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Abstract

Low-precision Streaming PCA estimates the top principal component in a stream-
ing setting under limited precision. We establish an information-theoretic lower
bound on the quantization resolution required to achieve a target accuracy for the
leading eigenvector. We study Oja’s algorithm for streaming PCA under linear and
nonlinear stochastic quantization. The quantized variants use unbiased stochas-
tic quantization of the weight vector and the updates. Under mild moment and
spectral-gap assumptions on the data distribution, we show that a batched version
achieves the lower bound up to logarithmic factors under both schemes. This
leads to a nearly dimension-free quantization error in the nonlinear quantization
setting. Empirical evaluations on synthetic streams validate our theoretical findings
and demonstrate that our low-precision methods closely track the performance of
standard Oja’s algorithm.

1 Introduction
Quantization (or discretization) is the mapping of a continuous set of values to a small, finite set
of outputs close to the original values; standard methods for quantization include rounding and
truncation. The current popularity of training large-scale Machine Learning models has brought a
renewed focus on quantization, though its origins go back to the 1800s. Some early examples include
least-squares methods applied to large-scale data analysis in the early nineteenth century [Sti86].
In 1867, discretization was introduced for the approximate calculation of integrals [Rie67], and the
effects of rounding errors in integration were examined in 1897 [She97]. For an excellent survey and
history of quantization, see [GKD`22].

In the context of efficient model training, it is natural to ask the following: does training a model
require the full precision of 32- or 64-bit representation, or is it possible to achieve comparable
performance using significantly fewer bits? Mixed-precision training (using 16-bit floats with 32-bit
accumulators) is now standard on GPUs and TPUs, yielding 1.5ˆ to 3ˆ speedups with negligible
accuracy loss on large transformers and CNNs [MNA`18]. Binary Neural Networks (BNNs), which
constrain weights and activations to ˘1, can achieve up to 32ˆ memory compression and replace
multiplications with bitwise operations. This has been shown to approach nearly full-precision
ImageNet accuracy with careful training [HCS`16].

Theoretical analysis of the effect of low-precision computation on optimization problems has received
significant attention [LD19, AGL`17, SZOR15, SLZ`18, LDX`17, ZLK`17]. Complementary
strategies leverage stochastic rounding to mitigate quantization bias during LLM training. Ozkara
et al. [OYP25] present theoretical analyses of implicit regularization and convergence properties of
Adam when using BF16 with stochastic rounding, demonstrating up to 1.5ˆ throughput gains and
30% memory reduction over standard mixed precision [OYP25].
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Consider the set of values that can be exactly represented in the quantization scheme, which we call
the quantization grid. For example, fixed-point arithmetic [Yat09] uses linear quantization (LQ),
where the quantization grid consists of points spaced uniformly at a distance δ (also denoted by
quanta). [LDX`17] analyze Stochastic Gradient Descent (SGD)-based optimization algorithms for
LQ, and [SYK21] perform Learned Image Compression (LIC) under 8-bit fixed-point arithmetic.
Nonlinear quantization (NLQ) grids with logarithmic spacing are also widely used [KWW`17,
NTSW`22, XLY`24, YIY21, ZMK22, ZWG`23] in low-precision training.

To illustrate the importance of the quantization scheme, consider the example of rounding, where
each input is mapped to the value in the quantization grid closest to it. The following toy iterative
optimization algorithm demonstrates that rounding can cause the solution to remain stuck at the initial
vector. Consider the update scheme wt “ wt´1 ` ηgt, followed by rounding each coordinate of
wt. Here η is the learning rate and gt is the gradient evaluated at time t. Suppose maxi }gtpiq} ď 1.
Assume that w0 is quantized using the LQ scheme and that η ă δ{2. For any coordinate i, we have
|w1piq ´ w0piq| “ η ¨ |gtpiq| ď η. Since η ă δ{2, after rounding, w1piq is mapped back to the
original quantized value w0piq, i.e., w1 “ w0. As a result, the algorithm fails to make progress. We
address this issue by using stochastic rounding. In this approach, each value is randomly mapped to
one of the closest two quanta with the probabilities chosen such that the quantized value is unbiased.

Principal Component Analysis. PCA [Pea01, Zie03] is a dimension-reduction technique that
extracts the directions of largest variance from the data. Suppose we observe n independent samples
Xi P Rd from a zero-mean distribution with covariance Σ. PCA seeks a unit vector v1 that maximizes
variance, which is any eigenvector of Σ associated with its largest eigenvalue λ1. Under mild tail
conditions on the Xi, the top eigenvector v̂ of the sample covariance 1

n

řn
i“1 XiX

J
i is a nearly

rate-optimal estimator of the true principal direction v1 [Wed72, JJK`16, Ver10].

Despite its statistical appeal, constructing the covariance matrix itself takes Ωpnd2q time and Ωpd2q

space, which is prohibitive for large d and n. A popular remedy is Oja’s algorithm [Oja82], a
single-pass streaming algorithm inspired by Hebbian learning [Heb49]. Starting from a (random)
unit vector u0, for each incoming datum Xi the algorithm performs the update

ui Ð ui´1 ` ηXi

`

XJ
i ui´1

˘

, ui Ð ui{}ui}. (1)
Here, η ą 0 is the learning rate which may vary across iterations. The batched version of Oja’s
method partitions the data into b batches B1, . . . Bb of size n{b each and replaces the above update
with the averages of the gradients within a batch:

ui Ð ui´1 ` η

ř

jPBi
Xj

`

XJ
j ui´1

˘

n{b
, ui Ð ui{}ui}. (2)

The entire procedure completes in Opndq time and uses Opdq space. The scalability and simplicity
of Oja’s algorithm have motivated extensive analysis across statistics, optimization, and theoretical
computer science [JJK`16, AZL17, CYWZ18, YHW18, HW19, MP22, Mon22, KS24b, KS24a,
JKL`24, KPS25]. These works establish precise convergence rates, error bounds under various noise
models, and extensions to sparse or dependent-data settings. When operating with β bits, the overall
complexity for streaming PCA (and that of the batched variant) grows polynomially with β (for fixed
n, d); Table 1 gives evidence towards this fact.

64 bits 16 bits
Runtime (s) 0.0274 ˘ 0.00136 0.000398 ˘ 0.0000235

Table 1: Benchmarking runtimes1 for the experiment described in Appendix F.1

Our Contributions.

1. We present a general theorem for streaming PCA with iterates that are composed of indepen-
dent data (as in standard Oja’s algorithm) and a noise vector that is mean zero, conditioned
on the filtration up until now, which may be of independent interest.

2. We obtain new lower bounds for estimating the principal eigenvector under both quantization
schemes. The quantization error depends linearly in the dimension d for the linear scheme
and dimension-independent (up to logarithmic factors) for the non-linear scheme.

1The experiments were conducted by representing the data and intermediate variables in double precision
(64 bits) and half precision (16 bits) datatypes.
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3. Our batched version of Oja’s algorithm matches the lower bounds under both quantization
schemes. The quantization error of the batched version with logarithmic quantization is
nearly dimension-free. We also provide a procedure to make the failure probability of the
algorithm arbitrarily small.

Section 2 introduces the problem setup and defines the linear and logarithmic quantization schemes.
Section 3 presents the main results, including lower and upper bounds for Oja’s algorithm with and
without batching for both quantization schemes. Section 4 provides proof sketches, Section 5 reports
experimental results, and Section 6 concludes the paper.

