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ABSTRACT

Modern language models can contain billions of parameters, raising the question
of whether they can generalize beyond the training data or simply regurgitate their
training corpora. We provide the first non-vacuous generalization bounds for pre-
trained large language models (LLMs), indicating that language models are capa-
ble of discovering regularities that generalize to unseen data. In particular, we de-
rive a compression bound that is valid for the unbounded log-likelihood loss using
prediction smoothing, and we extend the bound to handle subsampling, accelerat-
ing bound computation on massive datasets. To achieve the extreme level of com-
pression required for non-vacuous generalization bounds, we devise SubLoRA, a
low-dimensional non-linear parameterization. Using this approach, we find that
larger models have better generalization bounds and are more compressible than
smaller models.

1 INTRODUCTION

Do large language models (LLMs) merely memorize the training data, and if so, are they able
to meaningfully generalize beyond their training set? This question is central to understanding
LLMs as they continue to grow in capacity and are capable of memorizing and regurgitating training
examples verbatim (Brown et al., 2020; Chowdhery et al., 2022; Carlini et al., 2020; 2023).

In this work, we address the question of generalization in LLMs by computing the first non-vacuous
generalization bounds for language model pretraining, thereby providing a mathematical guarantee
that LLMs are indeed able to generalize beyond their training data.

Although significant progress has been made in constructing non-vacuous generalization bounds for
image classification models using the PAC-Bayes framework (Catoni, 2007) in conjunction with ex-
treme levels of model compression (Zhou et al., 2019; Lotfi et al., 2022), non-vacuous generalization
bounds for large language models remain elusive.

Compared to image classification models, constructing non-trivial bounds for language models
presents an additional set of challenges: (i) LLMs are trained on autoregressive token prediction,
and thus token level predictions are not independent; (ii) the relevant negative log-likelihood (NLL)
metric (bits per dimension) is a continuous and unbounded random variable for which previously
used non-vacuous PAC-Bayes bounds are invalid; and (iii) LLMs have orders of magnitude more
parameters than image classification models. To address these challenges, we derive new general-
ization bounds that can be applied to the unbounded bits per dimension objective, and introduce an
extension of these bounds which can be computed using only a subset of the training data, substan-
tially accelerating the bound computation for massive datasets.

Achieving the extreme level of compression required to obtain non-vacuous generalization bounds
for LLMs is another challenge. To this end, we devise SubLoRA (Subspace-Enhanced Low-Rank
Adaptation): a novel non-linear parameterization for LLMs that makes it possible to smoothly vary
the level of compression while maintaining expressivity. SubLoRA combines low-rank adaptation
(LoRA) (Hu et al., 2021), originally proposed for efficient fine-tuning, with subspace training (Li
et al., 2018; Lotfi et al., 2022) to pretrain highly compressible LLMs from scratch.

Combining the above-described theoretical and practical contributions, we achieve the first non-
vacuous bounds for large language models. To highlight the efficiency of our new compression
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Figure 1: Finding solutions that simultaneously achieve low training error and low complexity
with SubLoRA. (Left): The Pareto frontier of model complexity (the 2nd term in Equation A.1)
and the empirical risk (bits per dimension (BPD) and Top-1 Error) of language models using LoRA
and subspace compression for next token prediction pretraining. The generalization bound is formed
from the sum of the two axes (lower is better), with the shaded region showing where bounds are
vacuous. Combining both LoRA and subspace compression in the form of SubLoRA yields the best
bounds, while using LoRA alone yields vacuous bounds for top-1 error. (Right): SubLoRA enables
a smooth tradeoff over the extent of model compression for a fixed model, finding the degree of
compression that is optimal for the situation in constructing the generalization bounds. We plot the
contributions of the empirical risk and the complexity term to the bound as a function of this degree
of compression.

technique, we compare SubLoRA to LoRA and subspace training in Figure 1 (left). This figure
demonstrates that SubLoRA has an improved ability to trade off model complexity with training
error. We compute bounds for both top-1 error and the bits per dimension (i.e., the average nega-
tive log-likelihood objective). The shaded region highlights where bounds become vacuous, with
SubLoRA achieving non-vacuous bounds for both bits per dimension and top-1 error. In Figure 1
(right), we highlight the trade-off between model complexity and empirical risk in the generalization
bounds as we vary the level of compression.

Our contributions can be summarized as follows:
1. We design Subspace-Enhanced Lower Rank Adaptation (SubLoRA), a non-linear parameteri-

zation of the hypothesis space that enables finding compressible solutions that are sufficiently
expressive to fit the training data when training from scratch. We also demonstrate the benefits
of SubLoRA over LoRA and linear subspaces for next token prediction pretraining.

2. We derive generalization bounds for the unbounded average negative log-likelihood objective,
equal to the number of bits per dimension (BPD), by incorporating prediction smoothing on
the token predictions. We extend these bounds to allow for randomized subsampling of the
training data in order to make the evaluation on massive datasets more tractable. Combining
these contributions, we construct the first non-vacuous generalization bounds for the pretraining
of large language models.

3. We use these bounds to address open questions about the ability of large language models to
generalize beyond the training data, why models with more parameters generalize better, and
the extent to which structure in the training data is coupled to the ability of LLMs to generalize.

2 RELATED WORK

Generalization bounds. Neural networks have seen widespread adoption because of their strong
performance on new unseen test samples, known as generalization. Early generalization theory
literature bounded the difference in training and test error, called the generalization gap, using
complexity measures like VC-dimension (Vapnik, 1991) and Rademacher complexity (Bartlett &
Mendelson, 2002). These generalization bounds were vacuous for neural networks, which are often
flexible enough to fit randomly labeled training data (Zhang et al., 2021). The flexibility of neural
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networks and its negative impact on these classical bounds calls into question why they general-
ize. Neural networks are so flexible that they have parameter vectors where they fit their training
data and simultaneously assign incorrect labels to testing data, and they also have parameter vectors
where they fit their training data and instead assign correct labels to the testing data. Why do such
flexible models actually make correct test predictions in practice? Such a phenomenon can also be
observed in other flexible models like Gaussian process regressors (Rasmussen & Williams, 2005),
which have infinitely many parameters yet still generalize in practice.

