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ABSTRACT

The original Federated Learning (FL) algorithm, FedAvg, is vulnerable to ad-
versarial attacks from its clients. To enhance the security of FL, researchers in-
troduced various defensive aggregation rules. Some of the aggregation rules are
based on robust statistics, such as geometry median, and Krum, and some are
designed against Sybil attackers, namely FoolsGold, and CONTRA. The previ-
ous works evaluate their robustness in a white-box setting, where attackers know
which aggregation rule is used by the federated server, the parameters of the FL
system, and sometimes the data of honest clients. In this paper, we propose an
untargeted attack algorithm based on reinforcement learning (UA-RL) to study
the robustness of the aggregation rules in a black-box setting. UA-RL uses the
sum of gradients of unmodified datasets to maximize the loss function. It applies
reinforcement learning to search for the best parameter controlling the attack mag-
nitude to bypass the aggregation rules. Our experiments on non-i.i.d. datasets in-
dicate that defensive aggregation rules, including Krum, geometry median, Fools-
Gold, and CONTRA are vulnerable to UA-RL attacks. On i.i.d. datasets, Fools-
Gold, and CONTRA are fragile, but geometry median and Krum are relatively
robust. We further perform a theoretical analysis to explain these experiment re-
sults.

1 INTRODUCTION

The rapid development of Federated Learning raises concerns about its security and reliability in
a real-world environment. Researchers have studied two types of adversarial attacks against FL:
untargeted and targeted attacks. The untargeted attack aims to damage the performance of the global
model, while the targeted attack tries to mislead the global model on a specific task that benefits
malicious groups.

To alleviate the impact of these attacks, researchers have developed various countermeasures and
robust methodologies. Zhang et al. (2022) used secure aggregation to detect backdoor attackers. Oz-
dayi et al. (2021) implemented an adjustable learning rate on the federated server to defend against
backdoor attacks. Meng et al. Meng et al. (2021) created a visualization of the FL operation, which
uses human analysts to spot unusual clients from a user interface. Besides these approaches, the
majority of the defense methods are statistical-based aggregation rules. The original averaging ag-
gregation from the FedAvg McMahan et al. (2017) is replaced with an aggregation rule that has a
defensive feature. These defensive aggregation rules use different schemes to estimate the reliability
of the information shared by each client. Then a weighted sum is performed on the server side to
determine clients’ weights according to the reliability.

Compared with other methods, the statistical-based aggregation rules are easier to implement and
more cost-effective. They require no extra training data for the server nor knowledge about the
learning task. Their computation overhead is usually small. Krum Blanchard et al. (2017), Bulyan
El Mhamdi et al. (2018), coordinate-wise median Yin et al. (2018) and geometric median Chen
et al. (2017) are median-based rules that remove or reduce the effects from clients who are statistical
outliers. FoolsGold Fung et al. (2020) and CONTRA Awan et al. (2021) were designed based on
the behavior of Sybil attackers. They remove malicious by identifying clients with high similarity.
Other defenses like CRFL Xie et al. (2021), FLCert Cao et al. (2022), and Auror Shen et al. (2016),
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exploited multiple statistical tools, such as clipping, smoothing, and clustering to defend targeted
poisoning attack and backdoor attack.

Previous works Li et al. (2022) Baruch et al. (2019) Xie et al. (2020) Fang et al. (2020) rely heavily
on prior knowledge of the FL system to break some of these robust aggregation rules in a white-
box setting. However, this prior knowledge may not be available in a real-world environment. In
addition, a thorough analysis of the vulnerability of some of these aggregation rules has not been
conducted. In this paper, we propose an untargeted attack algorithm based on reinforcement learning
(UA-RL) to study FL aggregation rules’ robustness in a black-box setting. UA-RL uses the sum of
gradients of unmodified datasets to maximize the loss function. It applies reinforcement learning
(RL) to search for the best parameter controlling the attack magnitude to bypass the aggregation
rules. In addition, we conduct theoretical analyses on Krum and FoolsGold. The contributions of
our work include:

• To our best knowledge, we are the first to develop a black-box attack against FL. UA-RL,
our model-free reinforcement learning based attack is effective on the robust aggregation
rules, including Krum, geometric median, FoolsGold, and CONTRA.

• We experimentally indicate the limitations of the existing robust aggregation rules, in par-
ticular on non-i.i.d. datasets, and show that UA-RL adapts its attack magnitudes to attack
different aggregation rules.

• We conduct a theoretical study to explain the experimental findings and analyze the vulner-
ability of the aggregation rules.

2 PRELIMINARY AND RELATED WORKS

2.1 FEDERATED LEARNING ALGORITHM

FL trains a global model on distributed databases. Firstly, a FL server initializes a global model
and sends it to its clients. The clients train the model for some iterations on their local datasets
and then send the model weights back to the server. The server takes the weights from the clients
and uses an aggregation rule and the server’s learning rate to update the global model. Then server
sends the updated global model back to the clients again. This process repeats until the global model
reaches convergence. In this paper, wt, wt

i , Aggr and w̄t represent the global model weights, the
model weights from the ith client, an aggregation rule, and aggregated weights at the tth iteration,
respectively. More clearly, w̄t = Aggr (wt

1 · · ·wt
n) and the server uses wt+1 = wt − lrsever(wt −

w̄t), where lrsever is the learning rate of server for updating the global model. The local model’s
update at the tth iteration is denoted as Qt

i = wt
i − wt, which is called the sum of the negative

gradient because the negative gradient is used in each local SGD iteration. Algorithm 2 in the
appendix summarizes the FL training process and Table 4 in the Appendix lists the symbols used in
this paper.

2.2 STATISTICAL-BASED AGGREGATION RULES

Based on their design principles, statistical-based aggregation rules can be categorized into two
groups: central tendency and outer tendency. Krum, coordinate-wise median, and geometric me-
dian rely on robust statistics that have a central tendency. FoolsGold and CONTRA are designed
to defend against Sybil attacks, where the clients controlled by a malicious group have very similar
behaviors, compared with honest clients. To reduce the impact of these Sybil clients, FoolsGold and
CONTRA have an outer tendency for over similar clients. These two groups of aggregation rules are
based on contradictive design principles. One favours highly similar clients and the other reduces
impacts from highly similar clients. Although they both use common similarities and dissimilar-
ity measures, such as L2 distance and cosine similarity to measure the difference between clients,
because of their contradictive design principles, they have very different characteristics.

