
Can Implicit Bias Imply Adversarial Robustness?

Hancheng Min 1 René Vidal 1

Abstract
The implicit bias of gradient-based training al-
gorithms has been considered mostly beneficial
as it leads to trained networks that often general-
ize well. However, Frei et al. (2023) show that
such implicit bias can harm adversarial robust-
ness. Specifically, they show that if the data con-
sists of clusters with small inter-cluster correla-
tion, a shallow (two-layer) ReLU network trained
by gradient flow generalizes well, but it is not ro-
bust to adversarial attacks of small radius. More-
over, this phenomenon occurs despite the exis-
tence of a much more robust classifier that can be
explicitly constructed from a shallow network. In
this paper, we extend recent analyses of neuron
alignment to show that a shallow network with
a polynomial ReLU activation (pReLU) trained
by gradient flow not only generalizes well but
is also robust to adversarial attacks. Our results
highlight the importance of the interplay between
data structure and architecture design in the im-
plicit bias and robustness of trained networks.

1. Introduction
Behind the success of deep neural networks in many ap-
plication domains lies their vulnerability to adversarial at-
tacks, i.e., small and human-imperceptible perturbations to
the input data. Such a phenomenon was observed in the
seminal paper of Szegedy et al. (2014) and has motivated a
large body of work on building defenses against such at-
tacks (Shafahi et al., 2019; Papernot et al., 2016; Wong
et al., 2019; Guo et al., 2018; Cohen et al., 2019; Levine
& Feizi, 2020; Yang et al., 2020; Sulam et al., 2020; Kinfu
& Vidal, 2022).

However, many defense strategies have been shown to fail
against new adaptive attacks (Athalye et al., 2018; Car-
lini et al., 2019), and understanding these failures seems
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to be a fundamental challenge. For example, Fawzi et al.
(2018); Dohmatob (2019); Shafahi et al. (2018) show the
non-existence of robust classifiers for certain data distribu-
tions. Recently, Pal et al. (2023) show that having a data
distribution that concentrates within a small-volume sub-
set of the ambient space is necessary for the existence of a
robust classifier. These results highlight the importance of
understanding and exploiting data structure in the process
of finding classifiers with certified robustness, yet almost
none of the existing defense strategies do so.

Besides data distribution, additional issues arise from the
training algorithms. For example, Vardi et al. (2022) and
Frei et al. (2023) show that when the data consists of clus-
ters with small inter-cluster correlation, a shallow (two-
layer) ReLU network trained by gradient flow generalizes
well but fails to be robust against adversarial attacks of
small radius, despite the existence of a much more robust
classifier that can be explicitly constructed from a shallow
network. This study unveils new challenges in the search
for robust classifiers: Even if we know robust classifiers
exist for certain data distribution, the implicit bias from our
training algorithm (the choice of network architecture, op-
timization algorithm, etc.) may prevent us from finding it.

Paper contributions. In this paper, we show that under
the same setting studied in Frei et al. (2023), the implicit
bias of gradient flow that leads to non-robust networks
can be altered to favor robust networks by modifying the
ReLU activation. Specifically, we consider a data distribu-
tion consisting of a mixture of K Gaussians, referred to as
subclasses, which have small inter-subclass correlation and
are grouped into two superclasses/classes. When training a
two-layer binary classification network, we show, with for-
mal theorems, and with conjectures validated experimen-
tally, that (also illustrated in Figure 1):

• If the activation is a ReLU, neurons (rows of the first
layer weight matrix) tend to learn only the average di-
rection of each class, leading to a classifier that general-
izes well on clean data, but is vulnerable to an adversar-
ial attack with l2 radius O

(
1√
K

)
, i.e. the trained net-

work is non-robust with many subclasses. This leads to
a new neural alignment perspective on the nonrobustness
of ReLU networks identified by Frei et al. (2023).

• If the activation is replaced by a novel polynomial ReLU
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Figure 1. Visualizing the training of a pReLU network under small initialization (Details explained in later sections). The dataset has
its positive class sampled from two subclasses. (a) At initialization, all neurons have small norms and point toward random directions;
When p = 1 (vanilla ReLU network), (b) During the alignment phase, the neuron directions are aligned with either of the average class
centers µ̄+ and µ̄−; (c) During the second phase, neurons keep the alignment with µ̄+ and µ̄− while growing their norms; When p = 3,
(d) neurons learn subclass centers during alignment phase and (e) keep the alignment in the second phase. Note: the neurons pointing
toward directions other than class/subclass centers are not activated by any data point and have small norms throughout training.

activation, proposed based on recent advances in under-
standing the neuron alignment in shallow networks, neu-
rons tend to learn the direction of each subclass center,
leading to a classifier that generalizes well on clean data
and can sustain any adversarial attack with O (1) radius.

Our analysis (1) highlights the importance of the interplay
between data structure and network architecture in deter-
mining the robustness of the trained network, (2) explains
how the implicit bias (regularization) of training a ReLU
network fails to exploit the data structure and leads to non-
robust networks, and (3) shows how the issue is resolved by
using a polynomial ReLU activation function. Moreover,
numerical experiments on real datasets show that shallow
networks with our generalized ReLU activation functions
are much more robust than those with a ReLU activation.

Relation to existing analysis on implicit bias of neu-
ral networks. Our discussion is theory-centric. It builds
upon the analysis of the implicit bias of training algorithms,
but it is significantly different from prior theoretical anal-
yses. The implicit bias of training algorithms has been
studied extensively over past years for various architec-
tures, including both linear networks (Saxe et al., 2014;
Gunasekar et al., 2017; Ji & Telgarsky, 2019; Woodworth
et al., 2020; Min et al., 2021; Stöger & Soltanolkotabi,
2021; Jacot et al., 2021; Wang & Jacot, 2023), and non-
linear networks (Lyu & Li, 2019; Ji & Telgarsky, 2020;
Maennel et al., 2018; Chizat & Bach, 2020; Boursier et al.,
2022; Min et al., 2024; Wang & Ma, 2023; Frei et al.,
2022; 2023; Kumar & Haupt, 2024; Abbe et al., 2023;
Tarzanagh et al., 2023). Moreover, this phenomenon has
been studied from different perspectives, including max-
margin (Lyu & Li, 2019; Chizat & Bach, 2020; Tarzanagh
et al., 2023), min-norm (Gunasekar et al., 2017; Min et al.,
2021), sparsity/low-rankness (Saxe et al., 2014; Wood-
worth et al., 2020; Wang & Jacot, 2023; Abbe et al., 2023),
and alignment (Maennel et al., 2018; Min et al., 2024; Ku-

mar & Haupt, 2024). While most works consider these im-
plicit biases beneficial for the success of neural networks in
practice, and some existing work (Faghri et al., 2021) has
even shown that such biases help robustness in the cases
of linear regression; few works (Frei et al., 2023; Boursier
& Flammarion, 2024) discuss the potential harm caused by
such biases. Our work takes one step further by propos-
ing fixes to the harms identified by prior work (Frei et al.,
2023), which sheds light on the potential of using deep
learning theory to not only understand but also improve
neural networks in practice.

Paper organization. Our main formal results regarding
adversarial robustness will be shown (in Section 3) for ex-
plicitly constructed classifiers that can be realized by shal-
low networks with different activation functions. Then we
connect these robustness results to those of actual trained
shallow networks by a conjecture that shallow networks,
when initialized properly, can learn such constructions via
gradient flow training. The rationale behind this conjec-
ture is carefully explained in Section 4, together with a pre-
liminary theoretical analysis that supports this conjecture.
Lastly, we empirically verify our conjecture in Section 5
via experiments on synthetic data, and then we conduct nu-
merical experiments on real datasets, showing that our pro-
posed new activation improves the robustness of shallow
networks.

Notation: We denote the the inner product between vec-
tors x and y by ⟨x,y⟩ = x⊤y, and the cosine of the angle
between them as cos(x,y) = ⟨ x

∥x∥ ,
y

∥y∥ ⟩. For an n × m

matrix A, we let ∥A∥ and ∥A∥F denote the spectral and
Frobenius norm of A, respectively. We also define 1A as
the indicator for a statement A: 1A = 1 if A is true and
1A = 0 otherwise. We also let N (µ,Σ2) denote the nor-
mal distribution with mean µ and covariance matrix Σ2,
and Unif(S) denote the uniform distribution over a set S.
Lastly, we let [N ] denote the integer set {1, · · · , N}.
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2. Problem Setting
We consider a binary classification problem where within
each class, the data consists of subclasses with small inter-
subclass correlations, formally defined as follows.

Data distribution. We assume (X,Y, Z) ∼ D, where a
sample (x, y, z) ∈ RD×{−1, 1}×N+ drawn fromD con-
sists of the observed data and class label (x, y), and a latent
(unobserved) variable z denoting the subclass membership.
We denote the marginal distribution of the observed part
(X,Y ) as DX,Y . In particular, given 1 ≤ K1 < K, we let

• Z ∼ DZ = Unif([K]); Y = 1{Z≤K1} − 1{Z>K1};

• (X | Z = k) ∼ N
(
µk,

α2

D I
)

, ∀1 ≤ k ≤ K, where
α > 0 is the intra-subclass variance, and {µ1, · · · ,µK}
are subclass centers that forms an orthonormal basis of a
K-dimensional subspace in RD, where K < D.

This data distribution has K subclasses with small inter-
subclass correlation if α is small (since the subclass cen-
ters are orthonormal to each other), and the observed labels
only reveal the superclass/class membership: the first K1

subclasses belong to the positive class (y = +1) and the
remaining K2 := K − K1 belong to the negative class
(y = −1). One such a dataset is depicted in Figure 1.

Classification task and robustness of a classifier. The
learning task we consider is to find a binary classifier
f(x) : RD → R such that given a randomly drawn
(x, y), sign(f(x)) predicts the correct class label y, i.e.,
f(x)y > 0, with high probability. Moreover, we are in-
terested in the robustness of f(x) against additive adver-
sarial attacks/perturbations on x with l2-norm bounded by
some constant r > 0 (called the attack radius). Specifi-
cally, given a randomly drawn (x, y) fromDX,Y , we would
like inf∥d∥=1 f(x+rd)y > 0 to hold with high probability
(formal statement in Section 3) for r as large as possible.

Gradient flow training. A candidate classifier can be re-
alized from a neural network f(x;θ) parameterized by
its network weights θ. Given a size-n training dataset
{(xi, yi), i = 1, · · · , n}, where each training sample is
randomly drawn from DX,Y , we define a loss function

L(θ; {xi, yi}ni=1) =
∑n

i=1
ℓ(yi, f(xi;θ)) , (1)

where ℓ(y, ŷ) : R × R → R is either the exponential
loss ℓ(y, ŷ) = exp (−yŷ) or the logistic loss ℓ(y, ŷ) =
log (1 + exp (−yŷ)). We train the network using gradient
flow (GF), θ̇(t) ∈ ∂L(θ(t)), where ∂L denotes the Clarke
subdifferential (Clarke, 1990) w.r.t. θ. With proper initial-
ization θ(0), one expects the trained network weights θ(T )
(for some large T > 0) to be close to some minimizer of
L(θ) and f(x;θ(T )) to be a good classifier for DX,Y .

Shallow networks with pReLU activation. We specif-
ically study the following shallow (two-layer) network,
parametrized by θ := {(wj , vj) ∈ RD×R, j = 1, · · · , h},
as a candidate classifier:

fp(x; {wj , vj}hj=1) =
∑h

j=1
vj

[σ(⟨x,wj⟩)]p

∥wj∥p−1
,

(Shallow pReLU Network)
where σ(·) = ReLU(·) = max{·, 0} and p ≥ 1. When
p = 1, this is exactly a shallow ReLU network. When
p ≥ 1, fp can be loosely viewed as a shallow network
with a polynomial ReLU activation and a special form of
weight normalization (Salimans & Kingma, 2016) on each
wj . One of the most important reasons for this particular
generalization of the ReLU activation is the “extra penalty"
on angle separation between the input x and neurons wjs.
To see this, assume ∥x∥ = 1, then

[σ(⟨x,wj⟩)]p

∥wj∥p−1
= σ(⟨x,wj⟩)

cosp−1 (x,wj) ∥wj∥p−1

∥wj∥p−1

= σ(⟨x,wj⟩) cosp−1 (x,wj) ,

that is, for each neuron wj , when compared to ReLU ac-
tivation (p = 1), the post-activation value is much smaller
(penalized) if the angle separation between x and wj is
large. When p > 1, such penalties, as we will see later,
promote the alignment between training data samples and
neurons, and result in trained networks that capture well
the intrinsic structure of the data. In addition, such gen-
eralized ReLU activation makes the function fp positively
homogeneous of degree two w.r.t. its parameters θ, i.e.,
fp(x; γθ) = γ2fp(x;θ) for any θ and γ > 0. Many ex-
isting analyses (Du et al., 2018; Lyu et al., 2021; Kumar &
Haupt, 2024) on positively homogeneous networks apply
to the generalized pReLU networks. Lastly, it is worth not-
ing that the concept of promoting alignment between data
points and neurons via cosine penalty has been explored for
improving interpretability (Böhle et al., 2022) of the trained
network.

