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ABSTRACT

Deep learning is leading to major advances in the realm of brain decoding from1

functional Magnetic Resonance Imaging (fMRI). However, the large inter-subject2

variability in brain characteristics has limited most studies to train models on one3

subject at a time. Consequently, this approach hampers the training of deep learn-4

ing models, which typically requires very large datasets. Here, we propose to5

boost brain decoding by aligning brain responses to videos across subjects. Com-6

pared to the anatomically-aligned baseline, our method improves out-of-subject7

decoding performance by up to 75%. Moreover, it also outperforms classical8

single-subject approaches when fewer than 100 minutes of data is available for the9

tested subject. Furthermore, we propose a new multi-subject alignment method,10

which obtains comparable results to that of classical single-subject approaches11

while easing out-of-subject generalization. Finally, we show that this method12

aligns neural representations in accordance with brain anatomy. Overall, this study13

lays foundations to leverage extensive neuroimaging datasets and enhance the de-14

coding of individuals with a limited amount of brain recordings.15

Figure 1: General outline of video decoding from BOLD fMRI signal in left-out subjects
A. For every image associated with a brain volume, one computes its low-level and high-level latent
representations using pre-trained models. Subsequently, regression models can be fitted to map
brain features onto each of these latent representations. B. BOLD signal acquired in two subjects
watching the same movie can be used to derive an alignment model which associates voxels of the
two subjects based on functional similarity. C. Once this alignment model is trained, it can be used to
transform brain features of the left-out subject into brain features that resemble that of the reference
subject. In particular, this allows one to use models that have been trained on a lot of data coming
from a reference subject data, and apply it on a left-out subject for whom less data was collected.
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1 INTRODUCTION16

Decoding the brain Deep learning is greatly accelerating the possibility of decoding mental repre-17

sentations from brain activity. Originally restricted to linear models (Mitchell et al., 2004; Harrison18

& Tong, 2009; Haynes & Rees, 2006), the decoding of brain activity can now be carried out with19

deep learning techniques. In particular, using functional Magnetic Resonance Imaging (fMRI) sig-20

nals, significant progress has been made in the decoding of images (Ozcelik & VanRullen, 2023;21

Chen et al., 2023a; Scotti et al., 2023; Takagi & Nishimoto, 2023; Gu et al., 2023; Ferrante et al.,22

2023; Mai & Zhang, 2023), speech (Tang et al., 2023), and videos (Kupershmidt et al., 2022; Wen23

et al., 2018; Wang et al., 2022; Chen et al., 2023b; Lahner et al., 2023; Phillips et al., 2022).24

Challenge However, brain representations are highly variable across subjects, which makes it25

challenging to train the same model on multiple subjects. Therefore, with few noteworthy exceptions26

(Haxby et al., 2020; Ho et al., 2023), studies typically train a decoder on a single subject at a time.27

With this constraint in mind, major effort has been put towards building fMRI datasets collecting28

a lot of data in a limited number of participants (Allen et al., 2022; Wen et al., 2017; LeBel et al.,29

2023; Pinho et al., 2018). Nonetheless, the necessity to train and test models on a single subject30

constitutes a major impediment to using notoriously data-hungry deep learning approaches.31

Functional alignment Several methods can align the functions – as opposed to the anatomy – of32

multiple brains, and thus offer a potential solution to inter-subject variability: differentiable wrap-33

pings of the cortical surface (Robinson et al., 2014), rotations between brain voxels in the functional34

space (Haxby et al., 2011), shared response models (Chen et al., 2015; Richard et al., 2020), per-35

mutations of voxels minimizing an optimal transport cost (Bazeille et al., 2019), or combinations36

of these approaches (Feilong et al., 2022). However, it is not clear which of these methods offers37

the best performance and generalization capabilities (Bazeille et al., 2021). Besides, several studies38

rely on deep learning models trained in a self-supervised fashion to obtain a useful embedding of39

brain activity, in hope that this embedding could be meaningful across subjects (Thomas et al., 2022;40