2.3 ATTACK THE FEDERATED LEARNING

Research on how to attack Federated Learning’s defense methods helps us understand the charac-
teristics of the defense and contributes to creating better defense strategies. Blanchard et al. (2017)
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proved that with a linear aggregation rule such as FedAvg, a single Byzantine worker can prevent
convergence. After Byzantine-robust FL methods had been introduced, effective attack strategies
were found in a full-knowledge, white-box setting. Fang et al. (2020)’s experiments on poisoning
attacks showed that Trimmed Mean Welsh (1987), Krum, and coordinate-wise median could be bro-
ken using local model poisoning when the aggregation rule is known to the malicious party. In a
grey box setting, the malicious party knows the aggregation rule but can not access the models of the
honest clients. Fang et al. used an estimation based on Gaussian distribution and binary search for
the attack parameters. Baruch et al. (2019) found through experiments if the variance between hon-
est clients is high enough, a moderate attack within the population variance would break Trimmed
Mean, Krum, and Bulyan. As a white-box setup, Baruch et al. required an analysis of the gradients
from honest clients to configure the attack parameters. Li et al. (2022) created an RL-based FL at-
tack framework in a grey-box setting, where the FL system’s parameters and aggregation rule were
known to the malicious, but datasets of honest clients were unknown. The malicious group utilizes
the given knowledge to recreate a separate FL process as a simulator of the FL environment. With
a model-based RL agent, the malicious group learns the data distribution and policy for attacking
and then carries out the attack based on the learned policy. These previous methods assume that the
malicious group knows which aggregation rule the FL server has in place. Based on the properties
of the aggregation rules, the malicious party could implement a targeted attack strategy. In contrast,
our proposed method UA-RL operates in a black-box setting, where the aggregation rule is unknown
to the malicious group.

3 METHODOLOGY

3.1 PROBLEM SETUP

In this study, we focus on a scenario that is closer to a real-world FL operation. Our assumptions on
the FL system and the threat model are summarized below:

• The malicious group does not know the parameters of the FL system, including the total
number of clients, the aggregation rule, and the total iterations of FL, nor does it have
access to data from other honest clients.

• The goal of the attack is to decrease the global model’s accuracy and prevent convergence.

• Malicious clients work in collusion and operate as one group. The group owns the local
data of all malicious members.

• The server does not own any training data.

• The server’s learning rate (lrserver) is a reasonably small number and stays unchanged
during the iterations.

3.2 THE PROPOSED UA-RL

Once a malicious client a receives the server model weights, wt, they train it on an unmodi-
fied local dataset and obtain wt

a, which is supposed to be sent back to the server. The mali-
cious client first computes the difference between the updated model and the server model, i.e.,
Ψt

a = wt
a − wt. We call Ψt

a as the sum of negative gradients because if SGD is used, Ψt
a is equal

to −lrlocal ×
∑J

i=0∇F (wj
a), where w0

a = wt, F is a loss function, and lrlocal is a constant local
learning rate. The training rule for SGD is wj+1

a = wj
a− lrlocal×∇F (wj

a). Note that wt
a = wJ+1

a ,
is the one obtained from the local training. It should be emphasized that the malicious clients do
not necessarily need to know the loss function, local learning rate, and the local training process.
They only need to access the locally updated weights wt

a and the server weights, wt. Once Ψt
a is

computed, the malicious client modifies the updated weights as w̃t
a = wt−βΨt

a, where β called at-
tack magnitude is determined by an RL algorithm. w̃t

a is sent back to the server. UA-RL applies the
same attack strategy and same attack magnitude, β to all malicious clients, but their attack updates
are trained on different local datasets. It can be observed that the modified update aims to maximize
the loss function. More clearly, w̃t

a = wt − βΨt
a = wt + βlrlocal ×

∑J
i=0∇F (wj

a), which can be
considered as a gradient ascent algorithm to maximize the loss function. The principle of this attack
scheme is shown in Figure 1.
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Figure 1: Reversing gradient attack with RL adjustable attack magnitude

To determine the value of β, UA-RL uses the Nelder-Mead method Nelder & Mead (1965), which
is a direct search method for nonlinear optimization problems, where the derivative is not required.
At each iteration, UA-RL uses the accuracy difference between two FL iterations as a reward. More
clearly, the reward is defined as rewardt = accuracyt−1 − accuracyt, where the accruacyt−1

and accruacyt are respectively the accuracy computed from the server models, wt−1 and wt on the
database pooled from all malicious clients’ local datasets. When the rewardt is negative, it means
that the action is effective. The action is a real number, whose domain is from negative infinity to
positive infinity. The action value determines the attack magnitude value β to perform the attack.
UA-RL collects the corresponding reward and action pairs from the current and previous iterations.
These reward and action pairs are used to determine a new action value for the next iteration. More
clearly, the Nelder-Mead method takes two reward and action pairs to determine the action for the
next attack, i.e.,

actiont+1 = φ
(
(actiont, rewardt) , (actiont−1, rewardt−1)

)
. (1)

where φ represents the Nelder-Mead method, and actiont represents the action at the ith iteration.
Since the searching dimension for β is one dimension, the Nelder-Mead method only requires two
reward and action pairs from the current and previous iterations. We use action and reward pairs,
instead of β and reward pairs as inputs to the Nelder-Mead method. This is due to the range and
domain of the Nelder-Mead method being both from negative infinity to positive infinity for this
one-dimensional problem, but β > 0. Note that the Nelder-Mead method takes one action point and
a predefined parameter, called step to start the search. More clearly, no reward is needed in the first
two Nelder-Mead method iterations. Once actiont+1 is obtained from the Nelder-Mead method,
UA-RL maps the action value to β through a modified Sigmoid function,

βt =
za

1 + e−zb(actiont−zc)
(2)

where za, zb and zc are hyper-parameters. za controls the range of the function such that β ∈ (0, za).
zb controls the shape of the function, and zc shifts the action. Once βt+1 is obtained, it is used to
determine w̃t

a = wt − βt+1Ψ
t
a, which is the poisoned model that sent back to the server.

