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ABSTRACT

With the rise of large language models (LLMs), increasing research has recognized
their risk of leaking personally identifiable information (PII) under malicious
attacks. Although efforts have been made to protect PII in LLMs, existing methods
struggle to balance privacy protection with maintaining model utility. In this paper,
inspired by studies of amnesia in cognitive science, we propose a novel approach,
Proactive Privacy Amnesia (PPA), to safeguard PII in LLMs while preserving their
utility. This mechanism works by actively identifying and forgetting key memories
most closely associated with PII in sequences, followed by a memory implanting
using suitable substitute memories to maintain the LLM’s functionality. We conduct
evaluations across multiple models to protect common PII, such as phone numbers
and physical addresses, against prevalent PII-targeted attacks, demonstrating the
superiority of our method compared with other existing defensive techniques. The
results show that our PPA method completely eliminates the risk of phone number
exposure by 100% and significantly reduces the risk of physical address exposure
by 9.8% – 87.6%, all while maintaining comparable model utility performance.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Team et al., 2023; Dubey
et al., 2024) have achieved remarkable success in recent years, with their wide adoption either as
general-purpose models or, after fine-tuning, as specialized and personal assistants. Despite their
success, LLMs with huge parameter counts and great capacity in the meantime exhibit the concerning
“memorization” phenomenons (Carlini et al., 2019; 2021), i.e., they can precisely memorize some
training data. Such memorization is vulnerable to various attacks (e.g., membership inference attacks
and data extraction attacks) and risks severe privacy breaches. One of the most serious concerns
comes from the attacks that aim to extract personal identifiable information (PII) memorized by the
models, which compromise users’ privacy and are likely to cause real-world harm consequently.

To defend against such PII or data extraction attacks, several machine unlearning techniques have
been applied to LLMs. However, existing methods typically fall short in terms of the trade-off
between the defense performance and model utility. For example, most unlearning approaches are
based on gradient ascent (Jang et al., 2022; Wang et al., 2024) and often adversely affect model
functionalities to an extent where the model cannot handle their original tasks anymore and thus
becomes no longer useful. In contrast, although not harmful to the model utility, gradient descent
methods (Patil et al., 2023; Ouyang et al., 2022; De Cao et al., 2021) may inject less robust defense,
leaving the model still vulnerable to data extraction attacks. Therefore, a method that can effectively
defend against PII extraction attacks while maintaining model utility is still lacking.

In this work, we fill this gap by proposing a novel methodology, called Proactive Privacy Amnesia
(PPA). Inspired by Anterograde Amnesia (Markowitsch, 2008), we think that achieving a better bal-
ance between performance and privacy protection requires two essential components: (1) selectively
forgetting only the key element within the PII, without affecting other tokens; and (2) maintaining
normal functionality by replacing sensitive information with non-sensitive memory. To seamlessly
integrate these components, our method, PPA, as shown in Figure 1, comprises three parts: (1)
Sensitivity Analysis, which identifies the key elements in memorized PII; (2) Selective Forgetting,
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Figure 1: The flowchart illustrates our method, Proactive Privacy Amnesia (PPA). All examples
presented in the flowchart are real instances from the LLaMA2-7b experiments.

which focuses exclusively forgetting on the key elements; and (3) Memory Implanting, a strategy used
to compensate for loss in model performance due to the Selective Forgetting process. We demonstrate
the effectiveness of our method through extensive experiments on LLaMA2 (Touvron et al., 2023) and
LLaMA3 (Dubey et al., 2024) models to defend existing PII-targeted attacks on common PII, such as
phone numbers and physical addresses. Extensive experimental results demonstrate that our method,
PPA, achieves the most favorable balance between defense capability and model performance when
compared to other prevalent defensive methods.

For example, in the Enron email experiment for phone number defense, PPA enhances model
performance by 372.7% compared to methods with mediocre model utility while maintaining the
same level of defense in terms of risk score. Additionally, PPA achieves a 100% reduction in risk
score, outperforming methods having mediocre defense effectiveness without compromising model
utility. For physical address defense in the same experiment, PPA increases model performance by
260.0% compared to methods with mediocre model utility and increase the risk score by 151.7%.
Furthermore, PPA surpasses methods with mediocre defense effectiveness by achieving a 26.2%
reduction in risk score, with only a 29.4% decrease in model performance.

Our contributions are as follows:

• We propose a novel method PPA that can preserve a person’s PII on LLMs while maintaining
LLMs’ performance.

• We conducted input rephrasing, probing, and soft prompt attacks to evaluate the effectiveness
of our PPA approach. The PPA effectively safeguards phone numbers and physical addresses,
with only a marginal drop in LLMs’ performance.

• We introduce the concept of the ’memorization factor’ and use it to identify the key elements
within PII sequences that influence the model’s ability to retain such information. This
approach is using in sensitivity analysis and supported by theoretical justification.

• PPA is a flexible method that enables adjusting the balance between defense capability and
model performance by modifying the number of key elements to be forgotten.

2 RELATED WORKS

2.1 LLM DATA EXTRACTION ATTACKS

Training data extraction attack (Carlini et al., 2021) first uses GPT-2 (Radford et al., 2019) with
designed prompts to generate sets of sentences and subsequently use an improved membership
inference method to detect which generated sentences are from the training dataset. However, this
paper focuses on attacking general privacy information, our study specifically targeted a person’s PII.
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Black-box Probing (Kim et al., 2024) employs manual prompts to extract a person’s PII from LLMs.
Meanwhile, Input Rephrasing attack (Patil et al., 2023) uses a paraphrasing model from Krishna et al.
(2024) to rephrase attack prompts. White-box Probing (Kim et al., 2024) trains soft prompts from the
targeted model using black-box templates and employs these soft prompts to attack a person’s PII.

2.2 POST-PROCESSING DEFENSE METHODS

Gradient Based method There are several types of gradient based method: 1) Gradient Descent
Method. The Empty Response Defense (Patil et al., 2023; Ouyang et al., 2022) uses gradient descent
to increase the probability of generating a predefined "empty" response like "I don’t know." Similarly,
the Error Injection method (De Cao et al., 2021) increases the likelihood of generating false target
responses through gradient descent. But these methods cannot protect user’s PII effectively. 2)
Gradient Ascent Method. Jang et al. (2022) apply gradient ascent on sequences of target tokens to
unlearn specific knowledge. Wang et al. (2024) highlights the risk of embedding general knowledge
within personal data and suggests using sensitivity testing to target specific sequence spans for
unlearning, rather than entire instances. However, Jang et al. (2022)’s method may lead to model
collapse as the target set size grows. 3) Combination of Gradient Descent and Ascent. A more
complex approach is outlined by Yao et al. (2023), involving three loss types: gradient ascent on
the forgetting dataset, random smooth loss, and gradient descent on a normal dataset to maintain
model performance. Chen & Yang (2023) introduce unlearning layers into transformer architectures
and perform gradient ascent on these layers while applying gradient descent on the retained dataset
to prevent degradation. Additionally, Yao et al. (2024) show that combining gradient ascent and
descent improves hyperparameter robustness. Notably, these methods require an additional dataset to
preserve model performance.