Chen et al., 2023a). However, it is currently unknown whether any of these methods improve the41

decoding of naturalistic stimuli such as videos, and how such hypothetical gain would vary with the42

amount of fMRI recording available in a given a subject.43

Approach To address this issue, we leverage fMRI recordings of multiple subjects to boost the44

decoding of videos in a single left-out subject. This requires fitting two models: an alignment model45

and a decoder. The alignment aims at making brain responses of a left-out subject most similar to46

those of a reference subject. Here, we leverage optimal transport to compute this transformation47

using functional and anatomical data from both subjects. The decoder consists of a linear regression48

trained to predict the latent representations of movie frames from the corresponding BOLD signals.49

We evaluate video decoding in different setups. In particular, we assess (1) whether training a de-50

coder with several subjects improves performance, (2) whether decoders generalize to subjects on51

which they were not trained and (3) the extent to which functional alignment improves aforemen-52

tioned setups.53

Contributions We first confirm the feasibility of decoding, from 3T fMRI, the semantics of videos54

watched by the subjects. Our study further makes three novel contributions:55

1. functional alignment across subjects boosts video decoding performance when left-out sub-56

jects have a limited amount of data57

2. training a decoder on multiple aligned subjects reaches the same performance as training a58

single model per subject59

3. the resulting alignments, computed from movie watching data, yield anatomically-coherent60

maps.61

From a representation learning perspective, this is one more piece of evidence that representations62

learnt by deep learning models can help model and decode brain signal, even with stimuli as complex63

as naturalistic videos. Our results also show that, in high-data regimes, naturalistic movie-watching64

yields functional features which can help discriminate between parts of the cortex much beyond the65

visual system.66
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2 METHODS67

Our goal is to decode visual stimuli seen by subjects from their brain activity. To this end, we train68

a linear model to predict latent representations – shortened as latents – of these visual stimuli from69

BOLD fMRI signals recorded in subjects watching naturalistic videos.70

In the considered data, brains are typically imaged at a rate of one scan every 2 seconds. During this71

period, a subject sees 60 video frames on average. For simplicity, we consider the restricted issue of72

decoding only the first video frame seen by subjects at each brain scan. Formally, for a given subject,73

let X ∈ Rn,v be the BOLD response collected in v voxels over n brain scans and Y ∈ Rn,m the74

m-dimensional latent representation of each selected video frame for all n brain scans.75

2.1 BRAIN ALIGNMENT76

Anatomical alignment As a baseline, we consider the alignment method implemented in77

Freesurfer (Fischl, 2012), which relies on anatomical information to project each subject onto a78

surface template of the cortex (in our case fsaverage5). Consequently, brain data from all subjects79

lie on a mesh of size v = 10 242 vertices per hemisphere.80

Functional alignment On top of the aforementioned anatomical alignment, we apply a recent81

method from Thual et al. (2022) denoted as Fused Unbalanced Gromov-Wasserstein (FUGW) 1.82

As illustrated in Figure 1.B, this method consists in using functional data to train an alignment that83

transforms brain responses of a given left-out subject into the brain responses of a reference subject.84

This approach can be seen as a soft permutation of voxels 2 of the left-out subject which maximizes85

the functional similarity to voxels of the reference subject.86

Formally, for a left-out subject, let Dout ∈ Rv,v be the matrix of anatomical distances between87

vertices on the cortex, and wout ∈ Rv
+ a probability distribution on vertices. wout can be interpreted88

as the relative importance of vertices ; without prior knowledge, we use the uniform distribution.89

Reciprocally, we define Dref and wref for a reference subject. Note that, in the general case, v can90

be different from one subject to the other, although we simplify notations here.91

We derive a transport plan P ∈ Rv,v to match the vertices of the two subjects based on functional92

similarity, while preserving anatomical organisation. For this, we simultaneously optimize multiple93

constraints, formulated in the loss function L(P ) described in Equation 1:94

L(P ) ≜ (1− α)
∑

0≤i,j<n

||Xout
i −X ref

j ||22Pi,j + α
∑

0≤i,k,j,l<n

|Dout
i,k −Dref

j,l|2Pi,jPk,l

+ ρ
(

KL(P#1 ⊗ P#1 |wout ⊗wout) + KL(P#2 ⊗ P#2 |wref ⊗wref)
)
+ ε H(P )