In the first d iterations, UA-RL does not use the Nelder-Mead method to perform the search. It
randomly selects a node in a predefined list as an action and maps this action to β to perform that
attack. Then, the reward for this action is recorded in the next iteration. In the next iteration, another
action in E is randomly selected to perform the attack. After the first d iterations, the Nelder-Mead
method is used to determine the action for the attack. However, if the rewards are consistently
greater than zero in R iterations, a point within a predefined central domain is randomly selected as
an action to perform the attack. The pseudo-code of UA-RL is given in Algorithm 1.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS SETUPS

We evaluate the proposed UA-RL on three datasets, MINST, Fashion-MINST, and EMINST, which
are widely employed in FL studies1. Following the previous work in Awan et al. (2021), we use
the Dirichlet distribution to control the heterogeneity of the data distribution, where the Dirichlet
α ∈ [0.2, 1.0, 20]. The lower the α the more unevenly the data is distributed between clients by class
label. In all the experiments, the total number of clients was 40. We set the malicious population

1We will make our code public after the publication.
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Algorithm 1 Untargeted attack algorithm based on reinforcement learning (UA-RL)

Given:
• E (empirical points): a list of length d
• R (restart threshold): an integer
• C (central domain): a real interval
• s: the step size for the Nelder-Mead Search algorithm

Malicious Client Group:
Initialization:
for t = 0 to d− 1 do

Receive wt from the Server
Record reward for action in previous round actiont−1 when t ≥ 1
Randomly select action in E. Each action can only be selected once.
Proceed with local training and obtain wt

a
Send the poisoned model w̃t

a = wt − β (wt
a − wt) back to the Server

end for
Pick the node in E with the best reward as e. Start the Nelder-Mead search phase with (e, s)

Nelder-Mead search phase:
for t = d to T do

Receive wt from the Server
Record reward for action in previous iteration actiont−1

if in R iterations, the rewards are greater than 0 then
Generate a random number c in C. Restart the Nelder-Mead search phase with (c, s)

else
Determine actiont using the Nelder-Mead method and previous rewards and actions

end if
Compute β using Eq.2
Proceed with local training and obtain wt

a
Send the poisoned model w̃t

a = wt − β (wt
a − wt) back to the Server

end for

as 20% and 40% of the whole FL clients. Due to the randomness of the algorithm, each experiment
runs five times, and the average is reported as the final result.

The aggregation rules tested in these experiments are FedAvg, CONTRA, FoolsGold, geometric
median, and Krum. We chose the geometric median and Krum because of their robustness. They
were also tested in the previous FL attack studies Xie et al. (2020) Baruch et al. (2019) Pillutla et al.
(2022). We also include CONTRA and FoolsGold, because their design principles are different
from the geometric median and Krum. CONTRA, FoolsGold, geometric median, and Krum are
state-of-the-art aggregation algorithms designed for robust FL to defend against different attacks
from clients. We chose FedAvg, which has no defense feature, as a reference.

Since UA-RL is the first method developed to perform a black-box attack against FL, no previous
works can be employed for direct comparison. We use two other attack methods as our baselines:
fixed reverse gradient (FR) and untargeted label flipping (UT). Fixed reverse gradient adopts a fixed
β = 1 without the ability for adjustment. Untargeted label flipping trains the malicious models with
a mismatched mapping of the class label and the training data, with {0 → 1, 1 → 2, · · · , 0 → 9}.
We also include the training without attack (NO) as a comparison. In the following experiments, za,
zb, and zc are set to 2, -0.7, and 0 respectively.

4.2 RESULTS

Table 1 shows the results of MNIST. The proposed UA-RL can significantly deteriorate the training
process in most of the cases and on average, it can reduce the accuracy by 30.03%. Compared with
the baselines, RF, and UT, UA-RL achieves the best performance. Among the 30 comparisons in
Table 1, UA-RL achieves 19 lowest accuracies, while FR and UT achieve 5 and 6 lowest accuracies,
respectively. We also note that all the accuracies of FoolsGold and CONTRA under attacks are very
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low. To further evaluate CONTRA and FoolsGold, we reduce the malicious population to 2, which
is 5% of the total population, and attack them with UA-RL. The results are listed in Table 2. Their
performance is still unsatisfactory for all three datasets. Krum is relatively robust when α = 20,
where the class labels are more evenly distributed, and each client has similar label distributions.
However, when α becomes small, its UA-RL accuracy drops a lot. The geometric median is the
most robust one against the attacks. However, the accuracy of the geometric median also reduces
significantly, when the malicious population is 40% and α = 0.2 and α = 1.0. When the malicious
population is only 20%, UA-RL can operate only on α = 0.2 for the geometric median, where the
label distributions in different datasets have more difference. It should be highlighted that although
the geometric median is the most robust aggregation rule against the attacks, its clean accuracy
(NO) is 13-15% lower than Contra, FedAvg, and FoolsGold for α = 0.2. It is a trade-off between
robustness and clean accuracy in uneven label distributions.

Table 1: A comparison of attack performance on different aggregation rules on the MNIST dataset.
The numbers in the table are accuracy (%)

α 0.2 1.0 20
Mali Aggr rule NO FR UA-RL UT NO FR UA-RL UT NO FR UA-RL UT

40%

Contra 70.84 23.33 22.96 3.31 78.84 31.02 9.86 6.19 79.60 15.31 5.43 5.18
Fedavg 68.01 14.06 13.33 27.29 78.90 31.24 11.91 27.74 80.16 35.39 9.86 20.05
Foolsgold 69.83 9.80 9.63 13.61 74.82 10.32 6.18 8.47 79.61 28.20 5.75 5.62
Geo med 55.03 20.09 16.09 44.10 78.70 41.88 33.20 70.72 79.66 73.18 74.00 80.34
Krum 11.61 10.28 13.31 18.13 44.58 52.79 13.48 65.12 78.97 76.77 34.60 79.22
Avg 65.93 16.82 15.50 22.08 71.17 33.45 14.93 35.65 79.60 45.77 25.93 38.08

20%

Contra 70.84 11.11 10.60 16.20 78.84 36.10 8.86 8.39 79.60 9.95 6.57 5.83
Fedavg 68.01 33.72 42.88 53.94 78.90 61.69 55.11 66.09 80.16 73.76 70.66 73.67
Foolsgold 69.83 25.63 11.01 13.69 74.82 42.63 7.28 8.48 79.61 11.29 6.08 5.39
Geo med 55.03 34.92 37.87 52.88 78.70 70.25 73.58 78.65 79.66 79.42 78.54 80.31
Krum 11.61 18.68 10.56 10.19 44.58 66.14 39.26 40.48 78.97 78.81 77.91 79.78
Avg 65.93 26.35 25.59 34.18 71.17 55.36 36.82 40.42 79.60 50.65 47.95 49.00

* We do not include results in Avg when the accuracy of no attack (NO) is lower than 30%.