Memory Editing method. Wu et al. (2023) introduces a privacy neuron detector designed to identify
and eliminate neurons that significantly contribute to privacy leakage, protecting user data privacy.
However, this approach becomes time-consuming when applied to extensive user data and may
reduce model performance due to the extensive deletion of neurons. Patil et al. (2023) introduce
the Head Projection Defense method, which addresses the issue of privacy information potentially
residing within a model’s intermediate layers. They employ interpretability techniques from Geva
et al. (2020) to identify the top-k possible tokens in each layer and develop a loss function aimed
at preventing the reoccurrence of deleted answers in each layer. However, this method is limited to
single-token scenarios, which may not be practical in real-world situations where private information
could involve multiple tokens.

3 THREAT MODEL

Attacker’s goal: We consider a scenario where an LLM is trained on the dataset that includes diverse
types of personal identifiable information (PII), such as phone numbers and physical addresses. The
attacker’s goal is to construct prompts that are likely to reveal sensitive information from an LLM
through its responses. These attacks can lead to the partial or complete exposure of a set of PII for a
given context, such as several digits or the entirety of a target phone number, which can be leveraged
by attackers to learn user privacy or even re-identify users.

Attacker’s capability: We consider both probing and soft prompt attackers. Probing attackers
know the target users’ names and the model’s output logits. They use a set of prompts to query an
LLM (Kim et al., 2024), exposing the user’s PII in its responses. Soft prompt attackers, in addition
to knowing the target users’ names and the model’s output logits, have access to the model and
an additional dataset to train soft prompts (Kim et al., 2024). These trained soft prompts are then
prepended to the probing prompts to trigger more extensive exposure of users’ PII.

To ensure that our attacks are realistic and account for rate limits and other query restrictions, we
assume that the attacker operates with a limited budget for query prompts. We also consider that
PIIs with similar data attributes present comparable risks of data leakage. For instance, an attacker’s
techniques effective in extracting phone numbers could potentially be applied to reveal social security
numbers or credit card numbers, as these types of PIIs are all purely numerical in nature.
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4 PROACTIVE PRIVACY AMNESIA

In this section, we introduce our method, PPA. We begin by discussing the inspiration behind our
approach, which identifies key elements within a PII sequence that determine whether the sequence
can be memorized by the model. Identifying these key elements enables us to present a unique
and theoretically grounded approach to solving the problem. Finally, by translating this theoretical
analysis into a practical solution, we propose PPA.

4.1 INSPIRATION AND OVERVIEW

Our Proactive Privacy Amnesia is inspired by Anterograde Amnesia (Markowitsch, 2008), which
is the inability to form new memories following an event while preserving long-term memories
before the event. In a case study described by Vicari et al. (2007), a girl suffering from Anterograde
Amnesia since childhood exhibited severe impairment in episodic memory while retaining her
semantic memory. This suggests that certain key elements within the information determine the
information retention. By incorporating Sensitivity Analysis and Selective Forgetting, we focus
on forgetting only the crucial parts, rather than removing the entire sentence. This approach has
the advantage of minimizing the impact on model performance. However, we found that Selective
Forgetting can harm model performance, so we introduce Memory Implanting to compensate for this
degradation. Therefore, PPA consists of three components: (1) Sensitivity Analysis, which identifies
the key elements within memorized PII; (2) Selective Forgetting, which targets the forgetting of these
specific key elements; and (3) Memory Implanting, a technique designed to mitigate the loss in model
performance resulting from the Selective Forgetting process.

4.2 THEORETICAL JUSTIFICATION OF SENSITIVITY ANALYSIS.

Definition of Sensitivity Analysis. To quantify how well the model memorize the PII sequence,
we introduce L(k) as defined in Definition (1). The primary goal in identifying key elements is to
isolate tokens that carry a higher amount of information. To achieve this, we consider a token more
informative if it significantly simplifies the prediction of subsequent tokens, thereby reducing the
uncertainty in predicting future tokens.
Definition 1. (Cross-entropy Loss of the PII Sequence) We define

L(k) = LCE (p(x1, . . . ,xk), q(x1, . . . ,xk)) , (1)

where LCE is the Cross Entropy Loss, and x1, · · · , xk refers to the first k tokens of a PII sequence.

We search the key element k such that the learning loss achieves the maximum at this token and does
not increase significantly after this token, i.e.,

L(k − 1) < L(k) ≈ L(k + 1) ≈ L(k + 2) ≈ · · · , (2)

which means that the token k helps the model memorize the following tokens in this PII sequence.
Notice that LCE is the cross entropy loss of the PII sequence, which can keep growing with more
tokens and thus the last token must achieve the maximum of LCE. This solution is trivial and cannot
show the essentiality of the token. To tackle this issue, we propose to find the token k with the largest
memorization factor Dk, which can lead to a non-trivial solution of Eq. (1) as stated in Proposition 1:
Definition 2. (Memorization Factor) We define the memorization factor Dk as follows:

Dk =
Hk −Hk+1

Hk
;Hi = LCE(pi, qi), (3)

Where pi(x) be the true probability distribution and qi(x) the predicted probability distribution for
the i-th token in the PII sequence.
Proposition 1. Maximizing the memorization factor can lead to

max
k

D(k) =

{
maxk L(k) if ∃k,∇L(k) = 0,
maxk 1/dNewton(k) if ∄k,∇L(k) = 0.

(4)

dNewton(k) is Newton’s Direction at k, which is from Newton Method in convex optimization (Boyd
& Vandenberghe, 2004). maxk 1/dNewton(k) is achieved when dNewton(k) → 0+. As L(k) is non-
decreasing, a small positive dNewton(k) implies that the gradient at token k quickly approaches 0 with
a negative second-order derivative.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Sensitivity analysis on phone number example:
’John Griffith phone number (713) 853-6247’. ’8’
is the largest Di within ’(713) 853-6247’.

(b) Sensitivity analysis on physical address exam-
ple: "Jeffrey Dasovich address 101 California St.
Suite 1950". ’_Su’ is the largest Di within ’101
California St. Suite 1950’.

Figure 2: Sensitivity analysis on the phone number and physical address examples: The darker color
on the PII tokens indicates a larger memorization factor. The red dot in the figure represents the top-1
key element.

Examples on PII sequences. We do sensitivity analysis on "John Griffith phone number (713)
853-6247," as shown in Figure 2a, the token ’8’ exhibits the most significant decrease in cross-entropy
rate, making it the key element in this context. Similarly, in "Jeffrey Dasovich address 101 California
St. Suite 1950", depicted in Figure 2b, the token ’_Su’ shows the most notable drop in cross-entropy
rate, identifying ’_Su’ as the key element.

4.3 FORMULATING PPA

We consider a large language model F (·) trained on a dataset D containing PII, denoted as P =
{(x, y)} where x is the person’s name and y is their PII sequence. In response to a deletion request
for specific data Df = {xf , yf}, our objective is to train an updated model F ′(·) that cannot extract
data from Df . We employ an memory implanting dataset De = {xf , ye}, where x is the person’s
name and y is a fabricated PII sequence.

Algorithm 1 Proactive Privacy Amnesia (PPA)

Initialization. Forget dataset Df
k = {xf , yf}, Memory Implanting dataset De = {xf , ye}. Large Language

Model F (·) with parameters w. Weights of the model ∆w. The key elements that the model needs to forget
Df

k . Total number of users U , u = 0.