(1)

Wasserstein loss Gromov-Wasserstein loss

Marginal constraints Entropy
95

with P#1 ≜ (
∑

j Pi,j)0≤i<v and P#2 ≜ (
∑

i Pi,j)0≤j<v the first and second marginal distri-96

butions of P , ⊗ the Kronecker product between two matrices, and KL(·, ·) the Kullback-Leibler97

divergence. α, ρ and ε are hyper-parameters setting the relative importance of each constraint.98

Following Thual et al. (2022), we minimize L(P ) with 10 iterations of a block coordinate descent99

algorithm (Séjourné et al., 2021), each running 1 000 Sinkhorn iterations (Cuturi, 2013). Subse-100

quently, we define ϕout→ref : X 7→
(
P TXT

)
⊘ P#2 ∈ Rn,v where ⊘ is the element-wise di-101

vision, a function which transports any matrix of brain features from the left-out subject to the102

reference subject. To simplify notations, for any X defined on the left-out subject, we define103

Xout→ref ≜ ϕout→ref(X).104

1https://alexisthual.github.io/fugw
2We use the words voxel (volumetric pixel) or vertex (point on a mesh) indifferently.
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2.2 DECODING105

Brain input There is a time lag between the moment a stimulus is played and the moment it elicits106

a maximal BOLD response in the brain (Glover, 1999). Moreover, since the effect induced by this107

stimulus might span over multiple consecutive brain volumes, we set a window size describing the108

number of brain volumes to aggregate together. To account for these effects, we use a standard109

Finite Impulse Response (FIR) approach. FIR consists in fitting the decoder on a time-lagged,110

multi-volume version of the BOLD response. Different aggregation functions can be used, such as111

stacking or averaging. Figure S2 describes these concepts visually.112

Video output The matrix of latent features Y is obtained by using a pre-trained image encoder on113

each video frame and concatenating all obtained vectors in Y . Similarly to Ozcelik & VanRullen114

(2023), and as illustrated in Figure 1.A, we seek to predict CLIP 257 × 768 (high-level) and VD-115

VAE (low-level) latent representations . We use visual – as opposed to textual – CLIP representations116

(Radford et al., 2021). For comparison, we also reproduce our approach on latent representations117

from CLIP CLS (high-level) and AutoKL (low-level), which happen to be much smaller 3 and might118

be computationally easier to fit.119

Model Fitting the decoder consists in deriving W ∈ Rv,m, b ∈ Rm the solution of a Ridge120

regression problem – i.e. a linear regression with L2 regularization – predicting Y from X .121

Evaluation We evaluate the performance of the decoder with retrieval metrics. Let us denote X122

and Y the brain and latent features used to train the decoder, Xtest and Ytest those to test the decoder,123

and Ŷ ≜ WXtest + b the predicted latents. We ensure that the train and test data are disjoint.124

We randomly draw a retrieval set K of 499 frames without replacement from the test data. For each125

pair ŷ,y of predicted and ground truth latents, one derives their cosine similarity score s(ŷ,y), as126

well as similarity scores to all latents yneg of the retrieval set s(ŷ,yneg). Let us denote r(ŷ,y) the127

rank of y, which we define as the number of elements of K whose similarity score to ŷ is larger128

than s(ŷ,y). In order for the rank to not depend on the size of K, we define the relative rank as129
r(ŷ,y)
|K| . Eventually, one derives the median relative rank MR(Ŷ ,K):130

r(ŷ,y) ≜
∣∣{yneg ∈ K | s(ŷ,yneg) > s(ŷ,y)

}∣∣
MR(Ŷ ,K) ≜ median

({r(ŷ,y)
|K|

,∀ (ŷ,y)
})

2.3 DECODING AND ALIGNMENT SETUPS131

Within- vs out-of-subject The within-subject setup consists in training a decoder with data XS1

train,132

Y S1

train from a given subject, and testing it on left-out data XS1
test, Y

S1
test acquired in the same subject.133

The out-of-subject setup consists in training a decoder with data from a given subject, and testing it134

on data XS2
test, Y

S2
test acquired in a left-out subject.135

Single- vs multi-subject The single-subject setup consists in training a decoder predicting Y from136