Table 2: The performance of UA-RL on FoolsGold and CONTRA with 5% malicious population
and α = 20. The numbers in the table are accuracy (%)

Aggr rule EMNIST F-MNIST MNIST
Contra 3.94 22.39 10.64
Foolsgold 0 0.8 9.74

We present the averaged UA-RL’s action value and the accuracy of MNIST in Table 3. The action
values and the accuracy values in the table are average action values and accuracy from the last
FL iteration of the 5 experiments on MNIST. As a result, UA-RL selects different action values for
different aggregation rules. For CONTRA, FedAvg, and FoolsGold, the action values are positive
and relatively large, but for geometric median and Krum, the action values are much smaller. In
other words, UA-RL uses a high attack magnitude, β to attack CONTRA, FedAvg, and FoolsGold,
but uses a low attack magnitude to attack geometric median and Krum. Figure 2 shows the action
values and accuracy from all five experiments for each aggregation rule. When α = 20, UA-RL uses
more similar actions to attack the same aggregation rule in the five experiments. When α = 1 and
α = 0.2, each client has more different label distributions in the 5 experiments, UA-RL selects more
diverse actions to perform the attack. The outliers in Figure 2 show that UA-RL may not achieve
a successful attack in every experiment, but overall, it achieves the best performance compared to
the baselines. Due to the limited space, we provide experimental results of the other two datasets,
Fashion-MINST, and EMINST in Appendix A.4.

We can see that UA-RL does not have enough strength to attack FedAvg when the malicious popu-
lation is 20% and α = 1 and 20. (see in Figure 2. When za increases to 8, UA-RL can successfully
attack FedAvg in all the cases. The experimental results using za = 8 are given in Appendix A.4.3.

Figure 3 illustrates how the Nelder-Mead search actually works between iterations on the geometric
median. In successful attacks, usually after a few iterations, UA-RL moves the action value to
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Table 3: UA-RL’s averaged action and accuracy records on MNIST. The action number is float and
the accuracy number in (%)

α 0.2 1.0 20
Mali Aggr rule Action Accuracy Action Accuracy Action Accuracy

40%

Contra 1.3 22.96 5.0 9.86 3.0 5.43
Fedavg 9.5 13.33 5.4 11.91 4.8 9.86
Foolsgold 3.0 9.63 5.0 6.18 1.5 5.75
Geo med -4.0 16.09 0.5 33.20 -0.6 74.00
Krum 1.4 13.31 -1.6 13.48 -3.7 34.60

20%

Contra 4.4 10.60 4.6 8.86 3.2 6.57
Fedavg 5.1 42.88 3.5 55.11 -0.9 70.66
Foolsgold 3.2 11.01 5.2 7.28 2.6 6.08
Geo med -0.6 37.87 -0.8 73.58 -0.9 78.54
Krum -2.2 10.56 -1.6 39.26 -0.2 77.91

one direction, which stops FL from convergence. While in unsuccessful attempts, the UA-RL uses
action values in a wide range, but the effect is not obvious. The experimental results for the other
four aggregation rules are given in Appendix A.4.4.

Figure 2: UA-RL action vs accuracy on MNIST

Figure 3: Four aggregation rule’s validation history on MNIST with action value of UA-RL. 40%
malicious population on geometric median
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5 DISCUSSION AND ANALYSIS

In this section, we analyze the observations from the experimental results theoretically. We mainly
focus on Krum and FoolsGold, because the weakness of FedAvg is well-known Blanchard et al.
(2017); CONTRA is very similar to FoolsGold, and the robustness of the geometric median has
been well-analyzed by previous works Minsker (2015) Wu et al. (2020). From the experiment, we
observe that (i) the performance of FoolsGold deteriorates significantly in all the data distributions
and percentage of malicious clients and (ii) Krum can defend the proposed attack under α = 20,
which is close to i.i.d. datasets and 20% malicious clients. We also observe that (iii) UA-RL exploits
different attack magnitudes to defeat Krum and FoolsGold. More precisely, UA-RL uses a low
attack magnitude against Krum, but a large magnitude against FoolsGold. Appendix A.3 provides
the algorithms of Krum, FoolsGold and geometric median.

5.1 ANALYSIS OF KRUM

Krum uses the sum of local gradient vectors V t
i to perform the updates i.e., V t

i = wt − wt
i . To

simplify the notation, the superscript t on V t
i is ignored. In this analysis, there are n−1 honest clients

and one malicious client. Their corresponding sum of local gradient vectors are So = {V1 · · ·Vn−1}
and Va, respectively. We denote Su = {V1, · · · , Vn−1, Va}. The malicious client sets their attack
vector as Va = −βVn, where Vn is the sum of local gradient vectors from their original dataset and
β > 0. An attack is considered a success at an iteration if Va is selected. Krum uses the score
function s(i) =

∑n−f−2
j=1

∥∥Vi − Vi(j)∥∥2, where f is a predefined constant and Vi(j) is one of the
n − f − 2 closest vectors to Vi, to assign score to each vector. The vector with the lowest score is
selected by Krum. Let so (m∗) < so (i) , ∀i ̸= m∗ and both m∗ and i ∈ {1, . . . , n − 1}. so (m∗)
is only computed from the n − f − 2 closest honest vectors to Vm∗ . In other words, so (m∗) is the
minimum score from So, the set of honest clients’ vectors. Similarly, so (i) is the score of Vi and
so (i) is computed from the n− f − 2 closest honest clients’ vectors to Vi. We use su (i) to denote
that the score of Vi, when it is computed from the set Su, including the malicious client’s vector
Va and θi(j) to denote the angle between Vi and Vi(j). The following theorem indicates that under
certain conditions, Krum can be broken by a single attacker.

Theorem 1 If one of the following conditions is true, ∋ β > 0 such that −βVn can successfully
attack Krum.

(i) so (m∗) < su (i), ∀i ̸= m∗; both m∗ and i ∈ {1, . . . , n− 1} and

∥Vm∗∥ > 2

n− f − 2

n−f−2∑
j=1

∥∥Vm∗(j)

∥∥ cos (θm∗(j)

)
, (3)

where all Vm∗(j) are the honest clients’ vectors.

(ii) su (e∗) < so (m
∗) and

(n− f − 2) ∥Ve∗∥2 − 2 ∥Ve∗∥
n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θe∗(j))− ∥Vz∥2 > 0, (4)

where e∗ is an honest client, su (e∗) = mini∈{1,··· ,n−1} su (i), and V z ∈ So but Vz ̸=
Ve∗(q).