PAC-Bayes generalization theory bridges this gap by leveraging the fact that while neural networks
are highly flexible and can fit random labels, they encode a preference for the correct ones (Catoni,
2007; Dziugaite & Roy, 2017). Unlike earlier generalization bounds which measured complex-
ity merely as a function of the hypothesis class, PAC-Bayes generalization bounds reward models
which have a strong prior that places its mass on parameter vectors that align with observed data.
This formulation allows one to draw a parallel between generalization and compressibility (Zhou
et al., 2019; Lotfi et al., 2022). By placing disproportionate prior mass on compressible parameter
vectors, achieving a tight bound simply requires finding a family of models (posterior) that well
fit the training data. Such compression bounds achieve the tightest guarantees to date on modern
convolutional architectures and large-scale datasets, showcasing the strong inductive bias of neural
networks and indicating that they can significantly compress their training sets (Lotfi et al., 2022).
While PAC-Bayes has proven a very fruitful framework for devising such bounds, the insight on
using a prior to bound the complexity of a given model does not require a posterior and can actually
be incorporated into simpler finite hypothesis bounds.

Recent generalization theory literature has expanded analysis to several relevant models—
autoregressive time-series models and simple n-gram language models (McDonald et al., 2011;
Bharadwaj & Hasegawa-Johnson, 2014; Vankadara et al., 2022). In contrast, we construct bounds
for autoregressive transformer-based language models.

Language models and compression. Large language models are parameterized with as many as
billions of parameters and, as a result, have a significant memory footprint, which makes pretraining,
finetuning, and even evaluation challenging without access to large-scale computing infrastructure.
To reduce the memory footprint of large language models, a wide array of compression schemes
has been proposed to enable evaluation, fine-tuning, and pre-training with limited computational
resources. Low-Rank Adaptation (Hu et al., 2021, LoRA) freezes the pre-trained model weights
and inserts trainable rank decomposition matrices into each attention layer of the transformer ar-
chitecture used in large language models. Doing so allows for significantly reducing the number
of trainable parameters for fine-tuning on downstream tasks. For example, LoRA can reduce the
number of trainable parameters in GPT-3 175B fine-tuned with Adam by a factor of 10,000 and the
GPU memory requirement by a factor of 3. Building on LoRA, Q-LoRA (Dettmers et al., 2023a)
quantizes a pretrained model to 4-bits, adds a small set of learnable weights parameterized using
LoRA, and then tunes these weights by backpropagating gradients through the quantized model.
Other compression methods for large language models use distillation (Liu et al., 2023), sub-4-bit
integer quantization (Kim et al., 2023; Park et al., 2022), sparse quantized representations that iden-
tify and isolate outlier weights (Dettmers et al., 2023b), weight quantization based on approximate
second-order information (Frantal et al., 2022), or tensor-train decompositions (Xu et al., 2023).

Achieving a good generalization bound has distinct requirements from the existing compression
literature. Unlike existing compression schemes for language models, which aim to accelerate in-
ference and training or to reduce the memory footprint, we focus on specifying the trained model
parameters in only few bits, even if doing so decreases neither latency nor memory requirements.

3 BACKGROUND

Subspace training. We build our compression pipeline on top of techniques from several pre-
vious works. Lotfi et al. (2022) train a compressible model by parameterizing a carefully con-
structed low-dimensional random subspace. The weights θ ∈ RD are then defined as the sum
of a random initialization θ0 and a projection P ∈ RD×d from a lower-dimensional subspace
w ∈ Rd: θ = θ0 + Pw. P is constructed as the Kronecker product of random Gaussian matrices
P = (Q1 ⊗Q2)/

√
D for Q1, Q2 ∼ N (0, 1)

√
D×

√
d, normalized so that P⊤P ≈ I . The weights w

can then be optimized over by backpropagating through the transformation. With a learned quanti-
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zation strategy—optimizing over quantized weights and the quantization levels—Lotfi et al. (2022)
use arithmetic coding to encode the weights using the empirical probabilities over quantization bins.

Low Rank Adaptation (LoRA). Similarly inspired by evidence that overparametrized models have
low intrinsic dimensionality (Li et al., 2018; Aghajanyan et al., 2020), Hu et al. (2021) propose
LoRA as a parameter-efficient finetuning method. Given a pretrained weight matrix Wpretrained ∈
Ra×b, LoRA decomposes its total update ∆W accumulated throughout finetuning as a product of
two trainable low-rank matrices U ∈ Ra×r, V ∈ Rr×b for r ≪ min(a, b) while freezing Wpretrained.
Thus Wfinetuned = Wpretrained +∆W = Wpretrained + UV . In this work, we use LoRA for pretraining
instead. In particular, we take randomly initialized neural network weights W0 ∈ Ra×b and repre-
sent their update during pretraining as UV , yielding Wpretrained = W0 + ∆W = W0 + UV . We
decrease the dimensionality further by applying subspace projection to the LoRA matrices, which
we describe in detail in Section 4.2.

4 METHODOLOGY

In constructing non-vacuous generalization bounds for language models, we expand and improve
upon existing techniques in three ways: (1) we construct a non-linear parameterization of the com-
pressible region of the hypothesis space which is more effective than the purely linear subspaces;
(2) we construct new bounds that can handle the continuous and unbounded nature of the negative
log-likelihood; (3) we make these bounds more practical to compute with LLMs by deriving a new
bound which holds even when the empirical risk is evaluated only on a small subsample of the full
training dataset.