2 Problem Setup and Preliminaries
We use rns to denote ti P N | i ď nu. Scalars are denoted by regular letters, while vectors and
matrices are represented by boldface letters. I P Rdˆd represents the d-dimensional identity matrix.
∥.∥ denotes the ℓ2 euclidean norm for vectors and ∥.∥op denotes the operator norm for matrices. For
a, b P R, we write a À b if and only if there exists an absolute constant C ą 0 such that a ď Cb.
Õ, Ω̃ represent order notations that hide logarithmic factors. Sd´1 is the set of unit vectors in Rd.

We operate under the following assumption on the data distribution.

Assumption 1. tXiuiPrns are mean-zero iid vectors in Rd drawn from distribution D supported on
the unit ball. Let Σ :“ EX„D

“

XXJ
‰

denote the data covariance, with eigenvalues λ1 ą λ2, ¨ ¨ ¨ , λd

and corresponding eigenvectors v1,v2, ¨ ¨ ¨vd. We assume DV,M ą 0 such that

EX„Dr}XXJ ´ Σ}2s ď V and
∥∥XXJ ´ Σ

∥∥
2

ď M almost surely for X „ D.

Assumption 1 enforces standard moment bounds used to analyze PCA in the stochastic setting.
Similar assumptions are also used in [HP14, SRO15, Sha16a, Sha16b, JJK`16, AZL17, BDWY16,
XHDS`18] to derive near-optimal sample complexity bounds for Oja’s rule. We assume a bounded
range for ease of analysis, and it can be generalized to subgaussian data (see [LSW21, KS24a, Lia21]).

The misalignment between the estimated top eigenvector u and the true eigenvector u1 is measured
using the principal angle between the two vectors. The sin-squared error between any two non-zero
vectors u,v is defined as sin2pu,vq “ 1 ´

puJvq
2

}u}2}v}2
.

2.1 Quantization Schemes and Rounding
Linear quantization: Let δ ą 0, and let β ą 0 be the number of bits used by the low-precision
model to represent numbers. A linear quantization scheme uniformly spaces on the real line. Define

QLpϵ, βq :“
␣

´δ2β´1,´δpp2β´1 ´ 1q ` 1q, . . . ,´δ, 0, δ, . . . , δp2β´1 ´ 1q
(

. (3)

We call δ the quantization gap for the quantization grid QL.

Logarithmic (non-linear) quantization: The error resulting from rounding an element x in the
range r´δ2β´1, δp2β´1 ´ 1qs using the linear quantization scheme is an additive δ. Here, we present
a well-known non-linear quantization scheme where the error scales with the quantized value.

The quantization grid QNL in the logarithmic quantization scheme with parameters ζ and δ0 is
defined as follows: Let q0 “ 0 and qi`1 “ p1 ` ζqqi ` δ0 @ i P N. Then,

QNLpζ, δ0, βq :“ t´qN ,´qN´1, . . . ,´q1, q0, q1, . . . , qN´1u , (4)

where N “ 2β´1. Henceforth, non-linear quantization refers to logarithmic quantization.

These two quantization schemes are widely used in practice [YIY21, DSLZ`18, LDS19, DMM`18].
Our analysis of the logarithmic scheme lifts to floating-point quantization commonly used in low-
precision computing. The Floating Point Quantization (FPQ) is a widely adopted variation on the
Logarithmic quantization scheme, where adjacent values in the quantization grid are multiplicatively
close. FPQ and other logarithmic schemes are used in most modern programming languages such as
C++, Python, and MATLAB, and broadly standardized (IEEE 754 floating-point standard [Kah96]).

Another quantization scheme for low-precision training is the power-of-two quantization [PRSS`22],
which rounds to the nearest power of two. All these schemes are similar in principle to our scheme;
Lemma A.9 in the appendix establishes a relationship between the distance of a vector from its
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quantization under NLQ. This Lemma applies to FPQ and to most other logarithmic quantization
schemes. Our proofs can be modified to work with any such scheme.

Stochastic Rounding. A natural quantization scheme is to round x to any of the closest values in the
quantization grid. We can randomize to ensure that the expectation of the quantized number is equal
to x. For this, we use a stochastic rounding scheme. For any x within the range of the quantization
grid Q, suppose u and ℓ are adjacent values in Q such that ℓ ď x ă u. Define

Qpx,Qq “

"

ℓ with probability 1 ´ ppxq

u with probability ppxq
, (5)

where ppxq :“ px ´ ℓq{pu ´ ℓq. This choice of probability ensures

E rQpx,QNLq|xs “ x, | Qpx,QNLq ´ x| ď u ´ ℓ, VarpQpx,QNLq|xq ď pu ´ ℓq2{4. (6)

3 Main Results
3.1 Lower Bounds
In this section, we establish worst-case lower bounds for the quantized PCA for both linear and
logarithmic quantization schemes under the mild assumption that the quantized vectors under consid-
eration have bounded norm. This assumption is reasonable because (i) gradient-based algorithms and
other typical algorithms for PCA are usually self-normalizing, ensuring that the norms of the iterates
are controlled, and (ii) the quantized vectors are close to the true vectors in norm.

Lemma 1. [Lower bound for linear quantization] Let d ą 1 and δ ą 0 such that δ2d ď 0.5. Let VL

denote the set of non-zero quantized vectors w P Rd using the linear quantization scheme (3) such
that }w} P r1{2, 2s. Then, supv1PSd´1 infwPVL

sin2pw,v1q “ Ωpδ2dq.

Lemma 2. [Lower bound for logarithmic quantization] Let d ą 1 and δ0, ζ ą 0 such that ζ ă 0.1
and δ20d ă 0.5. Let VNL be the set of non-zero quantized vectors w P Rd using the logarithmic
scheme (4) such that ∥w∥ P r1{2, 2s. Then, supv1PSd´1 infwPVNL

sin2pw,v1q “ Ωpζ2 ` δ20dq.

At first glance, the results of Lemmas 1 and 2 may appear similar. However, the parameter δ0 is
substantially smaller than δ. In Section 3.4, we select optimal values for δ, δ0, and ζ given a fixed
bit budget β for the low-precision model and show that δ2d “ Θpd4´βq while ζ2 ` δ20d “ Θ̃p4´βq

where the tilde hides a log2 d factor. Hence, the lower bound for the logarithmic quantization scheme
is nearly independent of the dimension. The proofs of the lower bounds are deferred to Appendix B.

3.2 Quantized Batched Oja’s Algorithm
In this section, we present an algorithm that uses stochastic quantization for the batch version of Oja’s
algorithm (see Eq 2). We start by computing the quantized version wi of the normalized vector ui´1

from the last step. Then, we quantize each XjpXT
j wi´1q and compute the average of the quantized

gradient updates. This average gradient is quantized again and added to wi.