Defensive Training
Df

k ← top(k, SensitivityAnalysis(Df )) ▷ Sensitivity Analysis on forget dataset.
while u ≤ U do
Df

u ← Df
k [u] ▷ Select person’s PII

∆w ← SelectiveForgetting(Df
u,∆w)

De
u ← De[u] ▷ Select person’s Memory Implanting PII

∆w ← MemoryImplanting(De
u,∆w)

u← u+ 1
end while

Outcome:
Derive the LLM F ′(·) with parameters w′

Sensitivity Analysis. Initially, we create unlearning templates for each person’s PII, structured as
the person’s name, PII type, and the PII sequence. For instance, take the examples of John Griffith’s
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phone number, "John Griffith phone number (713) 853-6247", and Jeffrey Dasovich address, "Jeffrey
Dasovich address 101 California St. Suite 1950". Next, we perform a sensitivity analysis on the
PII sequence to calculate Di and identify the key token within the sequence that is crucial for the
language model’s retention, as shown in Figure 2a and Figure 2b.

We then apply topk to Di, calculated as follows:
topk(D1, D2, . . . , Dn) = {x1, x2, . . . , xk} (5)

Selective Forgetting. Then, we maximize the following loss function, on the key element tokens
x = (x1, . . . , xk) based on Equation 5, which can be calculated as:

LUL(Fθ, x) = −
k∑

t=1

log(pθ(xt|x<t)) (6)

Here, x<t represents the PII sequence of tokens x = (x1, . . . , xt−1), and pθ(xt|x<t) is the condi-
tional probability that the next token will be xt, given the preceding sequence x<t, in a language
model F parameterized by θ.

Memory Implanting. After that, we apply the memory implanting, borrowed idea from error
injection (De Cao et al., 2021), to compensate for the performance damage done by the selective
forgetting is calculated as follows:

argmax
M

p(y∗|x;Fθ) (7)

where y∗ represents the alternative, false target as proposed by (Microsoft, 2024).

5 EXPERIMENTS

In the experiments, we demonstrate that our PPA effectively preserves PII while maintaining model
performance across multiple settings.

5.1 SETUP

Benchmarks. We conduct extensive experiments by fine-tuning LLaMA2-7b model (Touvron
et al., 2023) and LLaMA3-8b model (Dubey et al., 2024) on two different datasets: 1) Enron email
experiment which fine-tune LLM on Enron email dataset (Klimt & Yang, 2004) 2) Fraud email
experiment which fine-tune LLM on Fraud email dataset (Radev, 2008). To evaluate our defense
method, we construct separate ground truth tables, details in Appendix B, and evaluation dataset for
the Enron email dataset and the Fraud email dataset, specified in Appendix C.

Attack methods. We implemented the input rephrasing attack(Patil et al., 2023; Krishna et al.,
2024) to generate multiple attack templates. Additionally, we employed the probing attack using the
twin template probing method described in Kim et al. (2024), and the soft prompt attack (Kim et al.,
2024) using trained soft prompts, attacking persons’ phone numbers and physical addresses1, more
details in Appendix P.

Baseline defense methods. We consider 4 representative defense methods as our baseline. Empty
Response (Patil et al., 2023; Ouyang et al., 2022) applies gradient descent to non-sensitive information,
used as a "dummy" to replace PII sequences. Error Injection (De Cao et al., 2021) using gradient
descent to increase the likelihood of generating fake PII sequence. Unlearning (Jang et al., 2022) do
gradient ascent on PII sequence. DEPN (Wu et al., 2023) use memory editing technique to erase the
neurons, which significantly contribute privacy leakage, in the model, more details are in Appendix O.

PPA (ours). The PPA, as detailed in Section 4, to protect PII. During the sensitivity analysis and the
selective forgetting stages, a single token was selected from each PII sequence for selective forgetting.
In particular, we established k = 1 in Equations 5 and 6. Both selective forgetting and memory
implanting stages were implemented following the training guidelines specified in Appendix T with a
single epoch.

1All attack methods employed the AWS Comprehend Service (Amazon Web Services Comprehend, 2024) to
extract PII from the model output.
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5.2 EVALUATION METRICS

Attack Success Metric In this paper, we propose our PII risk score metric and apply a modified
exact match score metric (Kim et al., 2024) in our experiments. For the phone number risk score, we
utilize an eighth-order Levenshtein distance (Po, 2020) to compare the predicted phone number with
the ground truth. For calculating the risk score of physical addresses, we first use the AWS Location
Service (Amazon Web Services Location, 2024) to geocode a location and obtain detailed physical
address information. Then, we compare the details of the predicted physical address with the ground
truth physical address using our physical address risk score Table 1. To calculate the exact match
score for both phone numbers and physical addresses, we will award 1 point when the prediction
completely matches the ground truth. More scoring details are in Appendix Q.

Category Address Risk Score
Country 0.005
Region 0.1
SubRegion 0.15
Municipality 0.2
PostalCode 0.3
Street 0.3
AddressNumber 0.3

Table 1: Address Risk Score

Model Performance Metric We employ two pri-
mary metrics, which are widely used for evaluating
LLMs, to measure their performance: 1) Perplex-
ity (Touvron et al., 2023; Radford et al., 2019; Brown
et al., 2020), averaged by three different perplex-
ity tests, and 2) Email completion, where we eval-
uate the content of email completions using LLM
Judge (Thakur et al., 2024; Verga et al., 2024; Zhang
et al., 2024). For the Perplexity metric, a lower value
generally indicates better performance (Blei et al.,
2003). For the Email completion metric, we ranked
the outputs from 1 to 10, with 10 being the best and
1 the worst, using the GPT-4o model as our evaluator.
Further details on the model performance metric can be found in Appendix R.

5.3 MAIN RESULTS

Notation for Experimental Tables. RS denotes the risk score, while EM represents the exact
match score. ’Perplexity’ refers to the average value of our perplexity metric; ’GPT-4o Email Score’
indicates the average score of our email completion metric as judged by GPT-4o.

Enron email experiment. For the phone number defense results, Table 2 shows that our method,
PPA, effectively protects the phone numbers of all persons, achieving both a phone number risk score
and a phone number exact match score of zero while maintaining model performance comparable to
Fine-tuned LLaMA2-7b and LLaMA3b-8b. In contrast, while methods like Empty Response and
Error Injection maintain good model performance, they fail to protect all phone numbers. Unlearning
successfully safeguards all phone numbers but results in a significant decline in model performance.