3. Main Results on Adversarial Robustness
This section considers two distinct classifiers for DX,Y :

F (p)(x) =

K1∑
k=1

σp(⟨µk,x⟩)−
K∑

k=K1+1

σp(⟨µk,x⟩) (2)

and

F (x) =
√

K1σ(
〈
µ̄+,x

〉
)−

√
K2σ(

〈
µ̄−,x

〉
) , (3)

where µ̄+ = 1√
K1

∑K1

k=1 µk and µ̄− = 1√
K2

∑K
k=K1+1 µk

are, respectively, the average direction of the positive and
negative subclass centers. Here the average direction is
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computed by taking the sum of all µks, then normalize it,
thus we have µ̄+∈SD−1 and µ̄−∈SD−1.

Based on existing analyses for the implicit bias of gradient-
based training, we conjecture that both classifiers can be
learned by gradient flow on shallow networks with pReLU
activations and proper initialization. Before studying this
conjecture, we analyze these two classifiers in more detail.

Realizability of F (x) and F (p)(x) by pReLU networks.
We first notice that both F (x) and F (p)(x) can be realized
(non-uniquely) by a pReLU network fp(x; {wj , vj}hj=1)

for suitable choices of the weights {wj , vj}hj=1, as stated
in the following claim. (Verifying this claim is straightfor-
ward and we leave it to Appendix C).

Claim. The following two statements are true:

• When p = 1, let I+ and I− be any two non-empty and
disjoint subsets of [h], let λ := (λj) ∈ Rh

≥0 be any vector
such that

∑
j∈I+

λ2
j =

√
K1 and

∑
j∈I−

λ2
j =

√
K2,

and let

wj = λjµ̄+, vj = λj , ∀j ∈ I+ ,

wj = λjµ̄−, vj = −λj , ∀j ∈ I− ,

wj = 0, vj = 0, otherwise.

Then fp(x; {wj , vj}hj=1) ≡ F (x) .

• When p ≥ 1, let I1, · · · , IK be any K non-empty and
disjoint subsets of [h], let λ := (λj) ∈ Rh

≥0 be any vector
such that

∑
j∈Ik

λ2
j = 1,∀k ∈ [K], and let

wj = λjµk, vj = λj , ∀j ∈ Ik, k ≤ K1 ,

wj = λjµk, vj = −λj , ∀j ∈ Ik, k > K1 ,

wj = 0, vj = 0 otherwise.

Then fp(x; {wj , vj}hj=1) ≡ F (p)(x) .

Remark 1. As shown in the claim, there are infinitely many
parameterizations of fp (determined by the choice of sub-
sets of [h] and λ) that lead to the same function F (x)
(or F (p)(x)), due to the symmetry in the network weights.
That is, the resulting network represents the same func-
tion if one re-indexes (permutes) the neurons, or if one
does the following rescaling on some weights (wj , vj) →
(γwj , vj/γ) for some j ∈ [j] and some γ > 0.

Notice that the classifier F corresponds to a vanilla shallow
ReLU network whose non-zero neurons are either aligned
with µ̄+, the average direction of the positive subclass cen-
ters, or µ̄−, the negative counterpart. On the other hand,
F (p) corresponds to a pReLU network whose non-zero
neurons are aligned with one of the subclass centers. As
we will see soon, both F (x) and F (p)(x) achieve high pre-
diction accuracy on clean samples (x, y) from DX,Y , i.e.,

learning subclass centers is not necessary for good gener-
alization. However, we will also show that F (p) is much
more robust against adversarial perturbation than F . This
is why we argue that learning subclass centers significantly
improve robustness.

Generalization and Robustness of F (x) and F (p)(x).
Having established that both F and F (p) are realizable by
a pReLU network fp, we now study the generalization per-
formance and robustness of F and F (p). Under the conjec-
ture that both F and F (p) can be learned by gradient flow
training on a pReLU network fp, we expect that such gen-
eralization and robustness properties extend to fp.

The following result states that both F and F (p) achieve
good generalization performance on DX,Y when the di-
mension D of the input data X is sufficiently large and the
number of subclasses K is not too large.

Proposition 1 (Generalization on clean data). Given a test
sample (x, y) ∼ DX,Y , and classifiers F and F (p), p ≥ 1,
defined in (3) and (2), resp., there is a constant C such that

P (F (x)y > 0) ≥ 1− 4 exp

(
− CD

4α2K

)
,

P
(
F (p)(x)y > 0

)
≥ 1− 2(K + 1) exp

(
− CD

α2K2

)
.

However, the following theorem shows a significant differ-
ence between F and F (p) regarding their adversarial ro-
bustness, when the number of subclasses K is large.

Theorem 1 (l2-adversarial robustness). Given a test sam-
ple (x, y) ∼ DX,Y , and classifiers F and F (p), defined in
(3) and (2), resp., the following statement is true for the
same constant C in Proposition 1:

•
(

Non-robustness of F against O
(

1√
K

)
-attack

)
Let

d0 :=
√
K1µ̄+−

√
K2µ̄−√

K
∈ SD−1. Then for any ρ ≥ 0,

P

(
F

(
x− y(1 + ρ)√

K
d0

)
y>0

)
≤2 exp

(
−CDρ2

Kα2

)
.

•
(
Robustness of F (p) against O (1) -attack

)
Let p ≥ 2.

Then for any 0 ≤ δ ≤
√
2,

P

(
min
∥d∥≤1

F (p)

(
x+

√
2− δ

2
d

)
y > 0

)

≥ 1− 2(K + 1) exp

(
− CDδ2

2K2α2

)
.

We refer the reader to Appendix C for the proofs for Propo-
sition 1 and Theorem 1. Our theoretical results should
be understood in the high-dimensional or low-intra-class-
variance regime so that D

α2 ≫ K2 logK. On the one hand,

4



Can Implicit Bias Imply Adversarial Robustness?

Theorem 1 shows that F , a classifier that corresponds to
shallow ReLU networks whose neurons are aligned with
either µ̄+ or µ̄−, is vulnerable to an adversarial attack of

radius O
(

1√
K

)
, which diminishes as the number of sub-

classes grows. On the other hand, Theorem 1 shows that
F (p), p ≥ 2, a classifier that corresponds to shallow pReLU
networks whose neurons are aligned with one of the sub-
class centers, is O (1)-robust against adversarial attacks.

Remark 2. Complementary results to Theorem 1 in Ap-
pendix C.4 show that F is robust against any attack with
l2-norm slightly smaller than 1√

K
, and F (p) is not robust

to some attack with l2-norm slightly larger than
√
2
2 . There-

fore, 1√
K

and
√
2
2 are the “critical" attack radius for F and

F (p), resp. We conjecture this is also the case for the asso-
ciated trained networks, which we verify in Section 5.1.

Conjecture on the outcome of gradient flow training.
We now study the conjecture that both classifiers can be
learned by gradient flow on a shallow network with pReLU
activations and proper initialization. Specifically, we pose
the following:
Conjecture 1. Suppose that the intra-subclass variance
α > 0 is sufficiently small, that one has a training
dataset of sufficiently large size, and that we run gradi-
ent flow training on fp(x;θ),θ = {wj , vj}hj=1 of suffi-
ciently large width h for sufficiently long time T , start-
ing from random initialization of the weights with a suf-
ficiently small initialization scale. If p = 1, then we
have infc>0 supx∈SD−1 |cfp(x;θ(T )) − F (x)| ≪ 1;
If p ∈ [3, p̄) for some p̄ > 3, then we we have
infc>0 supx∈SD−1 |cfp(x;θ(T ))− F (p)(x)| ≪ 1.

Our conjecture states that with proper initialization and suf-
ficiently long training time, gradient flow finds a network
that is, up to a scaling factor c > 01, close to F in l∞-
distance over SD−1, if p = 1. That is, when training a
vanilla ReLU network, the neurons learn average directions
µ̄+, and µ̄− of subclass centers. However, when p ≥ 3,
gradient flow finds a network close to F (p), i.e., the neu-
rons learn individual subclass centers. Note that p can not
be too large, as the post activation [σ(⟨x,wj⟩)]p

∥wj∥p−1 converges
to 1cos(x,wj)=1 · ⟨x,wj⟩ when p grows (∥x∥ = 1), effec-
tively zeroing out post activation values almost everywhere
and also the gradient, staggering gradient flow training.

Given Conjecture 1, Theorem 1 can be used to infer the
robustness of the networks fp(x;θ(T )) obtained from gra-

1Since fp(x;θ) is positively homogeneous of degree two w.r.t.
its parameter θ, ∥θ(t)∥ → ∞ as training time t → ∞ (Lyu & Li,
2019; Ji & Telgarsky, 2020), the output of fp(x;θ(T )) can never
match that of F (x) or F (p)(x) without a proper choice of scaling
factor c > 0. However, we note, that such a scaling factor will
not change the prediction sign(fp(x;θ(T ))).

dient flow training with small initialization. When train-
ing a vanilla ReLU network in this regime, we expect the
trained network to be close to F , thus non-robust against
O
(

1√
K

)
-attacks. When training a pReLU network with

p ≥ 3, we expect the trained network to be close to F (p),
which is more robust than its ReLU counterpart.

Our conjecture is based on existing work on the implicit
bias of gradient flow on shallow networks with small ini-
tialization, and we carefully explain the rationale behind it
in Section 4. However, formally showing such convergence
results is challenging as the data distribution DX,Y consid-
ered here is more complicated than those for which con-
vergence results can be successfully shown (Boursier et al.,
2022; Min et al., 2024; Chistikov et al., 2023; Wang & Ma,
2023). Instead, we provide a preliminary analysis of this
conjecture. Moreover, in Section 5, we provide numerical
evidence that supports our conjecture.

Comparison with prior work. Frei et al. (2023) consider a
similar setting as ours with three minor differences. Firstly,
their data distribution differs from ours by a scaling fac-
tor of

√
D on the input data. Second, they allow for tiny

correlations between the two subclass centers. Third, they
consider shallow ReLU networks with bias. They show
that any network trained by gradient flow is non-robust
against O

(
1√
K

)
attacks, which covers any initialization,

but their analysis does not characterize what classifier the
trained network corresponds to. While we consider specif-
ically small initialization, we can at least conjecture, and
numerically verify, what the corresponding classifier is at
the end of the training. In addition, Frei et al. (2023) show
the existence of O(1)-robust ReLU network if neurons are
aligned with subclasses and there is some carefully chosen
bias. While it already sheds light on the need for learn-
ing subclasses, their proposed network can not be found by
gradient flow. On the contrary, our proposed robust F (p)

can be obtained by gradient flow.

4. Discussion on Gradient Flow Training
In Section 3, we conjectured that under gradient flow start-
ing from a small initialization, a vanilla ReLU network fa-
vors learning average directions µ̄+ and µ̄− of subclass
centers, while a pReLU network favors learning every sub-
class centers µk, k ∈ [K], resulting in a significant dif-
ference between these two networks in terms of adversarial
robustness. In this section, we provide a theoretical expla-
nation of such alignment preferences in the scope of im-
plicit bias of gradient flow training with small initializa-
tion (Maennel et al., 2018; Boursier & Flammarion, 2024).
We remind the reader that gradient flow training is de-
scribed in Section 2.
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4.1. Gradient flow with small initialization

We first briefly describe the training trajectory of gradient
flow on shallow networks with a small initialization. With
a sufficiently small initialization scale (to be defined later),
the gradient flow training is split into two phases with dis-
tinct dynamic behaviors of the neurons. The first phase is
often referred to as the initial/early alignment phase (Bour-
sier & Flammarion, 2024; Min et al., 2024), during which
the neurons keep small norms while changing their direc-
tions towards one of the extremal vectors (Maennel et al.,
2018), which are jointly determined by the training dataset
and the activation function. The second phase is often re-
ferred to as the fitting/convergence phase. Within the fitting
phase, neurons keep a good alignment with the extremal
vectors and start to grow their norms, and the loss keeps
decreasing until convergence, upon which one obtains a
trained network whose dominant neurons (those with large
norms) are all aligned with one of the extremal vectors.