Algorithm 1 Quantized Oja’s Algorithm with Batches

Require: Data tXiuiPrns, quantization grid Q, learning rate η, number of batches b
1: Initialize u0 with a unit vector picked uniformly from Sd´1.
2: Bi Ð

␣

pi ´ 1qn
b ` 1, pi ´ 1qn

b ` 2, . . . , inb
(

3: for i “ 1 to b do
4: wi Ð Qpui´1,Qq Ź ξ1,i :“ Qpui´1,Qq ´ ui´1

5: zi Ð

ř

jPBi
QpXjpXT

j wiq,Qq

n{b Ź ξa,j,i :“ QpXjpXT
j wiq,Qq ´ XjpXT

j wiq

6: yi Ð Qpη
ř

jPBi
QpXjpXT

j wiq,Qq

n{b ,Qq Ź ξa,i :“
ř

jPBi
ξa,j,i

n{b

7: ui Ð wi ` yj Ź ξ2,i :“ Q pyi,Qq ´ yi

8: ui Ð ui

}ui}

9: w Ð Qpub,Qq

10: return w
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The final vector that results from the batched Oja’s rule (Eq 2) without quantization is

uunquantized “
pI ` ηDbq . . . pI ` ηD2qpI ` ηD1qu0

∥pI ` ηDbq . . . pI ` ηD2qpI ` ηD1qu0∥
“

ś1
i“bpI ` ηDiqu0∥∥∥ś1
i“bpI ` ηDiqu0

∥∥∥ ,
where Di “

ř

jPBi
XjX

T
j {pn{bq is the empirical covariance matrix of the ith batch. Since Xi are

IID and the batches are disjoint, Di are also IID. The key observation for Algorithm 1 is that even
with the quantization, the vector ub can be written as

ub “

ś1
i“bpI ` ηDi ` Ξiqu0

}
ś1

i“bpI ` ηDi ` Ξiqu0}
. (7)

Each Ξi is a rank-one matrix resulting from the stochastic quantization. Conditioned on an
appropriately chosen filtration σpX1, . . . ,Xi,u0, . . . ,ui´1q, Ξi is mean zero; Algorithm 1 de-
fines quantization variables ξ1,i, ξa,i, and ξ2,i for all i P rbs. The rank one noise Ξi is Ξi :“
pηξa,i ` ξ2,i ` pI ` ηDiqξ1,iqu

T
i´1. Since the stochastic updates are conditionally unbiased (equa-

tion (6)),

Erξ1,i|D1, . . . ,Di,w0, . . . ,wi´1s “ 0.

Similarly Erξa,i|D1, . . . ,Di,w0, . . . ,wi´1s “ 0, as it can be written as

ErErξa,i|ξ1,i,D1, . . . ,Di,w0, . . . ,wi´1s|D1, . . . ,Di,w0, . . . ,wi´1ss “ 0.

3.3 Guarantees for Low-Precision Oja’s Algorithm
Before presenting our main result, we present a general result that can apply to other noisy variants of
Oja’s rule and is of independent interest. The proof is deferred to Appendix Section D. Consider Oja’s
algorithm on matrices Ai P Rdˆd, such that Ai “ ηDi ` Ξi where Di are IID random matrices
with ErDis “ Σ.

Let Si be the set of all random vectors ξ in the first i iterations of the algorithm and Fi´ denote the
σ-algebra generated by the random D1, . . . ,Di and Si´1. Define the operator Eir.s :“ Er.|Fi´s. We
assume the noise term Ξi is measurable with respect to the filtration Fi´ and unbiased conditioned
on Fi´, i.e., EirΞi|Fi´s “ 0dˆd.Let V0, ν,M, κ, and κ1 be non-negative parameters such that

max
`

}ErpDi ´ ΣqpDi ´ ΣqT s}, }ErpDi ´ ΣqT pDi ´ Σqs}
˘

ď V0, (8)

}Di} ď 1, }Di ´ Σ} ď M, ∥Ξi∥ ď κ, }ErΞT
i Ξi|Fi´s}F ď κ1 a.s. (9)

Theorem 1. Let d, n, b P N and u0 „ N p0, Idq. Let η :“ α logn
bpλ1´λ2q

be the learning rate where α

is chosen to satisfy Lemma A.2, and suppose maxpbη2M2 logpdq, bκ2 log dq “ Op1q. Then, with
probability at least 0.9, the vector ub from equation 7 satisfies ∥ub∥ P r1 ´ κ1, 1 ` κ1s and

sin2pub,v1q À
d

n2α
`

αV0 log n

bpλ1 ´ λ2q2
` max

ˆ

b

α log n
, 1

˙

κ1 ` κ2.

Remark 1 (Matching the Upper and Lower Bounds). In the LQ scheme with gap δ, each coordinate
of the noise vector ξ is bounded by δ almost surely. In particular, this implies κ “ Opδ

?
dq and

κ1 “ Opδ2dq (see Appendix Section D) and the resulting error due to quantization matches the
lower bound in Lemma 1. In the NLQ scheme with parameters ζ and δ0, the ith coordinate of the
noise vectors ξ is bounded by ζ|ui| ` δ0, where u is the vector being quantized. Since the vectors in
consideration are bounded in norm by 1, this implies κ “ Opζ ` δ0

?
dq and κ1 “ Opζ2 ` δ20dq (see

Appendix Section D). The resulting error matches the lower bound in Lemma 2 as long as the output
vector has norm in the range r1{2, 2s.

Remark 2. Theorem 1 relies on the observation that accumulating the quantization error only b
times in Algorithm 1 leads to a smaller sin2 error. Moreover, choosing an appropriate batch size
reduces the variance parameter V0 by a factor of n{b because of averaging.
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Remark 3 (Hyperparameters and eigengap). The choice of the learning rate η “
α logn

npλ1´λ2q
is also

present in other works on streaming PCA [HP14, SOR14, Sha16a, Sha16b, AZL17, HNWTW20,
JNN19, BDF13] to derive the statistically optimal sample complexity (up to logarithmic factors). If a
smaller learning rate η is used (for example, by using an upper bound U on the eigengap λ1 ´ λ2),
then the first error term of Theorem 1 will be larger, leading to a slightly larger sin-squared error. A
similar argument applies to the choice of the batch size.

Remark 4 (Known n in the learning rate). The length of the stream n is an input in Theorem 1, and
the learning rate is constant over time. To handle variable learning rates using only constant-rate
updates, a standard doubling trick [ACBFS95] can be used. Specifically, the time horizon is divided
into blocks that double in size: the kth block has size 2k´1 and Oja’s algorithm run on that block uses
a learning rate corresponding to that block’s size. When the algorithm run on this block terminates,
the older estimate of the top eigenvector run on the previous block is replaced by this new estimate.
This scheme effectively simulates a decaying learning rate while keeping the analysis tractable.

3.4 Choosing the Optimal Quantization Parameters
To ensure a fair comparison between the linear and logarithmic quantization schemes, we fix a budget
β for the total number of bits used by the low-precision model. Moreover, our algorithms require that
numbers in, say, p´2, 2q are representable by the quantization scheme. Therefore, we must ensure
that the upper and lower limits of the scheme cover this range.

The largest number representable in the linear quantization scheme is δp2β ´ 1q and the smallest
negative number representable is ´δ ¨ 2β . We choose δ “ 22´β , which covers the range p´2, 2q.

To motivate the choice of ζ and δ0, we note that the floating point scheme is a discretization of the
logarithmic quantization scheme. The parameter δ0 in the logarithmic scheme represents the smallest
representable positive real, which in the FPQ scheme is equal to 4 ¨ 2´2βe´1

, where βe is the number
of bits used to represent the exponent. The parameter ζ represents multiplicative growth between
adjacent quanta and is analogous to 2´βm in the FPQ scheme, where βm is the number of bits to
represent the mantissa, and β “ βm ` βe. Assuming ζ “ 2´βm and δ0 “ 4 ¨ 2´2βe´1

, where βm

and βe are positive integers, the largest representable number is

q2β´1 “

´

p1 ` ζq2
β´1

´ 1
¯

¨
δ0
ζ

ě 2βm´1.