Table 3 shows that our method, PPA applied to LLaMA2-7b for defense against physical address
exposure, outperforms both Empty Response and Error Injection by reducing the risk score by 87.6%
and 26.2%, respectively. This is achieved with only a marginal increase in the perplexity score
by 16.7% and 35.4%, and a slight decrease in the Email Completion score by 30.7% and 29.4%.
Although Unlearning effectively protects users’ physical addresses, lowering the risk score by 60.2%,
it results in an infinite perplexity score and an Email Completion score of just 1.0. Additionally, PPA
outperforms DEPN by reducing the risk score by 9.8%, decreasing the perplexity score by 91.0%,
and increasing the Email Completion score by 157.1%. For LLaMA3-8b, PPA also shows strong
performance in defending against physical address exposure, surpassing Empty Response and Error
Injection by reducing the risk score by 60.3% and 16.2%, respectively. It achieves this while slightly
decreasing the perplexity score by 26.9% and increasing it by 9.7%, with only a marginal decrease in
the Email Completion score by 16.6% and 4.7%. Although Unlearning remains effective, reducing
the risk score by 83.2%, it again leads to an infinite perplexity score and an Email Completion score
of only 1.0. PPA outperforms DEPN by reducing the risk score by 16.2%, lowering the perplexity
score by 71.4%, and increasing the Email Completion score by 166.6%.

Fraud email experiment. Table 4 shows that PPA effectively protects the phone numbers of 50
persons, achieving a phone number risk score of 0.3 while maintaining model performance comparable
to that of the Fine-tuned LLaMA2-7b model. Similarly, PPA safeguards the physical addresses of

7
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Model Performance Attack
Enron Email Experiment
Phone Number Defense Model Perplexity

GPT-4o

Email Score
Input Rephrase Probing Soft Prompt Attack Average

RS ↓ EM ↓ RS ↓ EM ↓ RS ↓ EM ↓ RS ↓ EM ↓
Original 5.6 8.6 1.3 1.0 0.0 0.0 0.0 0.0 0.4 0.3

Finetuned 16.2 5.0 63.9 60.0 57.9 56.0 87.6 84.0 69.8 66.7

Empty Response 16.5 5.7 51.7 49.3 37.2 34.8 80.5 75.9 56.4 53.3

Error Injection 14.6 5.2 24.2 22.2 19.3 17.6 21.7 20.8 21.7 20.2

Unlearning 3.2× 1011 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEPN 77.2 2.0 9.0 7.7 0.0 0.0 8.2 6.4 5.7 4.7

LLaMA2-7b

PPA 16.0 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Original 9.9 9.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Finetuned 79.2 5.0 44.6 42.4 38.3 37.3 42.6 40.6 48.9 2.3

Empty Response 82.9 4.7 25.7 23.8 21.5 19.8 25.3 24.1 24.1 22.5

Error Injection 60.5 5.3 13.3 12.9 5.8 5.2 18.1 16.6 12.4 11.5

Unlearning 5.0× 1021 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEPN 138.5 4.5 37.2 34.2 26.1 24.5 26.7 25.3 30.0 28.0

LLaMA3-8b

PPA 67.5 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Comparative Analysis of Phone Number Defense Strategies Against Various Attacks in
Enron Email Experiment. PPA effectively defend all user’s phone number with comparable model
performance with fine-tuned model.

Model Performance Attack
Enron Email Experiment
Physical Address Defense Model Perplexity

GPT-4o

Email Score
Input Rephrase Probing Soft Prompt Attack Average

RS ↓ EM ↓ RS ↓ EM ↓ RM ↓ EM ↓ RS ↓ EM ↓
Original 5.6 8.6 24.5 3.0 17.1 3.0 6.5 1.0 16.0 2.3

Finetuned 16.2 5.0 59.4 1.0 50.4 1.0 72.7 2.8 60.8 1.6

Empty Response 16.7 5.2 57.5 1.0 46.3 1.0 73.7 3.7 59.2 1.9

Error Injection 14.4 5.1 19.2 1.0 5.1 1.0 5.4 1.0 9.9 1.0

Unlearning inf 1.0 3.8 1.0 2.5 1.0 2.5 1.0 2.9 1.0

DEPN 218.9 1.4 16.3 1.5 5.2 1.0 2.8 1.0 8.1 1.2

LLaMA2-7b

PPA 19.5 3.6 12.1 1.0 4.7 1.0 5.2 1.0 7.3 1.0

Original 9.9 9.2 21.5 7.4 19.4 6.4 7.8 2.6 16.2 5.4

Finetuned 79.2 5.0 66.1 4.6 41.2 1.0 39.5 1.5 48.9 2.3

Empty Response 78.8 4.8 45.7 5.3 37.4 3.1 29.8 2.6 37.6 3.6

Error Injection 52.5 4.2 25.3 1.0 10.0 1.0 18.2 2.0 17.8 1.3

Unlearning inf 1.0 3.1 1.0 2.2 1.0 2.2 1.0 2.5 1.0

DEPN 201.5 1.5 45.5 3.0 15.7 2.0 9.1 5.3 17.8 3.4

LLaMA3-8b

PPA 57.6 4.0 16.7 1.0 2.2 1.0 25.8 1.0 14.9 1.0

Table 3: Comparative Analysis of Physical Address Defense Strategies Against Various Attacks
in Enron Email Experiment. PPA has the best trade off between defense capability and model
performance.

the other 50 persons, achieving an physical address risk score of 3.0 without compromising model
performance relative to the Fine-tuned LLaMA2-7b model.

Main Results. We summarize the key results in Tables 2, 3, 4, as follows: Observations from both
phone number and physical address defenses indicate that PPA provides the best balance between
safeguarding users’ PII and maintaining model performance, compared to other defense methods.

6 ABLATION STUDIES

6.1 ANALYSIS OF THREE STAGES IN PPA

Sensitivity Analysis + Selective Forgetting. To assess the effectiveness of sensitivity analysis
combined with selective forgetting in preserving the PII of targeted persons, we applied this approach

8
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Model Performance Attack
Fraud Email Experiment

Defense Model Perplexity
GPT-4o

Email Score
Input Rephrase Probing Soft Prompt Attack Average

RS ↓ EM ↓ RS ↓ EM ↓ RS ↓ EM ↓ RS ↓ EM ↓
Original 4.06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Finetuned 1.11 2.4 20.6 19.0 20.2 19.0 0.4 0.0 13.7 12.6

Empty Response 1.11 2.2 15.6 13.0 13.6 12.0 0.4 0.0 9.8 8.3

Error Injection 1.10 2.0 11.7 11.0 7.2 6.0 0.2 0.0 6.3 5.6

Unlearning 1.33 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEPN 1.18 2.8 5.4 4.0 6.6 5.0 0.0 0.0 4.0 3.0

LLaMA2-7b

Phone Number Defense

PPA 1.10 2.7 1.0 1.0 0.0 0.0 0.0 0.0 0.3 0.3

Original 4.06 1.0 4.7 0.0 2.4 0.2 1.4 0.0 2.8 0.0

Finetuned 1.11 2.4 12.4 0.0 18.6 0.0 4.3 0.0 11.7 0.0

Empty Response 1.11 2.3 13.2 0.0 9.3 0.0 4.7 0.2 9.0 0.0

Error Injection 1.10 2.2 8.3 0.2 6.5 0.0 3.8 0.2 6.2 0.1

Unlearning 27.54 1.0 1.3 0.0 1.2 0.0 1.2 0.0 1.2 0.0

DEPN 1.94 1.3 3.1 0.0 1.6 0.0 0.7 0.0 1.8 0.0

LLaMA2-7b

Physical Address Defense

PPA 1.10 2.5 4.2 0.0 4.2 0.0 0.8 0.0 3.0 0.0

Table 4: Comparative Analysis of Phone Number and Physical Address Defense Strategies Against
Various Attacks in Fraud Email Experiment.