4.1 FINITE HYPOTHESIS COMPRESSION BASED GENERALIZATION BOUNDS

Given a bounded risk R(h, x) ∈ [a, a + ∆] and a finite hypothesis space h ∈ H for which we
have a prior P (h), it is straightforward to derive a generalization bound relating the empirical risk
R̂(h) = 1

m

∑m
i=1 R(h, xi) to the expected risk R(h) = E[R̂(h)] so long as {xi}mi=1 are sampled

independently. With probability at least 1− δ, we have that

R(h) ≤ R̂(h) + ∆

√
log 1/P (h) + log 1/δ

2m
. (1)

We provide an elementary proof in Appendix A.1.

If the prior likelihood P (h) of the found model h can be increased (either by choosing a better prior,
or by finding more likely hypotheses), then the generalization bound improves. Following Lotfi
et al. (2022), we adopt the powerful but general Solomonoff prior P (h) ≤ 2−K(h|A) (Solomonoff,
1964) where K is the prefix Kolmogorov complexity of h, with the model architecture A provided
as input. While K is not computable, it is possible to compute the upper bound

log 1/P (h) ≤ K(h|A) ≤ C(h) log 2 + 2 logC(h),

where C(h) is the compressed size of h given any particular strategy for compressing h, where
we may make use of the prior knowledge describing the architecture. Therefore, if we can find
hypotheses h that both have a low empirical risk and a small compressed size, then we can construct
strong generalization bounds.

4.2 SUBLORA: AN EFFICIENT NON-LINEAR PARAMETERIZATION OF THE HYPOTHESIS SPACE

To find compressible solutions h that simultaneously are expressive enough to achieve low training
error, we search over a carefully designed manifold of possible parameters that live within the pa-
rameter space. In contrast to Lotfi et al. (2022), we consider a non-linear parameterization of the
model weights θ = f(θ0, w) given by the composition of LoRA (Hu et al., 2021) (a non-linear pa-
rameterization) and the subspace compression matrices. Given a vector of model parameters θ, we
break down its constituent components into the different weight matrices Wi and associated biases
bi: unflatten(θ) = {(Wi, bi)}i∈I . We define a non-linear parameterization of the hypothesis space,

θ = θ0 + LoRA(Pw), (2)
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Figure 2: Varying Parameters of the Compression Bounds. (Left): A plot of the generalization
bound as a function of the projection dimension d with LoRA. The subspace dimension gives us a
way to explicitly trade off the degree of compression with the empirical risk, and we optimize d to
produce the best bounds. (Right): A plot of the worst case range of BPD values ∆, empirical risk,
and the resulting generalization bounds as a function of the prediction smoothing parameter α. For
each model, a different alpha can be chosen after the models have already been trained.

where LoRA is defined by the implementation of the low rank products for the weight matrices,
leaving the biases unchanged. As Pw and θ are the flattened parameter vectors, LoRA(·) is de-
fined as the operation that unflattens the vector, applies the low rank product, and then flattens the
result. For {(Ui, Vi, bi)}i∈I = unflatten(u) and flatten = unflatten−1, we have LoRA(u) :=
flatten

(
{(UiVi, bi)}i∈I

)
. Here θ0 is merely a random initialization of the model parameters, and

P ∈ RD×d is a Kronecker product projector P = (Q1 ⊗Q2)/
√
D for Q1, Q2 ∼ N (0, 1)

√
D×d.

We apply LoRA only over the self-attention layer and the last linear layer weight matrices, meaning
that other model parameters do not differ from their initialized values. While LoRA was developed
for finetuning LLMs, we find that even when training through the LoRA parameterization with-
out changing the base parameters from their random initializations, it is possible to achieve a large
fraction of the base model’s performance. Our initial exploration of LoRA for pretraining involves
applying LoRA not only to attention layers but to others as well. We find that for pretraining, it is
more efficient to use LoRA for both the attention layers and the last linear layer, while including
other layers provides insignificant returns. In order to compress the model, we need only to repre-
sent the vector w since θ0 and P are chosen ahead of time and specified in the architecture via the
random initialization.

In Figure 1 (left), we show the pareto frontier of empirical risk and the complexity penalty in the
relevant generalization bound with LoRA, Subspace training, and SubLoRA. Rather than being
competing methods for compression, LoRA and subspace training are complementary and exploit
different structure in the parameter space to provide a family of models in the original hypothesis
space that are both expressive and compressible. SubLoRA achieves a strict improvement over
LoRA and subspace training, often being the deciding factor whether the bounds are vacuous or
non-vacuous. In Figure 2 (left), we explore how the compressed size of the model and the empirical
risk vary as a function of the subspace dimension d.

4.3 ACCOMMODATING THE UNBOUNDED NLL OBJECTIVE USING PREDICTION SMOOTHING

The primary metric for pretraining of large language models, as for other autoregressive models, is
the negative log-likelihood (NLL), or bits per dimension (BPD), of the generative model. Unlike
classification error which is a {0, 1} valued random variable, the log-likelihood is an unbounded
quantity that does not have an obvious sub-Gaussian, or other, well-understood tail behavior.

To overcome this challenge, we construct generalization bounds for BPD not of the original model
but instead on a smoothed version of it that limits the worst case behavior. We define this smoothed
model as a token-level mixture of the original LLM token predictions and a uniform distribution
over the vocabulary of size V :

ph(xi|x<i) = (1− α)pθ(xi|x<i) + α/V, (3)
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where pθ(xi|x<i) is the base model of token probabilities, α ∈ (0, 1) is the mixing parameter,
and ph(xi|x<i) is the smoothed predictor. The model on an entire sequence X is defined autore-
gressively in terms of this mixture model ph(X) := ΠL

i ph(xi|x<i), and we find this to be a more
effective way of constructing the bounds than constructing the mixture at the sequence level. In
analogy to label smoothing where the labels of the training objective are mixed with the uniform
distribution, we term this operation as prediction smoothing.

