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Abstract

Low-precision Streaming PCA estimates the top principal component in a stream-
ing setting under limited precision. We establish an information-theoretic lower
bound on the quantization resolution required to achieve a target accuracy for the
leading eigenvector. We study Oja’s algorithm for streaming PCA under linear and
nonlinear stochastic quantization. The quantized variants use unbiased stochas-
tic quantization of the weight vector and the updates. Under mild moment and
spectral-gap assumptions on the data distribution, we show that a batched version
achieves the lower bound up to logarithmic factors under both schemes. This
leads to a nearly dimension-free quantization error in the nonlinear quantization
setting. Empirical evaluations on synthetic streams validate our theoretical findings
and demonstrate that our low-precision methods closely track the performance of
standard Oja’s algorithm.

1 Introduction

Quantization (or discretization) is the mapping of a continuous set of values to a small, finite set
of outputs close to the original values; standard methods for quantization include rounding and
truncation. The current popularity of training large-scale Machine Learning models has brought a
renewed focus on quantization, though its origins go back to the 1800s. Some early examples include
least-squares methods applied to large-scale data analysis in the early nineteenth century [Sti86].
In 1867, discretization was introduced for the approximate calculation of integrals [Rie67]], and the
effects of rounding errors in integration were examined in 1897 [[She97]. For an excellent survey and
history of quantization, see [GKD™22].

In the context of efficient model training, it is natural to ask the following: does training a model
require the full precision of 32- or 64-bit representation, or is it possible to achieve comparable
performance using significantly fewer bits? Mixed-precision training (using 16-bit floats with 32-bit
accumulators) is now standard on GPUs and TPUs, yielding 1.5 x to 3x speedups with negligible
accuracy loss on large transformers and CNNs [MNA ™ 18]]. Binary Neural Networks (BNNs), which
constrain weights and activations to 1, can achieve up to 32x memory compression and replace
multiplications with bitwise operations. This has been shown to approach nearly full-precision
ImageNet accuracy with careful training [HCS ™ 16].

Theoretical analysis of the effect of low-precision computation on optimization problems has received
significant attention [LD19, |AGL ™17, [SZOR13] ISLZ" 18, LDX" 17, [ZLK™17]. Complementary
strategies leverage stochastic rounding to mitigate quantization bias during LLM training. Ozkara
et al. [OYP25] present theoretical analyses of implicit regularization and convergence properties of
Adam when using BF16 with stochastic rounding, demonstrating up to 1.5x throughput gains and
30% memory reduction over standard mixed precision [OYP25]].
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Consider the set of values that can be exactly represented in the quantization scheme, which we call
the quantization grid. For example, fixed-point arithmetic [[Yat09] uses linear quantization (LQ),
where the quantization grid consists of points spaced uniformly at a distance J (also denoted by
quanta). [LDX™ 17] analyze Stochastic Gradient Descent (SGD)-based optimization algorithms for
LQ, and [SYK21]] perform Learned Image Compression (LIC) under 8-bit fixed-point arithmetic.
Nonlinear quantization (NLQ) grids with logarithmic spacing are also widely used [KWW™*17,
NTSW 22, IXLY ™24, [YIY21,[ZMK22, ZWG™ 23] in low-precision training.

To illustrate the importance of the quantization scheme, consider the example of rounding, where
each input is mapped to the value in the quantization grid closest to it. The following toy iterative
optimization algorithm demonstrates that rounding can cause the solution to remain stuck at the initial
vector. Consider the update scheme w; = w,_; + 1g;, followed by rounding each coordinate of
w;. Here 7 is the learning rate and g; is the gradient evaluated at time ¢. Suppose max; |g:(¢)| < 1.
Assume that wy is quantized using the LQ scheme and that < §/2. For any coordinate 7, we have
|[w1 (i) — wo(?)] = n - |g:(¢)] < . Since n < §/2, after rounding, w1 (¢) is mapped back to the
original quantized value w (%), i.e., w1 = wy. As a result, the algorithm fails to make progress. We
address this issue by using stochastic rounding. In this approach, each value is randomly mapped to
one of the closest two quanta with the probabilities chosen such that the quantized value is unbiased.

Principal Component Analysis. PCA [Pea0l} Zie0O3] is a dimension-reduction technique that
extracts the directions of largest variance from the data. Suppose we observe n independent samples
X, € R from a zero-mean distribution with covariance 3. PCA seeks a unit vector v, that maximizes
variance, which is any eigenvector of 3 associated with its largest eigenlvalue A1. Under mild tail

conditions on the X;, the top eigenvector v of the sample covariance - I X; X/ is a nearly

rate-optimal estimator of the true principal direction v [Wed72, JJK™ 16, [Ver10Q].

Despite its statistical appeal, constructing the covariance matrix itself takes Q(nd?) time and Q(d?)
space, which is prohibitive for large d and n. A popular remedy is Oja’s algorithm [[O;ja82], a
single-pass streaming algorithm inspired by Hebbian learning [Heb49]. Starting from a (random)
unit vector ug, for each incoming datum X; the algorithm performs the update

W — oy + 0 X (X wm0), w; < u;/|ul. )
Here, n > 0 is the learning rate which may vary across iterations. The batched version of Oja’s

method partitions the data into b batches B, . .. By, of size n/b each and replaces the above update
with the averages of the gradients within a batch:

ZjeBi Xj (X;—ui—l)

n/b ’
The entire procedure completes in O(nd) time and uses O(d) space. The scalability and simplicity
of Oja’s algorithm have motivated extensive analysis across statistics, optimization, and theoretical
computer science [JJKT16, [AZLT7, [CYWZI8, YHWTS| [HW19, MP22, [Mon22, [KS24b), [KS24a),
JKL ™24, [KPS25]]. These works establish precise convergence rates, error bounds under various noise
models, and extensions to sparse or dependent-data settings. When operating with (3 bits, the overall
complexity for streaming PCA (and that of the batched variant) grows polynomially with 3 (for fixed
n, d); Table E] gives evidence towards this fact.

u; < u—1 +7 u; < uz/Hqu @

64 bits 16 bits
Runtime (s) 0.0274 + 0.00136 0.000398 + 0.0000235

Table 1: Benchmarking runtimes] for the experiment described in Appendix

Our Contributions.

1. We present a general theorem for streaming PCA with iterates that are composed of indepen-
dent data (as in standard Oja’s algorithm) and a noise vector that is mean zero, conditioned
on the filtration up until now, which may be of independent interest.

2. We obtain new lower bounds for estimating the principal eigenvector under both quantization
schemes. The quantization error depends linearly in the dimension d for the linear scheme
and dimension-independent (up to logarithmic factors) for the non-linear scheme.

'The experiments were conducted by representing the data and intermediate variables in double precision
(64 bits) and half precision (16 bits) datatypes.



3. Our batched version of Oja’s algorithm matches the lower bounds under both quantization
schemes. The quantization error of the batched version with logarithmic quantization is
nearly dimension-free. We also provide a procedure to make the failure probability of the
algorithm arbitrarily small.

Section 2] introduces the problem setup and defines the linear and logarithmic quantization schemes.
Section [3| presents the main results, including lower and upper bounds for Oja’s algorithm with and
without batching for both quantization schemes. Section ] provides proof sketches, Section [5|reports
experimental results, and Section[6]concludes the paper.

2 Problem Setup and Preliminaries

We use [n] to denote {i € N | i < n}. Scalars are denoted by regular letters, while vectors and
matrices are represented by boldface letters. I € R?*? represents the d-dimensional identity matrix.
[[-| denotes the £ euclidean norm for vectors and ||. ||, denotes the operator norm for matrices. For
a,b € R, we write a < bif and only if there exists an absolute constant C' > 0 such that a < Cb.
0,0 represent order notations that hide logarithmic factors. S~ is the set of unit vectors in R%.

We operate under the following assumption on the data distribution.

Assumption 1. {X;} ic[n] @re mean-zero iid vectors in R? drawn from distribution D supported on

the unit ball. Let Y := Ex..p [XXT] denote the data covariance, with eigenvalues A\ > Mo, -+ , \g
and corresponding eigenvectors vi,Va, - - vq. We assume 3V, M > 0 such that

Ex-p[|XX"T — Z|?] < Vand HXXT - EH2 < M almost surely for X ~ D.

Assumption |1| enforces standard moment bounds used to analyze PCA in the stochastic setting.
Similar assumptions are also used in [HP14] [SROT3 [Shal6al [Shal6bl JJK* 16, [AZL.17, BDWYT6,
XHDS ™ 18] to derive near-optimal sample complexity bounds for Oja’s rule. We assume a bounded
range for ease of analysis, and it can be generalized to subgaussian data (see [LSW21}[KS24al [[.ia21]).

The misalignment between the estimated top eigenvector u and the true eigenvector u; is measured

using the principal angle between the two vectors. The sin-squared error between any two non-zero

) .2 (u'v)?
vectors u, v is defined as sin“(u,v) = 1 — TalPIvZ

2.1 Quantization Schemes and Rounding

Linear quantization: Let 6 > 0, and let 5 > 0 be the number of bits used by the low-precision
model to represent numbers. A linear quantization scheme uniformly spaces on the real line. Define

Qr(6,B) i= {62771, —5(2°71 = 1),...,-4,0,6,...,6(2° 1 — 1)} (3)
We call § the quantization gap for the quantization grid Q..