Model Performance Attack
Phone Number Ablation Study Enron perplexity

first 512
Enron perplexity

stride 256 GPT4 perplexity Average Score Input Rephrase Probing Soft Prompt Average

RS ↓ 0.0 0.0 0.0 0.0
Proactive Privacy Amnesia 26.7 6.8 14.4 16.0

EM ↓ 0.0 0.0 0.0 0.0

RS ↓ 0.0 0.0 0.0 0.0
Sensitivity Analysis + Selective Forgetting 853.6 11.8 28.0 297.8

EM ↓ 0.0 0.0 0.0 0.0

RS ↓ 0.5 0.0 0.0 0.2
Unlearning + Memory Implanting 26.8 6.7 15.3 16.3

EM ↓ 0.5 0.0 0.0 0.2

RS ↓ 28.8 23.6 27.8 26.7
Fix index 0 Selective Privacy Amnesia 24.7 6.5 14.4 15.2

EM ↓ 26.3 21.3 26.3 24.6

RS ↓ 3.5 1.2 2.2 2.3
Fix index 1 Selective Privacy Amnesia 26.4 6.7 14.4 15.9

EM ↓ 3.0 1.0 2.0 2.0

RS ↓ 0.4 1.0 1.8 1.1
Fix index 2 Selective Privacy Amnesia 24.9 6.6 14.6 15.4

EM ↓ 0.0 1.0 1.3 0.8

Table 5: Ablation study on phone numbers. ‘RS’ and ‘EM’ represent the risk score and the exact
match score, respectively.

to protect PII, such as phone numbers and physical addresses. While selective forgetting marginally
reduces performance degradation, the resulting model remains largely ineffective, as demonstrated in
Table 5 and Table 6.

Model Performance Attack
Physical Address Ablation Study Enron perplexity

first 512
Enron perplexity

stride 256 GPT4 perplexity Average Score Input Rephrase Probing Soft Prompt Average

RS ↓ 12.1 4.7 5.2 7.3
Proactive Privacy Amnesia 35.6 8.2 14.6 19.5

EM ↓ 1.0 1.0 1.0 1.0

RS ↓ 3.8 2.5 2.5 2.9
Sensitivity Analysis + Selective Forgetting inf 8.2× 1030 1.6× 1018 inf

EM ↓ 1.0 1.0 1.0 1.0

RS ↓ 10.1 4.9 5.2 6.7
Unlearning + Memory Implanting 61.4 10.6 28.8 33.6

EM ↓ 1.0 1.0 1.0 1.0

RS ↓ 34.3 9.8 7.5 17.2
Fix index 0 Selective Privacy Amnesia 29.9 7.4 20.6 19.3

EM ↓ 1.0 1.0 1.0 1.0

RS ↓ 11.7 5.5 15.4 10.9
Fix index 1 Selective Privacy Amnesia 29.8 7.6 15 17.4

EM ↓ 1.0 1.0 1.0 1.0

RS ↓ 5.7 3.1 4.5 4.4
Fix index 2 Selective Privacy Amnesia 53.3 9.4 14.9 25.9

EM ↓ 1.0 1.0 1.0 1.0

Table 6: Ablation study on physical addresses. ‘RS’ and ‘EM’ represent the risk score and the exact
match score, respectively.
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Fix index Selective Privacy Amnesia. To evaluate the efficacy of sensitivity analysis in safeguarding
the PII of targeted persons, we employed a fixed index Selective Privacy Amnesia approach, focusing
on indices 0, 1, and 2 as the primary elements for removal. Our findings indicate that the fixed
index Selective Privacy Amnesia falls short in adequately safeguarding users’ phone numbers, as
illustrated in Table 5. When it comes to preserving users’ physical addresses, as depicted in Table 6,
employing the fixed index 0 and 1 Selective Privacy Amnesia, yielding address risk scores of 17.2
and 10.9 respectively, does not offer as robust protection as Proactive Privacy Amnesia, which yields
an address risk score of 7.3. While the fixed index 2 Selective Privacy Amnesia, with an address
risk score of 4.4, does provide superior protection compared to Proactive Privacy Amnesia, it comes
with higher perplexity, indicative of lower model performance. This is attributed to the fixed index
potentially altering the original meaning of words. For instance, in the case of "New York City,"
unlearning the single token "City" would compel the model to disregard the frequent occurrence of
"City" following "New York," consequently compromising the model’s performance.

Unlearning + Memory Implanting. To assess the effectiveness of sensitivity analysis coupled
with selective forgetting in safeguarding the PII of targeted persons, we implemented unlearning in
conjunction with memory implanting, as shown in Table 5 6. Our findings revealed that Unlearning
+ Memory Implanting proved capable of safeguarding the majority of persons’ phone numbers and
physical addresses, resulting in phone number risk scores of 0.2 and address risk scores of 6.7.
However, this approach exhibited higher perplexity levels, measuring 16.3 and 33.6, which signifies
diminished model performance. This is because the unlearning method essentially erases entire PII
sequences, thereby enhancing PII protection capabilities at the expense of model performance.

6.2 PPA TRADE-OFFS: NUMBER OF FORGOTTEN INDEXES

Table 2 and 3 reveal that, after applying PPA, the address risk score remains at 7.3, while the phone
risk score drops to 0. This disparity may be due to physical addresses being longer and less structured
than phone numbers. Therefore, we have conducted an ablation study to quantify the drop-off in
risk score as the number of forgotten indexes increases. We conducted experiments on Address PPA.
Specifically, we set k = 1, 5, 10, 15, 20, 25 in Equations 5 and 6. Both stages followed the training
protocols in Appendix T for a single epoch. For Addresses, the PPA method improves the PII risk
score if more than one index is selected for forgetting. However, selecting too many indexes causes
the model performance to deteriorate, as shown in Figure 3. This ablation demonstrates that PPA
is a flexible method, allowing for adjustments to the balance between defense capability and model
performance by modifying the number of key elements to be forgotten.

7 CONCLUSION AND DISCUSSION

Figure 3: Address PPA Risk score vs forget num-
ber of indexes: PPA tunes the parameter k, as
defined in Equations 5 and 6.

We demonstrated that Proactive Privacy Am-
nesia achieves the optimal balance between
defense performance and model utility com-
pared to methods like Error Injection, Empty
Response, Unlearning, and DEPN for protecting
users’ PII, including phone numbers and phys-
ical addresses. Additionally, we initially intro-
duce the concept of the ’memorization factor’,
which affects the model’s capacity to retain PII
sequences. This concept is using in sensitivity
analysis and supported by theoretical justifica-
tion. Furthurmore, PPA is a flexible method that
can adjust its balance between defense capabil-
ity and model performance. Future work could
extend PPA to protect the privacy of relation-
ships, such as those between persons or between
organizations.
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APPENDIX

A EXISTING ASSETS

The two existing assets used in this work are the Enron email dataset Klimt & Yang (2004) and aeslc
dataset Zhang & Tetreault (2019). Please see their information below.

• Enron email dataset: The URL is http://www.enron-mail.com/email/; the license is not
clearly stated by the authors.

• aeslc dataset: The URL is https://huggingface.co/datasets/aeslc; the license is not clearly
stated by the authors.