Notably, while the predictions ph(xi|x<i) are not independent, the predictions on an entire se-
quence ph(X) are independent for sequences X which occupy different non-overlapping context
windows of the model. Therefore with the BPD evaluated on a single context chunk of length L,
BPD(h,X) := − log2 ph(X)/L, we define the empirical risk as R̂(h) = 1

m

∑m
k=1 BPD(h,Xk),

the average over independent chunks {Xk}mk=1. With this construction, the BPD for sequence X
can be bounded as follows:

log2(V/α)− log2
(
1 + (1− α)V/α

)
≤ BPD(h,X) ≤ log2(V/α), (4)

as we show in Appendix A.3. Using ∆ = log2
(
1 + (1 − α)V/α

)
, we can plug these values into

Equation (A.1) to generate bounds for the number of bits per dimension. We explore the trade-off
over different values of α in Figure 2 (right). As α gets larger, the interval size ∆ representing the
worst case behavior goes down, whereas the empirical risk goes up, leading to a sweet spot in the
middle. By defining the hypothesis h = (θ, d, r, α) to include the model parameters, LoRA space
hyperparameters d, r, and the mixture weight α, we can view α as merely one additional model
parameter accounted in log 1/P (h). By doing so, we are free to optimize over α in the computation
of the bound, and we can do so without retraining the model.

To satisfy the i.i.d assumption in practice, we divide a large text corpus into non-overlapping chunks
of size equal to a context length. The dataset is made up of these chunks, so that a single sample
from the dataset includes all of the tokens in the given chunk. Then, we draw i.i.d samples from the
uniform distribution over this dataset. It is important to note that even when the chunks in the dataset
have relationships with each other, drawing i.i.d samples ensures that we satisfy the assumptions of
finite hypothesis bounds. Unlike some models which draw on the previous history that lies outside
the current context window, such as with Transformer-XL (Dai et al., 2019) or Mistral-7B (Jiang
et al., 2023), the GPT-2 architecture (Radford et al., 2019) that we use in this work considers only
the context and not any previous history.

Our bounds for non-overlapping sequences are still significant since the bits-per-dimension for a
given sequence can be computed as the average error for each token in the sequence given pre-
vious tokens, where the token error here refers to the negative log-likelihood BPD(h,X) :=

− log2 ph(X)/L = −
∑L

i log2 ph(xi|x<i)/L. Therefore, an upper bound on the expected BPD
error still reflects a guarantee on the average performance of the model at the token level, condi-
tioned on previous tokens within independent sequences, and is a common quantity of interest in
language modeling.

4.4 USING SUBSAMPLING IN BOUND COMPUTATION

The empirical risk requires evaluating the model on the entire training dataset of m data points:
R̂(h) = 1

m

∑
i=1 R̂i(h). As large language models are typically trained for only 1 epoch or less,

doing so is prohibitively expensive. Instead, we propose to modify our generalization bounds to
account for evaluating only a subsample of size n ≪ m of the training dataset when computing the
empirical risk.

Denoting ˆ̂
R(h) =

∑n
i=1 R̂σ(i)(h) where σ(i) is a random sample (with replacement) from 1, . . . ,m.

In Appendix A.4 we derive a new bound both over the randomness in σ(i) and the randomness in
X which holds with probability ≥ 1− δ:

R(h) ≤ ˆ̂
R(h) + ∆

√
log 1

P (h) + log 1
sδ

2m
+∆

√
log 1

(1−s)δ

2n
, (5)

where s = n/(n+m).

Using this subsampling bound, we can get massive savings in the cost of computing a bound for a
given model. For dataset sizes in the 10’s of millions, we can get away with evaluating only 10k data
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points after the model has been trained, with a negligible penalty in the bounds. In fact, we need not
even train on the entirety of the training data in order to produce valid bounds. For LLMs where the
cost of training is extremely high, we may wish to terminate the training of the compressed model
much earlier than would be optimal for models that get deployed.

5 NON-VACUOUS GENERALIZATION BOUNDS FOR LLMS

We outline the pretraining and bound computation pipeline and then present our empirical results.

End-to-end pipeline. Assembling the components described in Section 4, we train variants of a
GPT-style architecture through the non-linear compressed parameterization in Equation (2). We use
several values for the subspace dimension d and two values for the rank of the LoRA matrices r.
Nearing the end of training, we train for additional steps using quantization-aware training with a
small number of quantization levels (with additional details listed in Appendix C). We express w
in this quantization and encode it using arithmetic coding to determine the compressed size of the
model. Added to the size of the model are the bits needed to encode the choice of d, r, α, the
learning rate, and the quantization levels. We then evaluate the empirical log probabilities and token
predictions for each token in the sequence on a small subset of the training data n = 10000. With
these predictions, we can compute the generalization bound in Equation (5) as a function of α, and
we optimize over this parameter for each model. Finally, we can tune the extent of compression
through the different choices of d and choose the subspace dimension that produces the best bound.

For the bound computation in this section, we consider a GPT-style architecture and use the Open-
WebText dataset to pretrain it from scratch on next token prediction using SubLoRA. We use our
pipeline to compute the generalization bounds and report the results in Table 1. We consider the
token level error averaged over the sequence as the empirical risk which we bound. For instance,
the Top-1 Error Bound refers to the upper bound on the expected Top-1 error per token averaged
over the chunk R(h,Xk) = 1

L

∑L
i=1 1[argmax p(xi|x<i = xk

<i) = xk
i ], where the upper index k

denotes the chunk index and the lower index denotes the position within the chunk.

The best bound is indeed obtained by using our SubLoRA compression technique, which combines
the strengths of both low rank adaptation and subspace training. When we solely apply quantiza-
tion and arithmetic coding without implementing LoRA or linear subspace compression during the
training phase, we obtain vacuous bounds.

Table 1: Our best generalization bounds achieved for the GPT-2 architecture for BPD and Top-k
token prediction error, all of which are non-vacuous.