Logarithmic (non-linear) quantization: The error resulting from rounding an element x in the
range [—62771 §(27~1 — 1)] using the linear quantization scheme is an additive J. Here, we present
a well-known non-linear quantization scheme where the error scales with the quantized value.

The quantization grid Q. in the logarithmic quantization scheme with parameters ¢ and J is
defined as follows: Let go = 0 and ¢; 11 = (1 + {)g; + 0o Vi € N. Then,

QNL(Ca(SO)ﬁ) = {7(]1\/'5 —4qN-15---5741,490,91, - - '7qN—1}7 (4)

where N = 2°~1. Henceforth, non-linear quantization refers to logarithmic quantization.

These two quantization schemes are widely used in practice [YIY21,DSLZ* 18, [LDS19,[DMM* 18]
Our analysis of the logarithmic scheme lifts to floating-point quantization commonly used in low-
precision computing. The Floating Point Quantization (FPQ) is a widely adopted variation on the
Logarithmic quantization scheme, where adjacent values in the quantization grid are multiplicatively
close. FPQ and other logarithmic schemes are used in most modern programming languages such as
C++, Python, and MATLAB, and broadly standardized (IEEE 754 floating-point standard [Kah96]).

Another quantization scheme for low-precision training is the power-of-two quantization [PRSS*22],
which rounds to the nearest power of two. All these schemes are similar in principle to our scheme;
Lemma in the appendix establishes a relationship between the distance of a vector from its



quantization under NLQ. This Lemma applies to FPQ and to most other logarithmic quantization
schemes. Our proofs can be modified to work with any such scheme.

Stochastic Rounding. A natural quantization scheme is to round z to any of the closest values in the
quantization grid. We can randomize to ensure that the expectation of the quantized number is equal
to x. For this, we use a stochastic rounding scheme. For any x within the range of the quantization
grid Q, suppose u and ¢ are adjacent values in Q such that ¢ < x < u. Define

¢ with probability 1 — p(x)

5
u  with probability p(z) )

Q(z, Q) = {

where p(z) := (z — ¢)/(u — ). This choice of probability ensures
E[Q(x, Qn1)|z] = =, |Q(z, On1) — 2| < u— £, Var(Q(z, Qng)|z) < (u—£)%/4.  (6)

3 Main Results

3.1 Lower Bounds

In this section, we establish worst-case lower bounds for the quantized PCA for both linear and
logarithmic quantization schemes under the mild assumption that the quantized vectors under consid-
eration have bounded norm. This assumption is reasonable because (i) gradient-based algorithms and
other typical algorithms for PCA are usually self-normalizing, ensuring that the norms of the iterates
are controlled, and (ii) the quantized vectors are close to the true vectors in norm.

Lemma 1. [Lower bound for linear quantization] Let d > 1 and § > 0 such that §>°d < 0.5. Let Vy,
denote the set of non-zero quantized vectors w € R using the linear quantization scheme ([3) such
that |w| € [1/2,2]. Then, sup,, cga-1 infwey, sin®(w,vy) = Q(62d).

Lemma 2. [Lower bound for logarithmic quantization] Let d > 1 and 6q,( > 0 such that ( < 0.1
and 52d < 0.5. Let V1, be the set of non-zero quantized vectors w € R using the logarithmic
scheme (@) such that ||w|| € [1/2,2]. Then, sup, cga-1 infwey,, sin®(w,vi) = Q(¢? + 63d).

At first glance, the results of Lemmas d may appear similar. However, the parameter Jj is
substantially smaller than §. In Section [3.4] we select optimal values for 6, g, and ¢ given a fixed
bit budget 3 for the low-precision model and show that 62d = ©(d4~#) while ¢2 + §2d = ©(4~F)
where the tilde hides a log2 d factor. Hence, the lower bound for the logarithmic quantization scheme
is nearly independent of the dimension. The proofs of the lower bounds are deferred to Appendix [B]

3.2 Quantized Batched Oja’s Algorithm

In this section, we present an algorithm that uses stochastic quantization for the batch version of Oja’s
algorithm (see Eq[2). We start by computing the quantlzed version w; of the normalized vector u;_;
from the last step. Then, we quantize each X (X Wi 1) and compute the average of the quantized
gradient updates. This average gradient is quantlzed again and added to w;.

Algorithm 1 Quantized Oja’s Algorithm with Batches

Require: Data {Xi}ie[n], quantization grid Q, learning rate 7, number of batches b
. Initialize uy with a unit vector picked uniformly from S~

—_

2B<—{z—1 +1, (i —1)E+2, ..., i

3: fori = 1t0bd0

4 w; < Q(u;-1, Q) >&1 = Q(u-1,Q) —u

Yjen, AX;(X]wi),Q)

5 Zi 1 n/b : I>€G7j7i = Q(XJ (Xfwb)7 Q) - Xj (X‘?WL)
Yien, AX;(XTw;),Q) Yien, §a,d,i

6 yi = Q=5 Q) = o= T

T W< Wity =& = Q(yi, Q) —yi

8: u; «— HT:H

9: w — Q(uw, Q)

10: return w




The final vector that results from the batched Oja’s rule (Eq[2)) without quantization is

(I+7Dy)...(I+nD3)(I+nDy)ug [T, + nDi)ug

u ized = = )
unquantize H(I + T]Db) . (I + UDQ)(I + 77D1)u0|| Hngzb(l + nDi)uoH

where D; = > . p. XijT /(n/b) is the empirical covariance matrix of the i batch. Since X; are

IID and the batches are disjoint, D, are also IID. The key observation for Algorithm 1|is that even
with the quantization, the vector u; can be written as

 — [T, (X + 7D + Z)ug
= = .
ITT—p (T4 1D; + Ej)ug|

Each E; is a rank-one matrix resulting from the stochastic quantization. Conditioned on an
appropriately chosen filtration o(Xy,...,X;,ug,...,u;—1), Z; is mean zero; Algorithm (1| de-
fines quantization variables &1 ;,&,.;, and & ; for all ¢ € [b]. The rank one noise E; is &; :=
(n€a,i + &2 + (I+nD;)&r ;)ul_,. Since the stochastic updates are conditionally unbiased (equa-
tion (6)),

N

E[&1,i
Similarly E[€, ;|D1,...,D;, wo,...,w;_1] = 0, as it can be written as

E[E[ga,i|€1,i7Dla . 'aDiaw(), R awi—l:HDla <. '7Di7w0a s awi—l]] =0.

D17--~7Di>W0a-~-aWi—l] = 0.

3.3 Guarantees for Low-Precision Oja’s Algorithm

Before presenting our main result, we present a general result that can apply to other noisy variants of
Oja’s rule and is of independent interest. The proof is deferred to Appendix Section|D] Consider Oja’s
algorithm on matrices A; € Ryxq4, such that A; = nD; + E; where D, are IID random matrices
with E[D;] = X.

Let S; be the set of all random vectors £ in the first 7 iterations of the algorithm and F;_ denote the
o-algebra generated by the random Dy, ..., D; and S;_;. Define the operator E;[.] := E[.|F;_]. We
assume the noise term =, is measurable with respect to the filtration F;_ and unbiased conditioned
on F;_, ie., E;[E;|F;_] = 0gxq.Let Vg, v, M, k, and k1 be non-negative parameters such that

max ([E[(D; — )(D; — )7, [E[(D; — )" (D; — 2)]) < W, ®)

IDif <1, IDi-Z|<M, &)<k [EETE|Fdlr<s as. )

K3

Theorem 1. Let d,n,b e N and ug ~ N (0,1,). Let ) := % be the learning rate where

is chosen to satisfy Lemma and suppose max(bn> M?log(d), bs*logd) = O(1). Then, with
probability at least 0.9, the vector uy, from equation|7|satisfies |[up|| € [1 — k1,1 + k1] and

d aVylogn b
.92 < 0 10g 1 2
sin“(up, vy) < 2 + 7[)(/\1 WY + max (alogn’ ) K1+ K°.

Remark 1 (Matching the Upper and Lower Bounds). In the LQ scheme with gap 9§, each coordinate
of the noise vector & is bounded by § almost surely. In particular, this implies k = O(5+/d) and
k1 = O(6%d) (see Appendix Section ll:)]) and the resulting error due to quantization matches the
lower bound in Lemmall| In the NLQ scheme with parameters ¢ and o, the ith coordinate of the
noise vectors & is bounded by C|u;| + 6o, where u is the vector being quantized. Since the vectors in
consideration are bounded in norm by 1, this implies & = O(C + 6ov/d) and ki, = O(C? + 63d) (see
Appendix Section[D). The resulting error matches the lower bound in Lemma 2] as long as the output
vector has norm in the range [1/2,2].

Remark 2. Theorem|l|relies on the observation that accumulating the quantization error only b
times in Algorithm|l|leads to a smaller sin® error. Moreover, choosing an appropriate batch size
reduces the variance parameter V, by a factor of n/b because of averaging.



Remark 3 (Hyperparameters and eigengap). The choice of the learning rate n = % is also

present in other works on streaming PCA [HPI14, \SORI4, Shal6a, |Shal6b, |AZL17, IHNWTW20,
JNNI9 |BDF13|] to derive the statistically optimal sample complexity (up to logarithmic factors). If a
smaller learning rate 1 is used (for example, by using an upper bound U on the eigengap A1 — \2),
then the first error term of Theorem|[I|will be larger, leading to a slightly larger sin-squared error. A
similar argument applies to the choice of the batch size.