To represent numbers in p´2, 2q, it suffices to ensure βm ě 3. This allows some freedom to select
βm and βe such that the factor κ1 “ ζ2 ` δ20d is minimized. We choose

βe “ rlog2 p2β ` log2p8d ln 2qqs and βm “ β ´ βe

which is valid as long as β ě maxp8, log2 dq and βm ě 3. We justify this choice in appendix D.3.

With this choice of βe and βm, the parameters ζ and δ0 satisfy

δ20 ď
2

4βd ln 2
and ζ2 ď

4 p2β ` log2p8d ln 2qq
2

4β
. (10)

With this setting, we present two immediate corollaries of Theorem 1 with a fixed budget β. The
proofs are deferred to Appendix Section D.
Theorem 2. [Oja’s Algorithm with Batches]

1. Suppose Q “ QL and δ, b satisfy δ “ 22´β “ O
´

λ1´λ2

α
?
d logpnq

¯

and b “ Θ
´

α2 log2
pnq

pλ1´λ2q2

¯

.
Then, with probability at least 0.9, the output wb of Algorithm 1 satisfies

sin2pwb,v1q À
d

n2α
`

α logpnq

pλ1 ´ λ2q2

ˆ

V
n

`
d

4β

˙

.

2. Suppose Q “ QNL with ζ and δ0 as in equation (10), such that ζ ` δ0
?
d “

O
´

λ1´λ2

α
?
d logpnq

¯

, and batch size b “ Θ
´

α2 log2
pnq

pλ1´λ2q2

¯

. Then, with probability at least 0.9, the
output wb of Algorithm 1 satisfies

sin2pwb,v1q À
d

n2α
`

α logpnq

pλ1 ´ λ2q2

ˆ

V
n

`
β2 ` log2pdq

4β

˙

.
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Theorem 3. [Oja’s Algorithm]

1. Suppose Q “ QL, and δ, b satisfy δ “ 22´β “ O
´

min
´

λ1´λ2

α
?
d logpnq

, 1?
dn

¯¯

and b “ n.
Then, with probability at least 0.9, the output wn of Algorithm 1 satisfies

sin2pwn,v1q À
d

n2α
`

αV logpnq

npλ1 ´ λ2q2
`

dn

4βα logpnq
.

2. Suppose Q “ QNL with ζ and δ0 as in equation (10), such that ζ ` δ0
?
d ă

O
´

min
´

λ1´λ2

α
?
d logpnq

, 1?
dn

¯¯

, and batch size b “ n. Then, with probability at least 0.9, the
output wn of Algorithm 1 satisfies

sin2pwn,v1q À
d

n2α
`

αV logpnq

npλ1 ´ λ2q2
`

pβ2 ` log2 dqn

4βα logpnq
.

Figure 1: We study the effect of different quantiza-
tion strategies on mean sin2-error over 10 runs as
the number of samples grows on the x axis. Stan-
dard uses b “ n batches whereas Batched uses
b “ 10 batches. Among the quantization algo-
rithms, we see that in sin2 error, Standard LQ >
Batched LQ and Standard NLQ > Batched NLQ.

Under linear quantization (LQ), the quantiza-
tion error term scales as d{4β , whereas under
nonlinear/logarithmic quantization (NLQ) it is
only pβ2 ` log2 dq{4β . Thus, NLQ achieves a
nearly dimension-independent error resulting
from quantization, making it especially advan-
tageous in high-dimensional settings.

The errors of Oja’s algorithm with batching due
to quantization are Õpd4´βq and Õp4´βq in the
two cases of linear and logarithmic quantiza-
tion, which are an n factor larger than the cor-
responding errors without batching. Theorem 2
and 3 show that batching significantly improves
the performance under quantization. They fur-
ther show that the NLQ scheme, when suitably
optimized, gives nearly dimension-independent
dependence on the quantization error. In com-
parison, the error resulting from quantization
in LQ suffers the most from higher dimensions.
In Figure 1 we see that unquantized algorithms
(standard and batched) have similar and best
performance. See Section 5 for detailed exper-
imental evidence supporting the theory.

Remark 5. Theorems 2 and 3 are stated with a constant probability of success. In Section 3.5 we
provide a quantized probability boosting algorithm (Algorithm 2) which boosts the probability of
success from a constant to 1 ´ θ for arbitrary θ P p0, 1s.

3.5 Boosting the Probability of Success

Quantized Oja’s algorithm produces an estimate whose error is within the target threshold with
constant success probability. This section addresses this gap by presenting a standard probability
boosting framework to let the failure probability θ be arbitrarily small.

Algorithm 2 begins by partitioning m data tXiuiPrms into r “ Θplog 1{θq disjoint batches of size
n each and runs the algorithm A on each batch. The output vectors tuiuiPrrs are then aggregated
using the boosting procedure SuccessBoost. This procedure looks for a popular vector ui close to at
least half of the other vectors and returns any such vector. A general argument for SuccessBoost for
arbitrary distance metrics can be found in [KLL`23, KS24a].
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Algorithm 2 Probability Boosted Oja’s Algorithm

Require: Data tXiuiPrms, algorithm A, quantization grid QLpϵq, failure probability θ, error ϵ
1: r Ð r20 logp1{θqs, n Ð tm{ru

2: for i “ 1 to r do
3: Bi Ð tpi ´ 1qn, pi ´ 1qn ` 1, . . . , pi ´ 1qn ` nu

4: ui Ð A ptXjujPBi
q

5: procedure ρ̃(x,y)
6: return Q

`

sin2px,yq,QLpϵq
˘

7: procedure SuccessBoost(tuiuiPrrs, ρ, ϵ)
8: for i “ 1 to r do
9: ci Ð |tj P rrs : ρpui,ujq ď 5ϵu|

10: if ci ě 0.5r then
11: return ui

return K

12: ū Ð SuccessBoostptuiuiPrrs, ρ̃, ϵq
13: return ū

We use a quantized version ρ̃ as a proxy for the sin2 error in the SuccessBoost procedure. ρ̃ uses the
linear quantization grid

Qpβq

L pϵq “ t´2β´1ϵ,´p2β´1 ´ 1qϵ, . . . ,´ϵ, 0, ϵ, . . . , p2β´1 ´ 1qϵu, (11)

where the gap ϵ is set to the upper bound on the error guaranteed by Theorem 2 or Theorem 3
depending on the algorithm A in use.

Standard arguments for SuccessBoost apply when the error ρ̃ is either computed exactly. The
difference in our setting is that we the error function ρ̃ is only approximately a metric and does not
behave as intended if the computed value is outside the quantization range. To highlight the second
point, consider the unbounded quantization grid

Q˚
Lpϵq “ tkϵ : k P Zu.

With this grid,
ˇ

ˇρ̃px,yq ´ sin2px,yq
ˇ

ˇ is bounded by Opϵq almost surely. We extend the argument to
show that Lemma 3 holds even with the bounded grid QLpϵq “ QLpϵ, βq, which truncates values
outside the range r´2β´1ϵ, p2β´1 ´ 1qϵs to its endpoints. This requires a modest assumption that the
number of bits β ě 4, which is already assumed when optimizing the parameters in Section 3.4.

Lemma 3. Let d ą 1, β ě 4, ϵ P p0, 0.75q, θ P p0, 1q, and r “ r20 logp1{θqs. Let v P Rd be a
unit vector and u1,u2, . . . ,ur be independent random vectors such that Pr

`

sin2pui,vq ď ϵ
˘

ě 0.9.
Let ρ̃ be the function defined in Algorithm 2 with the quantization grid QLpϵ, βq. Then, the vector
ū :“ SuccessBoost

`

tuiuiPrrs, ρ̃, ϵ
˘

satisfies

Pr
`

sin2pū,vq ď 14ϵ
˘

ě 1 ´ θ.