Metric SubLoRA LoRA Only Subspace Only Original Model Random Guess

Top-1 Error (%) 96.17 100 97.40 100 99.99
Top-10 Error (%) 78.18 85.85 80.15 100 99.98
Top-100 Error (%) 58.72 65.19 76.11 100 99.80
Bits per Dimension 12.09 12.90 14.68 65.37 15.62

6 UNDERSTANDING THE GENERALIZATION OF LLMS

As language models grow in size, it is clear that they gain an increasing capacity to fit their training
data On the one hand, this increasing capacity might mean that, as LLMs become capable of learning
increasingly complex functions, they become increasingly likely to merely memorize their training
samples and not perform any meaningful generalization beyond their training corpora. After all, they
have many more parameters to use in fitting the data. On the other hand, large language models have
proven to be surprisingly capable at generalizing, often extending to tasks that seem quite different
from the training objective.

We investigate the tension between these two narratives along several fronts: We assess how general-
ization bounds change with the size of the model, whether language models can form a compression
of the training data even when accounting for their large size, and how structure in the training data
affects the generalization of the learned model.
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Figure 3: Larger models achieve stronger generalization bounds. As we scale up the size of
the model via the model parameters (holding the training set fixed), we find that our generalization
bounds get better rather than worse. Dots show models trained with differing degrees of compres-
sion, indicated by their color. On the right we show the number of bits required to express the
training dataset using the model and including the model weights in the compression. Classification
error bounds consistently favor smaller models, while data compression favors much larger models,
and BPD bounds are in between.

6.1 LARGER MODELS ARE MORE COMPRESSIBLE AND GENERALIZE BETTER

Empirically, it has been found that LLMs generalize better as the number of parameters is increased,
with a fixed size of dataset (Kaplan et al., 2020; Brown et al., 2020), and this fact is of great impor-
tance leading to the creation of ever larger and more powerful models. From a generalization theory
perspective, this trend is counterintuitive because of the growing hypothesis class, and a naive anal-
ysis would suggest that larger models should generalize worse. To date, we are not aware of any
convincing demonstration that generalization bounds improve with more parameters on models of
practical sizes.

We evaluate our bounds on a collection of LLMs with different numbers of parameters, choosing
the appropriate scaling for the width, depth, number of attention heads etc. Surprisingly, we find
that our generalization bounds in fact improve with model size, even as the training dataset is held
fixed. With our SubLoRA compression, larger models are more compressible given a fixed training
error. These results are shown in Figure 3. While some explanations for why larger models should
generalize better have been put forward in the literature (Nakkiran et al., 2021; Gunasekar et al.,
2017), the mechanism by which larger models become more compressible is not clear, and we
believe this result is noteworthy and requires further investigation.

We also note that in addition to constructing generalization bounds, we can use our compressed
models to form a compression of the training dataset itself. In Figure 3, we count the number of
bits needed to encode the model C(h) and the number of bits to encode the data using the model
C({X}mi=1|h), which is the negative log likelihood of the entire dataset according to the model.
Adding these two up, we have a compression of the training dataset using the model, and one which
is closely related to our generalization bounds.

6.2 HOW DOES GENERALIZATION OF LLMS DEPEND ON STRUCTURE IN TEXT?

Neural networks that fit a training dataset of random noise will not be able to generalize, and the abil-
ity of overparametrized networks to fit noise implies that uniform convergence is impossible across
the general hypothesis class (Nagarajan & Kolter, 2019). This fact is a clear demonstration that the
structure of the dataset influences the generalization properties of the model. However, the impact of
more subtle structures on generalization is less understood theoretically. Hence, we use our bounds
to investigate how the temporal order structure relates to compressibility and generalization.

We train models that explicitly break the temporal structure of the text data by applying random
permutations to each sequence during training. Consequently, the model can only make use of the

8
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input information as if it were a bag of words. We find that this broken order structure indeed leads
to less favorable generalization bounds. Figure 4 shows the best error bounds when the original
and perturbed data are used to train the model and evaluate the bounds for the bits per dimension,
top-1 error and top-100 error losses. While the top-1 error bound becomes vacuous as we break the
text structure, the top-100 error and bits per dimensions bounds remain non-vacuous. This might
be due to the fact that as we perturb the sequence, predicting the next token accurately becomes
an extremely difficult task for LLMs, while predicting a token that fit generally into the context,
without necessarily being the correct token, is an easier task.

7 DISCUSSION AND FUTURE DIRECTIONS

BPD
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Figure 4: Breaking text structure with permu-
tations. We compute bounds for LLMs that were
trained with the order of the tokens shuffled within
each sequence.

Despite containing a very large number of pa-
rameters, we demonstrated that large language
models are highly compressible. We further
provided the first non-vacuous generalization
bounds for LLM pretraining by using extreme
levels of model compression. Our bounds sug-
gest that compression bounds present new pos-
sibilities for understanding how and why lan-
guage models generalize.

We close with a discussion of the limitations of
this work, along with their implications for fu-
ture generalization theory of language models:

Non I.I.D. token level bounds. In our work,
we split up the training data into i.i.d. chunks
that form the basis of our bounds. However, the
loss for each of these chunks also decomposes
as a (non i.i.d.) sum, and it is likely that this
additional structure could also be exploited in the bound construction to significantly increase the
effective number of training samples.

Efficient bound computation on pretrained models. Our procedure for computing generalization
bounds requires training LLMs from scratch through our SubLoRA parametrization. It may be
possible to devise a fast method of computing bounds on a model that has already been trained, but
still constraining its generalization error. Additionally we may hope to bridge the gap between the
compressed model and the uncompressed model, which may behave differently in some regards.

Nonlinear parameterizations. Unlike previous state-of-the-art bounds from Lotfi et al. (2022), we
employ a non-linear parameterization via LoRA, significantly improving the bounds. This observa-
tion opens up an avenue for rich non-linear parameterizations that simultaneously reduce the number
of parameters while also including diverse functions which are likely to fit the training data.