Notably, the neurons favor different extremal vectors de-
pending on the activation function, precisely depicted by
Figure 1. With the same dataset and with the same ini-
tialization of the weights, pReLU activation makes a sig-
nificant difference in neuron alignment: When p = 1
(vanilla ReLU network), the average class centers µ̄+ and
µ̄− are those extremal vectors “attracting" neurons during
the alignment phase, leading to a trained ReLU network
that has effectively two neurons (one aligned with µ̄+ and
another with µ̄−) at the end of the training. However, when
p = 3, the subclass centers µ1, · · · ,µk become extremal
vectors that are “attracting" neurons , the resulting pReLU
networks successfully learn every subclass center, which,
we have argued in Section 3, substantially improves the ro-
bustness (over vanilla ReLU net) against adversarial attack.
While the case visualized in Figure 1 is a simple one in 3-
dimension with 3 subclasses, we will provide experiments
in higher dimension and with more subclasses in Section 5.

Despite the seemingly simple dynamic behavior of the neu-
rons, the rigorous theoretical analysis is much more chal-
lenging due to the complicated dependence (Maennel et al.,
2018; Boursier et al., 2022; Wang & Ma, 2023; Kumar &
Haupt, 2024) of the extremal vectors on the dataset and
the activation function. Hence prior works (Boursier et al.,
2022; Min et al., 2024; Chistikov et al., 2023; Wang & Ma,
2023) assume simple training datasets and their analyses
are for ReLU activation. Here, we are faced with a rel-
atively more complex data distribution that generates our
dataset, and at the same time deals with a pReLU activa-
tion, thus a full theoretical analysis of the convergence, that
would prove our Conjecture 1, still has many challenges
and deserves a careful treatment in a separate future work.
For now, we provide some preliminary theoretical analysis
of the neural alignment in pReLU networks that supports

our conjecture.

4.2. Preliminary theoretical analysis on neuron
alignment in pReLU networks

We first make the following two simplifying assumptions:

Small and balanced initialization. First, we obtain i.i.d.
samples wj0, j = 1, · · · , h drawn from some random dis-
tribution such that almost surely ∥wj0∥ ≤ M,∀j for some
M > 02, and then and then initialize the weights as

wj(0) = ϵwj0, vj(0) ∈ {∥wj(0)∥,−∥wj(0)∥},∀j ∈ [h] .
(4)

That is, wj0 determines the initial direction of the neurons
and we use ϵ to control the initialization scale. This bal-
anced assumption is standard in the analysis of shallow net-
works with small initialization (Soltanolkotabi et al., 2023;
Boursier et al., 2022; Min et al., 2024).

Simplified training dataset. The training dataset
{(xk, yk), k = 1, · · · ,K} is the collection of exact sub-
class centers, together with their class label. That is,
xk = µk, yk = 1{k≤K1} − 1{k>K1},∀k ∈ [K]. Sim-
ilar datasets with orthogonality among data points xks are
studied in Boursier et al. (2022) for ReLU networks.

Neuron alignment in pReLU networks. The key to the
theoretical understanding of neuron alignment is the fol-
lowing lemma.

Lemma 1. Given some initialization from (4), if ϵ =
O( 1√

h
), then there exists T = θ( 1

K log 1√
hϵ
) such that the

trajectory under gradient flow training with the simplified
training dataset almost surely satisfies that ∀t ≤ T ,

max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥
= O

(
ϵk
√
h
)
,

where P⊥
w = I − ww⊤

∥w∥2 and

x(p)(w) =
∑K

k=1
γk(w)ykxk · p[cos(xk, w)]

p−1, (5)

with γk(w) being a subgradient of σ(z) at z = ⟨xk,w⟩
when p = 1 and γk(w) = 1cos(xk,w)≥0 when p > 1.

Lemma 1 suggests that during the alignment phase t ≤ T ,
one have the following approximation

d

dt

wj(t)

∥wj(t)∥
≃ sign(vj(0))P⊥

wj(t)
x(p)(wj(t)) , (6)

2For example, if we sample every entries of wj0 by a uniform
distribution over

(
− 1√

D
,− 1√

D

)
.
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Figure 2. Numerical experiment (K = 10,K1 = 6) validates Conjecture 1. (a) We train pReLU networks using SGD with small
initialization, then estimate the distance dist(fp, F ) between the trained network fp and the classifier F , when p = 1 (top plot); When
p = 3, we estimate dist(fp, F (p)) instead (bottom plot). The training is done under different choices of intra-subclass variance α and
repeated 10 times per α; the Solid line shows the average and the shade denotes the region between max and min values. (b) Given a
trained network obtained from an instance of this training (α = 0.1), we reorder the neurons w.r.t. their contributions |vj |∥wj∥ and
then plot the contributions in a bar plot; (c)(d) For neurons with large contributions, we plot a colormap, with each pixel represents
some cos(wj ,µ), where µ could be either average class centers µ̄+ and µ̄− or subclass centers µk, k ∈ [K]. Note: For visibility, the
neurons are reordered again so that neurons aligned with the same µ are grouped together. (e) Lastly, we carry out l2 PGD attack on a
test dataset and plot the robust accuracy of the trained network under different choices of attack radius.

which essentially shows that when wj is a positive neu-
ron (sign(vj(0)) > 0), then gradient flow dynamics dur-
ing alignment phase pushes wj/∥wj∥ toward the direction
of x(p)(wj). Notably, x(p)(wj) is a weighted combina-
tion of xks and the mixing weights critically depend on
p. Roughly speaking, when p = 1, x(p)(wj), weighing
equally on xks that activate wj , are more aligned with µ̄+

and µ̄−, while when p ≥ 3, x(p)(wj), weighing more on
xks that are close to wj in angle, are more aligned with one
of the subclass centers, thus by moving toward x(p)(wj)
in direction, the neuron wj is likely to align with average
class centers in the former case, and with subclass centers
in the latter case (We illustrate this in an example in Ap-
pendix D.1). This trend leads to the following alignment
bias.

Theorem 2 (Alignment bias of positive neurons). Given
some sufficiently small δ > 0 and a fixed choice of p ≥ 1,
then ∃ϵ0 := ϵ0(δ, p) > 0 such that for any solution of
the gradient flow on fp(x;θ) with the simplified training
dataset, starting from some initialization from (4) with ini-
tialization scale ϵ < ϵ0, almost surely we have that at any
time t ≤ T = θ( 1n log 1√

hϵ
) and ∀j with sign(vj(0)) > 0,

d

dt
cos
(
wj(t), µ̄+

)∣∣∣∣
cos(wj(t),µ̄+)=1−δ

{
> 0, when p = 1

< 0, when p ≥ 3
,

(7)
and

d

dt
cos(wj(t),µk)

∣∣∣∣
cos(wj(t),µk)=1−δ

> 0,∀k ≤ K1 . (8)

This theorem shows how different choice of p alters the
neurons’ preferences on which directions to align. If we
define the neighborhood of some µ direction as B(µ, δ) :=
{z ∈ SD−1 : cos (µ, z) ≥ 1 − δ}, then specifically

for a positive neuron: When p = 1, then any neu-
ron with wj(t0) ∈ B(µ̄+, δ) necessarily has wj(t) ∈
B(µ̄+, δ),∀t ∈ [t0, T ], i.e. it keeps at least 1 − δ align-
ment with µ̄+ until the end of the alignment phase (at
time T ). Therefore, there is a preference of staying close
to µ̄+ for positive neurons. Interestingly, such prefer-
ence no longer exists when p ≥ 3. In particular, any
positive neuron with wj(t0) /∈ B(µ̄+, δ) necessarily has
wj(t) /∈ B(µ̄+, δ),∀t ∈ [t0, T ], i.e., any neuron initialized
with some angular distance to µ̄+ will not get any closer
to µ̄+. Instead, the neurons are now more likely to stay
close to some subclass centers, as shown in (8). Similar
results can be said for negative neurons (whose index j has
sign(vj(0)) < 0): they favor average negative class cen-
ter µ̄− when p = 1 and favor subclass directions when
p ≥ 3. We refer the interested readers to Appendix D for
a complete Theorem 2 (and its proof) that also includes the
statement for negative neurons.

5. Numerical Experiments
Our numerical experiments3 have two parts: First, we con-
duct experiments to validate Conjecture 1. Then, we pro-
vide preliminary experiments on real datasets to highlight
the potential of using pReLU activation for obtaining more
robust classifiers.

5.1. Numerical evidence supports our conjecture

We run SGD (batch size 100 and step size 0.2 for 2 × 105

epochs) with small initialization (all weights initialized
as mean-zero Gaussian with standard deviation 10−7) to
train a pReLU network with h = 2000 neurons on a
dataset drawn from DX,Y with D = 1000, K = 10, and

3Code available at https://github.com/hanchmin/
pReLU_ICML24.
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Figure 3. Parity prediction on MNIST dataset with pReLU networks. (a) We plot the data correlation as a colormap, where each pixel
represents some cos (xi, xj) between two centered data xi, xj from MNIST training dataset; (b) We run Adam with batch size 1000
to train a pReLU network under Kaiming initialization (repeated 10 times), then plot the training/testing accuracy during training for
different choice of p (The shade region indicates the range between the minimum and maximum values over 10 randomized runs); (c) We
stack the hidden post-activation representation of each training sample into a matrix and compute its stable rank, and plot the evolution
of this stable rank during training; (d) After training for 50 epoch, we carry out APGD l∞-attack on MNIST test dataset (in pixel space)
and plot the robust accuracy of the trained pReLU network under different choice of attack radius.

Figure 4. Classification on Caltech256 dataset (relabeled into 10 superclasses) with a pre-trained ResNet152 as a fixed feature extractor.

K1 = 6. With different choices of intra-subclass vari-
ance α, we take the network fp at the end of the train-
ing and estimate (we refer the readers to Appendix A
for the estimation algorithm) its distance dist(fp, F ) =
infc>0 supx∈SD−1 |cfp(x)− F (x)| to the classifier F (x),
or the distance dist(fp, F (p)) to F (p)(x), depending on the
value of p. As one sees from Figure 2, when p = 1, fp
is close to F , and the estimated distance slightly increases
as α gets larger. Similarly, when p = 3, fp is close to
F (p). Furthermore, we investigate the alignment between
the dominant neurons in fp and class/subclass centers. Fig-
ure 2 shows that indeed neurons in fp learn only average
class centers µ̄+ and µ̄− when p = 1 while learning ev-
ery subclass center µk, k ∈ [K] when p = 3. Lastly, as
our Theorem 1 predicts, fp, p = 3 is much more robust
than the one with p = 1. This series of numerical evidence
strongly support Conjecture 1 (with additional experiments
in Appendix A).

5.2. Experiments on real datasets

Although we have shown good alignment between our the-
ory and our numerical experiments in 5.1. The settings
largely remain unrealistic. To show the potential value of
pReLU networks in practical settings in finding a robust
classifier, we now study classification (albeit slightly mod-

ified) problems on real datasets.

5.2.1. PARITY CLASSIFICATION ON MNIST

We first consider training a pReLU network of width h =
500 to predict whether an MNIST digit is even or odd. This
poses a problem similar to the one studied in our theoret-
ical analyses: each digit is naturally a subclass and they
form classes of even digits and odd digits. Moreover, once
the data is centered, as shown in Figure 3, two data points
of the same digit are likely to have a large positive corre-
lation, and two points of different digits to have a small,
or negative correlation, which resembles the our orthogo-
nality assumption among subclass centers. Therefore, with
appropriate data preprocessing, we expect the pReLU net-
work to find a more robust classifier when p is large.

Data preprocessing. We relabel MNIST data by parity,
which leads to a binary classification. Then we center both
the training and test set by subtracting off the mean image
of all training data and then normalize the residue, resulting
in a centered, normalized training/test set 4.