Remark 4 (Known n in the learning rate). The length of the stream n is an input in Theorem[l} and
the learning rate is constant over time. To handle variable learning rates using only constant-rate
updates, a standard doubling trick [ACBFS95|] can be used. Specifically, the time horizon is divided
into blocks that double in size: the kth block has size 2"~ and Oja’s algorithm run on that block uses
a learning rate corresponding to that block’s size. When the algorithm run on this block terminates,
the older estimate of the top eigenvector run on the previous block is replaced by this new estimate.
This scheme effectively simulates a decaying learning rate while keeping the analysis tractable.

3.4 Choosing the Optimal Quantization Parameters

To ensure a fair comparison between the linear and logarithmic quantization schemes, we fix a budget
S for the total number of bits used by the low-precision model. Moreover, our algorithms require that
numbers in, say, (—2, 2) are representable by the quantization scheme. Therefore, we must ensure
that the upper and lower limits of the scheme cover this range.

The largest number representable in the linear quantization scheme is §(2° — 1) and the smallest
negative number representable is —¢ - 2. We choose § = 2278, which covers the range (—2,2).

To motivate the choice of ¢ and §y, we note that the floating point scheme is a discretization of the
logarithmic quantization scheme. The parameter d in the logarithmic scheme represents the smallest

o . . . Be— .
representable positive real, which in the FPQ scheme is equal to 4 - 272 1, where [, is the number
of bits used to represent the exponent. The parameter ( represents multiplicative growth between
adjacent quanta and is analogous to 277 in the FPQ scheme, where 3,, is the number of bits to

. . Be—
represent the mantissa, and 3 = 3,, + B.. Assuming ( = 277 and §y = 4 - 272 1, where 3,,
and (3. are positive integers, the largest representable number is

p1 0
do = (14 QP 1) Pz

To represent numbers in (—2, 2), it suffices to ensure 3,,, = 3. This allows some freedom to select
Bm and B, such that the factor k; = (2 + 5gd is minimized. We choose

Be = [logy (28 +10g5(8d1In2))] and B, = 5 — e
which is valid as long as 8 > max(8,log, d) and 3,,, > 3. We justify this choice in appendix [D.3]
With this choice of . and f,,, the parameters ¢ and Jy satisfy

4(28 + log,(8d1n2))?

2
2 2
05 < and (° < 1

0= 4BdIn?2

(10)

With this setting, we present two immediate corollaries of Theorem [I] with a fixed budget 3. The
proofs are deferred to Appendix Section[D]
Theorem 2. [Oja’s Algorithm with Batches]

av/dlog(n)

— ~ _ 92— _ A —Ao _ a?log? (n)
1. Suppose Q = Qj, and 6§, b satisfy § = 2 =0 (7 andb = © (W)
Then, with probability at least 0.9, the output Wy, of Algorithm

satisfies

) d alog(n) [V d
2
st v0) < g+ 1 (3 )

2. Suppose Q = Qi with { and &y as in equation (0), such that ¢ + doNd =

(0] (#0’;_?7])) , and batch size b = © (%) Then, with probability at least 0.9, the

output wy, of Algorithm|l|satisfies

sin® (wy, vi) <

alog(n) (V  B%+log*(d)
n2e T Oy = )2 (n+ 47 )



Theorem 3. [Oja’s Algorithm]

1. Suppose Q = Qy, and §,b satisfy § = 226 = O (min (#{gﬁn), ﬁ)) and b = n.

Then, with probability at least 0.9, the output w,, of Algorithm|[]satisfies

1
sin?(w,, v1) < d aVlog(n) dn

n2e  n(A —A)2  4Palog(n)’

2. Suppose Q = Qnp with ( and g as in equation (]E[), such that ( + 50\/g <
. Al_)\ L . _ . oy
O (mln (7a \/glog?n)’ m)) , and batch size b = n. Then, with probability at least 0.9, the
output w,, of Algorithm|[I|satisfies

. d_ _oVieg(n) (B +log’d)n
2 < —
S111 (Wn7vl) ~ n2a + ’ﬂ()\l — )\2)2 4’80410g(n)

Under linear quantization (LQ), the quantiza- . d = 500, n = 2000
tion error term scales as d/4ﬂ, whereas under 10 b e i
nonlinear/logarithmic quantization (NLQ) it is
only (52 + log® d)/4”. Thus, NLQ achieves a
nearly dimension-independent error resulting
from quantization, making it especially advan-
tageous in high-dimensional settings.

Mean sin>-error

= standard

The errors of Oja’s algorithm with batching due —standard
to quantization are O(d4~?) and O(4~7) in the 5o ctendard NLG
two cases of linear and logarithmic quantiza- 103+ NN i
tion, Whlch are an n factor larggr than the cor- 0 500 1000 1500 2000
responding errors without batching. Theorem|2| Samples processed

and [3|show that batching significantly improves
the performance under quantization. They fur-
ther show that the NLQ scheme, when suitably
optimized, gives nearly dimension-independent
dependence on the quantization error. In com-
parison, the error resulting from quantization
in LQ suffers the most from higher dimensions.
In Figure [I|we see that unquantized algorithms
(standard and batched) have similar and best
performance. See Section 5] for detailed exper-
imental evidence supporting the theory.

Figure 1: We study the effect of different quantiza-
tion strategies on mean sin’-error over 10 runs as
the number of samples grows on the x axis. Stan-
dard uses b = n batches whereas Batched uses
b = 10 batches. Among the quantization algo-
rithms, we see that in sin? error, Standard LQ >
Batched LQ and Standard NLQ > Batched NLQ.

Remark 5. Theorems[2|and[3|are stated with a constant probability of success. In Section[3.3]we
provide a quantized probability boosting algorithm (Algorithm[2) which boosts the probability of
success from a constant to 1 — 6 for arbitrary 6 € (0, 1].

3.5 Boosting the Probability of Success

Quantized Oja’s algorithm produces an estimate whose error is within the target threshold with
constant success probability. This section addresses this gap by presenting a standard probability
boosting framework to let the failure probability 6 be arbitrarily small.

Algorithm begins by partitioning m data {X;},c[,,,] into r = O(log 1/6) disjoint batches of size
n each and runs the algorithm A on each batch. The output vectors {u; };c[,] are then aggregated
using the boosting procedure SuccessBoost. This procedure looks for a popular vector u; close to at
least half of the other vectors and returns any such vector. A general argument for SuccessBoost for
arbitrary distance metrics can be found in [KLL™ 23| [KS244].



Algorithm 2 Probability Boosted Oja’s Algorithm

Require: Data {X,};c[], algorithm A, quantization grid Q7 (¢), failure probability 6, error €
I: r < [201og(1/0)], n <« |m/r|
2: fori=1tordo
3 Bi<—{(i—Dn,i—n+1,...,(i — )n+n}
4w — A({X;}es,)

5: procedure p(x,y)

6:  return Q (sin’*(x,y), Q1 (e))
7: procedure SuccessBoost({u; }c[,], p, €)
8 for i = 1tordo

9 ¢i — [{j € r]: p(us,u;) < 5el|

0 if ¢; = 0.5r then

1

return u;
return |

12: 1 « SuccessBoost({u;}e[,], p €)
13: return u

We use a quantized version / as a proxy for the sin? error in the SuccessBoost procedure. /5 uses the
linear quantization grid

QP (e) = (=287, — (21 = 1)e,...,—€, 0,6, ..., (2071 — 1)e}, (11)

where the gap e is set to the upper bound on the error guaranteed by Theorem [2] or Theorem [3]
depending on the algorithm A in use.

Standard arguments for SuccessBoost apply when the error p is either computed exactly. The
difference in our setting is that we the error function p is only approximately a metric and does not
behave as intended if the computed value is outside the quantization range. To highlight the second
point, consider the unbounded quantization grid

Qi (e) = {ke: ke Z}.

With this grid, |p(x, y) — sin?(x, y)| is bounded by O(e) almost surely. We extend the argument to
show that Lemma 3| holds even with the bounded grid Qy (€) := Qy (¢, 8), which truncates values
outside the range [—2%71e, (2°~! — 1)¢] to its endpoints. This requires a modest assumption that the
number of bits > 4, which is already assumed when optimizing the parameters in Section 3.4}
Lemma 3. Letd > 1,3 > 4,¢ € (0,0.75), 6 € (0,1), and r = [201og(1/6)]. Let v € R? be a
unit vector and uy, o, . . . , U, be independent random vectors such that Pr (sin2(ui, v) < e) > 0.9.
Let p be the function defined in Algorithmwith the quantization grid Qp (¢, 8). Then, the vector
a := SuccessBoost ({ui}ie[r], D, e) satisfies

Pr (sin®(@,v) < 14¢) > 1 — 6.

The proof of Lemma[3]is in Appendix [E]

Algorithm[2] has a constant overhead in the error compared to algorithm A. The probability of success
is amplified from 0.9 to 1 — 6. The number of samples needed to achieve the same error (up to
constant factors) as A blows up only by a multiplicative factor ©(log 1/6). If algorithm A runs
in O(nd) time and O(d) space, which is the case for Oja’s algorithm and its batch variants, then

Algorithmtakes O(ndlog(1/6) + dlog?(1/6)) time and O(dlog(1/6)) space.