The proof is given in the Appendix A.2.1. Theorem 1 only mentions that there exists a β that can
successfully attack Krum if the conditions hold. The proof in Appendix A.2.1 in fact shows that a
smaller β is more suitable for Eq.3 and β is requested in a particular range for Eq.4. Please see the
details in the proof. If β is too small, the attack is not effective. Thus, UA-RL searches different β
to perform the attack. Although in this analysis, one malicious client may be enough to perform a
successful attack, in practice, it is not. Because the above analysis only considers one iteration and a
small β may require performing an attack. As a result, many iterations are needed. Since Vi changes
in each iteration, the conditions may not hold for every iteration. To compromise Krum, in practice,
more malicious clients may be needed.
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To understand why Krum is robust under an i.i.d. setting, we further analyze the conditions (i) and
(ii) in Theorem 1. Corollary 1 pinpoints that under the assumptions: cos

(
θm∗(j)

)
and

∥∥Vm∗(j)

∥∥ are
independent; ∥Vi∥ is independent; E (∥Vi∥) = µ, and cos

(
θm∗(j)

)
> 0.5, ∀m∗ (j), the inequality

in Eq.3 cannot be valid and the probability of su (e∗) < so (m
∗) is very low if f + 2 is large. The

assumptions are more valid in the i.i.d. datasets, and therefore, Krum is more robust against UA-RL
attacks in the i.i.d. datasets. It should be highlighted that θm∗(j) is the angle between Vm∗ and
Vm∗(j).

∥∥Vm∗(j)

∥∥ is the magnitude of Vm∗(j) only. Based on the i.i.d. assumption, the independent
assumption of cos

(
θm∗(j)

)
and

∥∥Vm∗(j)

∥∥ is valid.

Corollary 1 If cos
(
θm∗(j)

)
and Vm∗(j) are independent; ∥Vi∥ is independent; E (∥Vi∥) = µ, and

cos
(
θm∗(j)

)
> 0.5, ∀m∗ (j), then the inequality in Eq.3 cannot be valid and the probability of

su (e
∗) < so (m

∗) is smaller than (1/2)
f+2.

5.2 ANALYSIS OF FOOLSGOLD

From the experiments, we observe that UA-RL deteriorates the performance of FoolsGold signifi-
cantly in all the data distributions and all the percentages of malicious clients. It seems that Fools-
Gold is very vulnerable to UA-RL attacks, and UA-RL uses a relatively large attack magnitude to
attack FoolsGold. In the following analysis, we attempt to explain these observations theoretically.

Let Hi be the aggregate historical features i.e., Hi =
∑T

t=1 V
t
i , csij = cos (Hi, Hj)

2, and vi =
maxj(csij). FoolsGold does not compute csii for all i. It rescales all csij by using csij ′ = csij ×
vi/vj if vj > vi and then computes αi = 1 − maxj(csij

′). It normalizes αi by using α′
i =

αi/max(α). The final weights are ai = κ
(
ln
(

αi
′

1−αi
′

)
+ 0.5

)
and the Federated SGD uses wT =

wT−1 +
∑n

i=1 aiV i,T to perform the updates. Theorem 2 indicates that FoolsGold uses only the
information from the original datasets to compute ai, the weights used to aggregate V T

i to update
the server model weights, and neglects all the information that can separate the malicious clients
from honest clients.

Theorem 2 If there are two malicious clients, who have their own datasets; the attack magnitude
β > 0 is set as a constant, and the cosine similarity of any two historical features from the original
datasets, including those owned by malicious clients, is positive, then FoolsGold does not use any
information that can distinguish the honest and malicious clients to compute ai, the weights used to
aggregate V T

i to update the server model weights.

Based on Theorem 2, FoolsGold would consider the two malicious clients as honest ones. If β is
very large, the malicious clients can take over the weighted sum i.e.,

∑n−2
i=1 aiV

t
i−β

∑n
i=n−1 aiV

t
i,

in the update equation. In other words, two malicious clients are enough to perform an effective
attack. The result in Table 2 demonstrates that two malicious clients are enough to stop the learning
process of FoolsGold, which matches our theoretical analysis. We also can see from Table 1 and
Figure 2 that UA-RL uses larger action values, implying larger β, to perform the attacks.

6 CONCLUSION

In this study, we performed the first untargeted black-box attack against the FL system using robust
aggregation rules. We proposed the UA-RL attack, which uses reinforcement learning to search
for a suitable attack magnitude to perform the attack. The experimental results show that UA-RL
effectively attacks most of the aggregation rules tested in the experiments in a non-i.i.d. setting.
The experiments show that FoolsGold and CONTRA are very vulnerable to UA-RL attacks. Krum
is only robust when the datasets are i.i.d. and the population of malicious clients is low, 20% in
the experiment. We also found that UA-RL uses different attack magnitudes to attack different
aggregation rules. In addition to the experiments, we offered theories to explain the observations.

2In FoolsGold, feature weighted cosine similarity is used. Without lost generality, cosine similarity is used
in this analysis.
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and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
learning with adversaries: Byzantine tolerant gradient descent. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf.

Xiaoyu Cao, Zaixi Zhang, Jinyuan Jia, and Neil Zhenqiang Gong. Flcert: Provably secure federated
learning against poisoning attacks. IEEE Transactions on Information Forensics and Security, 17:
3691–3705, 2022. doi: 10.1109/TIFS.2022.3212174.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversar-
ial settings: Byzantine gradient descent. 1(2), 2017. doi: 10.1145/3154503. URL https:
//doi.org/10.1145/3154503.
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A APPENDIX

A.1 NOTATIONS

Please find the notations used in this paper summarized in Table 4.

Table 4: Notations

PARAMETER DESCRIPTION

n total number of FL clients
m number of malicious clients
action action of the UA-RL
Aggr server’s Aggregation rule
β attack magnitude
J number of epochs in local training
Ψt

a the sum of negative gradients of the client a
wt the server’s model at iteration t
wt

i the model of malicious client i at iteration t

A.2 MATHEMATICAL PROOFS

A.2.1 PROOF OF THEOREM 1

Case 1: According to the assumption, so (m∗) < su(i),∀i ̸= m∗ and m∗ and i ∈ {1, . . . , n −
1}, the malicious clients’ vector Va does not influence the original minimum score among honest
workers. Now, we consider, so (m∗)− ψ (a), where ψ =

∑n−f−2
j=1

∥∥Va − Vm∗(j)
∥∥2.

so (m
∗)− ψ(a) =

n−f−2∑
j=1

∥∥Vm∗ − Vm∗(j)

∥∥2 − ∥∥Va − Vm∗(j)

∥∥2
=

n−f−2∑
j=1

∥Vm∗∥2 − 2 ∥Vm∗∥
∥∥Vm∗(j)

∥∥ cos (θm∗(j)

)
− ∥Va∥2 + 2 ∥Va∥

∥∥Vm∗(j)

∥∥ cos (θa,m∗(j)

)
where θa, m∗(j) is the angle between Va and Vm∗(j). Substituting Va = −βVn and grouping the
terms, we have:

= (n− f − 2) ∥Vm∗∥2 − 2 ∥Vm∗∥
n−f−2∑
j=1

∥∥Vm∗(j)

∥∥ cos (θm∗(j)

)
(5)

−β ∥Vn∥
n−f−2∑
j=1

(
β ∥Vn∥+ 2

∥∥Vm∗(j)

∥∥ cos (θn,m∗(j)

))
(6)

According to the assumption, (n− f − 2) ∥Vm∗∥2− 2 ∥Vm∗∥
∑n−f−2

j=1

∥∥Vm∗(j)
∥∥ cos (θm∗(j)

)
> 0.