4When training pReLU networks, some normalization of the
data is required to improve training stability. To see this, notice
that the post-activation value for ith data scales as ∥xi∥p; When p
is large, this term diminishes or explodes depending on where the
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Training pReLU. We use Kaiming initialization (He et al.,
2015) with non-small variance for all the weights and run
Adam with cross-entropy loss and with batch size 1000
for 50 epochs and summarize the training results in Fig-
ure 3. First of all, as p increases, the trained network be-
comes more robust against the adversarial l∞-attack com-
puted from an adaptive projected gradient ascent (APGD)
algorithm (Croce & Hein, 2020). Interestingly, pReLU
with p > 1 even has a slight edge over vanilla ReLU net
in terms of test accuracy on clean data. Given that the
MNIST dataset does not satisfy our data distribution, there
is no reason to expect that neurons in pReLU can learn each
subclass (in this case, the individual digit) and indeed they
cannot. However, we highlight that pReLU empirically is
more capable of learning distinct patterns within each su-
perclass/class: We stack the hidden post-activation repre-
sentation of each training sample into a matrix and com-
pute its stable rank (defined as ∥A∥2

F

∥A∥2 for a matrix A, as
an approximation of rank(A)). From Figure 3, we see
that the hidden feature matrix of MNIST obtained from
pReLU network has a much larger stable rank than the one
from vanilla ReLU net, i.e. the hidden features collapse
less when p is large, and we conjecture it to be the reason
why pReLU still gains much more adversarial robustness
than vanilla ReLU. Theoretically investigating such a phe-
nomenon is an interesting future direction.

Additional experiments. To further illustrate the effec-
tiveness of pReLU activation in improving the adversarial
robustness of the trained network, we conduct additional
experiments, in Appendix B, of training pReLU networks
for the original digit classification task on MNIST and test
the robustness of the trained network with different types
of attacks. Despite that our theoretical results only sug-
gest robustness gain can be achieved under datasets with
subclasses, the additional experimental results show that
the pReLU networks are still much more robust than their
ReLU counterpart even for the original digit classification
task, which clearly does not follow our data assumption.

5.2.2. IMAGE CLASSIFICATION WITH PRE-TRAINED
FEATURE EXTRACTOR

Our next experiment considers a transfer learning setting
where we use some intermediate layer (more precisely,
the feature layer before the fully-connected layers) of a
pre-trained ResNet152 on ImageNet as a feature extractor
and classify the extracted feature from Caltech256 (Grif-
fin et al., 2007) object classification dataset with pReLU
networks. The main reason behind this setting is that we
expect the extracted feature representation of each class to
be clustered, and this is verified in Figure 4.

value ∥x∥ is smaller or larger than one.

We intend to have a classification task with subclasses, thus
we group the original 256 classes in the dataset into 10 su-
perclasses (each superclass has no semantic meaning in this
case) and train pReLU networks of width h = 2000 that
predict the superclass label. Then we obtain the feature rep-
resentation of the dataset from our feature extractor, center
the feature, and normalize, same as we did for the MNIST
dataset. The training process is exactly the same as for the
MNIST dataset, and we summarize the results in Figure
4. Even for this multi-class classification task, still pReLU
achieves higher test accuracy and is more robust when p
gets larger.

6. Conclusion
By introducing a generalized pReLU activation, we resolve
the non-robustness issue, caused by the implicit bias of gra-
dient flow, of ReLU networks when trained on a classifi-
cation task in the presence of latent subclasses with small
inter-subclass correlations. Future work includes formal
analyses on neural alignment in pReLU networks as well
as more empirical evaluation of pReLU activation for its
ability to improve the robustness of neural networks.
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A. Additional Discussion on Validating Conjecture 1
A.1. Estimating dist(fp, F )

To estimate the distance dist(fp, F ) = infc>0 supSD−1 |cfp(x) − F (x)| between a trained network fp and a classifier F
(or F (p)), we first pick an ĉ > 0 that yields the least-square match between ĉfp(x) and F (x) over a set of points sampled
from Unif(SD−1). Then given this choice of ĉ, we run normalized projected gradient ascent on |ĉfp(x)− F (x)|2 starting
from an initial x sampled from Unif(SD−1), and repeat a large number of times, the maximum value of |ĉfp(x)− F (x)|
at the end of Normalized PGA over all runs give an estimate of dist(fp, F ).

Algorithm 1 Estimating dist(fp, F )

Input: Network fp; Classifier F (or F (p)); step size α; sample numbers N1, N2;
Do:

1. Sample x, i = 1, · · · , N1 from Unif(SD−1); ĉ← argminc>0

∑N1

i=1 |cfp(x)− F (x)|2

2. Sample new x, i = 1, · · · , N2 from Unif(SD−1);

ℓ(·)← |ĉfp(·)− F (·)|2;

For i = 1, · · · , N2:

x(0) ← x;

For t = 1, · · · ,max_iter:

x(t) ← x(t−1) + α ∇xℓ(x
(t−1))

∥∇xℓ(x(t−1))∥ ; % normalized gradient ascent

x(t) ← x(t)

∥x(t)∥ ; % projection onto unit sphere

Return maxi |ĉfp(x(max_iter)
i )− F (x

(max_iter)
i )|

A.2. Additional experiment

We conduct the same experiment as in Section 5.1, with more subclasses K = 20,K1 = 8, the results are still well aligned
with Conjecture 1. Notably, as K the total number of subclasses increases, the trained ReLU network is more vulnerable
to l2 attacks, compared to the case in Section 5.1, while generalized pReLU still is robust to these attacks.

Figure 5. Additional Numerical experiment (K = 20,K1 = 8) validates Conjecture 1. (a) We train pReLU networks using SGD with
small initialization, then estimate the distance dist(fp, F ) between the trained network fp and the classifier F , when p = 1 (top plot);
When p = 3, we estimate dist(fp, F (p)) instead (bottom plot). The training is done under different choices of intra-subclass variance α
and repeated 10 times per α; the Solid line shows the average and the shade denotes the region between max and min values. (b) Given
a trained network obtained from an instance of this training (α = 0.1), we reorder the neurons w.r.t. their contributions |vj |∥wj∥ and
then plot the contributions in a bar plot; (c)(d) Given neurons with large contributions, we plot a colormap, with each pixel represents
some cos(wj ,µ), where µ could be either average class centers µ̄+ and µ̄− or subclass centers µk, k ∈ [K]. Note: For visibility, the
neurons are reordered again so that neurons aligned with the same µ are grouped together. (e) Lastly, we carry out l2 PGD attack on a
test dataset and plot the robust accuracy of the trained network under different choices of attack radius.
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B. Additional experiments on MNIST dataset
To further illustrate the effectiveness of pReLU activation in improving the adversarial robustness of the trained network,
we conduct the following additional experiments on MNIST dataset:

MNIST digits classification. We follow the same experiment setting in Section 5.2.1 and train the network to classify
the digits instead of their parity. Figure 6 reports the training results. Despite that our theoretical results only suggest
robustness gain can be achieved under datasets with subclasses, these additional experimental results show that the pReLU
networks are still much more robust than their ReLU counterpart even for the original digit classification task, which clearly
does not follow our data assumption.

Figure 6. Digits classification on MNIST dataset with pReLU networks. (a) We plot the data correlation as a colormap, where each pixel
represents some cos (xi, xj) between two centered data xi, xj from MNIST training dataset; (b) We run Adam with batch size 1000
to train a pReLU network under Kaiming initialization (repeated 10 times), then plot the training/testing accuracy during training for
different choice of p; (c) We stack the hidden post-activation representation of each training sample into a matrix and compute its stable
rank, and plot the evolution of this stable rank during training; (d) After training for 50 epoch, we carry out APGD l∞-attack on MNIST
test dataset (in pixel space) and plot the robust accuracy of the trained pReLU network under different choice of attack radius.

Evaluating robustness under different attacks. Lastly, we check the adversarial robustness of the trained networks above
under attacks of different norms. The results are summarized in the table below, and they show that the robustness gained
from pReLU activation is agnostic to the choice of attacks.

Table 1. Robust accuracy of pReLU networks under different attacks. The reported accuracy is the mean value over 5 runs with random
initialization. Bold text indicates the best accuracy within the same row.

ReLU (p = 1) ReLU (p = 2) ReLU (p = 3) ReLU (p = 4)
Clean Acc. 0.981(±0.000) 0.982 (±0.000) 0.982 (±0.000) 0.980 (±0.000)
Robust Acc. (ℓ∞, radius= 0.05) 0.512 (±0.006) 0.844 (±0.002) 0.892 (±0.002) 0.913 (±0.001)
Robust Acc. (ℓ∞, radius= 0.1) 0.040 (±0.002) 0.346 (±0.005) 0.522 (±0.004) 0.637 (±0.004)
Robust Acc. (ℓ2, radius= 1) 0.301 (±0.004) 0.640 (±0.006) 0.726 (±0.004) 0.775 (±0.002)
Robust Acc. (ℓ2, radius= 2) 0.007 (±0.001) 0.101 (±0.002) 0.165 (±0.003) 0.239 (±0.003)
Robust Acc. (ℓ1, radius= 5) 0.500 (±0.007) 0.744 (±0.007) 0.780 (±0.004) 0.807 (±0.002)
Robust Acc. (ℓ1, radius= 10) 0.098 (±0.004) 0.294 (±0.002) 0.354 (±0.002) 0.402 (±0.003)

13
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C. Proofs for Proposition 1 and Theorem 1
C.0. Verifying the claim regarding realizability of F (x) and F (p)(x)

Before we present our poofs for the main results, we start with verifying our claim regarding realizability of F (x) and
F (p)(x):
Claim (restated). The following two statements are true:

• When p = 1, let I+ and I− be any two non-empty and disjoint subsets of [h], let λ := (λj) ∈ Rh
≥0 be any vector such

that
∑

j∈I+
λ2
j =
√
K1 and

∑
j∈I−

λ2
j =
√
K2, and let

wj = λjµ̄+, vj = λj , ∀j ∈ I+ ,

wj = λjµ̄−, vj = −λj , ∀j ∈ I− ,

wj = 0, vj = 0, otherwise.

Then fp(x; {wj , vj}hj=1) ≡ F (x) .

• When p ≥ 1, let I1, · · · , IK be any K non-empty and disjoint subsets of [h], let λ := (λj) ∈ Rh
≥0 be any vector such

that
∑

j∈Ik
λ2
j = 1,∀k ∈ [K], and let

wj = λjµk, vj = λj , ∀j ∈ Ik, k ≤ K1 ,

wj = λjµk, vj = −λj , ∀j ∈ Ik, k > K1 ,

wj = 0, vj = 0 otherwise.

Then fp(x; {wj , vj}hj=1) ≡ F (p)(x) .

Proof. Statement 1: When p = 1.. Let I+, I−,λ be define as in the statement, then we have

fp(x; {wj , vj}hj=1) =

h∑
j=1

vjσ(⟨x,wj⟩)

=
∑
j∈I+

vjσ(⟨x,wj⟩) +
∑
j∈I−

vjσ(⟨x,wj⟩)

=
∑
j∈I+

λjσ(
〈
x, λjµ̄+

〉
)−

∑
j∈I−

λjσ(
〈
x, λjµ̄−

〉
)

=
∑
j∈I+

λ2
jσ(
〈
x, µ̄+

〉
)−

∑
j∈I−

λ2
jσ(
〈
x, µ̄−

〉
)

=
√
K1σ(

〈
x, µ̄+

〉
)−

√
K2σ(

〈
x, µ̄−

〉
) = F (x) .

Statement 2: When p ≥ 1.. Let {Ik}Kk=1,λ be define as in the statement, then we have

fp(x; {wj , vj}hj=1) =

h∑
j=1

vj
σp(⟨x,wj⟩)
∥wj∥p−1

=
∑
k≤K1

∑
j∈Ik

vj
σp(⟨x,wj⟩)
∥wj∥p−1

+
∑
k>K1

∑
j∈Ik

vj
σp(⟨x,wj⟩)
∥wj∥p−1

=
∑
k≤K1

∑
j∈Ik

λj
σp(⟨x, λjµk⟩)
∥λjµk∥p−1

−
∑
k>K1

∑
j∈Ik

λj
σp(⟨x, λjµk⟩)
∥λjµk∥p−1

=
∑
k≤K1

∑
j∈Ik

λ2
jσ

p(⟨x,µk⟩)−
∑
k>K1

∑
j∈Ik

λ2
jσ

p(⟨x,µk⟩)

=
∑
k≤K1

σp(⟨x,µk⟩)−
∑
k>K1

σp(⟨x,µk⟩) = F (p)(x) .
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C.1. Auxiliary lemmas

The proof will use some basic facts in probability theory and we list them below.
Lemma 2. Let E1, E2 be two events defined on some probability space, then

P(E1) ≤ P(E1 ∩ E2) + P(Ec2) (9)

Proof. P(E1) = P (E1 ∩ (E2 ∪ Ec2)) = P ((E1 ∩ E2) ∪ (E1 ∩ Ec2)) ≤ P(E1 ∩ E2) +P(E1 ∩ Ec2) ≤ P(E1 ∩ E2) +P(Ec2).