4 Proof Techniques

Our proof of Theoremhas three main parts. Let Z; = H;:b(l + A;) where A; :=nD,; + E; as
described in equation (7). First, note that the sin-squared error can be written as 1 — (u;vl)2 =

V.V "Zyug|?/|Zsuo|?. Using the one-step power method result shown in Lemma 6 from
[JIK*16], for a fixed 6 € (0, 1), with probability atleast 1 — 6,

i
L (ufvr)? < Blos) T \ZAD
bV 02 viZyZ] vy

(12)



This makes our strategy clear for the subsequent proof. We bound the numerator by bounding
E[Tr(V . ZyZ] V)] and applying Markov’s inequality. For the denominator, we lower bound
| Z] v1|| by decomposing it as

1Zyvil = | T+ 03) v = [(Zo — T+ %)) Tvi] = (L +n0)" = [Zo — A+ 0E)" | (13)

and upper-bounding |Z; — (I + %) |. For both the numerator and the denominator, we use the
following intermediate bound, which controls the (p, ¢)-norm for a random matrix X defined as
X p,q = E[HXHZ]U‘?, where ||X||, represents the Schatten-p norm.

Proposition 1. Let the noise term E, defined in (), be bounded as |E|| < r almost surely. Under
Assumption([]] for n € (0, 1), we have

2
I1Zs ]l 4 < 6" exp(Cpb) 1 Zoll,
1Z6 — (T+02)°|I7 , < ¢ (exp(Cpby) — 1) | Zoll; ,
where Zo =1, ¢ := (1 +n\1)% v :=2(n* M? + k%), and C,, :=p — 1.

The proof of Proposition [T|adapts the arguments for matrix product concentration from [HNWTW?20].
which also include results for a general sequence of matrices adapted to a suitable filtration.

From Proposition [T with ¢ = 2, p = 2 + 2log d, we get

E[IZy — (T+02))] < 1Zo — A+ 1) [lp2 < v/e2by (1 + 21og (d) (1 +n01)".
This allows us to control the lower bound via Markov’s inequality, by substituting in equation (T3).

To control the numerator, we show the following result (Lemma E[)
Lemma 4. Let Assumptionhold and let vy := 2(n> M? + K2). If by (1 + 2log (d)) < 1, then

d L STVt 5m>
exp(2nb (A1 —A2))  n(Adi—A2) )

E[Tr(V1ZpZ] V1)] < exp (2nbA1 + 770 (Vo + A7) (

The proof of Lemmalé-_l|follows Lemma 10 of [JJK™16] to show, for 3, := E[Tr(VLTZt Z/ Vi),
Be < (T42nx2 +1* (Vo + A1) Be—1 + (n°Vo + #1) E[|Ze—1 ]

At this step, we deviate from their proof and appeal to Proposition|I]for bounding E[||Z;_1 |?]. Setting
¢ = (1+nA)% v :=2(n* M? + k?) and p := max(2,+/2logd/(by)), we get

E[1Zs]]* < [I1Z

2, < @ exp(Cyby) 1 Zoll2 < (1 +nA1)* exp (2pby) -

Unrolling the recursion and using this bound proves Lemma[] The proof of Theorem|T]then follows
from the one-step power method guarantee in equation T2} Detailed proofs are in Appendix [C}

S Experiments
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Figure 2: Variation of sin?-error with (a) sample size, (b) dimension, and (c) quantization bits.



We generate n samples from a d dimensional distribution selected by choosing a random orthonormal
matrix @, setting X := QAQ" for A;; := i~2 and sampling datapoints i.i.d from A (0, X). We
compare six variants of Oja’s algorithm for estimating v, the leading eigenvector of 3. The baseline
is the standard full precision update in Eq [I| (standard). standard_LQ and standard_NLQ use
Algorithm [I| with b = n and Q(., Q1) and Q(., Qnr) respectively. The batched variant follows
Eq[2] with b = 100 (for Figures [2aland 2b) and b = 25 (for Figure 2c) equal-sized batches. Finally,
we combine the batched schedule by running Algorithm [1|with Q(., Q1) (batched_LQ) and with
Q(., On1) (batched_NLQ). All experiments were done on a personal computer with a single CPU.

The low-precision methods rely on Eq[I0]to choose quantization parameters for a target number
of bits 5 = 8. Given the dimension d, these routines compute a uniform quantization step dyp;,
an exponential step dexp, and a multiplicative-growth factor cexp, to cover a fixed dynamic range.
Each configuration is run for R = 100 independent trials. In Experiment 1 we fix d = 100
and vary n € {1000,2000, 3000, 4000, 5000}; in Experiment 2 we fix n = 5000 and vary d €
{100, 200, 300,400, 500}. Every trial begins from a random Gaussian vector normalized to unit
2 In(n) 2 In(n)

0 —a) for the standard method and to ) = TOu—2a) for

the batched methods. Upon completion we record the final excess error sin(w,v;) = 1 — (W' v;)?
and report the mean. The first two use the log-log scale and the third uses the log scale for the y-axis.

length. We set the learning rate to =

As shown in Figure 23] all methods improve as the number of samples n grows except standard_LQ
and standard_NLQ. The errors of these two methods, as expected from Theorem 3] grow linearly
with n. In contrast, the batched_LQ and batched_NLQ’s quantization errors do not depend linearly
on n and improve over the standard counterparts. Figure 2b] shows how the error varies with
the data dimension d. Since V grows mildly with d, for our data distribution, all methods other
than standard_LQ and batched_LQ do not grow with d. These two methods grow linearly with d,
confirming our theoretical findings in the first results under Theorems [2|and [3} Finally, Figure
compares the errors with the bit budget 5. As [ increases from 4 to 12, linear and logarithmic
quantization schemes steadily reduce their error and converge toward the full-precision result by
B = 12. The batched quantizers require only 68 bits to achieve comparable performance to the
full-precision batched error, whereas the standard_LQ and standard_NLQ need at least 10 bits to
reach the same performance. The variability of the full precision methods arises from the randomness
of initializations. Appendix [F] provides experiments on additional real-world and synthetic data.

6 Conclusion

We study the effect of linear (LQ) and logarithmic (NLQ) stochastic quantization on Oja’s algorithm
for streaming PCA. We obtain new lower bounds under both quantization settings and show that
the batch variant of our quantized streaming algorithm achieves the lower bound up to logarithmic
factors. The lower bound on the quantization error resulting from our logarithmic quantization is
dimension-free. In contrast, the quantization error under the LQ scheme depends linearly in d, which
is problematic in high dimensions. We also show a surprising phenomenon under quantization:
the quantization error of standard Oja’s algorithm scales with n under both NLQ and LQ schemes,
while batch updates with a small batch size does not incur this dependence. These theoretical
observations are validated via experiments. A limitation of our analysis is that we estimate the first
principal component only. Deflation-based approaches (see e.g. [JKL™ 24} [Mac08],[SISQ9]) provide
an interesting future direction for extending this work for retrieving the top k principal components.

Acknowledgments and Disclosure of Funding
We gratefully acknowledge NSF grants 2217069, 2019844, and DMS 2109155.

10



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We prove theoretical results on the effect of quantization on streaming PCA.
The abstract and introduction summarize the contributions and put them in the broader scope
of low-precision computation.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusion, we state that our work is about estimating the first principal
component. Extending to k principal components is part of future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide complete proofs in the appendix.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental section has all the parameters of the experiments for repro-
ducibility.

Guidelines:
* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will submit the code with the supplementary material. We only provided
synthetic experiments.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the learning rate, data-generating distributions, and other parame-
ters clearly in the experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bars for the figures in the experimental section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were done on our personal device with a single CPU, which
we mention in the experimental section.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

14



9.

10.

11.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work conforms with the NeurIPS code of ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work is primarily theoretical and has no societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work is primarily theoretical, and we do not release data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets - our contributions are primarily theoretical.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets - our contributions are primarily theoretical.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work is primarily theoretical - we do not use crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work is primarily theoretical - we do not use crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs other than for writing or editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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The Appendix is organized as follows:
1. Section[A] provides utility results useful in subsequent proofs.
2. Section [B]provides the proof of the lower bound described in Section [3.1]
3. Section[C]proves helper lemmas for the results in Section 4]
4. Section[D]|proves Theorems|T} [2]and 3]
5

. Section [E| proves the boosting result (Lemma 3) and end to end analysis of Algorithm [I]
followed by the boosting algorithm 2]

6. Section [ provides additional experiments.

7. Section [G] provides more related work.

A Utlity Results

Lemma A.1. Letl < x < u be reals, and define

¢ with probability 1 — p(x)
u  with probability p(x)

Q(z, Q) = {
where p(x) := (z — £)/(u — £). Then,
(i) E[Q(z, Q)|z] = z.
(ii) |Q(z, Q) — x| <u-—L
(iii) Var [Q(z, Q)|z] < (=0,

Proof. Throughout the proof, we condition on the fixed = and treat all randomness as coming from
the independent choices made by the quantizer.

(i) Unbiasedness. We have

E[Q(z,0) [ 2] = pi(z)u+ (1 —pi(x))l = .
(ii) Boundedness. By definition, after rounding, we always round any = € [u,] to either u or .
Therefore, |Q(z, Q) — x| < u —1.