X for each subject. The multi-subject setup consists in training a single decoder using data from137

multiple subjects. In this case, data from several subjects is stacked together, resulting in a matrix138

Xmulti ∈ Rn1+...+np,v and Ymulti ∈ Rn1+...+np,m , where p is the number of subjects.139

Un-aligned vs aligned In multi-subject and out-of-subject setups, data coming from different sub-140

jects can be aligned to a reference subject. Let us assume that S1 is the reference subject. In the141

case of multi-subject, all subjects are aligned to S1 and the decoder is trained on a concatenation of142

XS1 ,XS2→S1 , ...,XSp→S1 (see notations introduced at the end of section 2.1) and Y S1 , ...,Y Sp ,143

where p is the number of subjects. In the case of out-of-subject, it corresponds to aligning S2 onto144

S1, such that a decoder trained on S1 will be tested on XS2→S1
test , Y S2

test .145

3Dimensions for CLIP CLS: 768 ; CLIP 257 × 768 : 257×768 = 197 376 ; AutoKL: 4×32×32 = 4 096
; VD-VAE: 2× 24 + 4× 28 + 8× 210 + 16× 212 + 214 = 91 168
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The aforementioned setups are described visually in Figure 3.A.146

Evaluation under different data regimes Note that alignment and decoding models need not be147

fitted using the same amount of data. In particular, we are interested in evaluating out-of-subject148

performance in setups where a lot of data is available for a reference subject, and little data is149

available for a left-out subject: this would typically be the case in clinical setups where little data is150

available in patients. In this case, we evaluate whether it is possible to use this small amount of data151

to align the left-out subject onto the reference subject, and have the left-out subject benefit from a152

decoder previously trained on a lot of data.153

2.4 DATASET154

We analyze the dataset from Wen et al. (2017). This dataset comprises 3 human subjects who each155

watched 688 minutes of video in an MRI scanner. The videos consists of 18 train segments of 8156

minutes each and 5 test segments of 8 minutes each. Each train segment was presented twice. Each157

test segment was presented 10 times. Each segment consists of a sequence of roughly 10-second158

video clips.159

The fMRI data was acquired at 3 Tesla (3T), 3.5mm isotropic spatial resolution and 2-second tem-160

poral resolution. It was minimally pre-processed with the same pre-processing pipeline than that161

of the Human Connectome Project (Glasser et al., 2013). In particular, data from each subject are162

projected onto a common volumetric anatomical template.163

Comparably to prior work on this dataset (Wen et al., 2018; Kupershmidt et al., 2022; Wang et al.,164

2022), we use runs related to the first 18 video segments - 288 minutes - as training data, and runs165

related to the last 5 video segments as test data.166

2.5 PREPROCESSING167

We implement minimal additional preprocessing steps for each subject separately. For this, we (1)168

project all volumetric data onto the FreeSurfer average surface template fsaverage5 (Fischl, 2012),169

then (2) regress out cosine drifts in each vertex and each run and finally (3) center and scale each170

vertex time-course in each run. Figure S1 gives a visual explanation as to why the last two steps are171

needed. The first two steps are implemented with nilearn (Abraham et al., 2014) 4 and the last one172

with scikit-learn (Pedregosa et al., 2011).173

Additionally, for a given subject, we try out two different setups: a first one where runs showing the174

same video are averaged, and a second one where they are stacked.175

2.6 HYPER-PARAMETERS SELECTION176

To train decoders, we use the same regularization coefficient αridge across latent types and choose it177

by running a cross-validated grid search on folds of the training data. We find that results are robust178

to using different values and stick to αridge = 50 000. Similarly, values for lag, window size and179

aggregation function are determined through a cross-validated grid search.180

Finally, for functional alignment, we stick to default parameters shipped with version 0.1.0 of181