Text generation. The SubLoRA technique is by no means a substitute recipe for state-of-the-art lan-
guage model pretraining. In Table A.1 and Table A.2, we show samples of generated text using both
a GPT-2 style model pretrained in the standard fashion and a GPT-2 style model pretrained using
SubLoRA. While the vanilla GPT-2 style model produces reasonable sentences, the SubLoRA pre-
trained model outputs ungrammatical text which seem to overly favor tokens with high frequencies
of appearances in the training dataset.

Alternative approaches to learning with LLMs. Modern language models make possible new
inference techniques such as in-context learning and prompt-tuning. These modes are already seeing
widespread deployment and warrant analogous theories of generalization.

Generalization beyond the training distribution. Recent work showed that language models pre-
fer low-complexity numerical sequences on which they were not trained, even at random initializa-
tion (Goldblum et al., 2023), and generalization theory may be useful for explaining why LLMs
can generalize far outside of their training distribution, and even outside of the text modality, for
example to tabular data (Hegselmann et al., 2023) or images (Delétang et al., 2023).

9
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REPRODUCIBILITY

We include the code used for our experiments in the supplementary material. To enable reproducibil-
ity, we also include Python commands (including all relevant hyperparameters) in a README file.
We additionally provide a detailed description of experimental details in Appendix C. Our experi-
ments do not require industrial-grade compute resources.
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Appendix

A DERIVATIONS AND GENERALIZATION BOUNDS

A.1 FINITE HYPOTHESIS BOUND

Theorem 1. Consider a bounded risk R(h, xi) ∈ [ai, ai + ∆i] and a finite hypothesis space h ∈
H for which we have a prior P (h). Let the empirical risk R̂(h) = 1

m

∑m
i=1 R(h, xi) be a sum

over independent random variables R(h, xi) for a fixed hypothesis h. Let R(h) = E[R̂(h)] be the

expected risk and ∆̂ =
√

1
m

∑m
i=1 ∆

2
i .

With probability at least 1− δ:

R(h) ≤ R̂(h) + ∆̂

√
log 1/P (h) + log 1/δ

2m
, (A.1)

Proof. As mR̂(h) is the sum of independent and bounded random variables, we can apply Hoeffd-
ing’s inequality (Hoeffding, 1994) for a given choice of h . For any t > 0

P (R(h) ≥ R̂(h) + t) = P (mR(h) ≥ mR̂(h) +mt)

P (R(h) ≥ R̂(h) + t) ≤ exp (−2m2t2/
∑
i

∆2
i )

P (R(h) ≥ R̂(h) + t) ≤ exp (−2mt2/∆̂2).

We will choose t(h) differently for each hypothesis h according to

exp (−2mt(h)2/∆̂2) = P (h)δ.

Solving for t(h), we have

t(h) = ∆̂

√
log 1/P (h) + log 1/δ

2m
(A.2)

This bound holds for a fixed hypothesis h. However h was constructed using the training data, so
for h∗({x}), the random variable ,

R̂(h∗) =
1

m

m∑
i=1

R(h∗({x}), xi),

cannot be decomposed as a sum of independent random variables. Since h∗ ∈ H, if we can bound
the probability that R(h) ≥ R̂(h) + t(h) for any h, then the bound also holds for h∗.

Applying a union over the events
⋃

h∈H
[
R(h) ≥ R̂(h) + t(h)

]
, we have

P (R(h∗) ≥ R̂(h∗) + t(h∗)) ≤ P
( ⋃
h∈H

[
R(h) ≥ R̂(h) + t(h)

])
≤

∑
h∈H

P
(
R(h) ≥ R̂(h) + t(h)

)
≤

∑
h∈H

P (h)δ = δ.

Therefore we conclude that for any h (dependent on x or not), with probability at least 1− δ,

R(h) ≤ R̂(h) + ∆̂

√
log 1/P (h) + log 1/δ

2m
.
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A.2 MARTINGALE BOUND

Theorem 2. With probability at least 1− δ:

Proof. Given the autoregressive predictions R(h, xi, x<i) := − log2 ph(xi|x<i) where x<i :=
{x1, x2, . . . , xi−1}. Suppose that like before, we can bound the risk, R(h, xi, x<i) ∈ [ai, ai +∆i]
where ai is independent of x<i+1.

The collection of random variables (indexed by i) Zi = E[R(h, xi, x<i)|x<i]−R(h, xi, x<i) form
a Martingale difference sequence with respect to x<i. E[Zi|x<i] = 0 and the sequence is bounded:
E[R(h, xi, x<i)|x<i]− ai ≤ Zi ≤ ∆i + E[R(h, xi, x<i)|x<i]− ai.

Therefore
∑m

i=1 Zi is Martingale sequence (with respect to x<m, and we can apply Azuma’s in-
equality to derive that

P
( m∑
i=1

Zi ≥ mt
)
≤ exp

(
− 2m2t2/

m∑
i=1

∆2
i

)
P
( 1

m

m∑
i=1

Zi ≥ t
)
≤ exp

(
− 2mt2/∆̂

)
:= P (h)δ

Again, solving for t(h):

t(h) = ∆̂

√
log 1/P (h) + log 1/δ

2m
(A.3)

Applying a union over the events
⋃

h∈H
[
R(h) ≥ R̂(h) + t(h)

]
, we have

P
( 1

m

m∑
i=1

Zi ≥ t(h)
)
≤

∑
h

P (h)δ = δ.

What have we proven exactly? Unpacking the definition of Zi:

1

m

m∑
i=1

E[R(h, xi, x<i)|x<i] ≤ R̂+ ∆̂

√
log 1/P (h) + log 1/δ

2m
(A.4)

In terms of probabilities, this is

1

m

m∑
i=1

E[− log2 ph(xi|x<i)|x<i] ≤ − 1

m
log2 ph(x<m+1) + ∆̂

√
log 1/P (h) + log 1/δ

2m
(A.5)
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A.3 BOUNDING LOG-LIKELIHOOD

Theorem 3. Given α ∈ (0, 1), an α prediction smoothed autoregressive language model h over a
token vocabulary of size V for a given sequence X will have a BPD(h,X) that lies in the interval

BPD(h,X) ∈
(
log2(V/α)− log2

(
1 + (1− α)V/α

)
, log2(V/α)

)
, (A.6)

and the size of the interval is ∆ = log2
(
1 + (1− α)V/α

)
.