(iii) Variance bound. Using the variance of a Bernoulli random variable, we have,

Var[Q(z, Q) | 2] = pi(2)(1 = pi(2)) (u—1)* < L (u—1)?

NG

since t(1 — t) < 1/4 for all reals ¢. O

Lemma A.2 (Choice of learning rate). Let 7 := bc(y/\lj’g_(g). Then, under Assumption for6 e (0,1),

7 satisfies

0.008
b’ M? + k?) < ———, and 1
(" M= + k) og(@/0)’ " ne(0,1)

for a > 1, b > 25002 log®(n) log (%) /(A — A2)?, and Kk2b < 0.004/ log (%).
Proof. For Lemmal[A.8] we require,
4b(m* M? + k?) (1 + 2log (d)) < 1 (A.14)

For Theorem[A 4] we require,

(A.15)

| =

4e*b(n* M? + k?) log (Z) <
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where 6 € (0, 1) represents the failure probability. It is not hard to see that (A-13)) implies (A.14).
Therefore it suffices to ensure

d
b(n* M? + k?) log (9) < 0.008
Setting each term smaller than 0.004, it suffices to have
2 d
b 25002 log”(n) 1(2)g (4)
(A1 — A2)

which completes the proof for the first condition.

0.004

. Kb <
log (§)

The second condition on 7 follows by setting < 1 and solving for b. This yields

d
b > max {250&2 log?(n) log (9> /(A1 =A%, alog (n)/ (A — AQ)}
Since av > 1, the first term is larger than the second one, which completes the proof. O

Lemma A.3. Let w and & be vectors in R such that |w|| = 1 and w + & # 0. Then,

2
sin?(w, w + &) < <|€> .

[w +&]
Proof.
sn2(w. w 4 WT(W+£)>2:(W+£)T(W+€)(1+WT£)2
w9 =t (w+s| CEYE
_5T5—<WT5>2<( 1€l )2
lw+€&)2 ~\Jw+¢&|/)

Lemma A.4. Let x and 'y be unit vectors in R®. Then,

1 . 2 2 . . 2 2
§mln(||X*YH x4+ yl7) < sin’(x,y) < min(|x — y||°, [x + y[°).

Proof. We express sin®(x, y) in terms of ||x — y|| and [|x + y|. Since [x — y||* = [|x|* + [ly|* -
2xTy =2 —2cos(x,y) and ||x + y|* = 2 + 2cos(x,y),

1
e = yI* + fx + y[)* = 4 and sin®(x,y) = 1 = cos’(x,y) =  [x —y[* [x + .

The upper bound on sin?(x, y) follows immediately from the above equations. For the lower bound,
note that at least one of ||x — y||* and ||x + y||* is at least 2 because their sum is equal to 4. If
[x + y|* = 2, then sin?(x,y) > ||x — y||* /2. Otherwise, sin®(x,y) = [|x + y|* /2. O

Lemma A.5. Let x,y, and z be non-zero vectors in R%. Then,
sin?(x,2z) < 2sin®(x,y) + 2sin’(y, z).
Proof. For unit vectors u and v in R?,
Huu—r — VVTHQF =Tr((uu' — VVT)Q)
=Tr (uuT —(uv)uv’ — (viu)va’ + VVT)
=2-2(u'v)? = 2sin?(u, v).
By parallelogram law,
1 T T2 T T2 T T2
e R =y A M e

— sin’(x,2z) < 2sin®(x,y) + 2sin’(y, z).
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B Lower Bounds

Proof of Lemmalll

Proof. Let vi € R? be the unit vector with v (i) = /3 fori € [d — 1] and v (d) = 4/1 — %.

Consider any a vector w € Vp, and let w = w/||w|. Since w € V,

particular, |v1 (i) — w(i)| = 6/6 and |v1 (i) + w(2)| = /6 for all

2, (vi(d)

1)
lvi —w|* = 5

and ||vy + w||

W) > a-1)

w(i) =0or|w(i)| = /2. In

i € [d — 1]. It follows that
2 8%d-1)
36

2> % similarly. The Lemma follows from

O
Proof of Lemma
Proof. 1t suffices to construct two unit vectors v, and v, such that infy,cy,, sin®(w,vy) = Q(¢?)
and infyey,, sin®(w, va) = Q(62d).
Let v, be the vector in R% with coordinates
1 1+¢/2 , )
vi(l) = ——, v1(2) = —C/, vi(i))=0Vi>=3
V14 (1+¢/2)? 1+ (1+4¢/2)?
For the sake of contradiction, suppose there exists w; € Vy, such that sin? (w1, v) < ¢2/100.
Let Wy := w1 /||wy|. By LemmalA.4]
. =2 -2 . C2
min(||vi — w15, [[vi + Willy) < 2sin®(vi, wi) < 0"
Flipping the sign of w if necessary, we may assume ||vy — w1 ||§ < ¢?/50. So,
lvi (i) — Wi (d)] < ¢/7 Vi€ [d]. (A.16)

The bound ¢ < 0.1 ensures v1(1) > 20/29 and v1(2) — v1(1) =
wi(l) = (/3 —2¢/7 = (/21 > 0. It follows that

Wi(2) +00/C _ Wi(2) +00/C-1/ Wil _ va(2

¢/3, which also implies w1 (2) —

)+ ¢/T+00/2¢

wi(1) + /¢ wi(l )+50/C lwill S vii

) = ¢/7+60/2¢

1 + 50/2<+</7 (1+¢/2) (80/2¢ = ¢/7)
2" vi(1) 4+ d0/2¢ = (/7
B ¢ 2¢)7T+ (/14— b/4
S 2 vi(1) - ¢/T+60/2€C
2¢/7
1+ + 2 2/ <1+¢,
and
wi(2) +00/C _ Wi(2) +00/C- 1/ (Wil _ va(2) = ¢/T + 200/¢
wi(l) +3d0/C  Wi(1) +do/C- 1/||W1|| vi(1) + (/7 + 260/¢
14 ¢ n 200/ — /7 — (1 +¢/2) (260/¢ + ¢/7)
2 vi(1) 4+ /7 + 260/C
148 20/7+ C2/14 + &
2 vi() 4 (/T +200/C

¢ vi(1)/2+¢%/14 + do

>14 = —

2 vi(1) +¢/7+260/¢
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Under the logarithmic quantization scheme, it can be inductively shown that

ar + 00/ = (60/C) - (1 +Q)F

w1 (2)+d0/¢

for all non-negative integers k such that g, € Qn. In particular, Wi (D+00/¢

power of 1 + (, contradicting

must be an integral

W1(2) + (5(]/C
wi(1) + do/C

Therefore, infy, cyy, sin®(wy,vi) = ¢2/100.

1< <1+4¢C.

The other bound is similar to the linear case. let vy be the vector with coordinates
)
vao(d) = A/1— (d—1)82/9, vi(i) = 50 Vi<d-—1.

Any wy € Vi, satisfies wa(i) = 0 or |wa(i)| = d¢ for all ¢ € [d]. Since HWQH € [1/2,2], the
normalized vector Wy = wo/||ws| satisfies [Wo(4)| = 0 or |[Wo ()| = 0g/2 for all i € [d].
)+

W (i)| = 6o/6 for all i € [d]. By Lemmal[A.4]

53(d — 1)
72 '

In particular |va (i) — Wo(7)| = 0p/6 and |va (i

1
sin?(wa, vo) = 3 min (HWQ — vz||2 ylwa + V2||2) >

C Proof of Results in Section 4|

For ease of exposition, all results in this section are stated with a generic number of data n. We
apply these results with different choices of n (e.g. number of batches b) for proving the main
theorems (Theorem|[T} 2] [3). Consider Oja’s Algorithm applied to the matrices A; € R4, such that
A; = nD; + E; where D; are independent with E[D;] = 3. Let S; be the set of all random vectors
& resulting from the quantizations in the first ¢ iterations of the algorithm, and let ;_ denote the
o-field generated by Dy, ..., D; and S;_1, and denote E;[.] := E[.|F;_]. We assume the noise term
=, is conditionally unbiased, i.e., E;[E;] = 0gx4-

fi, = O’({Dl,...Di,Sifl}), fz = O'({Dl,D“Sl}) .

Recall the update rule

1
; (I+A
= (I + Ai>WZ‘,1; w; = W _ Ht:’( + t)uo . (A.17)

il TTe—s (X + Ad)uo

We bound the numerator and denominator in (A.17) separately.

For the numerator, we will show that || Htl:n(l +A;) — (I+nX)"| is small. Let Y, =TI+ A, for
€ [n], and let {Z,}o<i<n be defined as

Zi = YiZi,l, ZO =1 (Al8)
Note that Z,_; is measurable w.r.t F;_.

We are now ready to state our first result. Note that

1
HI+A

where A; = nD; + E; and D; are independent d x d random matrices with mean 3.
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C.1 Proof of Proposition ]

Proposition A.1. [Proposition[l|in main paper]Let the noise term Z, defined in ©), be bounded as
|Z| < & almost surely. Under Assumption[l] forn € (0,1) and b > 0, we have

I1Zo )12, < ¢° exp(Cypbr) [|Zo
1Z6 — (T+02)°||2 , < 6" (exp(Cpby) — 1) |1 Zoll2
where Zo =1, ¢ := (1 + nA\1)% v = 2(n*M? + k%), and C,, :=p — 1.