FUGW. Namely, α, which balances between Wasserstein and Gromov-Wasserstein losses – i.e. how182

important functional data is compared to anatomical data – is set to 0.5. Empirically, we see that this183

value yields values for the Wasserstein loss which are bigger than that of the Gromov-Wasserstein184

loss, meaning that functional data drives these alignments. ε, which controls for entropic regulariza-185

tion – i.e. how blurry computed alignments will be – is set to 10−4. Empirically, this value yields186

very anatomically sharp alignments. ρ, which sets the importance of marginal constraints – i.e. to187

what extent more or less mass can be transported to / from each voxel – is set to 1. Empirically, this188

value leads to all voxels being transported / matched.189

4https://nilearn.github.io
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3 RESULTS190

3.1 WITHIN-SUBJECT PREDICTION OF VISUAL REPRESENTATIONS FROM BOLD SIGNAL191

AND RETRIEVAL OF VISUAL INPUTS192

We report the retrieval predictions of video decoding results in Table 1. For all three subjects of the193

Wen et al. (2017) dataset, and for all four types of latent representations considered, a Ridge regres-194

sion fitted within-subject achieves significantly above-chance performance. Besides, performance195

varies across subjects, although well-performing subjects reach good performance on all types of196

latents.197

Results reported in Table 1 were obtained for a lag of 2 brain volumes (i.e. 4 seconds since TR =198

2 seconds) and a window size of 2 brain volumes which were averaged together (see definitions in199

section 2.5). These parameters were chosen after running a grid search for lag values ranging from200

1 to 5, a window size ranging from 1 to 3, and 2 possible aggregation functions for brain volumes201

belonging to the same window (namely averaging and stacking). Figure S4 shows results using202

the averaging aggregation function for different values of lag and window size, averaged across203

subjects. Eventually, these results were obtained by stacking all runs of the training dataset, as204

opposed to averaging repetitions of the same video clip. The two approaches yielded very similar205

metrics. We expand on this matter in section 3.3.206

Finally, Figure 2 shows retrieved images for Subject 2. Qualitatively, we observe that retrieved207

images often fit the theme of images shown to subjects (with categories like indoor sports, human208

faces, animals, etc.), but also regularly exhibit failure cases. It is also possible to use predicted209

latents to reconstruct seen video clips at a low frame-per-second rate (see Figure S3), which we do210

not attempt in this study.211

Table 1: Within-subject metrics for all subjects and all latent types on the test set Reported
metrics are relative median rank ↓ (MR) of retrieval on a set of 500 samples, top-5 accuracy % ↑
(Acc) of retrieval on a set of 500 samples. These results were averaged across 50 retrieval sets,
hence results are reported with a standard error of the mean (SEM) smaller than 0.01. The Dummy
model systematically predicts the mean latent representation of the training set.

CLIP 257 × 768 VD-VAE CLIP CLS AutoKL
MR Acc MR Acc MR Acc MR Acc

Dummy 50.0 1.0 50.0 1.0 50.0 1.0 50.0 1.0
S1 9.4 13.8 29.9 3.0 15.1 8.4 24.9 3.9
S2 6.8 16.4 30.2 3.5 10.6 10.5 21.8 3.8
S3 7.8 13.6 28.5 3.1 11.0 9.9 26.0 3.3

Figure 2: Image retrievals using predicted latent representations of CLIP 257 × 768 latents
We use a model fitted on Subject 2 (S2) and predict the latent representation of unseen videos (test
set). Ground truth images featured within the first 5 retrieved images are indicated with a bold purple
border. In a given column, images which appear similar across rows are actually different frames of
the same video clip. Images featuring human faces were blurred.