Thus, ∋ β > 0 such that so (m∗)− ψ (a) > 0, meaning that the attack success.
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Case 2: Since su (e∗) < so (m
∗), it implies Va is one of the n− f − 2 closest vectors to Ve∗ . Let

su (e
∗) =

n−f−3∑
j=1

∥∥Ve∗ − Ve∗(j)∥∥2 + ∥Ve∗ − Va∥2 (7)

and

ϕ(a) =

n−f−3∑
j=1

∥∥Va − Ve∗(j)∥∥2 + ∥Va − Vz∥2 (8)

where Vz ∈ So butVz ̸= Ve∗(j). Considering su (e∗)− ϕ (a) and simplifying it, we have

n−f−3∑
j=1

(
∥Ve∗∥2 − 2 ∥Ve∗∥

∥∥Ve∗(j)∥∥ cos (θe∗(j))− ∥Va∥2 + 2 ∥Va∥
∥∥Ve∗(j)∥∥ cos (θa,e∗(j)))

+ ∥Ve∗∥2 − ∥Vz∥2 − 2 ∥Ve∗∥ ∥Va∥ cos (θa,e∗) + 2 ∥Vz∥ ∥Va∥ cos (θa,z)

= −(n− f − 3) ∥Va∥2 + 2 ∥Va∥

∥Vz∥ cos (θa,z)− ∥Ve∗∥ cos (θa,e∗) + n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θa,e∗(j))


+(n− f − 2) ∥Ve∗∥2 − 2 ∥Ve∗∥
n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θe∗(j))− ∥Vz∥2
In terms of ∥Va∥, it is a quadratic equation. Let

b =

∥Vz∥ cos (θa,z)− ∥Ve∗∥ cos (θa,e∗) + n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θa,e∗(j))
 , (9)

and

c = (n− f − 2) ∥Ve∗∥2 − 2 ∥Ve∗∥
n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θe∗(j))− ∥Vz∥2 . (10)

su (e
∗)− ϕ (a) can be rewritten as:

su (e
∗)− ϕ(a) = −(n− f − 3) ∥Va∥2 + 2b ∥Va∥+ c (11)

If su (e∗)− ϕ (a) > 0, we obtain

b+
√
b2 + (n− f − 3)c

(n− f − 3)
> ∥Va∥ >

b−
√
b2 + (n− f − 3)c

(n− f − 3)
. (12)

Since ∥Va∥ > 0, the inequality change to

b+
√
b2 + (n− f − 3)c

(n− f − 3)
> ∥Va∥ > max

(
0,
b−

√
b2 + (n− f − 3)c

(n− f − 3)

)
(13)
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If c > 0, or b > 0, b+
√

b2+(n−f−3)c

(n−f−3) > 0. As a result, ∋ β > 0 such that su (e∗) − ϕ (a) > 0.
Note that Va = −βVn and θa,e∗ , θa,e∗(j) and θa,z are the angles between Va and Ve∗ , Ve∗(j) and Vz ,
respectively. Let the angles between Vn and Ve∗ , Ve∗(j) and Vz be θn,e∗ , θn,e∗(j) and θn,z . Thus,
θn,e∗ = π − θa,e∗ , θn,e∗(j) = π − θa,e∗(j), and θn,z = π − θa,z . Since Vk, Ve∗ , Ve∗(j) and Vz are
derived from unmodified data, we assume that θn,e∗ , θn,z, θn,e∗(j) < π/2 and b can be rewritten
as

b =

−∥Vz∥ cos (θn,z) + ∥Ve∗∥ cos (θn,e∗)− n−f−3∑
j=1

∥∥Ve∗(j)∥∥ cos (θn,e∗(j))
 (14)

Thus, b is likely negative and we remove b > 0 in the theorem.
□

A.2.2 PROOF OF COROLLARY 1

Applying the assumptions, cos
(
θm∗(j)

)
and ∥Vi∥2 are independent, E (∥Vi∥) = µ, and

cos
(
θm∗(j)

)
> 0.5, ∀m∗ (j) and taking expectation on the left-hand side of Eq.3, we have:

2

n− f − 2

n−f−2∑
j=1

E
(∥∥Vm∗(j)

∥∥)E (cos (θm∗(j)

))
> µ. (15)

However, the expectation of ∥Vm∗∥, the right-hand side of Eq.3, is also equal to µ, implying that
under the assumptions, Eq.3 cannot be valid.

su (e
∗) < so (m

∗) means that Va is one of the n − f − 2 closest vectors to Ve∗ , implying that
∥Ve∗ − Va∥2 < ∥Ve∗ − Vi∥2, where Vi are all vectors not belonging to the n− f − 2 closest vectors
to Ve∗ . Simplifying the inequality, we have:

β2 ∥Vn∥2 + 2 ∥Ve∗∥ (∥Vi∥ cos (θe∗,i) + β ∥Vn∥ cos (θe∗,n)) < ∥Vi∥2 . (16)

Note that Va = −βVn and Vn are from the malicious client’s unmodified dataset. Applying the
assumptions, cos (θe∗,i) > 0.5 and all vector magnitudes, ∥Vi∥ are independent, even setting β = 0,
the probability of the inequality being valid is smaller then (1/2)

f+2 for all f + 2 vectors Vi, not
including in the n− f − 2 closest vectors to Ve∗ . When f + 2 is large, this probability is very low.

□

A.2.3 PROOF OF THEOREM 2

Assume that there are n clients. The first n − 2 clients are honest and the last two clients are
malicious. The malicious clients have their own databases, and their corresponding unmodified
updates are V t

n−1 and V t
n . The malicious clients use −βV t

n−1 and −βV t
n , where β > 0 to perform

the attack.

To simplify the analysis, β is set as a constant. Historical features from the malicious clients are
Hn−1 = −β

∑T
t=1 V

t
n−1 and Hn = −β

∑T
t=1 V

t
n . Assume that the cosine similarity of any two

historical features from the original datasets, including those owned by malicious clients, is positive.
Based on this assumption, csij > 0,∀1 ≤ i, j ≤ n− 2 or ∀n− 1 ≤ i, j ≤ n; otherwise csij < 0. It
should be highlighted that cos(Hn−1, Hn) = cos(

∑T
t=1 V

t
n−1,

∑T
t=1 V

t
n). It means that csn−1 =

cos(Hn−1, Hn) cannot be used to detect the attack, because it only reveals information from the
original datasets.