Proof. Recall the notation Y; := I + A; for all 7. Then,
E[Y;:|Fic1] =14+ nE + E[E;i—[E]|Fic1] =1+ 10X
Note that m; = 1 + n)A; and
1Ys — E[Yi|Fica]ll = In(D;i — ) + &if| < npM + &

The last line uses qugl Thus o; = qu’”‘ Note that v < 2(n?M? + k?). The same argument as in
Theorem 7.4 in [HNWTW20] gives the bound. O

Lemma A.6. Under Assumption[I| and with 1) set according to Lemma[A2)with b = n,

: t?
P(|Z,, — (XT+nX)"| =t(1+n\)") < max(d,e)exp ( 5 2n’y> Vi<e.

where vy := 2(*> M? + k%) and e = exp(1) is the Napier’s constant.

Proof. By Proposition[A-]] for any positive real p,
E[1Zn — (X +92)"P] _ [1Zn — (X +0%)"[7,
P (L4 nA)” T (T+ga)P
_ 6 (exp(Cyna) — P2
tP (1 + 77)\1)p
where ¢ = (1 +nA1)%, v = 2(n’ M? + k?),and C,, = p — 1.

P(|Zy — (T+n%)"] >t (1+n\)") <

<d (t %(exp(Cpnry) — 1))p/2

2

If = e < 2, then e-exp ( 552 m) 1 and the Lemma holds trivially. Otherwise, letp := ef;y > 2.
Since t < e, Cpny < pny < &5 < 1. Therefore, exp(Cpny) — 1 < eCpny < &, which implies
2\ P2 2
P(|Z, — (XT+nZ)"| =t(1+n\)" )\d(t_ e) = dexp <_2e2n'y)'

Lemma A.7. Under Assumption[I|and with 1 set according to LemmalA.2|with b = n,
E (17| < exp (2¢/207 max (207, 10g (A)}) (1+n1)™",

where v = 2(n> M? + Kk?). Moreover, if 2n7y (1 + 2log (d)) < 1, then

E (1 — E[Z,]II7| < 2¢*ny (1 + 210g () (1 + 7A1)*"

Proof. Using Proposition[A.1]¢ := (1 + nA1)?, and v := 2(n>M? + &2),
2 2 n 2 2n 2
ENZalI"] < 1Znll, 5 < (& + Cp0)" 1 Zoll, o < (1 4+ nA1)™" exp (Cpny) [|Zoll, -

Set p := max (2, 21°gd>. Then, ||Zol|, , = — dr <exp (E52). Therefore,

ny

E[||Zn||2] < (1+ 77/\1)2n exp (2pny) = exp (2\/2117 max {2n~, log (d)}) (1+ n)\l)zn
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For the second result, set p := 2 (1 + log (d)). Then, C;n7y < 1 by assumption and [|Zo ||, = d'r <
\/e. By Proposition[A.1]
2 2 n 2
E|1Z0 — EIZ0]I?] <1120 — E[Zull}5 < (exp (Cyn) = 1) (1 +m)" | Zol
< e2Cpny (1+nA)"
< 2e?n7y (1 + 2log (d)) (1 +nAp)".

C.2 Proof of Lemmald]

Lemma A.8 (Lemmad]in main paper). Let Assumption[I|hold and 1 be set according to Lemma
with b = n. Define y 1= 2(n> M? + k2). If 2ny (1 + 2log (d)) < 1, then

2
E [Tr (VLTZHZILVJ_)] < exp (277n)\1 n 172n (VO " )\%)) [ d 5 (7] Vo + /ﬂ)}

exp (2 (= %)) | 0 On =)

Proof. Let f; := E [Tr (ijizjvl)] for all 0 < i < n. Then, for i € [n],

Tr (VLT (T+A)Z 1 Z] | (T+A]) VL)]
(VT Az zL (14 AT) VL) |7
E[Tr (VT @+ i) Zea 2L, (T4 Y VL) 15|
+E[E [Tr (VJEizi_lzZ_laij) |J-'4_]] .

]

The last line used E [E;|F;—] = 0 and that Z;_ is measurable with respect to ;_. In other words,

8, —E [Tr (VLT (L+ 1Y) Zi ZT, (I+ 1Y) VL)] +E [Tr (zj_lE [EIVLVLTEA]-}_] zi_l)] .
For the first term, following the analysis of Lemma 10 of [JJK* 16],

E [Tr (VLT L+ 0Y) ZiaZ] | (I+7Y3) VL)] < (14200 +7° (Vo + A2)) Bt + W |[E[Zi1Z] 1],

< (1+ 200+ (Vo + 2)) Bis + 2VoE [1Zia 2]
(A.19)

The second term can be bounded as

E [Tr (zLE [EZVLVLTEJ}'-,] ZH)] -E [Tr (E [EZVLVLTEZ-\]-},] ZHZL)]
<E [E [Tr (EIVLVLTEZ) |]-"4_] ||z¢_1zj_1||2]
< mE[||Zim1Z] 4, (A.20)

Combining (A.T9) and (A.20), we obtain the recurrence

ﬂi < (]. + 27})\2 + 772 (Vo + )\%)) 51;1 + (7}2V0 + I'il) E[HZZ,1H§]
By Lemma we have for y := 2(n2 M? + k?),
B < (14 20X+ 1% (Vo+A2)) Biit + (n®Vo + k1) exp (2 2 log d) (1 + pAp)20Y

<exp (2nA2 + 17 (Vo + AT)) Bic1 + sexp (2nh1 + > (Vo + A?))H ,
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where s = (7?V, + k1) exp (2y/2nylog d). Unrolling the recursion,

n—1
Brn < exp (27711)\1 +1n?n (Vo + )\f)) exp (—2nm (A — A2)) Bo + s. Z (
t=0

2(n—1—t
exp (277)\2 + 772 (Vo + )\%)) ( )
exp (2nA1 + 1% Vo + A7)

[ s

< exp (2nn/\1 +n’n (Vo + /\%)) exp (—2nn (A — A2)) Bo + T exp(—2n (\ = )\2))]
i 2.35s

< exp (27]TL)\1 + ’]72n (VO + )\%)) exp (—an (>\1 - >\2)) ﬁ() + 2’I7(A1—A2):|

5(n*V
< exp (2 + 7% (Vo + A2)) [exp (~2m (01 — Ag))d + Y0¥ 5
n (A1 — A2)

where the third inequality holds because x < 2.35(1 — e™*) for x < 2 and the last inequality holds
2.35 exp(2«/2n'y log d) < 2.35 exp(\/ﬁ)
5 < 5 < . O

because By < d and

D Proofs of Theorems[1},[2, and 3|

D.1 Proof of Theorem[I]

We are now ready to present the proof of Theorem|[I} which follows from the following Theorem[A.4]
and setting a constant failure probability for 6.

Theorem A4. Fix 0 € (0,1). Then, for w being the output of Algorithm|l| under assumption

learning rate n = b(ﬂj\iO_g)Z) with o is set as in Lemma k1 < 1/2, and

1
v/ 2e2bylog (d/6) < 3

where v := 2(n? M? + k2). Then, with probability at least 1 — 30,

4 1 5(n*Vy +
<2log( /9)[ d N (77 o m)l—k&‘ﬁ

-2
sin®(w, vy) < 03 exp (2alog(n)) 7 (A1 — A2)

Proof. Note that by Algorithm|[I]and the definition of Z in (A.T8),

Zyug

up = —.
1Zpuo]|

Since vlvlT + VLVLT =1,
2

T

. T2 V.V, Zyu

sin” (up,vy1) =1—(u, v =|—
(a,v) =1 = oy w1) H Zyuo]

By Lemma 6 from [JJK™ 16|, with probability at least 1 — 6,

Ty T
L 2.5log (1/0) I (VL ZyZ, VL)
sin® (up, vi) <
02 viZyZ] vy

By Lemma[A.7|with ¢ = 2 and p = 2 (1 + log (d)),

E[IZy — (T+%)°[] < |2y — T+ n%)"p2 < /€2y (1 +2log (@) (L + A1)’ (A21)

For the numerator, we use Lemma[A.8and Markov’s inequality to get

1 d 52V + &
Tr (VLTZZ)Z;VL) < Gexp (2nbA1 + 120 (Vo + A2)) lexp(an o)) + 7572)\10 /\2)1)
(A.22)

with probability at least 1 — 6.
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The denominator can be bounded as

-
| Z) v1]| = H(I + nE)ble - ‘ (Zb —(I+ nE)b> vy

> 1 +g0) — sz 1+ nz)”H .

Using Lemmal[A6] with probability atleast 1 — 6,
1Zyvi]| = (14 1A1)" — A/2e2bylog (d/6) (1 + nAy)°
= (1+nn)° (1 —1/2e2bylog (d/9))
> exp (nArh — n2A2b) (1 — \/2¢%by log (d/@)) . (A.23)

where the last line follows since (1+ ) > exp (x—:vz) for all z > 0. From equa-

tions (A:22), (A-23), and the assumption /2e2by log (d/0) < 1/2, it follows that with probability
1—36,

2
in? (g, vy) < 12102.0/0) lexp( d 5 (11°Vo —&-m)]. (A2d)

03 2alog(n)) + n (A1 — A2)

Since w — Q(u, Q), by Lemma[A.9 and using [|£|| < & < 0.5,

sin? (w, u;) < le)” < L < i < 4K%. (A.25)
’ lus + €[ (lus]l = [1€1)> ~ 0.52
The result follows by using equations (A.24), (A.25)), and Lemma|[A.3] 0O

D.2 Proofs of Theorems 2 and

Next, we apply Theorem [A4]to analyze the quantized version of Oja’s algorithm as described in
Algorithm[I] The idea is to show that the error from the rounding operation can be incorporated into
the noise in the iterates of Oja’s algorithm, which have mean zero. For this subsection, we will use:

X.XT
Di = Z ke )
P n/b
where A; =7 (D + &aiu) ) + &auf 4 + (T+7D)&u) .