3.2 OUT-OF-SUBJECT DECODING AND MULTI-SUBJECT TRAINING212

As illustrated in Figure 3, models trained on one subject do not generalise well to other subjects.213

However, we demonstrate that functional alignment can successfully be used as a transfer learning214

strategy to generalize a pre-trained model to left-out subjects. In particular, we show that left-out215
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subjects need not have the same amount of available data than training subjects to benefit from their216

model: with just 30 minutes of data, left-out subjects can reach performance which would have217

needed roughly 100 minutes of data in a within-subject setting. Besides, compared to the out-of-218

subject baseline, we obtain 25 to 75 percents improvement in relative median rank across latent219

types. Note that, in this study, we chose the best performing subject (S2) as the reference subject.220

Finally, we show that a single model trained on all functionally aligned subjects can reach slightly221

better results than models trained on all un-aligned subjects. In every subject, this multi-subject222

aligned model performs comparably to their associated within-subject model. Supplementary Fig-223

ures S5 and S6 show that these results hold for all types for latents.224

Other interesting setups are reported in Figures S8, S9, S10, S11. In particular, they show that a225

multi-subject aligned model (e.g. trained on S1 and S2) has better performance on aligned left-out226

subjects (e.g. S3) than a single-subject model (e.g. trained on S2 only).227

Figure 3: Effects of functional alignment on multi-subject and out-of-subject setups
We report relative median rank ↓ in all setups described in section 2.3 for CLIP 257 × 768. In all
aligned cases, S1 and S3 were aligned onto S2. In all out-of-subject cases, we test S1 and S3 onto
a decoder trained on S2. In all multi-subject cases, the decoder was trained on all data from all 3
subjects. A. In this panel, all models (alignment and decoding) were trained on all available training
data. Results for other latent types are available in Figure S5. B. In left-out S1 and S3, decoding
performance is much better when using functional alignment to S2 (solid dark purple) than when
using anatomical alignment only (solid pale purple). Performance increases slightly as the amount
of data used to align subjects grows, but does not always reach levels which can be achieved with
a single-subject model fitted in left-out subjects (solid pale gray dots) when a lot of training data is
available. Training a model on multiple subjects yields good performance in all 3 subjects (dashed
pale teal) which can be further improved by using functional alignment (dashed dark teal). Results
for other latent types are available in Figure S6.

To better understand how brain features are transformed by functional alignment, we show in Figure228

4 how vertices from S1 are permuted to fit those of S2. Note that both subjects’ data lie on fsav-229

erage5. To this end, we colorize vertices in S1 using the MMP 1.0 atlas (Glasser et al., 2016) and230

use ϕS1→S2 to transport each of the three RGB channels of this colorization. We see that, even in231

low data regimes, FUGW scrambles most of the brain but can leverage signal to recover the cortical232

organization of the occipital lobe. Higher regimes yield anatomically-consistent matches in a much233

higher number of cortical areas such as the temporal and parietal lobes, and more surprisingly in the234

primary motor cortex as well, while the prefrontal cortex and temporo-parietal junction (TPJ) still235

seem challenging to map.236
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Figure 4: Visualizing functional alignments in the left hemisphere Vertices of the source subject
(left) are permuted by FUGW. The result of this permutation is visualized on the target subject
(columns 2, 3, and 4). Fitting FUGW with different increasing amounts of data gradually unfolds
the cortical organisation of multiple areas, even non-visual ones. Note that all 3 models have been
fitted using the same number of iterations.

3.3 INFLUENCE OF TRAINING SET SIZE AND TEST SET REPETITIONS237

Recent publications in brain-decoding using non-invasive brain imagery show impressive results.238

However, we stress that these results are obtained in setups which are very advantageous when it239

comes to both dataset size and signal-to-noise ratio. To better assess the importance of these two240

factors, we report in Figure 5 performance metrics for subject models trained and tested with various241

amounts of data and various amounts of noise.242
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Figure 5: Effect of training set size and test set noise on retrieval metrics Relative median rank
↓ on a fixed test set gets better as more training data is used to fit the model (left). Interestingly,
averaging brain volumes of 2 similar runs does not bring improvements compared to using just 1
run. Instead, stacking runs does yield significant improvements. Note that training sets using 2 runs
have twice as much data as those using 1 run. Finally, these metrics are highly affected by the noise
level of the test set (right): averaging more runs in the test set yields better metrics despite using the
same decoder.