B DETAILS OF BUILDING GROUND TRUTH TABLE

To evaluate our defense method, we constructed a ground truth table comprising two parts: (1) We
utilized the AWS Comprehend Service (Amazon Web Services Comprehend, 2024) to extract PII,
including names, phone numbers, and physical addresses; (2) we employed (Manakul et al., 2023) to
determine the correlations between specific PIIs and the corresponding persons.

C DETAILS OF EVALUATION DATASET

For Enron email dataset, we constructed our evaluation ground truth table using the aelsc training
dataset (Zhang & Tetreault, 2019). However, there is overlap between the aelsc training and validation
datasets, which are used to train the soft prompt for the soft prompt attack. To ensure a fair
comparison between soft prompt and probing attacks, we excluded certain persons’ scores, as detailed
in Appendix D. Consequently, our evaluation focused on 468 persons whose phone numbers were
disclosed and 790 persons whose physical addresses were revealed.

For Fraud email dataset, we randomly selected 50 persons who had disclosed their phone numbers
and 50 persons who had revealed their physical addresses to build our evaluation ground truth table.

D EVALUATION DETAILS OF THE ENRON EMAIL EXPERIMENT.

We constructed our evaluation ground truth table on the aeslc training dataset (Zhang & Tetreault,
2019), which comprises data from 1,359 persons. Within this dataset, 577 persons disclosed their
phone numbers and 899 persons revealed their physical addresses. To ensure a fair comparison
between soft prompt and probing attacks, we excluded persons whose data overlapped between
the aeslc training and validation datasets, because we used aeslc validation dataset to train the soft
prompt attack’s soft prompt. The number of overlapping persons is 109. Consequently, our evaluation
focused on 468 persons (577 - 109) whose phone numbers were exposed and 790 persons (899 - 109)
whose physical addresses were exposed. Subsequently, we utilized this evaluation ground truth table
to assess the effectiveness of the defense methods.

E COMPARISON WITH DIFFERENTIAL PRIVACY-BASED METHODS

We implemented the Differentially Private Decoding (DP Decoding) in (Majmudar et al., 2022)
and the Just Fine-Tune Twice (JFT) method in (Shi et al., 2022). To evaluate these methods, we
conducted probing attacks on both DP Decoding and JFT. Specifically, for DP Decoding, we tested
various values of the lambda parameter ranging from 0.1 to 0.9 and selected the result that achieved
the best balance between utility and privacy protection. We observed that our PPA method still
outperformed both DP Decoding and JFT, achieving a lower risk score and a higher utility score, as
shown in Table 7. This superior performance can be attributed to the fact that DP Decoding applies a
uniform distribution adjustment to next-token predictions, which lacks the necessary customization
for scenarios involving PII.
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Phone Defense Model Risk Score ↓ Exact Match Score ↓ GPT-4o Email Score

DP Decoding 30.4 28.4 4.7

JFT 28.4 26.0 5.0

PPA 0.0 0.0 5.2

Table 7: Performance comparison of Differential Privacy-Based methods.

F MODEL PERFORMANCE EVALUATION ON MMLU AND TRUTHFULQA

We provide some new evaluations on the model’s performance metrics on both MMLU (Hendrycks
et al., 2020) and TruthfulQA (Lin et al., 2021). As our research primarily focuses on the text
generation capabilities of models, we had the models that have been protected by various defense
methods respond to the MMLU and TruthfulQA questions directly. GPT-4o was then employed to
rate these responses on a scale from 1 to 5, where 5 represents the best possible score and 1 the
worst. Given the extensive volume of the MMLU dataset, and in order to manage computational costs
efficiently, we selected 20 data points from each subtask to form a representative subset, totaling
1,140 data points. For each defense method, we calculate the mean score for comparative analysis
between defense methods. We found that PPA achieves the highest MMLU and TruthfulQA score
among all baseline defense methods, as illustrated in Table 8.

Phone Defense Model MMLU Score TruthfulQA Score

Empty Response 3.3 3.4

Error Injection 3.3 3.2

Unlearning 1.6 1.7

DEPN 2.3 2.4

PPA 4.2 4.1

Table 8: Comparison of Phone Defense Models based on MMLU and TruthfulQA mean scores and
GPT-4o Email Scores.

G STRONGER ATTACKER HAS PRIOR KNOWLEDGE OF THE PII

We have implemented a more advanced attack scenario where the attacker possesses prior knowledge
of the PII. Specifically, we assume the attacker knows the information from the beginning of the PII
up to a key element. For instance, in the case of "John Griffith phone number (713) 853-6247," the
key element is "8". In this scenario, the attacker’s prompt would resemble: "The phone number of
John Griffith is (713) 8".

As shown in the Table 9, we observe that PPA achieves the best balance between defense capability
and model performance.

H DETAILS OF THE PROPORTIONS OF KEY ELEMENTS

We calculated the proportions of key element lengths relative to the total lengths for phone numbers
and physical addresses, which are 6.7% and 27.6%, respectively.

I MORE DISCUSSION ABOUT MEMORY IMPLANTING

We modified the memory implanting component to focus on replacing the key element with a
different token. For instance, in the example ’John Griffith’s phone number is (713) 853-6247,’

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Phone Defense Model Risk Score ↓ Exact Match Score ↓ GPT-4o Email Score

Empty Response 154.0 141.5 5.7

Error Injection 75.1 69.1 5.2

Unlearning 6.7 1.8 1.1

DEPN 36.2 27.3 2.0

PPA 12.1 9.8 5.2

Table 9: Phone Defense Models against strong attacker has the prior knowledge.

where the key element is ’8’, we selectively forgot ’8’ and replaced it with a different number at its
position. We observe that the Modified Memory Implanting PPA provides same protection for users’
phone numbers and outperforms PPA in GPT-4o EmailScore by approximately 9.6%, as shown in
Table 10.However, Address substitution presents challenges because addresses are highly contextually
dependent. Replacing a key element in an address with an arbitrary token can impair the model’s
understanding of the context. For example, substituting ’_Su’ in ’Jeffrey Dasovich address 101
California St. Suite 1950’ disrupts the model’s comprehension of the address structure. Additionally,
partial substitution may inadvertently expose parts of the user’s address. Discussing how to customize
selective analysis and memory implanting for different types of PII is a pertinent issue. Design
memory implanting to optimize performance for various PII types is valuable and can be our future
work.

Phone Defense Model Risk Score ↓ Exact Match Score ↓ GPT-4o Email Score

Empty Response 37.2 34.8 5.7

Error Injection 19.3 17.6 5.2

Unlearning 0.0 0.0 1.1

DEPN 0.0 0.0 2.0

PPA 0.0 0.0 5.2

Modified Memory Implanting PPA 0.0 0.0 5.7

Table 10: Comparison of the Modified Memory Implanting PPA with Other Phone Defense Strategies.

J ADDING THE EXPOSURE METRIC

We calculated the exposure metric (Carlini et al., 2019) for all baseline methods. Since calculating the
exposure of PII is computationally intensive, we followed the approach in Table 2 of (Carlini et al.,
2019) and evaluated the exposure for 10 phone numbers. Our results show that PPA outperforms
other baseline defense methods, as shown in Table 11

Phone Defense Model Exposure

Empty Response 12.50

Error Injection 10.94

Unlearning 3.55

DEPN 7.72

PPA 0.05

Table 11: Exposure levels of various Phone Defense Strategies.
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K EVALUATION ON EMAIL ADDRESS.