Lemma 3 (Hoeffding inequality). For any unit vector µ ∈ SD−1, we have

P
ε∼N

(
0,α

2

D ID

) (| ⟨µ, ε⟩ | > t) ≤ 2 exp

(
−CDt2

α2

)
, (10)

for some constant C > 0.

C.2. Proof for Proposition 1

Proposition 1 (Test error on clean data, restated). Given classifiers F (x), F (p)(x) defined in (3),(2), and a test sample
(x, y) ∼ DX,Y , we have, for some constant C > 0,

P (F (x)y > 0) ≥ 1− 4 exp

(
− CD

4α2K

)
P
(
F (p)(x)y > 0

)
≥ 1− 2(K + 1) exp

(
− CD

α2K2

)
, ∀p ≥ 1 .

Proof. The proof is split into parts: We first prove the bound for F (x), then show the one for F (p)(x). But in both cases
we have

P(x,y)∼DX,Y
(G(x)y > 0) =

K∑
k=1

P(x,y)∼DX,Y
(G(x)y > 0 | z = k)P (z = k) , (11)

where G can be either F or F (p). Thus, it suffices to show

P(x,y)∼DX,Y
(G(x)y > 0 | z = k) ≥ 1− 4 exp

(
− CD

α2K

)
,∀k = 1, · · · ,K . (12)

Bound for F (x) we start with the case of G being F . When k ≤ K1, we have

P(x,y)∼DX,Y
(F (x)y > 0 | z = k) = P

ε∼N
(
0,α

2

D ID

) (F (µk + ε) > 0) , (13)

and then,

P
ε∼N

(
0,α

2

D ID

) (F (µk + ε) > 0)

= 1− P
ε∼N

(
0,α

2

D ID

) (F (µk + ε) < 0)

= 1− P
ε∼N

(
0,α

2

D ID

)(√K1σ

(
1√
K1

+
〈
ε, µ̄+

〉)
−
√
K2σ

(〈
ε, µ̄−

〉)
< 0, E1

)
≥ 1− P

ε∼N
(
0,α

2

D ID

)(√K1

(
1√
K1

−
∣∣〈ε, µ̄+

〉∣∣)−√K2

∣∣〈ε, µ̄−
〉∣∣ < 0

)
(14)

= 1− P
ε∼N

(
0,α

2

D ID

) (1−√K1

∣∣〈ε, µ̄+

〉∣∣−√K2

∣∣〈ε, µ̄−
〉∣∣ < 0

)
≥ 1− P

ε∼N
(
0,α

2

D ID

)(∣∣〈ε, µ̄+

〉∣∣ > 1

2
√
K1

)
− P

ε∼N
(
0,α

2

D ID

)(∣∣〈ε, µ̄−
〉∣∣ > 1

2
√
K2

)
≥ 1− 2 exp

(
− CD

4α2K1

)
− 2 exp

(
− CD

4α2K2

)
≤ 1− 4 exp

(
− CD

4α2K

)
, (15)

where (14) uses the fact that σ(x) is non-decreasing w.r.t. x., and that σ(x) ≤ |x|. The last line uses Lemma 3. The proof
of the case k > K1 is identical to the one above by the symmetry of the problem.
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Bound for F (p)(x) When k ≤ K1, we have, again,

P(x,y)∼DX,Y

(
F (p)(x)y > 0 | z = k

)
= P

ε∼N
(
0,α

2

D ID

) (F (p)(µk + ε) > 0
)
, (16)

we define the event E1 := {| ⟨µk, ε⟩ | < 1}. Then by Lemma 2,

P
ε∼N

(
0,α

2

D ID

) (F (p)(µk + ε) > 0
)

= 1− P
ε∼N

(
0,α

2

D ID

) (F (p)(µk + ε) < 0
)

≤ 1− P
ε∼N

(
0,α

2

D ID

) (F (p)(µk + ε) < 0, E1
)
− P (Ec1)

≤ 1− P
ε∼N

(
0,α

2

D ID

)
σp (1 + ⟨µk, ε⟩) +

∑
l≤K1,l ̸=k

σp (⟨µl, ε⟩)−
∑

K1<l≤K2

σp (⟨µl, ε⟩) < 0, E1

− P (Ec1)

≤ 1− P
ε∼N

(
0,α

2

D ID

)
(1− |⟨µk, ε⟩|)

p −
∑
l ̸=k

|⟨µl, ε⟩|
p
< 0, E1

− P (Ec1) (17)

≤ 1− P
ε∼N

(
0,α

2

D ID

)
1− |⟨µk, ε⟩| −

∑
l ̸=k

|⟨µl, ε⟩|
p

1/p

< 0, E1

− P (Ec1)

≤ 1− P
ε∼N

(
0,α

2

D ID

)
1− |⟨µk, ε⟩| −

∑
l ̸=k

|⟨µl, ε⟩| < 0, E1

− P (Ec1) (18)

≤ 1− P
ε∼N

(
0,α

2

D ID

)
1− |⟨µk, ε⟩| −

∑
l ̸=k

|⟨µl, ε⟩| < 0

− P (Ec1)

≤ 1−
K∑

k=1

P
ε∼N

(
0,α

2

D ID

)(|⟨µk, ε⟩| >
1

K

)
− P (Ec1)

≤ 1− 2K exp

(
− CD

α2K2

)
− 2 exp

(
−CD

α2

)
≤ 1− 2(K + 1) exp

(
− CD

α2K2

)
, (19)

where (17) uses the fact that under the event E1, one has σp (1 + ⟨µk, ε⟩) ≥ (1− |⟨µk, ε⟩|)
p, and (18) uses the fact that

∥x∥p ≤ ∥x∥1 for any vector x and p ≥ 1. The last line uses Lemma 3. The proof of the case k > K1 is identical to the
one above by the symmetry of the problem.

C.3. Proof for Theorem 1

Theorem 1 (l2-Adversarial Robustness, restated). Given classifiers F (x), F (p)(x) defined in (3),(2), and a test sample
(x, y) ∼ DX,Y , the following statement is true for some constant C > 0:

•
(

Non-robustness of F (x) against O
(

1√
K

)
-attack

)
We let d0 :=

√
K1µ̄+−

√
K2µ̄−√

K
∈ SD−1, then for some ρ > 0,

P

(
F

(
x− y(1 + ρ)√

K
d0

)
y>0

)
≤2 exp

(
−CDρ2

Kα2

)
.

•
(
Robustness of F (p)(x) against O (1) -attack

)
We let p ≥ 2, then for some 0 ≤ δ <

√
2,

P

(
min
∥d∥≤1

F (p)

(
x+

√
2− δ

2
d

)
y > 0

)
≥ 1− 2(K + 1) exp

(
− CDδ2

2K2α2

)
.

Proof. This proof is split into two parts. One for F (x) and another for F (p)(x).
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Non-robustness of F (x) Since

P(x,y)∼DX,Y

(
F

(
x− y(1 + ρ)√

K
d0

)
y > 0

)
=

K∑
k=1

P(x,y)∼DX,Y

(
F

(
x− y(1 + ρ)√

K
d0

)
y > 0 | z = k

)
P (z = k) ,

(20)
It suffices to show

P(x,y)∼DX,Y

(
F

(
x− y(1 + ρ)√

K
d0

)
y > 0 | z = k

)
≤ 2 exp

(
− CD2K

(ρ− 1)2α2

)
,∀k ≤ K (21)

When k ≤ K1, we have

P(x,y)∼DX,Y

(
F

(
x− y(1 + ρ)√

K
d0

)
y > 0 | z = k

)
= P

ε∼N
(
0,α

2

D ID

)(F (µk + ε− 1 + ρ√
K

d0

)
> 0

)
= P

ε∼N
(
0,α

2

D ID

)(√K1σ

(
1√
K1

+
〈
ε, µ̄+

〉
− (1 + ρ)

√
K1

K

)
−
√
K2σ

(〈
ε, µ̄−

〉
+

(1 + ρ)
√
K2

K

)
> 0

)
. (22)

To proceed, we define the event E2 := {
〈
ε, µ̄+

〉
− (1+ρ)

√
K1√

K
+ 1√

K1
≥ 0}, then by Lemma 2

(22)

≤ P
ε∼N

(
0,α

2

D ID

)(√K1σ

(
1√
K1

+
〈
ε, µ̄+

〉
− (1 + ρ)

√
K1

K

)
−
√
K2σ

(〈
ε, µ̄−

〉
+

(1 + ρ)
√
K2

K

)
> 0, E2

)
+ P

(√
K1σ

(
1√
K1

+
〈
ε, µ̄+

〉
− (1 + ρ)

√
K1

K

)
−
√
K2σ

(〈
ε, µ̄−

〉
+

(1 + ρ)
√
K2

K

)
> 0, Ec2

)
= P

ε∼N
(
0,α

2

D ID

)(√K1σ

(
1√
K1

+
〈
ε, µ̄+

〉
− (1 + ρ)

√
K1

K

)
−
√
K2σ

(〈
ε, µ̄−

〉
+

(1 + ρ)
√
K2

K

)
> 0, E2

)
(23)

≤ P
ε∼N

(
0,α

2

D ID

)(1 +√K1

〈
ε, µ̄+

〉
− (1 + ρ)K1

K
−
√

K2

〈
ε, µ̄−

〉
− (1 + ρ)K2

K
> 0, E2

)
(24)

≤ P
ε∼N

(
0,α

2

D ID

) (1 +√K |⟨ε,d0⟩| − (1 + ρ) > 0
)

≤ P
ε∼N

(
0,α

2

D ID

)(|⟨ε,d0⟩| >
ρ√
K

)
≤ 2 exp

(
−CDρ2

Kα2

)
, (25)

where (23) is because the second probability is 0, and (24) uses again the monotonicity of ReLU σ(x). The last line uses
Lemma 3. The proof of the case k > K1 is identical to the one above by the symmetry of the problem.

Robustness of F (p)(x) It suffices to show

P(x,y)∼DX,Y

(
min
∥d∥≤1

F (p)

(
x+

√
2− δ

2
d

)
y < 0 | z = k

)
≤ 2(K2 + 2) exp

(
− CDδ2

2(K2 + 1)2α2

)
. (26)
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When k ≤ K1, we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

F (p)

(
x+

√
2− δ

2
d

)
y < 0 | z = k

)

= P
ε∼N

(
0,α

2

D ID

)
(

min
∥d∥≤1

F (p)

(
µk + ε+

√
2− δ

2
d

)
< 0

)

= P
ε∼N

(
0,α

2

D ID

)
(

min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩

)

+
∑

l ̸=k,1≤l≤K1

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

)

−
∑

K1+1≤l≤K2

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

) < 0

 (27)

To proceed, we define the event

E3 :=

{
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩ ≥ 0,∀d ∈ SD−1

}
, (28)

and for ease of presentation, we write

G(ε, d) := σp

(
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩

)
+

∑
l ̸=k,1≤l≤K1

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

)

−
K2∑

l=K1+1

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

)
.

