering Points to Identify the Clustering Structure
(OPTICS), to compare their performance with that of the Agglomerative Hierarchical clustering.
As shown in Fig. 6, when experimenting with the LLaMa-2-13b-chat and TriviaQA dataset, we
achieved AUROC scores of 0.796, 0.726, and 0.814, respectively. In this case, clustering achieves
optimal performance, while detection performance shows a slight decline with the use of other clus-
tering algorithms.

3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
5https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
6https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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6 CONCLUSION

Hallucination detection is an essential topic to effectively understand and evaluate the reliability
and accuracy of LLMs. Automating this process and adapting it to proprietary black-box models is
important, particularly due to their increasing integration and prevalence in many contexts. Such
explorations play a major role in enhancing the overall trustworthiness of such models. This work
proposes an enhanced entropy-based black-box hallucination detection framework by applying an
efficient and scalable semantic clustering approach using sentence embeddings and hierarchical
agglomerative clustering. We apply this approach to several types of QA datasets, and demonstrate
that this approach is effective on free-form NLG data in comparison with state-of-the-art baselines.
In the future, we hope that this exploration can be extended to other NLG tasks, to understand its
efficiency and applicability at detecting hallucination in different contexts.
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A SAMPLES FROM QA DATASETS

A.1 TRIVIAQA

Question: What was the name of the Oscar-winning song performed by Audrey Hepburn in ‘Break-
fast at Tiffany’s’?
Answer: Moon River

Question: Late English criminal Bruce Reynolds masterminded which infamous robbery, which he
later referred to as his ‘Sistine Chapel ceiling’?
Answer: Great Train Robbery

A.2 NQ

Question: Who is the actress that plays Aurora in Maleficent?
Answer: Elle Fanning

Question: Who did Rome fight against in the Punic Wars?
Answer: Carthage

A.3 SQUAD

Context: The university is the major seat of the Congregation of Holy Cross (albeit not its official
headquarters, which are in Rome). Its main seminary, Moreau Seminary, is located on the campus
across St. Joseph lake from the Main Building. Old College, the oldest building on campus and
located near the shore of St. Mary lake, houses undergraduate seminarians. Retired priests and
brothers reside in Fatima House (a former retreat center), Holy Cross House, as well as Columba
Hall near the Grotto. The university through the Moreau Seminary has ties to theologian Frederick
Buechner. While not Catholic, Buechner has praised writers from Notre Dame and Moreau Semi-
nary created a Buechner Prize for Preaching.

Question: Which prize did Frederick Buechner create?
Answer: Buechner Prize for Preaching

Context: All of Notre Dame’s undergraduate students are a part of one of the five undergraduate
colleges at the school or are in the First Year of Studies program. The First Year of Studies program
was established in 1962 to guide incoming freshmen in their first year at the school before they have
declared a major. Each student is given an academic advisor from the program who helps them to
choose classes that give them exposure to any major in which they are interested. The program also
includes a Learning Resource Center which provides time management, collaborative learning, and
subject tutoring. This program has been recognized previously, by U.S. News & World Report, as
outstanding.

Question: What was created at Notre Dame in 1962 to assist first year students?
Answer: The First Year of Studies program

A.4 BIOASQ

Question: What is the Daughterless gene?
Answer: The daughterless (da) gene in Drosophila encodes a broadly expressed transcriptional
regulator whose specific functions in the control of sex determination and neurogenesis have been
extensively examined.

Question: Is the FIP virus thought to be a mutated strain for the Feline enteric Coronavirus?
Answer: Yes
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B CLUSTERING ALGORITHM PSUEDOCODE

Algorithm 1: Clustering Algorithm with Average Distance
Input: set of sequences S = {s1, s2, . . . , sP }; embedding model Emb; distance threshold

thresh
Output: Set of clusters C

1 Initialize empty set of clusters C = {};
2 foreach sequence si ∈ S do
3 Compute embedding Emb(si);
4 foreach sequence si ∈ S do
5 Initialize a new cluster ci = {si};
6 foreach cluster c ∈ C do
7 Initialize cumulative distance total dis = 0;
8 foreach sequence s(c) ∈ c do
9 Retrieve embedding Emb(c) = Emb(s(c));

10 Compute cosine similarity:

cos sim =
⟨Emb(si),Emb(c)⟩
∥Emb(si)∥ · ∥Emb(c)∥

Compute distance: dis = 1− cos sim;
11 Accumulate the distance: total dis← total dis+ dis;
12 Compute average distance (average linkage):

avg dis =
total dis

|c|

if avg dis ≤ thresh then
13 Merge si into cluster c: c← c ∪ {si};
14 break (from the inner loop);

15 return clusters C;

C IMPLEMENTATION DETAILS

We use Hugging Face to access transformer models and most datasets throughout the experiments.
For BioASQ, we use the training dataset from Task B in the 2023 BioASQ challenge7. Primary
hyper-parameters to consider are: number of generations (P ), which we set to P = 10, generated
by setting the model temperature to 1.0, to keep it consistent with the baselines. Additionally, for
automatic semantic clustering, we use the all-MiniLM-L6-v2 model to generate embeddings, and a
cosine similarity threshold of 0.95 (distance of 0.05) for clustering.

D HIGHER COSINE SIMILARITY THRESHOLD REDUCES AUROC

Figure 7 shows the AUROC score on the TriviaQA dataset. Using a stringent similarity cutoff
(> 0.95) forces only highly similar embeddings to be clustered together-this reduces the scope for
clustering semantically similar sentences which could be differently phrased.

E CODE AVAILABILITY

We provide the code for our approach in the supplementary material.

7http://participants-area.bioasq.org/datasets/
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Figure 7: Variation in AUROC as a function of cosine similarity cutoff. The plot is generated with
LLaMa-2-13b-chat on TriviaQA. The plot demonstrate the sensitivity of cosine similarity threshold
used for semantic clustering.
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