The proof of Lemma 3 is in Appendix E.

Algorithm 2 has a constant overhead in the error compared to algorithm A. The probability of success
is amplified from 0.9 to 1 ´ θ. The number of samples needed to achieve the same error (up to
constant factors) as A blows up only by a multiplicative factor Θplog 1{θq. If algorithm A runs
in Opndq time and Opdq space, which is the case for Oja’s algorithm and its batch variants, then
Algorithm 2 takes Opnd logp1{θq ` d log2p1{θqq time and Opd logp1{θqq space.

4 Proof Techniques
Our proof of Theorem 1 has three main parts. Let Zb “

ś1
i“bpI ` Aiq where Ai :“ ηDi ` Ξi as

described in equation (7). First, note that the sin-squared error can be written as 1 ´
`

uJ
b v1

˘2
“

}VKVK
JZbu0}2{}Zbu0}2. Using the one-step power method result shown in Lemma 6 from

[JJK`16], for a fixed θ P p0, 1q, with probability atleast 1 ´ θ,

1 ´
`

uJ
b v1

˘2
ď

3 log p1{θq

θ2

Tr
´

VK
JZbZ

J
b VK

¯

vJ
1 ZbZJ

b v1
. (12)
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This makes our strategy clear for the subsequent proof. We bound the numerator by bounding
ErTrpVK

JZbZ
J
b VKqs and applying Markov’s inequality. For the denominator, we lower bound∥∥ZJ

b v1

∥∥ by decomposing it as

}ZJ
b v1} ě } pI ` ηΣq

b
v1} ´ }pZb ´ pI ` ηΣq

b
qJv1} ě p1 ` ηλ1q

b
´ }Zb ´ pI ` ηΣq

b
} (13)

and upper-bounding }Zb ´ pI ` ηΣq
b

}. For both the numerator and the denominator, we use the
following intermediate bound, which controls the pp, qq-norm for a random matrix X defined as
~X~p,q “ Er∥X∥qps1{q , where ∥X∥p represents the Schatten-p norm.

Proposition 1. Let the noise term Ξ, defined in (9), be bounded as ∥Ξ∥ ď κ almost surely. Under
Assumption 1, for η P p0, 1q, we have

~Zb~2
p,q ď ϕb exppCpbγq ∥Z0∥2p

~Zb ´ pI ` ηΣqb~2
p,q ď ϕbpexppCpbγq ´ 1q ∥Z0∥2p ,

where Z0 “ I, ϕ :“ p1 ` ηλ1q2, γ :“ 2pη2M2 ` κ2q, and Cp :“ p ´ 1.

The proof of Proposition 1 adapts the arguments for matrix product concentration from [HNWTW20].
which also include results for a general sequence of matrices adapted to a suitable filtration.

From Proposition 1 with q “ 2, p “ 2 ` 2 log d, we get

E
“

}Zb ´ pI ` ηΣqb}
‰

ď ~Zb ´ pI ` ηΣqb~p,2 ď
a

e2bγ p1 ` 2 log pdqq p1 ` ηλ1q
b
.

This allows us to control the lower bound via Markov’s inequality, by substituting in equation (13).

To control the numerator, we show the following result (Lemma 4),
Lemma 4. Let Assumption 1 hold and let γ :“ 2pη2M2 ` κ2q. If bγ p1 ` 2 log pdqq ď 1, then

ErTrpVK
JZbZ

J
b VKqs ď exp

`

2ηbλ1 ` η2b
`

V0 ` λ2
1

˘˘

ˆ

d

exp p2ηb pλ1 ´ λ2qq
`

5η2V0 ` 5κ1

η pλ1 ´ λ2q

˙

.

The proof of Lemma 4 follows Lemma 10 of [JJK`16] to show, for βt :“ ErTrpVK
JZtZ

J
t VKqs,

βt ď
`

1 ` 2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βt´1 `
`

η2V0 ` κ1

˘

Er}Zt´1}2s.

At this step, we deviate from their proof and appeal to Proposition 1 for bounding Er}Zt´1}2s. Setting
ϕ :“ p1 ` ηλ1q2, γ :“ 2pη2M2 ` κ2q and p :“ maxp2,

a

2 log d{pbγqq, we get

Er}Zb}s2 ď ~Zb~2
p,2 ď ϕb exppCpbγq ∥Z0∥2p ď p1 ` ηλ1q

2b
exp p2pbγq .

Unrolling the recursion and using this bound proves Lemma 4. The proof of Theorem 1 then follows
from the one-step power method guarantee in equation 12. Detailed proofs are in Appendix C.

5 Experiments

(a) Varying sample size n, fixed d “

100, bits “ 8.
(b) Varying dimension d, fixed n “

5000, bits “ 8.
(c) Varying bits β, fixed n “ 1000,
d “ 100.

Figure 2: Variation of sin2-error with (a) sample size, (b) dimension, and (c) quantization bits.

9



We generate n samples from a d dimensional distribution selected by choosing a random orthonormal
matrix Q, setting Σ :“ QΛQJ for Λii :“ i´2 and sampling datapoints i.i.d from N p0,Σq. We
compare six variants of Oja’s algorithm for estimating v1, the leading eigenvector of Σ. The baseline
is the standard full precision update in Eq 1 (standard). standard_LQ and standard_NLQ use
Algorithm 1 with b “ n and Qp.,QLq and Qp.,QNLq respectively. The batched variant follows
Eq 2 with b “ 100 (for Figures 2a and 2b) and b “ 25 (for Figure 2c) equal-sized batches. Finally,
we combine the batched schedule by running Algorithm 1 with Qp.,QLq (batched_LQ) and with
Qp.,QNLq (batched_NLQ). All experiments were done on a personal computer with a single CPU.

The low-precision methods rely on Eq 10 to choose quantization parameters for a target number
of bits β “ 8. Given the dimension d, these routines compute a uniform quantization step δuni,
an exponential step δexp, and a multiplicative-growth factor αexp to cover a fixed dynamic range.
Each configuration is run for R “ 100 independent trials. In Experiment 1 we fix d “ 100
and vary n P t1000, 2000, 3000, 4000, 5000u; in Experiment 2 we fix n “ 5000 and vary d P

t100, 200, 300, 400, 500u. Every trial begins from a random Gaussian vector normalized to unit
length. We set the learning rate to η “

2 lnpnq

n pλ1´λ2q
for the standard method and to η “

2 lnpnq

b pλ1´λ2q
for

the batched methods. Upon completion we record the final excess error sin2pŵ,v1q “ 1 ´ pŵJv1q2

and report the mean. The first two use the log-log scale and the third uses the log scale for the y-axis.

As shown in Figure 2a, all methods improve as the number of samples n grows except standard_LQ
and standard_NLQ. The errors of these two methods, as expected from Theorem 3, grow linearly
with n. In contrast, the batched_LQ and batched_NLQ’s quantization errors do not depend linearly
on n and improve over the standard counterparts. Figure 2b shows how the error varies with
the data dimension d. Since V grows mildly with d, for our data distribution, all methods other
than standard_LQ and batched_LQ do not grow with d. These two methods grow linearly with d,
confirming our theoretical findings in the first results under Theorems 2 and 3. Finally, Figure 2c
compares the errors with the bit budget β. As β increases from 4 to 12, linear and logarithmic
quantization schemes steadily reduce their error and converge toward the full-precision result by
β “ 12. The batched quantizers require only 6–8 bits to achieve comparable performance to the
full-precision batched error, whereas the standard_LQ and standard_NLQ need at least 10 bits to
reach the same performance. The variability of the full precision methods arises from the randomness
of initializations. Appendix F provides experiments on additional real-world and synthetic data.