Then, by Lemma 2,

(27) = P
ε∼N

(
0,α

2

D ID

)( min
∥d∥≤1

G(ε, d) < 0

)
≤ P

ε∼N
(
0,α

2

D ID

)( min
∥d∥≤1

G(ε, d) < 0, E3
)
+ P (Ec3) . (29)

Now under the event E3, we can lower bound G(ε, d) by

G(ε, d)

= σp

(
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩

)
+

∑
l ̸=k,1≤l≤K1

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

)

−
K2∑

l=K1+1

σp

(
⟨µl, ε⟩+

√
2− δ

2
⟨d,µl⟩

)
. (30)

≥

(
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩

)p

−
K2∑

l=K1+1

(
|⟨µl, ε⟩|+

√
2− δ

2
|⟨d,µl⟩|

)p

. (31)
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Thus, we have

(29)

≤ P
ε∼N

(
0,α

2

D ID

)
(

min
∥d∥≤1

(
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩

)p

−
K2∑

l=K1+1

(
|⟨µl, ε⟩|+

√
2− δ

2
|⟨d,µl⟩|

)p

< 0, E3

)
+ P (Ec3)

= P
ε∼N

(
0,α

2

D ID

)
 min

∥d∥≤1
1 + ⟨µk, ε⟩+

√
2− δ

2
⟨d,µk⟩ −

(
K2∑

l=K1+1

(
|⟨µl, ε⟩|+

√
2− δ

2
|⟨d,µl⟩|

)p) 1
p

< 0, E3


+ P (Ec3)

≤ P
ε∼N

(
0,α

2

D ID

)
 min

∥d∥≤1
1 +

√
2− δ

2
⟨d,µk⟩ −

√
2− δ

2

(
K2∑

l=K1+1

(|⟨d,µl⟩|)
p

) 1
p

︸ ︷︷ ︸
M∗(δ)

−

(
K2∑

l=K1+1

(|⟨µl, ε⟩|)
p

) 1
p

− |⟨µk, ε⟩| < 0, E3

+ P (Ec3) (32)

≤ P
ε∼N

(
0,α

2

D ID

)
|⟨µk, ε⟩|+

(
K2∑

l=K1+1

(|⟨µl, ε⟩|)
p

) 1
p

> M∗(δ)

+ P (Ec3)

≤ P
ε∼N

(
0,α

2

D ID

)
(
|⟨µk, ε⟩|+

K2∑
l=K1+1

|⟨µl, ε⟩| > M∗(δ)

)
+ P (Ec3) (33)

≤ P
ε∼N

(
0,α

2

D ID

)(|⟨µk, ε⟩| >
M∗(δ)

K2 + 1

)
+

K2∑
l=K1+1

P
ε∼N

(
0,α

2

D ID

)(|⟨µl, ε⟩| >
M∗(δ)

K2 + 1

)
+ P (Ec3)

≤ P
ε∼N

(
0,α

2

D ID

)(|⟨µk, ε⟩| >
M∗(δ)

K2 + 1

)
+

K2∑
l=K1+1

P
ε∼N

(
0,α

2

D ID

)(|⟨µl, ε⟩| >
M∗(δ)

K2 + 1

)

+ P
ε∼N

(
0,α

2

D ID

)
(
|⟨µk, ε⟩| > 1−

√
2

2

)

≤ 2(K2 + 1) exp

(
−CD(M∗(δ))2

(K2 + 1)2α2

)
+ 2 exp

(
−CD

4α2

)
≤ 2(K2 + 2) exp

(
−CD(M∗(δ))2

(K2 + 1)2α2

)
, (34)

where (32) uses the sub-additivity of ℓp norm, and (33) uses again the inequality ∥x∥p ≤ ∥x∥1 for any x and p ≥ 1. The
last line uses Lemma 3. The remaining thing is to show that M∗(δ) = δ√

2
. First, by the property of lp norm (when p ≥ 2),

we have

(
K2∑

l=K1+1

(|⟨d,µl⟩|)
p

) 1
p

≤

√√√√ K2∑
l=K1+1

|⟨d,µl⟩|
2
, (35)
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then

M∗(δ) = min
∥d∥≤1

1−
√
2− δ

2
⟨d,µk⟩ −

√
2− δ

2

(
K2∑

l=K1+1

(|⟨d,µl⟩|)
p

) 1
p

≥ min
∥d∥≤1

1−
√
2− δ

2
|⟨d,µk⟩| −

√
2− δ

2

√√√√ K2∑
l=K1+1

|⟨d,µl⟩|
2

≥ min
∥d∥≤1

1−
√
2− δ

2

√
2

√√√√|⟨d,µk⟩|
2
+

K2∑
l=K1+1

|⟨d,µl⟩|
2 (36)

≥ min
∥d∥≤1

1−
√
2− δ

2

√
2 =

δ√
2
, (37)

where (36) uses the fact that
√
a +
√
b ≤

√
2(a+ b) for any a, b ≥ 0, and (37) uses the fact that µ1, · · · ,µK are an

orthonormal basis, thus
√∑K

l=1 | ⟨d,µl⟩ |2 ≤ ∥d∥ ≤ 1.

We have proved M∗(δ) ≥ δ√
2

, and this lower bound can be attained by d∗ = −µk+µl√
2

for any K1+1 ≤ l ≤ K2. Therefore

M∗(δ) = δ√
2

. Finally, we have

P(x,y)∼DX,Y

(
min
∥d∥≤1

F (p)

(
x+

√
2− δ

2
d

)
y < 0 | z = k

)
≤ 2(K2 + 2) exp

(
−CD(M∗(δ))2

(K2 + 1)2α2

)
= 2(K2 + 2) exp

(
− CDδ2

2(K2 + 1)2α2

)
≤ 2(K + 1) exp

(
− CDδ2

2K2α2

)
. (38)

The proof of the case k > K1 is identical to the one above by the symmetry of the problem.

C.4. Complementary results to Theorem 1

Theorem 3 (l2-Adversarial Robustness, complementary to Theorem 1). Given classifiers F (x), F (p)(x) defined in (3),(2),
and a test sample (x, y) ∼ DX,Y , the following statement is true for some constant C > 0:

• For some 0 ≤ ρ ≤ 1,

P

(
min
∥d∥≤1

F

(
x+

(1− ρ)√
K

d

)
y > 0

)
≥ 1− 2 exp

(
−CDρ2

Kα2

)
.

• For some 0 < δ,

P

(
min
∥d∥≤1

F (p)

(
x+

√
2 + δ

2
d

)
y > 0

)
≤ 4 exp

(
CDδ2

8K2α2

)
.

The proof has the same spirit as those for Theorem 1 so we state it briefly.

Proof. Robustness of F (x), complementary result It suffices to show that

P(x,y)∼DX,Y

(
min
∥d∥≤1

F

(
x+

(1− ρ)√
K

x

)
y < 0 | z = k

)
≤ 4 exp

(
−CDρ2

Kα2

)
,∀k ≤ K . (39)
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When k ≤ K1, we have

P(x,y)∼DX,Y

(
min

∥d∥≤1
F

(
x+

(1− ρ)√
K

x

)
y < 0 | z = k

)
= P

ε∼N
(
0,α

2

D
ID

) ( min
∥d∥≤1

F

(
µk + ε+

(1− ρ)√
K

x

)
< 0

)
= P

ε∼N
(
0,α

2

D
ID

) ( min
∥d∥≤1

[√
K1σ

(
1√
K1

+
〈
ε, µ̄+

〉
+

1− ρ√
K

〈
d, µ̄+

〉)
−

√
K2σ

(〈
ε, µ̄−

〉
+

1− ρ√
K

〈
d, µ̄−

〉)]
< 0

)
(40)

If we still let d0 :=
√
K1µ̄+−

√
K2µ̄−√

K
∈ SD−1, then by the fact that |x| ≥ σ(x) ≥ x for any x, we have

(40)

≤ P
ε∼N

(
0,α

2

D
ID

) ( min
∥d∥≤1

[
1 +

√
K1

〈
ε, µ̄+

〉
+

√
K1

1− ρ√
K

〈
d, µ̄+

〉
−

√
K2

∣∣〈ε, µ̄−
〉∣∣−√

K2
1− ρ√

K

∣∣〈d, µ̄−
〉∣∣] < 0

)
≤ P

ε∼N
(
0,α

2

D
ID

) ( min
∥d∥≤1

[
1−

√
K1

1− ρ√
K

∣∣〈d, µ̄+

〉∣∣−√
K2

1− ρ√
K

∣∣〈d, µ̄−
〉∣∣]−

√
K2

∣∣〈ε, µ̄−
〉∣∣−√

K1

∣∣〈ε, µ̄+

〉∣∣ < 0

)
≤ P

ε∼N
(
0,α

2

D
ID

) ( min
∥d∥≤1

[
1− 1− ρ√

K

√
K1 +K2

√∣∣〈d, µ̄+

〉∣∣2 + ∣∣〈d, µ̄−
〉∣∣2]−

√
K2

∣∣〈ε, µ̄−
〉∣∣−√

K1

∣∣〈ε, µ̄+

〉∣∣ < 0

)
(41)

≤ P
ε∼N

(
0,α

2

D
ID

) ( min
∥d∥≤1

[1− (1− ρ)]−
√
K2

∣∣〈ε, µ̄−
〉∣∣−√

K1

∣∣〈ε, µ̄+

〉∣∣ < 0

)
(42)

≤ P
ε∼N

(
0,α

2

D
ID

) (√K2

∣∣〈ε, µ̄−
〉∣∣+√

K1

∣∣〈ε, µ̄+

〉∣∣ > ρ
)

≤ P
ε∼N

(
0,α

2

D
ID

) (∣∣〈ε, µ̄−
〉∣∣+ ∣∣〈ε, µ̄+

〉∣∣ > ρ√
K

)
≤ 2P

ε∼N
(
0,α

2

D
ID

) (∣∣〈ε, µ̄−
〉∣∣ > ρ

2
√
K

)
≤ 4 exp

(
−CDρ2

4Kα2

)
, (43)

where (41) uses the fact that ab+ cd ≤
√
a2 + c2

√
b2 + d2 for any a, b, c, d ∈ R, a simple application of Cauchy-Schwarz

inequality, and (42) uses the fact that µ̄+, µ̄− are orthonormal, thus
√∣∣〈d, µ̄+

〉∣∣2 + ∣∣〈d, µ̄−
〉∣∣2 ≤ ∥d∥ ≤ 1. The last line

uses Lemma 3. The proof of the case k > K1 is identical to the one above by the symmetry of the problem.

Non-robustness of F (p)(x), complementary result It suffices to show that

P(x,y)∼DX,Y

(
min
∥d∥≤1

F (p)

(
x+

√
2 + δ

2
d

)
y > 0 | z = k

)
≤ 4 exp

(
CDδ2

8K2α2

)
,∀k ≤ K . (44)
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When k ≤ K1, we define dk = −µk+µK√
2

, then

P(x,y)∼DX,Y

(
min
∥d∥≤1

F (p)

(
x+

√
2 + δ

2
d

)
y > 0 | z = k

)

≤ P(x,y)∼DX,Y

(
F (p)

(
x+

√
2 + δ

2
dk

)
y > 0 | z = k

)

= P
ε∼N

(
0,α

2

D ID

)
(
F (p)

(
µk + ε+

√
2 + δ

2
dk

)
> 0

)

≤ P
ε∼N

(
0,α

2

D ID

)
σp

(
1− δ/

√
2

2
+ ⟨ε,µk⟩

)
− σp

(
1 + δ/

√
2

2
+ ⟨ε,µK⟩

)
+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ |p > 0


≤ P

ε∼N
(
0,α

2

D ID

)
σp

(
1− δ/

√
2

2
+ ⟨ε,µk⟩

)
+

 ∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ |

p

> σp

(
1 + δ/

√
2

2
+ ⟨ε,µK⟩

)
≤ P

ε∼N
(
0,α

2

D ID

)
σp

(
1− δ/

√
2

2
+ |⟨ε,µk⟩|

)
+

 ∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ |

p

> σp

(
1 + δ/

√
2

2
− |⟨ε,µK⟩|

) (45)

≤ P
ε∼N

(
0,α

2

D ID

)
σ

(
1− δ/

√
2

2
+ |⟨ε,µk⟩|

)
+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ |

p

> σp

(
1 + δ/

√
2

2
− |⟨ε,µK⟩|

) (46)

≤ P
ε∼N

(
0,α

2

D ID

)
σ

(
1− δ/

√
2

2
+ |⟨ε,µk⟩|

)
+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | > σ

(
1 + δ/

√
2

2
− |⟨ε,µK⟩|

)
≤ P

ε∼N
(
0,α

2

D ID

)
σ

(
1− δ/

√
2

2
+ |⟨ε,µk⟩|

)
+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | >
1 + δ/

√
2

2
− |⟨ε,µK⟩|

 , (47)

where (45) uses the fact that σp(x) is non-decreasing w.r.t. x, and (46) uses the fact that (a + b)p ≥ ap + bp for any
a, b > 0. We define the event

E5 :=

{
1− δ/

√
2

2
+ ⟨ε,µk⟩ > 0

}
. (48)
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Then by Lemma 2,

(47) ≤ P
ε∼N

(
0,α

2

D ID

)
1− δ/

√
2

2
+ |⟨ε,µk⟩|+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | >
1 + δ/

√
2

2
− |⟨ε,µK⟩| , E5


+ P

ε∼N
(
0,α

2

D ID

)
|⟨ε,µk⟩|+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | >
1 + δ/

√
2

2
− |⟨ε,µK⟩| , Ec5


≤ P

ε∼N
(
0,α

2

D ID

)
|⟨ε,µK⟩|+ |⟨ε,µk⟩|+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | >
δ√
2


+ P

ε∼N
(
0,α

2

D ID

)
|⟨ε,µK⟩|+ |⟨ε,µk⟩|+

∑
l ̸=k,l ̸=K

| ⟨ε,µl⟩ | >
1 + δ/

√
2

2


≤ 2P

ε∼N
(
0,α

2

D ID

)
 ∑

1≤l≤K

| ⟨ε,µl⟩ | >
δ

2
√
2


≤ 2P

ε∼N
(
0,α

2

D ID

)(| ⟨ε,µ1⟩ | >
δ

2
√
2K

)
≤ 4 exp

(
CDδ2

8K2α2

)
. (49)

The last line uses Lemma 3. When k > K1, the proof is similar with dk := −µk+µ1√
2

.
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D. Proofs for Lemma 1 and Theorem 2
D.1. Alignment bias illustrated

As we showed in Lemma 1, during the alignment phase t ≤ T , one have the following approximation

d

dt

wj(t)

∥wj(t)∥
≃ sign(vj(0))P⊥

wj(t)
x(p)(wj(t)) , (50)

with

x(p)(w) =

K∑
k=1

γk(w)ykxk · p[cos(xk, w)]
p−1 , (51)

which essentially shows that when wj is a positive neuron (sign(vj(0)) > 0), then gradient flow dynamics during align-
ment phase pushes wj/∥wj∥ toward the direction of x(p)(w).