Proof. The BPD decomposes as the average over the negative log probabilities,

BPD(h,X) = −1

k

k∑
i

log2 ph(xi|x<i).

Since pθ(xi|x<i) ∈ (0, 1), we can conclude that

− log2 ph(xi|x<i) = − log2
(
(1− α)pθ(xi|x<i) + α/V

)
− log2 ph(xi|x<i) < log2(V/α)

and

− log2 ph(xi|x<i) = − log2
(
(1− α)pθ(xi|x<i) + α/V

)
> − log2

(
(1− α) + α/V

)
− log2 ph(xi|x<i) > − log2

(
α
V

(
1 + (1− α)V/α

))
− log2 ph(xi|x<i) > log2(V/α)− log2

(
1 + (1− α)V/α

)
.

Since each element − log2 ph(xi|x<i) of the average is in the interval
(
log2(V/α)−∆, log2(V/α)

)
,

so is BPD(h,X).

A.4 SUBSAMPLE BOUNDS

Denoting ˆ̂
R(h) = 1

n

∑n
i=1 R̂σ(i)(h) where σ(i) is a random sample (with or without replacement)

from 1, . . . ,m, we can construct a simple Hoeffding bound over the randomness in σ(i), consid-

ering X fixed. Despite the fact that h(X) is a function of the training dataset X , ˆ̂
R(h(X), X) =∑n

i=1 R̂(h(X), Xσ(i)) still decomposes as the sum of i.i.d. random variables (or i.i.d. random

variables sampled without replacement), and E[ ˆ̂R(h(X), X)|X] = R̂(h(X), X).

Applying the Hoeffding bound (Hoeffding, 1994), with probabiliiy 1− δ2: R̂ ≤ ˆ̂
R(h) +

√
log 1/δ2

2n .
Combining this bound with the original bound that holds with probability 1− δ1, we have

R(h) ≤ ˆ̂
R(h) + ∆

√
log 1/P (h) + log 1/δ1

2m
+∆

√
log 1/δ2

2n
.

Combining the two failure probabilities into one: δ = δ1 + δ2, we can choose δ1 and δ2 so that
optimize the bound keeping their sum fixed. While there are no closed form solutions, the solution
for the combined square root

√
− log δ1/2m− log δ2/2n as the solution δ1 = sδ, δ2 = (1 − s)δ

where s = n
m+n .

Plugging these values into the bound, we have

R(h) ≤ ˆ̂
R(h) + ∆

√
log 1

P (h) + log 1
sδ

2m
+∆

√
log 1

(1−s)δ

2n
. (A.7)
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B EXTENDED RELATED WORK

Existing Bounds for Unbounded Objectives A number of works have explored techniques for
generating generalization bounds for unbounded objective functions more generally, unfortunately
these approaches are not practical for application to LLMs. A well established strategy relevant
for e.g. linear regression with Gaussian errors is to bound the tails of the objective as subgaussian
random variables, and then generalization bounds can be constructed for subgaussians more gener-
ally (Alquier et al., 2016; Germain et al., 2016). Other kinds of known tail behavior have also been
exploited. For NLL, there is no analogous tail behavior that is obvious so we must take a different
approach.

Haddouche et al. (2021) devise an approach for general unbounded objectives by constructing a
hypothesis dependent bound on the objective, even if the objective is unbounded more generally. If
the risk can be bounded supx R(h, x) ≤ Q(h) for a function Q(h), then PAC-Bayes bounds can be
constructed using Q(h) even if suph Q(h) = ∞. However, even though Q(h) is finite for LLMs as
there are only a finite number of inputs, for NLL Q grows exponentially with the number of layers
in the network and is closely related with the Lipschitz constant. For large models like LLMs, this
value is far too large to be useful in constructing bounds.

Large language models and memorization. As large language models have grown in size and
are being trained on increasing amounts of data, understanding the extent to which trained models
memorize the training data is an area of significant interest. Research into memorization in large
language models broadly revolves around three related but distinct questions: (1) Do large language
models (perfectly) memorize the data? (2) If so, what would this imply for safety and fairness con-
siderations? and (3) do large language models generalize beyond mere memorization? Bender et al.
(2021) argue that large language models stitch together the information contained in the training
data using statistically inferred relationships but without any reference to meaning. Broadly sup-
porting this claim, Carlini et al. (2020) show that it is possible to devise a training data extraction
attack that allows recovering individual training examples from a large language model, and Carlini
et al. (2023) show that when prompted appropriately, large language models will emit the mem-
orized training data verbatim and that larger model’s ability to memorize better is not due to an
increased ability to generalize. Investigating whether the memorization of a specific training string
by a large language model can be reliably predicted by either smaller models or partially trained
checkpoints, Biderman et al. (2023) find that this cannot be done reliably unless a sizable fraction
of the pretraining computational budget of the target model is used.

C EXPERIMENTAL DETAILS

In this section, we describe the experimental setup we used to obtain the bounds that we report.

We follow the pretraining setup described in nanoGPT1 as a backbone for our experiments The
model architecture in use is a 124 million parameter GPT-2-style model with 12 layers, 12 heads
in multi-headed attention, and an embedding dimension of 768, and we pretrain this model on the
training split of the OpenWebText dataset2 using SubLoRA, LoRA, Subspace training. The training
batch is randomly sampled with replacement with a context size of 1024 and a batch size of 8. For
optimization, we use a PyTorch AdamW optimizer with weight decay set to 10−2, epsilon set to
10−6, and no decay bias (Loshchilov & Hutter, 2017).

Following Hu et al. (2021), we apply the LoRA modules on the query and value weight matrices in
the attention layers. Additionally, we apply LoRA on the linear head of the model. In both cases,
we use a LoRA alpha value of 32 and dropout ratio of 0.1.