6 Conclusion
We study the effect of linear (LQ) and logarithmic (NLQ) stochastic quantization on Oja’s algorithm
for streaming PCA. We obtain new lower bounds under both quantization settings and show that
the batch variant of our quantized streaming algorithm achieves the lower bound up to logarithmic
factors. The lower bound on the quantization error resulting from our logarithmic quantization is
dimension-free. In contrast, the quantization error under the LQ scheme depends linearly in d, which
is problematic in high dimensions. We also show a surprising phenomenon under quantization:
the quantization error of standard Oja’s algorithm scales with n under both NLQ and LQ schemes,
while batch updates with a small batch size does not incur this dependence. These theoretical
observations are validated via experiments. A limitation of our analysis is that we estimate the first
principal component only. Deflation-based approaches (see e.g. [JKL`24, Mac08, SJS09]) provide
an interesting future direction for extending this work for retrieving the top k principal components.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We prove theoretical results on the effect of quantization on streaming PCA.
The abstract and introduction summarize the contributions and put them in the broader scope
of low-precision computation.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the conclusion, we state that our work is about estimating the first principal
component. Extending to k principal components is part of future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide complete proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental section has all the parameters of the experiments for repro-
ducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will submit the code with the supplementary material. We only provided
synthetic experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the learning rate, data-generating distributions, and other parame-
ters clearly in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for the figures in the experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were done on our personal device with a single CPU, which
we mention in the experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is primarily theoretical and has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is primarily theoretical, and we do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets - our contributions are primarily theoretical.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets - our contributions are primarily theoretical.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

16

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work is primarily theoretical - we do not use crowdsourcing or human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work is primarily theoretical - we do not use crowdsourcing or human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLMs other than for writing or editing.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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[NTSW`22] Miloš Nikolić, Enrique Torres Sanchez, Jiahui Wang, Ali Hadi Zadeh, Mostafa Mah-
moud, Ameer Abdelhadi, Kareem Ibrahim, and Andreas Moshovos. Schrödinger’s
fp: Dynamic adaptation of floating-point containers for deep learning training. arXiv
preprint arXiv:2204.13666, 2022.

[Oja82] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15:267–273, 1982.

[OYP25] Kaan Ozkara, Tao Yu, and Youngsuk Park. Stochastic rounding for llm training: The-
ory and practice. In Proceedings of the 28th International Conference on Artificial In-
telligence and Statistics (AISTATS), 2025. https://arxiv.org/abs/2502.20566.

[Pea01] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin philosophical magazine and journal of science,
2(11):559–572, 1901.

[PRSS`22] Dominika Przewlocka-Rus, Syed Shakib Sarwar, H Ekin Sumbul, Yuecheng Li,
and Barbara De Salvo. Power-of-two quantization for low bitwidth and hardware
compliant neural networks. arXiv preprint arXiv:2203.05025, 2022.

[Rie67] Bernhard Riemann. Ueber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe. Dieterich, 1867. In German.

[SFD`14] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech dnns. In
Interspeech, 2014.

[Sha16a] Ohad Shamir. Convergence of stochastic gradient descent for pca. In Proceedings of
the 33rd International Conference on International Conference on Machine Learning
- Volume 48, ICML’16, page 257–265. JMLR.org, 2016.

[Sha16b] Ohad Shamir. Fast stochastic algorithms for svd and pca: Convergence properties and
convexity. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 248–256, New York, New York, USA, 20–22
Jun 2016. PMLR.

[She97] William Fleetwood Sheppard. On the calculation of the most probable values of
frequency-constants for data arranged according to equidistant division of a scale.
Proceedings of the London Mathematical Society, 1(1):353–380, 1897.

[SJS09] Reza Sameni, Christian Jutten, and Mohammad B Shamsollahi. A deflation procedure
for subspace decomposition. IEEE Transactions on Signal Processing, 58(4):2363–
2374, 2009.

20

https://arxiv.org/abs/2502.20566


[SLZ`18] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R.
Aberger, Kunle Olukotun, and Christopher Ré. High-accuracy low-precision training.
arXiv preprint arXiv:1803.03383, 2018.

[SOR14] Christopher De Sa, Kunle Olukotun, and Christopher Ré. Global convergence
of stochastic gradient descent for some nonconvex matrix problems. CoRR,
abs/1411.1134, 2014.

[SRO15] Christopher De Sa, Christopher Re, and Kunle Olukotun. Global convergence of
stochastic gradient descent for some non-convex matrix problems. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 2332–
2341, Lille, France, 07–09 Jul 2015. PMLR.

[Sti86] S. M. Stigler. The History of Statistics: The Measurement of Uncertainty before 1900.
Harvard University Press, Cambridge, 1986.

[SYK21] Heming Sun, Lu Yu, and Jiro Katto. Learned image compression with fixed-point
arithmetic. In 2021 Picture Coding Symposium (PCS), pages 1–5. IEEE, 2021.

[SYKM17] Ananda Theertha Suresh, Felix X. Yu, Harsha Kumar, and H. Brendan McMa-
han. Distributed mean estimation with limited communication. arXiv preprint
arXiv:1611.00349, 2017.

[SZOR15] Christopher M. De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming
the wild: A unified analysis of hogwild-style algorithms. In Advances in Neural
Information Processing Systems, pages 2674–2682, 2015.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010.

[Wed72] Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition.
BIT Numerical Mathematics, 12:99–111, 1972.

[WXY`17] Wei Wen, Chunpeng Xu, Felix Yan, Chunyi Wu, Yandan Wang, Yiran Chen, and Hai
Li. Terngrad: Ternary gradients to reduce communication in distributed deep learning.
In Advances in Neural Information Processing Systems, 2017.

[XHDS`18] Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Chris Re. Accelerated
stochastic power iteration. In International Conference on Artificial Intelligence and
Statistics, pages 58–67. PMLR, 2018.

[XLY`24] Yongqi Xu, Yujian Lee, Gao Yi, Bosheng Liu, Yucong Chen, Peng Liu, Jigang
Wu, Xiaoming Chen, and Yinhe Han. Bitq: Tailoring block floating point preci-
sion for improved dnn efficiency on resource-constrained devices. arXiv preprint
arXiv:2409.17093, 2024.

[XMHK23] Lu Xia, Stefano Massei, Michiel E. Hochstenbach, and Barry Koren. On the influence
of stochastic roundoff errors and their bias on the convergence of the gradient descent
method with low-precision floating-point computation, 2023.

[Yat09] Randy Yates. Fixed-point arithmetic: An introduction. Digital Signal Labs,
81(83):198, 2009.

[YGG`24] Tao Yu, Gaurav Gupta, Karthick Gopalswamy, Amith R. Mamidala, Hao Zhou, Jeffrey
Huynh, Youngsuk Park, Ron Diamant, Anoop Deoras, and Luke Huan. Collage: Light-
weight low-precision strategy for llm training. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

[YHW18] Puyudi Yang, Cho-Jui Hsieh, and Jane-Ling Wang. History pca: A new algorithm for
streaming pca. arXiv preprint arXiv:1802.05447, 2018.