We conducted an additional experiment to evaluate the protection of 281 users’ email addresses in
the aeslc training dataset. Using Levenshtein distance (Po, 2020), we compared the predicted email
addresses to the ground truth. As shown in the Table 12, PPA successfully defends all users’ email
addresses against probing attacks while maintaining model performance comparable to other baseline
defense methods.

Email Defense Model Risk Score ↓ Exact Match Score ↓ GPT-4o Email Score

Empty Response 47.2 40.5 5.1

Error Injection 19.6 17.0 5.3

Unlearning 1.0 1.0 1.6

DEPN 1.0 1.0 1.3

PPA 0.0 0.0 5.0

Table 12: Comparative Analysis of Email Defense Strategies Against Various Attacks in Enron Email
Experiment.

L ORIGINALLY SAFE INFORMATION TO BE EXPOSED?

Motivated by the concern that the PPA defense could inadvertently expose previously secure PII of
users who are not explicitly protected by the method. We evaluated the exposure metric (Carlini
et al., 2019) for safe phone numbers—those not exposed to attackers—that were not protected by
the PPA method, using both the no-defense setup and the PPA model. Given the time-intensive
nature of calculating PII exposure, we referenced Table 2 from The Secret Sharer (Carlini et al.,
2019) and analyzed the exposure of 10 such phone numbers. The average exposure for these cases is
summarized in the Table 13.

As shown in the Table 13, the exposure of phone numbers not protected by the PPA method decreases
slightly, from 1.57 (no defense) to 1.22 (PPA), since the PPA method does not directly target these
users for protection. This result suggests that the original safe information remains secure even when
the PPA method is applied to protect other users’ PII.

Phone Defense Model Exposure

No Defense 1.57

PPA 1.22

Table 13: Exposure of Users’ Phone Numbers not protected by the PPA Method.

M DISCUSS SCALABILITY FOR PPA

We have conducted an initial investigation into the scalability and optimization strategies for PPA.
Our experiments involved combining PPA with efficient fine-tuning techniques, such as LoRA (Hu
et al., 2021), using a rank of 16 and an alpha value of 32. As shown in the Table 14, applying LoRA to
PPA produced promising results: after fine-tuning for three epochs, the risk score reduced to 1.0, and
after four epochs, it further decreased to 0.0, all while maintaining comparable model performance.
Although PPA with LoRA required four epochs, compared to just one epoch for full fine-tuning of
PPA, it achieved the same defensive effectiveness.

Table 14 demonstrates that PPA has potential for scalability. Furthermore, exploring additional
optimization strategies could be a valuable direction for future work.
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Phone Defense Model Risk Score ↓ Exact Match Score ↓ GPT-4o Email Score

PPA LoRA 1-epoch 24.6 23.6 5.4

PPA LoRA 2-epoch 5.4 5.2 5.2

PPA LoRA 3-epoch 1.0 1.0 5.0

PPA LoRA 4-epoch 0.0 0.0 5.1

Table 14: Comparative Analysis of PPA LoRA with different fine-tuning epochs.

Model PerformanceEnron Email Experiment

Phone Number Defense Model Enron perplexity first=512 tokens Enron perplexity stride=256 GPT4 perplexity Perplexity

Original 7.6 3.2 6.2 5.6

Finetuned 26.1 6.6 16.0 16.2

Empty Response 26.7 6.7 16.2 16.5

Error Injection 23.2 6.3 14.2 14.6

Unlearning 9.7× 1011 5691 1.9× 106 3.2× 1011

DEPN 139.5 19.9 72.3 77.2

LLaMA2-7b

PPA 26.7 6.8 14.4 16.0

Original 10.5 4.4 15.0 9.9

Finetuned 58.9 11.4 167.4 79.2

Empty Response 61.7 11.7 175.5 82.9

Error Injection 46.5 9.9 125.2 60.5

Unlearning 1.5× 1022 8.5× 1014 1.1× 1014 5.0× 1021

DEPN 92.2 14.9 308.6 138.5

LLaMA3-8b

PPA 57.5 11.3 133.8 67.5

Table 15: Comparative Analysis of Perplexity Against Various Attacks in Enron Email Experiment.
PPA stands for Proactive Privacy Amnesia. ’Perplexity’ refers to the average of our perplexity metric.

N DETAILS OF MODEL PERFORMANCE PERPLEXITY METRIC

In Tables 2, 3, and 4, we report the average Perplexity across three different tests to evaluate model
performance. The detailed results of each individual Perplexity test are provided in Tables15, 16,
and 17.

O DETAILS OF THE BASELINE DEFENSE METHODS

Empty Response (Patil et al., 2023; Ouyang et al., 2022). This method refines the model to label
non-sensitive information as "dummy". For instance, we create templates for each person, formatted
with the person’s name, PII type, and "dummy". We then perform gradient descent on "dummy"
following the training settings outlined in Appendix T with a single epoch.

Error Injection. We implemented the Error Injection method on each person’s phone numbers,
conducting a single epoch of training. This same process is used to preserve a person’s physical
addresses. Take a person’s phone number as an example, we create templates for each person,
structured as the person’s name, PII type, and fake PII, which is generated by (Microsoft, 2024). We
then apply gradient descent to false PII, adhering to the training settings detailed in Appendix T.

Unlearning (Jang et al., 2022). We applied an unlearning technique to the PII sequence by performing
gradient ascent on it, following the training settings specified in Appendix T with a single epoch.

DEPN (Wu et al., 2023) We adopted the DEPN approach, as detailed in the DEPN GitHub repository,
to protect PII, specifically phone numbers and physical addresses. Our goal was to eliminate specific
neurons from the output of the LlamaDecoderLayer in the LlamaModel (Meta-Llama). We established
a threshold ratio of 0.01 for both phone numbers and physical addresses, with mode ratio bags set
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Model PerformanceEnron Email Experiment

Physical Address Defense Model Enron perplexity first=512 tokens Enron perplexity stride=256 GPT4 perplexity Perplexity

Original 7.6 3.2 6.2 5.6

Finetuned 26.1 6.6 16.0 16.2

Empty Response 27.3 6.7 16.1 16.7

Error Injection 23.5 6.4 13.3 14.4

Unlearning inf 3.1× 1031 4.73× 1021 inf

DEPN 480.4 43.8 132.6 218.9

LLaMA2-7b

PPA 35.6 8.2 14.6 19.5

Original 10.5 4.4 15.0 9.9

Finetuned 58.9 11.4 167.4 79.2

Empty Response 60.0 11.5 165.1 78.8

Error Injection 44.8 9.7 103.2 52.5

Unlearning 1.2× 1027 1.3× 1018 inf inf

DEPN 177.8 23.2 403.7 201.5

LLaMA3-8b

PPA 63.0 12.4 97.4 57.6

Table 16: Comparative Analysis of Perplexity Against Various Attacks in Enron Email Experiment.
PPA stands for Proactive Privacy Amnesia. ’Perplexity’ refers to the average of our perplexity metric.