Note that for 1 ≤ i ≤ n − 2 and n − 1 ≤ j ≤ n, csi,j = cos
(∑T

t=1 V
t
i , −β

∑T
t=1 V

t
j

)
=

− cos
(∑T

t=1 Vi,t,
∑T

t=1 Vj,t

)
< 0. They expose the malicious clients’ information. All vi =

14
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maxj (csij) are positive because each row has some positive values. Furthermore, csn,n−1 =
csn−1,n = vn = vn−1 because FoolsGold does not compute csn,n and csn−1,n−1 and all other
csn−1,j and csn,j , where 1 ≤ j ≤ n − 2 are negative. Fig. 4 illustrates csij and vi. Since all
vi are positive, the signs of csij ′ and csij are the same. Since vi

vj
< 1, csij

′ ≤ csij ,∀i, j. Since
vn = vn−1, csn−1,n

′ = csn,n−1
′ = csn,n−1 = csn−1,n. In other words, the rescaling is not applied

to csn,n−1 = csn−1,n. Clearly, for the first n− 3 rows, maxj(csij ′) is from the first n− 3 columns
and for the last two rows, maxj (csij ′) = csn,n−1 = csn−1,n are from the two malicious clients.
We can obverse that for n− 1 ≤ i ≤ n, αi = 1−maxj(csij ′) do not use any information from the
honest clients and for 1 ≤ i ≤ n − 2, αi = 1 −maxj(csij ′) do not use any information from the
malicious clients.

The last two steps α′
i = αi/max(α) and ai = κ

(
ln
(

αi
′

1−αi
′

)
+ 0.5

)
normalize and non-

linearly map αi
′ to the weight ai. Since csn,n−1 = csn−1,n = cos(Hn−1, Hn) =

cos(
∑T

t=1 V
t
n−1,

∑T
t=1 V

t
n) and αi

′ only use information from csi,j > 0, which are from the orig-
inal datasets, FoolsGold does not use any information that can distinguish honest and malicious
clients to compute ai. If β is very large, the malicious clients can take over the weighted sum i.e.,∑n−2

i=1 aiV
t
i − β

∑n
i=n−1 aiV

t
i, in the update equation. In other words, two malicious clients are

enough to perform the attacks.
□

Figure 4: FoolsGold’s cosine similarities between clients

A.3 ALGORITHMS

A.3.1 FEDAVG

For FedAvg, the aggregated rule, Aggr in Algorithm 2 is

1

n
×

n∑
i=1

wt
i (17)

A.3.2 KRUM

Krum selects a single client in every FL iteration. The chosen client is the one with parameters that
are closest to another n− f − 2 clients:

Krum(P) =

pi | argmini∈[n]

∑
i→j

∥pi − pj∥2
 , (18)

where i→ j is the n− f − 2 nearest neighbors to pi in P , measured by Euclidean Distance.
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Algorithm 2 Federated Learning algorithm

Server:
Initialization w0 ← random()
for t = 0 to T do

Broadcast wt to all n clients
Wait for clients’ local training process
Receive the weights, wt

i from n clients
Computer the aggregated weight: w̄t = Aggr(wt

1 · · ·wt
n)

Update wt+1 = wt − lrserver(wt − w̄t), where lrserver is server’s learning rate
end for

Clients: i = 1, ..., n
for t = 0 to T do

Receive wt from the Server
w0

i = wt

for j = 0 to J − 1 do
Perform training with SGD: wj+1

i = wj
i − lrlocal ×∇F (w

j
i ), where F is a loss function

and lrlocal is a local learning rate
end for
Set wt

i = wJ
i

Send local weights wt
i to Server

end for

A.3.3 GEOMETRIC MEDIAN

The geometric median of {y1, · · · , yn}, denoted by med{y1, · · · , yn}, is defined as:

med {y1, . . . , yn} ≜ argmin
y∈Rd

n∑
i=1

∥y − yi∥ .

Here, argmin means the value of the argument y which minimizes the sum.

A.3.4 FOOLSGOLD

Please see FoolsGold at Algorithm 3.

A.3.5 CONTRA

CONTRA can be viewed as FoolsGold with a function on the client’s history to calculate its rep-
utation scores, which also affects the calculation of the weights for aggregation besides the cosine
similarity. Please view the CONTRA algorithm on page 13 of Awan et al. (2021).
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Algorithm 3 FoolsGold learning algorithm

Data: Initial Model w0 and SGD updates ∆i,t from each client i at iteration t. Confidence
parameter κ
for t = 0 to T do

// Per client learning rate for iteration T
Initialize α
for All client from 0 to i do:

// Updates history
Let Hi be the aggregate historical vector

∑T
t=1 ∆i,t

// Feature importance
Let ST be the weight of important features at iteration T
for all other client from 0 to j do:

Let csij be the ST -weighted cosine similarity between Hi and Hj

end for
Let vi = maxj(csi)

end for
for All client from 0 to i do:

for All client from 0 to j do:
// Pardoning
if vi > vj then

csij∗ = vi/vj
end if

end for
// Per-row maximums
αi = 1−maxj(csi)

end for
// Normalize learning rates to 0-1 range
α = α/maxi(α)
// Element-wise logit function
α = κ(ln[(α)/(1− α)] = 0.5)
// Federated SGD iteration
wT = wT−1 +

∑
i αi,∆i

end for
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A.4 THE FULL EXPERIMENTS RESULTS

A.4.1 PARAMETERS OF THE EXPERIMENTS

The parameters employed in the experiments can be found in Table 5. Two sets of hyper-parameters
are shown in Table 6. The experimental results for EMNIST, and Fashion MNIST under Set1 setting
are in Table 7, and Table 8. Their UA-RL’s action vs accuracy plots are in Figure 5, and Figure 6.