[YIY21] Hisakatsu Yamaguchi, Makiko Ito, and Katsuhiro Yoda. Training deep neural networks
in 8-bit fixed point with dynamic shared exponent management. In Proceedings of
the 2021 Design, Automation & Test in Europe Conference (DATE), 2021.

21



[Zie03] Eric R Ziegel. Principal component analysis. Technometrics, 45(3):276–277, 2003.

[ZLK`17] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML:
Training linear models with end-to-end low precision, and a little bit of deep learning.
In Proceedings of the 34th International Conference on Machine Learning, pages
4035–4043, 2017.

[ZMK22] Sai Qian Zhang, Bradley McDanel, and T. Kung, H.˙Fast: Dnn training under variable
precision block floating point with stochastic rounding. In Proceedings of the 2022
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
pages 846–860, 2022.

[ZWG`23] Jiajun Zhou, Jiajun Wu, Yizhao Gao, Yuhao Ding, Chaofan Tao, Boyu Li, Fengbin
Tu, Kwang-Ting Cheng, Hayden Kwok-Hay So, and Ngai Wong. Dybit: Dynamic
bit-precision numbers for efficient quantized neural network inference. arXiv preprint
arXiv:2302.12510, 2023.

22



The Appendix is organized as follows:

1. Section A provides utility results useful in subsequent proofs.

2. Section B provides the proof of the lower bound described in Section 3.1

3. Section C proves helper lemmas for the results in Section 4.

4. Section D proves Theorems 1, 2 and 3.

5. Section E proves the boosting result (Lemma 3) and end to end analysis of Algorithm 1
followed by the boosting algorithm 2.

6. Section F provides additional experiments.

7. Section G provides more related work.

A Utlity Results
Lemma A.1. Let l ď x ď u be reals, and define

Qpx,Qq “

"

ℓ with probability 1 ´ ppxq

u with probability ppxq
,

where ppxq :“ px ´ ℓq{pu ´ ℓq. Then,

(i) E rQpx,Qq|xs “ x.

(ii) |Qpx,Qq ´ x| ď u ´ l.

(iii) Var rQpx,Qq|xs ď
pu´lq2

4 .

Proof. Throughout the proof, we condition on the fixed x and treat all randomness as coming from
the independent choices made by the quantizer.

(i) Unbiasedness. We have

ErQpx, δq | xs “ pipxqu ` p1 ´ pipxqqℓ “ x.

(ii) Boundedness. By definition, after rounding, we always round any x P ru, ls to either u or l.
Therefore, |Qpx,Qq ´ x| ď u ´ l.

(iii)Variance bound. Using the variance of a Bernoulli random variable, we have,

VarrQpx,Qq | xs “ pipxqp1 ´ pipxqq pu ´ lq2 ď
1

4
pu ´ lq2

since tp1 ´ tq ď 1{4 for all reals t.

Lemma A.2 (Choice of learning rate). Let η :“ α logpnq

bpλ1´λ2q
. Then, under Assumption 1, for θ P p0, 1q,

η satisfies

bpη2M2 ` κ2q ď
0.008

logpd{θq
, and η P p0, 1q

for α ą 1, b ě 250α2 log2pnq log
`

d
θ

˘

{ pλ1 ´ λ2q
2
, and κ2b ď 0.004{ log

`

d
θ

˘

.

Proof. For Lemma A.8, we require,

4bpη2M2 ` κ2q p1 ` 2 log pdqq ď 1 (A.14)

For Theorem A.4, we require,

4e2bpη2M2 ` κ2q log

ˆ

d

θ

˙

ď
1

4
(A.15)
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where θ P p0, 1q represents the failure probability. It is not hard to see that (A.15) implies (A.14).
Therefore it suffices to ensure

bpη2M2 ` κ2q log

ˆ

d

θ

˙

ď 0.008

Setting each term smaller than 0.004, it suffices to have

b ě
250α2 log2pnq log

`

d
θ

˘

pλ1 ´ λ2q
2 , κ2b ď

0.004

log
`

d
θ

˘

which completes the proof for the first condition.

The second condition on η follows by setting η ď 1 and solving for b. This yields

b ě max

"

250α2 log2pnq log

ˆ

d

θ

˙

{ pλ1 ´ λ2q
2
, α log pnq { pλ1 ´ λ2q

*

Since α ą 1, the first term is larger than the second one, which completes the proof.

Lemma A.3. Let w and ξ be vectors in Rd such that ∥w∥ “ 1 and w ` ξ ‰ 0. Then,

sin2pw,w ` ξq ď

ˆ

∥ξ∥
∥w ` ξ∥

˙2

.

Proof.

sin2pw,w ` ξq “ 1 ´

ˆ

wJpw ` ξq

}w ` ξ}

˙2

“
pw ` ξqJpw ` ξq ´ p1 ` wJξq2

}w ` ξ}2

“
ξJξ ´ pwJξq2

}w ` ξ}2
ď

ˆ

∥ξ∥
∥w ` ξ∥

˙2

.

Lemma A.4. Let x and y be unit vectors in Rd. Then,
1

2
minp∥x ´ y∥2 , ∥x ` y∥2q ď sin2px,yq ď minp∥x ´ y∥2 , ∥x ` y∥2q.

Proof. We express sin2px,yq in terms of ∥x ´ y∥ and ∥x ` y∥. Since ∥x ´ y∥2 “ ∥x∥2 ` ∥y∥2 ´

2xJy “ 2 ´ 2 cospx,yq and ∥x ` y∥2 “ 2 ` 2 cospx,yq,

∥x ´ y∥2 ` ∥x ` y∥2 “ 4 and sin2px,yq “ 1 ´ cos2px,yq “
1

4
∥x ´ y∥2 ∥x ` y∥2 .

The upper bound on sin2px,yq follows immediately from the above equations. For the lower bound,
note that at least one of ∥x ´ y∥2 and ∥x ` y∥2 is at least 2 because their sum is equal to 4. If
∥x ` y∥2 ě 2, then sin2px,yq ě ∥x ´ y∥2 {2. Otherwise, sin2px,yq ě ∥x ` y∥2 {2.

Lemma A.5. Let x,y, and z be non-zero vectors in Rd. Then,

sin2px, zq ď 2 sin2px,yq ` 2 sin2py, zq.

Proof. For unit vectors u and v in Rd,∥∥uuJ ´ vvJ
∥∥2
F

“ Tr
`

puuJ ´ vvJq2
˘

“ Tr
`

uuJ ´ puJvquvJ ´ pvJuqvuJ ` vvJ
˘

“ 2 ´ 2puJvq2 “ 2 sin2pu,vq.

By parallelogram law,
1

2

∥∥xxJ ´ zzJ
∥∥2
F

ď
∥∥xxJ ´ yyJ

∥∥2
F

`
∥∥yyJ ´ zzJ

∥∥2
F

ùñ sin2px, zq ď 2 sin2px,yq ` 2 sin2py, zq.
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B Lower Bounds
Proof of Lemma 1

Proof. Let v1 P Rd be the unit vector with v1piq “ δ{3 for i P rd ´ 1s and v1pdq “

b

1 ´
pd´1qδ2

9 .

Consider any a vector w P VL, and let w̃ “ w{}w}. Since w P VL, wpiq “ 0 or |wpiq| ě δ{2. In
particular, |v1piq ´ wpiq| ě δ{6 and |v1piq ` wpiq| ě δ{6 for all i P rd ´ 1s. It follows that

∥v1 ´ w∥2 ě

d´1
ÿ

i“1

pv1piq ´ wpiqq2 ě pd ´ 1q

ˆ

δ

6

˙2

“
δ2pd ´ 1q

36

and ∥v1 ` w∥2 ě
δ2pd´1q

36 similarly. The Lemma follows from A.4.