Notably, x(p)(wj) critically depends on p. Roughly speaking, when p = 1, x(p)(wj) are more aligned with µ̄+ and
µ̄−, while when p > 3, x(p)(wj) are more aligned with one of the subclass centers, thus by moving toward x(p)(wj) in
direction, the neurons are likely to align with average class centers in the former case, and with subclass centers in the
latter case. We elaborate this statement here with a toy example.

Figure 7. Alignment bias visualized. During alignment phase wj is moving toward x(p)(wj) in direction. When p = 1, x(1)(wj) is
aligned with average class center µ̄+; When p = 3, x(p)(wj) is more aligned with one of the subclass centers µ1 and µ2, depending
on which one is closer to wj in cosine distance.

Suppose the dataset (K = 2,K1 = 2) only contains two orthogonal µ1, and µ2 in the 2-d plane and they both have positive
labels. Given a positive neuron wj that is activated by both µ1, and µ2, as shown in Figure 7. During alignment phase
wj

∥wj∥ is moving towards the direction of x(p)(wj), which is

• when p = 1,

x(1)(wj) =

K∑
k=1

γk(wj)ykxk = µ1 + µ2 =
√
2µ̄+ , (52)

exactly aligned with average class center µ̄+.

• when p = 2,

x(2)(wj) =

K∑
k=1

γk(wj)ykxk · 2[cos(xk, w)] = 2 (µ1 cos (µ1,wj) + µ2 cos (µ2,wj)) = 2
wj

∥wj∥
, (53)

exactly aligned with wj itself.
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• when p = 3,

x(3)(w) =

K∑
k=1

γk(wj)ykxk · 3[cos(xk,wj)]
2 = 3

(
µ1 cos (µ1,wj)

2
+ µ2 cos (µ2,wj)

2
)
, (54)

getting closer to either µ1 or µ2, depending which one is closer to wj in cosine distance.

Although this example is even more simplified than the one in Section 4, it is easy to visualize and keeps the core relation-
ship between the alignment bias of the neurons and the pReLU activation. From this, we see how the alignment bias is
altered under different choices of p.

D.2. Auxiliary Lemma

We first prove the following, most analyses on gradient flow with small initialization (Boursier et al., 2022; Boursier &
Flammarion, 2024; Min et al., 2024) have similar results, saying that the norm of the neurons stays close to zero during the
alignment phase.

Lemma 4. Given some initialization in (4), then for any ϵ ≤ 1
4
√
hM2

, any solution to the gradient flow dynamics under the
simplified training dataset satisfies

max
j
∥wj(t)∥2 ≤

2ϵM2

√
h

, max |fp(xk;θ(t))| ≤ 2ϵ
√
hM2 , (55)

∀t ≤ 1
4K log 1√

hϵ
.

and we need the following lemma

Lemma 5. Given nonnegative z1, · · · , zn, consider a function

gp(q; {zi}ni=1) =

(
n∑

i=1

zqi

)(
n∑

i=1

zp+1−q
i

)
, (56)

then gp(q; {zi}ni=1) is convex on R. Moreover, as long as zi ̸= zj for some i, j, then gp(q; {zi}ni=1) is strictly convex with
minimum at q∗ = p+1

2 .

we leave their proofs at the end of this section. Lastly, we use the following lemma from Min et al. (2024)

Lemma 6. For ℓ being either exponential or logistic loss, we have

| − ∇ŷℓ(y, ŷ)− y| ≤ 2|ŷ|,∀y ∈ {+1,−1}, ∀|ŷ| ≤ 1 . (57)

D.3. Proof for Lemma 1

Lemma 1 (restated). Given some initialization from (4), if ϵ = O( 1√
h
), then there exists T = θ( 1

K log 1√
hϵ
) such that the

trajectory under gradient flow training with the simplified training dataset almost surely satisfies that ∀t ≤ T ,

max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥ = O
(
ϵk
√
h
)
,

where P⊥
w = I − ww⊤

∥w∥2 and

x(p)(w) =

K∑
k=1

γk(w)ykxk · p[cos(xk, w)]
p−1, (58)

with γk(w) being a subgradient of σp(z) at z = ⟨xk, w⟩.

Proof. For simplicity, we write wj(t) as wj .
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As we will show in the proof for Lemma 4, under balanced initialization,

d

dt
wj = −

K∑
k=1

γk(wj)∇ŷℓ(yk, fp(xk;θ))∥wj∥
(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p−1
xk − (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p+1
wj

)
. (59)

Then for any j ∈ [h],

d

dt

wj

∥wj∥
= P⊥

wj
· 1

∥wj∥
· d
dt

wj

= −sign(vj(0))
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;θ))P⊥
wj

(
p cos (xk,wj)

p−1
xk − (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p+1
wj

)

= −sign(vj(0))
K∑
i=1

γk(wj)∇ŷℓ(yk, fp(xk;θ))P⊥
wj

p cos (xk,wj)
p−1

xk ,

Then

max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥
= max

j

∥∥∥∥∥
K∑
i=1

γk(wj)∇ŷ(−ℓ(yk, fp(xk;θ))− yk)P⊥
wj

p cos (xk,wj)
p−1

xk

∥∥∥∥∥
≤ max

j

∥∥∥∥∥
K∑
i=1

γk(wj) |∇ŷ(−ℓ(yk, fp(xk;θ))− yk| P⊥
wj

p cos (xk,wj)
p−1

xk

∥∥∥∥∥ ≤ 2Kpmax
k
|fp(xk;θ(t))| ,

by Lemma 6. Finally, by Lemma 4, we have for any ϵ ≤ 1
4
√
hM2

, ∀t ≤ T = 1
4K log 1√

hϵ
, we have

max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥ ≤ 2Kpmax |fp(xk;θ(t))| ≤ 4ϵ
√
hM2Kp , (60)

which finishes the proof.

D.4. Proof for Theorem 2

Theorem 2 (Alignment bias of neurons, complete statement). Given some 0 < δ < δ < 1 and a fixed choice of p ≥ 1,
then ∃ϵ0 := ϵ0(δ, p) > 0 such that for any solution of the gradient flow on fp(x;θ) with the simplified training dataset,
starting from some initialization from (4) with initialization scale ϵ < ϵ0, almost surely we have that at any time t ≤ T =
θ( 1n log 1√

hϵ
) and

• ∀j with sign(vj(0)) > 0,

d

dt
cos
(
wj(t), µ̄+

)∣∣∣∣
cos(wj(t),µ̄+)=1−δ

{
> 0, when p = 1

< 0, when p ≥ 3
, (61)

and
d

dt
cos(wj(t),µk)

∣∣∣∣
cos(wj(t),µk)=1−δ

> 0,∀k ≤ K1 . (62)

• ∀j with sign(vj(0)) < 0,

d

dt
cos
(
wj(t), µ̄−

)∣∣∣∣
cos(wj(t),µ̄−)=1−δ

{
> 0, when p = 1

< 0, when p ≥ 3
, (63)

and
d

dt
cos(wj(t),µk)

∣∣∣∣
cos(wj(t),µk)=1−δ

> 0,∀k > K1 . (64)
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Proof. The proofs for positive neurons and for negative neurons are almost identical, we will prove it for positive neurons
sign(vj(0)) > 0, i.e. sign(vj(0)) = 1. The first part concerns about d

dt cos
(
wj(t), µ̄+

)∣∣
cos(wj(t),µ̄+)=1−δ

.

d

dt
cos
(
wj(t), µ̄+

)
(65)

=
1

∥µ̄+∥

〈
d

dt

wj(t)

∥wj(t)∥
, µ̄+

〉
(66)

=
1

∥µ̄+∥

〈
P⊥
wj(t)

x(p)(wj(t)), µ̄+

〉
+

1

∥µ̄+∥

〈
d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t)), µ̄+

〉
, (67)

When p = 1, if we can show that for some choice of δ > 0,

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
:= ∆1(δ) > 0 , (68)

then we pick ϵ ≤ ϵ0 = ∆1(δ)

8
√
hM2Kp

, and by Lemma 1, we have that for ∀t ≤ T = 1
4K log 1√

hϵ
,

d

dt
cos
(
wj(t), µ̄+

)∣∣∣∣
cos(wj(t),µ̄+)=1−δ

≥ ∆1(δ)−max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥ (69)

≥ ∆1(δ)− 4ϵ
√
hM2Kp ≥ ∆1(δ)

2
> 0 , (70)

which is what we stated in the theorem.

Similarly, When p > 3, if we can show that for some choice of δ > 0,

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(p)(wj), µ̄+

〉
:= ∆p(δ) < 0 , (71)

then we pick ϵ ≤ ϵ0 =
∆p(δ)

8
√
hM2Kp

, and by Lemma 1, we have that for ∀t ≤ T = 1
4K log 1√

hϵ
,

d

dt
cos
(
wj(t), µ̄+

)∣∣∣∣
cos(wj(t),µ̄+)=1−δ

≤ ∆p(δ) + max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥ (72)

≤ ∆p(δ) + 4ϵ
√
hM2Kp ≤ ∆p(δ)

2
< 0 . (73)

Therefore, for the first part, it suffices to show

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(p)(wj), µ̄+

〉
:= ∆p(δ)

{
> 0, for p = 1

> 0, for p ≥ 3
(74)

Now there exists 1 > δ̄1 > 0 such that when δ > δ̄1, and cos
(
wj , µ̄+

)
=
√
1− δ, we have γk(wj) = 1,∀k ≤ K1

and γk(wj) = 0,∀k > K1, i.e., wj is activated by all xk, k ≥ K1 with positive label and is not activated by any
of the xk, k > K1 with negative label. Moreover, there exists zk, k ≤ K1, such that wj = ∥wj∥

∑
k≤K1

zkxk and

zk =
〈
xk,

wj

∥wj∥

〉
, i.e., wj lies completely within the span of xk, k ≤ K1.
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With this, we have

1

∥µ̄+∥

〈
P⊥
wj

x(p)(wj), µ̄+

〉
=

1

∥µ̄+∥

〈(
I −

wjw
T
j

∥wj∥2

)
K∑
k

γk(wj)ykxk · p[cos(xk,wj)]
p−1, µ̄+

〉

=
1

K

〈(
I −

wjw
T
j

∥wj∥2

) ∑
k≤K1

xk · p[cos(xk,wj)]
p−1,

∑
i≤K1

xk

〉

=

〈 ∑
k≤K1

xk,
∑
k≤K1

xk · p[cos(xk,wj)]
p−1

〉
−

〈 ∑
k≤K1

xk,
wj

∥wj∥

〉 ∑
k≤K1

〈
xk,

wj

∥wj∥

〉
· p[cos(xk,wj)]

p−1

=

〈 ∑
k≤K1

xk,
∑
k≤K1

xk · p
〈
xk,

wj

∥wj∥

〉p−1
〉
−

〈 ∑
k≤K1

xk,
wj

∥wj∥

〉 ∑
k≤K1

〈
xk,

wj

∥wj∥

〉
· p
〈
xk,

wj

∥wj∥

〉p−1

=
∑
k≤K1

p

〈
xk,

wj

∥wj∥

〉p−1

−

∑
k≤K1

〈
xk,

wj

∥wj∥

〉p
∑
k≤K1

〈
xk,

wj

∥wj∥

〉p


= p
∑
k≤K1

〈
xk,

wj

∥wj∥

〉p−1

− p

∑
k≤K1

〈
xk,

wj

∥wj∥

〉∑
k≤K1

〈
xk,

wj

∥wj∥

〉p


= p

∑
k≤K1

zp−1
k −

∑
k≤K1

zk

∑
k≤K1

zpk

 ,

Since wj lies completely within the span of xk, k ≤ K1, we have
∑

k≤K1
z2k = 1, then

p

∑
k≤K1

zp−1
k −

∑
k≤K1

zk

∑
k≤K1

zpk


=p

∑
k≤K1

zp−1
k

∑
k≤K1

z2k

−
∑

k≤K1

zk

∑
k≤K1

zpk

 = p [gp(2; {zk}k≤K1
)− gp(1; {zk}k≤K1

)] ,

where gp(·; {zk}k≤K1
) is defined in Lemma 5.