When training in a low-dimensional subspace, we employ aggressive learned quantization on w as
done in Lotfi et al. (2022). After training, we can finally encode quantized weights into a bitstream
using arithmetic coding (Langdon, 1984) from the empirical probabilities over the quantization bins
(Zhou et al., 2019).

1https://github.com/karpathy/nanoGPT
2http://Skylion007.github.io/OpenWebTextCorpus
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Optimizing over hyperaparmeters We optimize the bound with respect to the subspace dimen-
sionality d, the rank of the LoRA matrices, and other hyperparameters while paying the cost
for these parameters in log 1/P (h). In particular, we perform a grid search over subspace di-
mensions d ∈ {5000, 10000, 25000, 50000, 100000, 200000}, LoRA rank r ∈ {1, 4}, learn-
ing rate lr ∈ {2e − 4, 5e − 3, 5e − 5}, and mixing parameter for prediction smoothing α ∈
{0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5}. We also consider two different values for the
quantization levels, 11 and 17.

SubLoRA pretraining with varying model sizes. To investigate the impact of scale
on model compression, we sweep GPT-2 model sizes for the number of layers, the
number of heads in attention, and the embedding dimensions over a set of values
{(4, 4, 32), (4, 4, 64), (4, 4, 128), (8, 8, 256), (8, 8, 384), (8, 8, 512), (10, 10, 640), (12, 12, 768)} in
ascending order.

D TEXT GENERATION

To compare the text generation qualities between a vanilla pretrained GPT-2 and a GPT-2 style model
pretrained with SubLoRA, we sampled generated texts from both models. With a temperature value
of 0.8, we obtain decoded sequences and present them in Table A.1 and Table A.2.

Generated Text

GPT-2 From left: John Walsh, Ryan Johnson, D.J. Williams, and Cameron
Thomas. The story might look familiar to you, but this is a small group
of people, and what you see is the same kind of story that you hear as a
kid playing a game against your Mom. Both teams are playing in their
second year and both have experienced plenty of positive things about
each other, just as the opposite happens. Imagine that. Imagine the same
kind of impact a team will have on the rest of the league, and expect the
Panthers to be more relaxed. Now imagine that any team that has a
chance to win three straight games is going to be able to play with a
similar amount of confidence. That makes sense, right? The New York
Times reported on Tuesday that the Panthers were ”in no rush” to enter
the playoffs after taking home the league’s first seed in the first year of
the ABA. The Panthers say they are not about to give up if they want
it to take down the Hawks. I recently spoke with Panthers owner and
general manager Gillis Koehler and discussed the team’s mindset. Let’s
start with what the Panthers are planning to accomplish. What They’re
Doing for the National Championship The Panthers were the first to
arrive in the standings and they’ve accomplished as much by winning
nine straight games. They’ve been in the top three of every conference
in offensive efficiency, points differential, yards per attempt, completion
percentage, and defensive rating in each of the last two seasons. Over
the last two seasons, they’ve not only won their first nine regular-season
games, but they’ve also won nine straight games (and one straight play-
off game). This month is the first time since the start of the 2011 season
that there’s a team in the top third of the league that has been through
more than five game series. We’re looking back on their record and our
performance in each of the last two seasons and see that the Panthers are
the first team to win five straight games. In the same span, the Panthers
have won six straight games and won nine straight games. This season,
they’re 22-7 and 15-1 (since the start of the 2011 season). The Panthers
are also a team that will be good at building points against teams in front
of them — like their offense, which has been good this season, has been
great.

Table A.1: Examples of generated text from a pretrained 124 million parameter GPT-2-Small model
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Generated Text

GPT-2 (SubLoRA) th he the startedt at its,, the a more be power and- by. S and, of of -’s
on. The UK I The, are the on the the under, but the then the day,. The.
The. It for the! a,. M an they first the the speak have times. cover that (
illegal In the day where I The who when and $ In We :̈[:̈ As she I WeP
spirituality. The all And one which a more says thought the other (ed
15: And P It as/ T - 2 But We The The theah It who the full of that to
was ’The they (It As We A and each (. The It - We The M I“

a- year of with of U- the, the by its not of take, a really.. ” “L, again
timeline The as a last”, We It. (. took The to a our In The The in that
and: or It You this. Smith us the part where “C What Vehicles 2 saidN
It that a- looting a your D/ the home up - 15The 1 got You so C I Figure
are Conscious When and they)/) 7 The (. The Thees90 for never- The (
Fellow– 8 But girls 3 temperature she are It A Grove came), This The
He That WeWhat In is The eastern and,:

game there (.J The that the this (B to the lot on the the so they. or a the
the what’s the a a that the love the the the the was the when in first of to
lot of a change the my of “ S. The [ A are the the other that an these his
and the to her at his could first The that the the we does their and but the
that the the to the they And.It m if and isn or has the, with the it and our
that a just a lot. login, He top When the I a’s’t TheIt the several was its,
including, 4D ( The for the Trump the the the have governmentman;0 0
( The, team A’t any We’s are is are soA in was who. He or that the of
never and the. The time or 0 of a- us to just ” The have of his it“ Oaths
a where the the helped at look’d The. The by, but the not and there and.
The that The- again I make the me was up. P of family the the the in of
of

. The are you to a were-. with a. ” alternating all. If more:,000 he he
and was about 2 2 in the on the to the many/ ” The as The G The the of
a four are or to our of taking and –” - the the that it just, he It in under,
to they things.—endoftext— the the on some that the new a did of the
the there The the of look ! all and 2 who and a through that the us: “”
on back to the S For said: was But. So into [We are from). We We ” 7
The. The. ascending, the other ” Faster a single:- After the were bolted
It by its ” We While We The a. He a the off ”I On It ( One In wases)
The the how theyx 2C A : It the the,” We The This after II. relaxed The
on (O

Table A.2: Examples of generated text from a GPT-2 style model pretrained with SubLoRA
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