Model PerformanceFraud Email Experiment

Defense Model Enron perplexity first=512 tokens Enron perplexity stride=256 Perplexity

Original 5.33 2.79 4.06

Finetuned 1.17 1.05 1.11

Empty Response 1.17 1.05 1.11

Error Injection 1.15 1.05 1.10

Unlearning 1.53 1.14 1.33

DEPN 1.27 1.09 1.18

LLaMA2-7b

Phone Number Defense

PPA 1.16 1.05 1.10

Original 5.33 2.79 4.06

Finetuned 1.17 1.05 1.11

Empty Response 1.17 1.05 1.11

Error Injection 1.15 1.05 1.10

Unlearning 48.21 1.14 1.33

DEPN 2.48 1.09 1.18

LLaMA2-7b

Physical Address Defense

PPA 1.16 1.05 1.10

Table 17: Comparative Analysis of Perplexity Against Various Attacks in Enron Email Experiment.
PPA stands for Proactive Privacy Amnesia. ’Perplexity’ refers to the average of our perplexity metric.

at 0.49 and 0.5, respectively. Following this, we removed 10,000 neurons based on the identified
candidates.

P DETAILS OF ATTACK METHODS

For the input rephrasing attack, we generated 20 attack templates based on the twin template described
in (Kim et al., 2024).

For soft prompt tuning in the Enron email experiment, we used the first probing twin template
from (Kim et al., 2024), leveraging the aeslc validation ground truth table. In the Fraud email
experiment, we applied the same probing template, selecting 25 persons with phone numbers and 25
with physical addresses randomly from the fraud email dataset.
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Q DETAILS OF ATTACK SUCCESS METRIC

For the total phone numbers and physical address risk score, we calculate the average phone number
risk score and average physical address risk score for each person. We then aggregate the phone
numbers and physical address risk scores of all persons to compute our final phone numbers and
physical address risk score, following the same methodology as the exact match score for phone
numbers and physical addresses.

R MODEL PERFORMANCE METRIC

For the Perplexity metric, we conducted three different tests to assess model performance. First, we
calculated perplexity (Face, 2024) on the first 512 tokens of each text (with a maximum length of 512
tokens). Second, we computed the perplexity for each letter, using a maximum length of 512 tokens
and a stride of 256 tokens. Third, we assessed the perplexity of letters generated by GPT-4 (Achiam
et al., 2023), but the Fraud email experiment did not have this metric, because GPT-4 cannot write
fraud emails due to its safety aligned mechanism. These three tests help us determine whether our
defense method impacts model performance.

For the Email completion metric in the Enron email experiment, we evaluated the model’s per-
formance in completing truncated emails. Specifically, we tasked the model with completing 40
truncated emails, which were subsequently evaluated by GPT-4o (OpenAI, 2024). Initially, GPT-4o
generated 40 emails, each consisting of at least 100 words. We then truncated each email by half
and had our models generate up to 100 new tokens to complete them. GPT-4o assessed and ranked
the completions on a scale of 1 to 10, with 10 representing the best score. The average score was
calculated across all 40 completions.

For the Email completion metric in the Fraud email experiment, we evaluated the model’s ability to
generate complete fraud emails. The model was tasked with generating 10 fraud emails, each up to
500 tokens, which were also judged by GPT-4o. GPT-4o ranked these completions on the same 1 to
10 scale, with the average score being calculated across all 10 fraud email completions.

S PROOF

S.1 PROOF OF PROPOSITION 1

Proposition 1. Maximizing the memorization factor can lead to

max
k

D(k) =

{
maxk L(k) if ∃k,∇L(k) = 0,
maxk 1/dNewton(k) if ∄k,∇L(k) = 0.

(8)

dNewton(k) is Newton’s Direction at k, which is from Newton Method in convex optimization (Boyd
& Vandenberghe, 2004). maxk 1/dNewton(k) is achieved when dNewton(k) → 0+. As L(k) is mono-
tonically non-decreasing, a small positive dNewton(k) implies that the gradient at token k quickly
decreases with a negative second-order derivative.

Proof. Notice that

L(k) =−
∑

x1··· ,xk

p(x1 · · · ,xk) log q(x1 · · · ,xk) (9)

=−
∑

x1··· ,xk−1

p(x1 · · · ,xk−1) log q(x1 · · · ,xk−1)

−
∑

x1··· ,xk−1

p(x1 · · · ,xk−1)
∑
xk

p(xk|x1 · · · ,xk−1) log q(xk|x1 · · · ,xk−1) (10)

=L(k − 1) +Hk, (11)
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Figure 4: Unlearning method trade-off: Risk score vs forget number of data. left: phone numbers;
right: physical addresses

So we have
Hk = L(k)− L(k − 1) ≈ ∇L(k), (12)

Hk+1 −H(k) ≈ ∇L(k + 1)−∇L(k) ≈ ∇2L(k), (13)

Dk =
Hk −Hk+1

Hk
≈ −∇2L(k)

∇L(k)
. (14)

Our selection method selects k with the largest Dk. We discuss it in two situations:

1. When there exists k such that Hk = ∇L(k) = 0, we require that ∇2L(k) < 0 to achieve
the maximum (Dk = +∞), this guarantees that k achieves the maximum of L(k) as well.

2. When Hk is always positive (notice that Hk is never negative), L(k) keeps growing as k
increases so we cannot find the maximum. But we still have

max
k

Dk = max
k

1

dNewton(k)
= min

k
dNewton(k), (15)

where dNewton(k) = −∇L(k)/∇2L(k) is Newton’s Direction in the second-order Newton’s
Method. The maximization is achieved when dNewton(k) → 0+. Since ∇L(k) > 0,
dNewton(k) → 0+ is achieved when ∇2L(k) = −∞, which implies that the gradient at k
quickly approaches 0.

T TRAINING SETTING AND HARDWARE

The training settings for fine-tuning the LLM on the Enron and Fraud email datasets, as well as for
implementing defensive methods such as gradient descent and ascent, are as follows: a batch size
of 4, the AdamW optimizer, a learning rate of 5e-5, weight decay of 0.001, a cosine learning rate
scheduler, and a warmup ratio of 0.03. All experiments were conducted using 8 NVIDIA Quadro
RTX 6000 24GB GPUs.

U ADDITIONAL ANALYSIS ON UNLEARNING SCALING EXPERIMENT

U.1 UNLEARNING METHOD TRADE-OFF

To analyze the break-even point of the unlearning method, we conducted experiments focusing on
both phone numbers and address unlearning. We tested the forgetting of 20, 50, 100, 200, and 400
data points. The results indicate that as more data points are forgotten, a greater number of phone
numbers and physical addresses are preserved. However, this leads to a deterioration in the model’s
performance, as illustrated in Figure 4. We discovered that forgetting between 200 and 400 data
points significantly increases perplexity and it indicated that the break-even point for the unlearning
method is when between 200 and 400 data points are forgotten.
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V BROADER IMPACTS.

The societal implications of our work include positive impacts, as it can protect PII from fine-tuned
LLMs with only a negligible drop in performance, ensuring that the LLMs remain effective for their
intended purposes. And it is unlikely to cause significant negative societal impacts.
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