Firstly, using a fixed test set in which brain features were averaged across runs, we find that expo-243

nentially more training data is required per subject to achieve better performance. This finding is244

similar to that of systematic scaling studies on similar topics (Tang et al., 2023). More interestingly,245

in this given signal-to-noise ratio setup, it seems that more diverse training data should bring com-246

parable or better performance than repeating already seen content, while potentially covering more247

semantic domains.248

Secondly, reported performance metrics only hold in favorable signal-to-noise setups. Indeed, the249

test set associated with the Wen 2017 dataset comes with 10 runs for each video segment, which,250

when averaged together, greatly reduce the noise level. However, as reported here, when tested251

in real-life signal-to-noise conditions (i.e. only one run per video clip), our models’ performance252

degrades: it is approximately twice as bad for each subject when using CLIP latents.253
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4 DISCUSSION254

Impact The present work confirms the feasibility of using BOLD fMRI signal acquired in a nat-255

uralistic setup to decode high level visual features (Nishimoto et al., 2011). It further demonstrates256

that it is possible to leverage fMRI signal from naturalistic movie watching to derive meaningful257

functional alignments between subjects, which in turn can be used to transfer decoding models to258

novel subjects.259

In particular, our study shows that decoding brain data from a left-out subject can be substantially260

improved by aligning this left-out subject to a large reference dataset on which a decoder was trained.261

Out method thus paves the way towards using models used on large amounts of individual data to262

decode signal acquired in smaller neuro-imaging studies, which typically record one hour of fMRI263

for each subject (Madan, 2022).264

Besides, this study reports decoding accuracy in setups where subjects are showed test stimuli for265

the first time only, hence yielding insights on how these models would perform in real-time decod-266

ing. While performance improves with the number of repetitions at test time, reasonable decoding267

performance of semantics can be achieved in two out of three subjects with just one repetition.268

Lastly, by systematically quantifying decoding accuracy as a function of the amount of training data,269

the present work brings insightful recommendations as to what stimuli should be played in future270

fMRI datasets collecting large amounts of data in a limited number of subjects. In the current setup271

(naturalistic movie watching at 3T), more diverse semantic content is more valuable than repeated272

content for fitting decoding models.273

Limitations This work is a first step towards training accurate semantic decoders which generalize274

across individuals, but subsequent work remains necessary to ensure the generality of our findings.275

Firstly, although reported gains in out-of-subject setups are significant, the small number of partic-276

ipants present in the dataset under study calls for replications on other – and potentially larger –277

cohorts. However, to our knowledge, no other dataset presented similar features to that of Wen et al.278

(2017) – i.e. high quantity of data per subject and large variety of video stimuli. The recent Courtois279

Neuromod dataset 5 might be useful in this regard.280

Secondly, our approach currently requires left-out subjects to watch the same videos as reference281

subjects. It is yet unclear whether functional alignment could bring improvements without this282

constraint. However, multi-subject decoding can probably help partially address this issue: since it283

is possible to train a decoder on multiple subjects and because not all of them have to watch the same284

movies, it is possible that a lot of different movies could be used as “anchor” for left-out individuals.285

Thirdly, unlike other approaches (Défossez et al., 2022), our approach relies on pre-trained encoders,286

and cannot align all subjects at once. Consequently, overall performance highly depends on the287

quality of other models and of data acquired in reference individuals.288

Finally, while restricting this study to linear models makes sense to establish baselines and ensure289

reproducibility, non-linear models have proved to be very efficient. A natural improvement on this290

work could include these architectures.291

Ethical implications Out-of-subject generalization is an important test for decoding models, but it292

raises legitimate concerns. In this regard, this study highlights that signal-to-noise ratio still currently293

makes it challenging to very accurately decode semantics in a real-time setup, and that a non-trivial294

amount of data is needed per individual for these models to work. Moreover, we stress that, while295

decoding perceived stimuli is making great progress, imagined stimuli are still very challenging296

(Horikawa & Kamitani, 2017). Nonetheless, it is important for advances in this domain to be pub-297

licly documented. We thus advocate that open and peer-reviewed research is the best way forward298

to safely explore the implications of inter-subject modeling, and more generally brain decoding.299

Conclusion Overall, these results provide a significant step towards real-time, subject-agnostic300

visual decoding of semantics using fMRI.301

5https://www.cneuromod.ca
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