We first state and prove some intermediate results needed to prove Theorems |Z| and Theorems 3]
Theorem A.5. Let d,n,b e N, and let {X;};c[,] be a set of n IID vectors in R satisfying assump-

tlonl Let n:= % be the learning rate set as in Lemma|A.2| Suppose the quantization grid

Q = Qy, and \/4e2b(4n? + 952d) log (d/6) < . Then, with probability at least 0.9, the output w
of Algorithm ]| satisfies

sin?(w, vi) <

2
24log (1/6) | d N 504)}10gn2 N 30b6°d 4852,
03 n2a n (A — o) alogn

Proof. In order to apply Theorem|[I] we come up with valid choices of Vy, &, and x1.

Since each D; is symmetric and {X;}e[,,] are independent,

by

|E[(D; — =)(D; — %)" H—HE [(X1X] — %)% <— =W (A.26)

Next,
Ei =n€aujq + & ul + (T+nDy)& ul .

Also observe that

E[&1,:]|Fi-] =0, E[&.:|Fi-] =0, E[&2,i1€a,i, €100 Fie] = 0, (A.27)
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By equation [A:27]

[:T:z|]: ] - E[U u;— 1€a z£a zu —1 +u— 152 152 zu —1 + - 151 z(I + 7’]D )(I + nDi)Tsz’iule‘]:ii]
— |EETE|F ]|, < n?0%d + 62d + (1 +)20%d < 65°d = k1.
As for k, we have

=] <201 +n)ovd < 30Vd =: &

We are now ready to obtain the sin-squared error. Note that M < 2, since ||X;|| < 1 almost surely,
for all i € [n]. By Theorem[A.4] with probability at least 1 — 36,

, 2410g (1/0) | d 5 (n2Vo + 1)
2
8
sin(w,v1) < =5 | oxp (2alog(n) (A — Ao) 1
as long as +/2e2by log (d/f) < 1. Our parameter choices are Vo = 2, x = 35v/d, and x; = 66%d.
24log (1/0) | d = 5av1 3060°d
Sin2(w vi) < M ot ald Ogn2 + + 486%d.
0" 771“ n (A — A2) alogn

Lemma A.9. Letu = Q(w, Qny), where u € R? and Qn, is defined in equation Then,
|w — Q(w,Qn1)| < oV + |wl¢

Proof. Let& = Q(w, Qnyp)—w. Say w; > 0. Let k be the unique integer such that w; € [gx, qx+1]-
Equivalently for negative w;, say the bin is [—gx+1, —qx]. We have:
1€ < qre1 — ar < 0o + Car < |Wil¢ + o

Thus we have:

€]l < ovVd + wl¢.
O

Theorem A.6. Fix 0 € (0,1). Let the initial vector ug ~ N (0,1). Let the number of batches b
and quantization scale § be such that \/4e2b(4n? + 3262d + 98¢2) log (d/0) < 1/2. Then, under
assumption ith 1 set as b&ll(’f;’?), where « is set as in Lemma Sov/d < 0.25, and ¢ < 0.25,
with probability at least 1 — 30, the output wy, of Algorithm|[I| gives:

2410g(1/0) | d_ 5aVlogn 5b(4d0V/d + 7¢)?

.2
sin®(w, vi) < 93 n2a n(A\ — )\2)2 alogn

+ 8(400Vd + 7¢)2.

Proof. In order to apply Theorem [I] we need to bound V, « and ;. We start with the first. For us,
D is defined in Eq[9] Let R; denote the random variables in the quantization up to and including the
th update.

Our analysis is analogous to the previous theorem. Note that the V), parameter is as in Eq[A.26]

Now we will work out x and k1 since those are the only quantities that change for the nonlinear
quantization. Recall that we have,

Ei = néaiu;; + &aiu) ) + (T+n7D)&ru] ).

= 772 ui—lﬁgiﬁa,mﬁﬂfw] + E[wi1&7 & ul | Fin] + E[wi1&] (1 + nDi)( + nD;) & u] [ Fi_]
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Now we obtain the Frobenius norm of &, ;, &1, and &> under the nonlinear quantization. We start
with the norm of w;, a quantized version of a unit vector u;_.

By Lemma |wi| <1+ d0vVd+C. Lets; = X (X} w;). Then,
sl < wil < 1+60vVd+¢.
Another application of Lemma[A.9] gives:
||€a,j,i = ||Q(Sj; Onr) — Sj” < 50\/E +(1+ 50\/(3 + ()¢ < 50\/(3 + 1.5¢
which implies [[€, ;| < 8o/ d+1.5¢. Next, we bound &1 =Q(u;—1,9nL)—ui_1. By Lemma

€1 < SoVd + ¢ |lui_1|| = doVd + C.
Finally we bound &5 ;. Recall that:

3o Xi(XTwy)
yi= geBy = 9 9 +&a,i
n/b

52,1' =Q ()%5) —Yi
Since each ||XjX]Twi|| <1+ 60\/3 + ¢,

lyil <1+ 80Vd+ ¢+ |€ail <1+ 200Vd+ 2.5¢ < 3.25.
By Lemmal[A.9]

|€2.i] < doVd + €|y < doVd + 3.25¢.

In all, it follows that

123 < l€aill + €] + (1 + )€1 < (SoVd + 1.5¢) + (8oVd + 3.25¢) + 2(6Vd + ) < 46gVd + ¢ =: k.

We are ready to obtain the sin-squared error. Note that M < 2, since |X;| < 1 almost surely, for all
i € [n]. By Theorem[A.4] with probability at least 1 — 36,

5 (112 V)
<2410g(1/9)[ d L5 0+f€1)] -

.2
sin”(w, vi) < 93 exp (2alog(n)) n (A1 — A2)

as long as 4/2e2bylog (d/0) < % Our parameter choices are V, = %, Kk = 460v/d + 7¢, and
k1 = (409\/d + 7¢)?. Therefore,

2410g (1/6) l d_, SaVlegn  5b(46Vd +7¢)?

sin?(w, vy) <

] + 8(4doVd + 7¢)2.

93 n2e n (A — o)’ alogn
O
D.2.1 Finishing the Proofs of Theorems2]and 3]
Proof of Theorem[2] For the linear quantization scheme, we apply Theorem with § =
1/30 and b = © (%nloggd). Moreover, since § = O <@>, the condition
(AM—22) avd

/4e2b(4n? + 962d) log (d/f) < 1 holds. The Theorem follows by substituting these values into the
bound of Theorem

The proof of the logarithmic scheme follows analogously from Theorem[A.6] O

Proof of Theorem 3] We set § = 1/30. For the linear quantization scheme, we apply Theo-

. _ . _ 2713 _ . )\1_)\2 # .o .
remw1th b = m. Moreover, since § = 2 =0 (mln (7(1 Vdlog(m)’ «/%))’ the condition

v/4€2b(4n? + 962d) log (d/6) <  holds. The Theorem follows by substituting these values into the
bound of Theorem [A3]

For the non-linear scheme, the proof follows analogously from Theorem [A.6] O
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D.3 Optimal Choice of Parameters
We want to minimize the quantity
Ky = C? + 03d,

where ¢ = 277%™ and §p = 4 - 927t Here, (,, and (. are the number of bits used by the mantissa
and the exponent, respectively, and satisfy the constraint

/Bm+ﬂe :6-

Then,
2+ 82d = 272070 1 164272 =: f(B.).
To find S, that minimizes f(f.) we differentiate with respect to 3. and set it to 0.

F(B.) = 272005 . 21n2 4+ 16d - (272 In2) - (—2° In2)

2ﬂe 9Be
p— - - ﬁe .
= (4/5 8d2 ln2)2 2In2.
It is optimal to take (3. such that

20:92" — 8d- 4% In2,
Equivalently, 3. + 2% = 28 + log,(8d In 2). This in particular implies

2Pc < 28 +log,(8dIn2) < 2% +1,

$0
26 4 log,(8dIn2) — 1 < B, < log, (28 + log,(8d1n 2)) .

Therefore, we choose

B = [logy (28 +logy(8d1n2))], B, = B — B2

This choice of 5} is valid as long as it does not make 3 non-positive. This is true as long as
B = max(8,log,(d)). With these values of 3* and 3% ,

2(1+10g2(2ﬁ+log2(8dln2))) 2(25 + 10g2(8dln 2))

_ 9BE-p
(=2 < 28 28

and

*¥_1\2 B¥ 2
62 — (4 . 2—266 ) =16 - 2—2 e < 16 - 2—(25+10g2(8d1n 2)) — .
0 48d1n2

E Proof of Boosting Lemma (Lemma 3)

In this section, we present the proof of the boosting procedure. Our boosting procedure requires a
modest assumption that the number of bits 3 > 4, which is already assumed in Section [3.4] while
optimizing the parameters.