Table 5: The parameters employed in the experiments

Parameter MNIST EMNIST F-MNIST
Local learning rate 0.001 0.001 0.001
Server learning rate 0.1 0.1 0.1
Iterations 30 30 30
Number of epochs 5 2 10
Batch size 32 32 32
Momentum 0.9 0.9 0.9
CNN model layers 3 7 12
f of Krum 15 15 15

Table 6: The parameters of modified Sigmod function, Eq.2

za zb zc Empirical points Central domain for restart Step size
Set1 2 -0.7 0 [-4, 0, 4] [-4, 4] 1
Set2 8 -0.7 2.75 [-4, 0, 4] [-4, 4] 1
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A.4.2 EXPERIMENTS RESULT FOR ALL DATASETS UNDER SET1 SETTING

Table 7: A comparison of attack performance on different aggregation rules on the EMNIST dataset.
The numbers in the table are accuracy (%)

α 0.2 1.0 20
Mali Aggr rule NO FR UA-RL UT NO FR UA-RL UT NO FR UA-RL UT

40%

Contra 60.38 10.52 4.70 2.02 66.33 8.14 0.00 0.71 67.64 3.63 0.00 1.20
Fedavg 60.30 13.05 7.26 5.32 66.46 25.88 5.20 9.40 67.67 45.95 0.48 12.08
Foolsgold 60.90 19.16 3.09 1.75 66.61 28.12 0.00 0.87 67.30 6.75 0.00 1.00
Geo med 57.39 24.87 17.15 30.18 66.18 58.03 54.94 54.01 67.27 65.86 66.31 64.18
Krum 23.86 18.54 5.12 28.80 58.48 55.73 15.15 54.64 67.53 67.94 64.41 67.66
Avg 59.74 16.90 8.05 9.82 64.81 35.18 15.06 23.93 67.48 38.03 26.24 29.22

20%

Contra 60.38 17.15 6.11 1.88 66.33 20.15 1.40 1.49 67.64 51.79 6.38 1.08
Fedavg 60.30 39.48 31.02 34.27 66.46 59.59 57.37 39.97 67.67 64.24 62.91 41.57
Foolsgold 60.90 29.41 7.00 3.42 66.61 43.75 0.02 1.30 67.30 64.15 0.00 1.28
Geo med 57.39 40.90 43.48 53.40 66.18 64.89 64.48 65.03 67.27 67.20 67.57 67.26
Krum 23.86 23.81 14.65 26.89 58.48 58.15 55.74 54.37 67.53 65.79 67.19 67.86
Avg 59.74 31.74 21.90 23.24 64.81 49.31 35.80 32.43 67.48 62.63 40.81 35.81

* We do not include results in Avg when the accuracy of no attack (NO) is lower than 30%.

Table 8: A comparison of attack performance on different aggregation rules on the Fashion-MNIST
dataset. The numbers in the table are accuracy (%)

α 0.2 1.0 20
Mali Aggr rule NO FR UA-RL UT NO FR UA-RL UT NO FR UA-RL UT

40%

Contra 78.00 10.00 10.00 10.46 77.86 2.30 8.19 7.53 77.51 0.25 10.00 26.90
Fedavg 78.70 31.15 13.92 30.03 80.81 33.30 12.23 21.10 78.99 61.02 8.30 21.73
Foolsgold 76.80 10.00 10.16 3.44 78.61 7.86 10.00 3.36 79.06 10.00 7.22 30.64
Geo med 76.68 43.76 32.27 70.80 79.04 73.55 63.33 80.37 78.93 75.17 74.01 77.92
Krum 47.21 27.64 12.29 56.33 76.81 75.30 8.80 75.06 78.76 79.12 77.67 78.85
Avg 71.48 24.51 15.73 34.21 78.63 38.46 20.51 37.48 78.65 45.11 35.44 47.21

20%

Contra 78.00 10.00 32.22 5.38 77.86 10.00 10.00 4.74 77.51 0.23 10.04 23.34
Fedavg 78.70 63.47 55.26 64.13 80.81 67.49 65.10 70.64 78.99 63.72 64.00 71.39
Foolsgold 76.80 10.00 10.00 18.17 78.61 10.00 10.00 16.15 79.06 1.90 8.16 7.67
Geo med 76.68 66.40 71.21 78.09 79.04 77.84 78.23 80.11 78.93 80.41 77.46 79.46
Krum 47.21 41.37 27.93 44.72 76.81 79.15 76.57 78.94 78.76 78.33 78.15 76.44
Avg 71.48 38.25 39.32 42.10 78.63 48.90 47.98 50.12 78.65 44.92 47.56 51.66

* We do not include results in Avg when the accuracy of no attack (NO) is lower than 30%.
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Figure 5: UA-RL action vs accuracy on EMNIST

Figure 6: UA-RL action vs accuracy on Fashion-MNIST
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A.4.3 EXPERIMENTS RESULT FOR MNIST UNDER SET2 SETTING

The experimental results for MNIST under Set2 setting are in Table 9, where za = 8, zb = −0.7,
zc = 2.75. This experiment’s UA-RL’s action vs accuracy is in Figure 7.

Table 9: A comparison of attack performance on different aggregation rules on the MNIST dataset.
The numbers in the table are accuracy (%)

α 0.2 1.0 20
Mali Aggr rule NO FR UA-RL UT NO FR UA-RL UT NO FR UA-RL UT

40%

Contra 68.28 23.33 10.58 2.02 78.23 31.02 8.28 0.71 80.04 15.31 6.85 1.20
Fedavg 68.39 14.06 10.45 5.32 80.05 31.24 10.04 9.40 79.64 35.39 5.34 12.08
Foolsgold 68.52 9.80 10.25 1.75 73.45 10.32 7.89 0.87 78.31 28.20 9.84 1.00
Geo med 54.76 20.09 23.54 30.18 78.69 41.88 22.29 54.01 79.07 73.18 76.27 64.18
Krum 11.08 10.28 11.38 28.80 38.07 52.79 12.25 54.64 78.33 76.77 20.98 67.66
Avg 64.99 16.82 13.71 9.82 69.70 33.45 12.15 23.93 79.08 45.77 23.86 29.22

20%

Contra 68.28 11.11 21.84 1.88 78.23 36.10 8.97 1.49 80.04 9.95 10.19 1.08
Fedavg 68.39 33.72 13.67 34.27 80.05 61.69 11.40 39.97 79.64 73.76 2.56 41.57
Foolsgold 68.52 25.63 10.15 3.42 73.45 42.63 10.10 1.30 78.31 11.29 4.43 1.28
Geo med 54.76 34.92 39.56 53.40 78.69 70.25 59.34 65.03 79.07 79.42 78.43 67.26
Krum 11.08 18.68 10.09 26.89 38.07 66.14 17.95 54.37 78.33 78.81 78.35 67.86
Avg 64.99 26.35 21.31 23.24 69.70 55.36 21.55 32.43 79.08 50.65 34.79 35.81

* We do not include results in Avg when the accuracy of no attack (NO) is lower than 30%.

Figure 7: UA-RL action vs accuracy on MNIST
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A.4.4 VALIDATION HISTORY ON MNIST WITH ACTION VALUE OF UA-RL

Figure 8: Four aggregation rule’s validation history on MNIST with action value of UA-RL. 40%
malicious population on Krum, FoolsGold, CONTRA, and FedAvg
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