By Lemma 5, when p = 1, g1(·; {zk}k≤K1) is strictly convex and takes minimum at q∗ = 1+p
2 = 1, thus

g1(2; {zk}k≤K1
)− g1(1; {zk}k≤K1

) > 0 , (75)

then we know that
inf

wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
:= ∆1(δ) ≥ 0 . (76)

However, ∆1(δ) can not be zero: If this is the case, since the set {wj : wj ∈ SD−1, cos
(
wj , µ̄+

)
= 1 − δ} is compact

and 1
∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
is continuous on this set. It attains minimum 0 at some wj , which implies the non-strong

convexity of g1(·; {zk}k≤K1) that, by Lemma 5, requires all zk, k ≤ K1 to be equal to each other (This can only happen if
cos
(
wj , µ̄+

)
= 1 ). Contradiction. Then one must have

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
:= ∆1(δ) > 0 . (77)

Similarly, by Lemma 5, when p ≥ 3, g1(·; {zk}k≤K1
) is strictly convex and takes minimum at q∗ = 1+p

2 ≥ 2, thus

g1(2; {zk}k≤K1)− g1(1; {zk}k≤K1) < 0 , (78)
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then we know that

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
:= ∆p(δ) ≤ 0 . (79)

Using the same argument, we eliminate the case of this infimum being zero. Then one must have

inf
wj∈SD−1,cos(wj ,µ̄+)=1−δ

1

∥µ̄+∥

〈
P⊥
wj

x(1)(wj), µ̄+

〉
:= ∆p(δ) < 0 . (80)

The second part concerns about d
dt cos (wj(t),µk)

∣∣
cos(wj(t),µk)=1−δ

, for some k ≤ K1. Without loss of generality, we

let k = 1. Thus we intend to show d
dt cos (wj(t),µ1)

∣∣
cos(wj(t),µ1)=1−δ

is positive.

We also let ζ := 1− (1− δ)2, so that the condition cos(wj(t),µ1) = 1− δ becomes cos(wj(t),µ1) =
√
1− ζ.

Since
∑K

k=1

∣∣∣〈 wj

∥wj∥ ,µk

〉∣∣∣2 ≤ 1, cos(wj(t),µ1) =
√
1− ζ implies

∑K
l=2

∣∣∣〈 wj

∥wj∥ ,µl

〉∣∣∣2 ≤ ζ.

Similar to the first part of the proof, we have

d

dt
cos (wj(t),µ1) (81)

=

〈
d

dt

wj(t)

∥wj(t)∥
,µ1

〉
(82)

=
〈
P⊥
wj(t)

x(p)(wj(t)),µ1

〉
+

〈
d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t)),µ1

〉
, (83)

if we can show that for some choice of δ > 0 (or equivalently some ζ > 0),

inf
wj∈SD−1,cos(wj ,µ1)=1−δ

〈
P⊥
wj

x(1)(wj),µ1

〉
:= Λp(δ) > 0 , (84)

then we pick ϵ ≤ ϵ0 =
Λp(δ)

8
√
hM2Kp

, and by Lemma 1, we have that for ∀t ≤ T = 1
4K log 1√

hϵ
,

d

dt
cos (wj(t),µ1)

∣∣∣∣
cos(wj(t),µ1)=1−δ

≥ Λp(δ)−max
j

∥∥∥∥ d

dt

wj(t)

∥wj(t)∥
− sign(vj(0))P⊥

wj(t)
x(p)(wj(t))

∥∥∥∥ (85)

≥ Λp(δ)− 4ϵ
√
hM2Kp ≥ Λp(δ)

2
> 0 , (86)
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which is what we stated in the theorem. The remaining proof is to find a lower bound on Λp(δ), which is given by〈
P⊥
wj

x(p)(wj),µ1

〉
=

〈(
I −

wjw
T
j

∥wj∥2

)
K∑
k

γk(wj)ykxk · p[cos(xk,wj)]
p−1,µ1

〉

=

〈(
I −

wjw
T
j

∥wj∥2

) ∑
k≤K1

γk(wj)ykxk · p[cos(xk,wj)]
p−1,µ1

〉

= p cosp−1(µ1,wj)
(
1− cos2(µ1,wj)

)
+

K∑
l=2

γl(wj)ylp cos
p(µl,wj) cos(wj ,µ1)

=
√
1− ζ

(
p(1− ζ)

p−2
2 ζ +

K∑
l=2

γl(wj)ylp cos
p(µl,wj)

)

≥
√
1− ζp

(
(1− ζ)

p−2
2 ζ −

K∑
l=2

∣∣∣∣〈 wj

∥wj∥
,µl

〉∣∣∣∣p
)

≥
√
1− ζp

(1− ζ)
p−2
2 ζ −

(
K∑
l=2

∣∣∣∣〈 wj

∥wj∥
,µl

〉∣∣∣∣2
) p

2


≥
√
1− ζp

(
(1− ζ)

p−2
2 ζ − ζ

p
2

)
≥
√
1− ζp

((
1− p− 2

2
ζ

)
ζ − ζ

p
2

)
= pζ + o(ζ) .

Therefore, as long as ζ > 0 is small enough, which can be achieved by picking some δ < δ̄2 < 1, then
infwj∈SD−1,cos(wj ,µ1)=1−δ

〈
P⊥
wj

x(1)(wj),µ1

〉
= Λp(δ) is positive.

D.5. Proof for Auxiliary Lemmas

Balancedness: Under GF, balancedness (Du et al., 2018) is preserved: v2j (t)− ∥wj(t)∥2 = 0,∀t ≥ 0,∀j ∈ [h], from the
fact that:

d

dt
∥wj∥2 = ⟨wj , ẇj⟩

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj

(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p−1
⟨wj ,xk⟩ − (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p+1
∥wj∥2

)

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj

(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p
− (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p−1

)

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj
[σ(⟨xk,wj⟩)]p

∥wj∥p−1

=
d

dt
v2j

In addition, sign(vj(t)) = sign(vj(0)),∀t ≥ 0,∀j ∈ [h], and the dynamical behaviors of neurons will be divided into two
types, depending on sign(vj(0)). Therefore, throughout the gradient flow trajectory, we have vj = sign(vj(0))∥wj∥. This
fact will be used in the subsequent proof.

Proof for Lemma 4. Under gradient flow, we have

d

dt
wj = −

K∑
k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj

(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p−1
xk − (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p+1
wj

)
. (87)
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and for ∥wj∥,

d

dt
∥wj∥2 = ⟨wj , ẇj⟩

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj

(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p−1
⟨wj ,xk⟩ − (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p+1
∥wj∥2

)

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj

(
p[σ(⟨xk,wj⟩)]p−1

∥wj∥p
− (p− 1)

[σ(⟨xk,wj⟩)]p

∥wj∥p−1

)

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))vj
[σ(⟨xk,wj⟩)]p

∥wj∥p−1

Balanced initialization enforces vj = sign(vj(0))∥wj∥, hence

d

dt
∥wj∥2 = −2

K∑
k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))sign(vj(0))∥wj∥2
[σ(⟨xk,wj⟩)]p

∥wj∥p
. (88)

Let T := inf{t : maxi |f(xk;W (t), v(t))| > 2ϵ
√
hM2}, then ∀t ≤ T, j ∈ [h], we have

d

dt
∥wj∥2 = −2

K∑
k=1

γk(wj)∇ŷℓ(yk, fp(xk;W, v))sign(vj(0))∥wj∥2
[σ(⟨xk,wj⟩)]p

∥wj∥p

= −2
K∑

k=1

γk(wj)∇ŷℓ(yk, f(xk;W, v))sign(vj(0))∥wj∥2
(⟨xk,wj⟩)p

∥wj∥p

≤ 2

K∑
k=1

|∇ŷℓ(yk, f(xk;W, v))| ∥wj∥2

≤ 2

K∑
k=1

(|yk|+ 2|f(xk;W, v)|)∥wj∥2

≤ 2

K∑
k=1

(1 + 4ϵ
√
hM2)∥wj∥

≤ 2n(+4ϵ
√
hM2)∥wj∥2 . (89)

Let τj := inf{t : ∥wj(t)∥2 > 2ϵM2
√
h
}, and let j∗ := argminj τj , then τj∗ = minj τj ≤ T due to the fact that

|f(xi;W, v)| =

∣∣∣∣∣∣
∑
j∈[h]

1⟨wj ,xk⟩>0vj
(⟨wj ,xk⟩)p

∥wj∥p

∣∣∣∣∣∣ ≤
∑
j∈[h]

∥wj∥2 ≤ hmax
j∈[h]

∥wj∥2 ,

which implies "|f(xk;W (t), v(t))| > 2ϵ
√
hM2 ⇒ ∃j, s.t.∥wj(t)∥2 > 2ϵM2

√
h

".

Then for t ≤ τj∗ , we have
d

dt
∥wj∗∥2 ≤ 2n(+4ϵ

√
hM2)∥wj∗∥2 . (90)

By Grönwall’s inequality, we have ∀t ≤ τj∗

∥wj∗(t)∥2 ≤ exp
(
2n(+4ϵ

√
hM2)t

)
∥wj∗(0)∥2 ,

= exp
(
2n(+4ϵ

√
hM2)t

)
ϵ2∥[W0]:,j∗∥2

≤ exp
(
2n(+4ϵ

√
hM2)t

)
ϵ2M2 .
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Suppose τj∗ < 1
4n log

(
1√
hϵ

)
, then by the continuity of ∥wj∗(t)∥2, we have

2ϵM2

√
h
≤ ∥wj∗(τj∗)∥2 ≤ exp

(
2n(+4ϵ

√
hM2)τj∗

)
ϵ2M2

≤ exp

(
2n(+4ϵ

√
hM2)

1

4n
log

(
1√
hϵ

))
ϵ2M2

≤ exp

(
1 + 4ϵ

√
hM2

2
log

(
1√
hϵ

))
ϵ2M2

≤ exp

(
log

(
1√
hϵ

))
ϵ2M2 =

ϵM2

√
h

,

which leads to a contradiction 2ϵ ≤ ϵ. Therefore, one must have T ≥ τj∗ ≥ 1
4n log

(
1√
hϵ

)
. This finishes the proof.

Proof of Lemma 5. Since

g′p(q; {zi}ni=1) =

(
K∑

k=1

zqi log zi

)(
K∑

k=1

zp+1−q
i

)
−

(
K∑

k=1

zqi

)(
K∑

k=1

zp+1−q
i log zi

)
, (91)

we immediately find g′p(q
∗; {zi}ni=1) = 0. Now we compute the second-order derivative

g′′p (q; {zi}ni=1) = −2

(
K∑

k=1

zqi log zi

)(
K∑

k=1

zp+1−q
i log zi

)

+

(
K∑

k=1

zqi

)(
K∑

k=1

zp+1−q
i log2 zi

)
+

(
K∑

k=1

zqi log
2 zi

)(
K∑

k=1

zp+1−q
i

)
=

∑
1≤i,j≤n

zqi z
p+1−q
j (−2 log zi log zj)

+
∑

1≤i,j≤n

zqi z
p+1−q
j log2 zj +

∑
1≤i,j≤n

zqi z
p+1−q
j log2 zi

=
∑

1≤i,j≤n

zqi z
p+1−q
j (log zi − log zj)

2 ≥ 0 ,

and the equality holds only when z1 = · · · = zn. The desired results follow.
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