Proof of Lemma
Proof. For each i € [r], define the indicator random variable
xi:=1 (sinz(ui,v) < e) .

Then, by the guarantees of A, Pr(x; = 1) > 1 —p, wherep = 0.1. Let S := {i € [r] : x; = 1}, and
define the event

& :={|S| > 0.6r}.
The Chernoff bound for the sum of independent Bernoulli random variables gives
62E[|S
P(SI<(1—-0)E[IS]]) <exp <—2[||]) Vée(0,1).

By linearity of expectation, E [|S|] = (1 — p)r. Setting 6 = 1/3,
P(ES) <P (S| <0.6r) <e ™20 <.

33



It suffices to show that if the event £ holds, then u is well-defined and has small sin-squared error
with v. Recall,

@ := u; such that |{j € [r] : p(u;,u;) < 5e}| = 0.5r,

Conditioned on &, any ¢ that belongs to the set S satisfies ¢; > 0.6r. Indeed, Lemma[A.3] gives for
any i,5 €S

sin (w;,u;) < 2sin? (w;,v) + 2sin? (v, u;) < 4e,

which implies

|/3 (uiv uj)| < sin? (111', uj) + € < Se
because 4e is within the range of the bounded grid Qy,(€) := Qy (¢, 3) defined in (TI). Therefore,
the algorithm does not return | and u is well-defined.

Now, |p(@, u;)| < 5e for at least 0.5r indices j € [r] and |S| = 0.6r. In particular, there exists
an index j* € S for which |5(0, u;%)| < 5e. Since be is strictly inside the grid Qy (), we get
sin” (@, u;x) < 6e. We conclude

sin?(@, v) < 2sin’(@, u;) + 2sin®(u;, v) < 2(6€) + 26 = 14e.

O

Theorem[A 7] puts everything together and applies Lemma [3]to obtain the final high probability result.
Theorem A.7. Suppose A is the Oja’s algorithm with the setting of Theorem[2|or[3] Let € be the prob-
ability 0.9 error bound guaranteed by Theorem r = [201og(1/0)], and m = nr. Let {X;} e[ be

n IID data drawn from a distribution satisfying assumption and u; — A({X;}(j—1)n+1<i<jn fOr
all j € [r]. Then, the output of algorithmsatisﬁes

sin?(@, vi) < 14e

with probability at least 1 — 6.

Proof. The vectors uy, ..., u, are mutually independent. By Theorem Pr (sin®(u;,v1) > €) <
0.1V € [r]. Therefore, Lemma [3|applies and the theorem follows. 0

F Experimental Details
F.1 Additional Synthetic Experiments

A = 0.5, bits = 8,d = 100

A = 0.5, bits = 8, n = 5000 o A =0.5,n=1000,d =100
b / L e [T0TTEN
: i’ | | 8 ( —1-standard
| | | —{-standard_LQ
10 | i i h standard_NLQ
- i i 1 -+-batched
:Ii:slandard i 1 34 | #-batched LQ
5 standard_LQ | . batched NLQ
g ) standard_NLQ ‘g i::::::: o 1 1 ‘g 1071 e S s . T i -
& - ! 'i":“‘“"“’ 9 standard_NLQ | &1,,,,774 [
: - #-batched LQ o _3-batched e o
£ batch:c‘i,Nl.O M % - batched_LQ S | 1 ﬁ
5 5 102 i batched NLQ | .-+ ! ) e
ic 1 i [
,,,,,, 42
‘ e T | |
102 . . 103 1 —— 10° : : ‘
1000 2000 3000 4000 5000 100 200 300 400 500 4 6 8 10 12
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(a) Varying sample size n, fixedd = (b) Varying dimension d, fixed n = (c) Varying bits 3, fixed n = 1000,
100, bits = 8. 5000, bits = 8. d = 100.

Figure A.1: Variation of sin?-error with: (a) sample size, (b) dimension, and (c) quantization bits.

We generate synthetic datasets via the procedure described in [LSW21]. The generation process takes
as input the number of samples, n, the dimension d and an eigenvalue decay parameter \. We defer
the details of the generation process to the Appendix Section[F] Given the sample size n, dimension
d, and decay exponent ) in the eigenvalues, we first draw an n x d matrix Z with independent entries
uniformly distributed on [—\/§ , \/§] so that each coordinate has unit variance. We then build a kernel
matrix K € R™? with entries K;; = exp(—|i — j|*°') and define a variance profile o; = 5i=*

34



fori = 1,...,d. The population covariance is formed as ¥ = (00 ) o K, where o denotes the
Hadamard product. Computing the eigendecomposition of ¥ yields its square root ¥'/2, and the

. T .
observed data matrix is taken as X = (21/ 2z T) . We then extract the largest two eigenvalues
A1 > o of X and the associated top eigenvector vy for evaluation. Figure[A.T|shows the results for
this dataset, which shows similar trends as the experiments described in Figure [2]

F.2 Real data experiments

This section presents experiments on two real-world datasets. For each dataset, we show sin? error
with respect to the true offline eigenvector, used as a proxy for the ground truth, varying with the
number of bits. The results are plotted in Figure [A.7]

The goal of this section is to determine whether real-world experiments reflect the behavior of batched
vs. standard methods with linear and logarithmic quantization. Therefore, we use the eigengap
computed offline as a proxy of the true eigengap. If we wanted to compute the eigengap in an online
manner, we could split the dataset randomly into a holdout set S and a training set []\S; run Oja’s
algorithm with quantization on a range of eigengaps with outputs uy, ..., u,,, and select the one
with the largest arg max; ul (2jes Dy DjT)ui for a held out set S.

0, _____ h=7352d=561 0 n = 60000, d = 784

i e Ll e A =
o = —f-standard_LQ |
?\\ ! —f-standard_LQ || ™ oo v NLG|
TN | standard_NLQ| | 1N -#-batched |
LN, -%-batched ! LN -1 -batched LQ |
5 | S I\ |- batched La || . N batched A
= { Ot batched_NLQ || o | A\ I
o T \# T 1 = | p | |
o | N\ | ? o N ! ‘

10—~ o s e Nt D | 810 T Yo T

0N 1 Ty 1 ‘@
— | ] N i i — I t ‘\ i I
] | | N | H © i NS N i |
£ i | N £ ! L N 1 I
(™ I i N ! i ; 1 N i i
i i N i ‘l' | N 1
i i T i TN i $ome i
1 ! 1 ‘\\ 1 102 e I N ! "~y
& b ) Y ot i el S ke et b = ot
10-2 bl ¥ Y v L- : NV T »I? !
4 6 8 10 12 4 6 8 10 12
Bits Bits
(a) (b)

Figure A.2: Variation of sin?-error with bits for (a) HAR dataset (b) MNIST dataset.

Time series + missing data: The Human Activity Recognition (HAR) Dataset [AGO™ 13] contains
smartphone sensor readings from 30 subjects performing daily activities (walking, sitting, standing,
etc.). Each data instance is a 2.56-second window of inertial sensor signals represented as a feature
vector. Here, n = 7352 and d = 561. For each datum, we also replace 10% of features randomly by
zero to simulate missing data.

Image data: We use the MNIST dataset [LBBHO9S]|| of images of handwritten digits (O through 9).
Here, n = 60, 000, d = 784, with each image normalized to a 28 x 28 pixel resolution.

These results collectively highlight that using the true offline eigengap (i) under stochastic rounding,
batching provides a significant boost in performance since the quantization error does not depend
linearly on n, and (ii) the logarithmic quantization attains a nearly dimension-free quantization error
in comparison to linear quantization across a wide range of number of bits.

G Related Work

In this section, we provide some more related work on low-precision optimization. [DPHZ23] intro-
duced QLoRA, which back-propagates through a frozen 4-bit quantized LLM into LoRA modules,
enabling efficient finetuning of 65B-parameter models on a single 48 GB GPU with full 16-bit
performance retention. Earlier works [XMHK23]] examined the impact of stochastic round-off
errors and their bias on gradient descent convergence under low-precision arithmetic. [YGG™24]
propose Collage, a lightweight low-precision scheme for LLM training in distributed settings,
combining block-wise quantization with feedback error to stabilize large-scale pretraining. Fi-
nally, communication-efficient distributed SGD techniques, such as 1-bit SGD with error feedback
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[SED* 14]] and randomized sketching primitives (e.g., Johnson—Lindenstrauss projections [JL84]),
further underscore the broad efficacy of low-precision computation.

Low-Precision Optimization: Reducing the bit-width of model parameters and gradient updates
has proven effective for alleviating communication and memory bottlenecks in large-scale learning.
QSGD [AGL™17] uses randomized rounding to compress each coordinate to a few bits while pre-
serving unbiasedness, incurring only an O(\/E/ 29 increase in gradient noise for 3 bits. [WXY*17]
maps gradients to {—1,0, +1} plus a shared scale and demonstrates negligible accuracy loss on
ImageNet and CIFAR benchmarks. [SYKMI17] achieve optimal communication—accuracy trade-offs
via randomized rotations and scalar quantization. More recently, “dimension-free” analyses such
as [LDS19] avoid scaling the required error rate with model dimension, instead depending on a
suitably defined smoothness parameter.
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