Proof of Lemma 2

Proof. It suffices to construct two unit vectors v1 and v2 such that infwPVNL
sin2pw,v1q “ Ωpζ2q

and infwPVNL
sin2pw,v2q “ Ωpδ20dq.

Let v1 be the vector in Rd with coordinates

v1p1q “
1

a

1 ` p1 ` ζ{2q2
, v1p2q “

1 ` ζ{2
a

1 ` p1 ` ζ{2q2
, v1piq “ 0 @ i ě 3.

For the sake of contradiction, suppose there exists w1 P VNL such that sin2pw1,v1q ď ζ2{100.

Let w̃1 :“ w1{}w1}. By Lemma A.4,

minp∥v1 ´ w̃1∥22 , ∥v1 ` w̃1∥22q ď 2 sin2pv1,w1q ď
ζ2

50
.

Flipping the sign of w1 if necessary, we may assume ∥v1 ´ w̃1∥22 ď ζ2{50. So,

|v1piq ´ w̃1piq| ď ζ{7 @ i P rds. (A.16)

The bound ζ ď 0.1 ensures v1p1q ě 20{29 and v1p2q ´ v1p1q ě ζ{3, which also implies w̃1p2q ´

w̃1p1q ě ζ{3 ´ 2ζ{7 “ ζ{21 ą 0. It follows that

w1p2q ` δ0{ζ

w1p1q ` δ0{ζ
“

w̃1p2q ` δ0{ζ ¨ 1{ ∥w1∥
w̃1p1q ` δ0{ζ ¨ 1{ ∥w1∥

ď
v1p2q ` ζ{7 ` δ0{2ζ

v1p1q ´ ζ{7 ` δ0{2ζ

“ 1 `
ζ

2
`

δ0{2ζ ` ζ{7 ´ p1 ` ζ{2q pδ0{2ζ ´ ζ{7q

v1p1q ` δ0{2ζ ´ ζ{7

“ 1 `
ζ

2
`

2ζ{7 ` ζ2{14 ´ δ0{4

v1p1q ´ ζ{7 ` δ0{2ζ

ď 1 `
ζ

2
`

2ζ{7

2{3
ă 1 ` ζ,

and

w1p2q ` δ0{ζ

w1p1q ` δ0{ζ
“

w̃1p2q ` δ0{ζ ¨ 1{ ∥w1∥
w̃1p1q ` δ0{ζ ¨ 1{ ∥w1∥

ě
v1p2q ´ ζ{7 ` 2δ0{ζ

v1p1q ` ζ{7 ` 2δ0{ζ

“ 1 `
ζ

2
`

2δ0{ζ ´ ζ{7 ´ p1 ` ζ{2q p2δ0{ζ ` ζ{7q

v1p1q ` ζ{7 ` 2δ0{ζ

“ 1 `
ζ

2
´

2ζ{7 ` ζ2{14 ` δ0
v1p1q ` ζ{7 ` 2δ0{ζ

ą 1 `
ζ

2
´

ζv1p1q{2 ` ζ2{14 ` δ0
v1p1q ` ζ{7 ` 2δ0{ζ

“ 1.
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Under the logarithmic quantization scheme, it can be inductively shown that

qk ` δ0{ζ “ pδ0{ζq ¨ p1 ` ζqk

for all non-negative integers k such that qk P QNL. In particular, w1p2q`δ0{ζ
w1p1q`δ0{ζ must be an integral

power of 1 ` ζ, contradicting

1 ă
w1p2q ` δ0{ζ

w1p1q ` δ0{ζ
ă 1 ` ζ.

Therefore, infw1PVNL
sin2pw1,v1q ě ζ2{100.

The other bound is similar to the linear case. let v2 be the vector with coordinates

v2pdq “

b

1 ´ pd ´ 1qδ20{9, v1piq “
δ0
3

@ i ď d ´ 1.

Any w2 P VNL satisfies w2piq “ 0 or |w2piq| ě δ0 for all i P rds. Since }w2} P r1{2, 2s, the
normalized vector w̃2 “ w2{}w2} satisfies |w̃2piq| “ 0 or |w̃2piq| ě δ0{2 for all i P rds.

In particular |v2piq ´ w̃2piq| ě δ0{6 and |v2piq ` w̃2piq| ě δ0{6 for all i P rds. By Lemma A.4,

sin2pw2,v2q ě
1

2
min

´

∥w2 ´ v2∥2 , ∥w2 ` v2∥2
¯

ě
δ20pd ´ 1q

72
.

C Proof of Results in Section 4
For ease of exposition, all results in this section are stated with a generic number of data n. We
apply these results with different choices of n (e.g. number of batches b) for proving the main
theorems (Theorem 1, 2, 3). Consider Oja’s Algorithm applied to the matrices Ai P Rdˆd, such that
Ai “ ηDi ` Ξi where Di are independent with ErDis “ Σ. Let Si be the set of all random vectors
ξ resulting from the quantizations in the first i iterations of the algorithm, and let Fi´ denote the
σ-field generated by D1, . . . ,Di and Si´1, and denote Eir.s :“ Er.|Fi´s. We assume the noise term
Ξi is conditionally unbiased, i.e., EirΞis “ 0dˆd.

Fi´ :“ σ ptD1, . . .Di,Si´1uq , Fi :“ σ ptD1, . . .Di,Siuq .

Recall the update rule

ui “ pI ` Aiqwi´1; wi “
ui

∥ui∥
“

ś1
t“ipI ` Atqu0

}
ś1

t“ipI ` Atqu0}
. (A.17)

We bound the numerator and denominator in (A.17) separately.

For the numerator, we will show that }
ś1

t“npI ` Atq ´ pI ` ηΣqn} is small. Let Yi “ I ` Ai for
i P rns, and let tZiu0ďiďn be defined as

Zi :“ YiZi´1, Z0 :“ I. (A.18)

Note that Zi´1 is measurable w.r.t Fi´.

We are now ready to state our first result. Note that

Zn “

1
ź

i“n

pI ` Aiq.

where Ai “ ηDi ` Ξi and Di are independent d ˆ d random matrices with mean Σ.
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C.1 Proof of Proposition 1

Proposition A.1. [Proposition 1 in main paper]Let the noise term Ξ, defined in (9), be bounded as
∥Ξ∥ ď κ almost surely. Under Assumption 1, for η P p0, 1q and b ą 0, we have

~Zb~2
p,q ď ϕb exppCpbγq ∥Z0∥2p

~Zb ´ pI ` ηΣqb~2
p,q ď ϕbpexppCpbγq ´ 1q ∥Z0∥2p ,

where Z0 “ I, ϕ :“ p1 ` ηλ1q2, γ :“ 2pη2M2 ` κ2q, and Cp :“ p ´ 1.

Proof. Recall the notation Yi :“ I ` Ai for all i. Then,

ErYi|Fi´1s “ I ` ηΣ ` ErEi´rΞis|Fi´1s “ I ` ηΣ

Note that mi “ 1 ` ηλ1 and

∥Yi ´ ErYi|Fi´1s∥ “ ∥ηpDi ´ Σq ` Ξi∥ ď ηM ` κ

The last line uses Eq 9. Thus σi “
ηM`κ
1`ηλ1

. Note that ν ď 2pη2M2 ` κ2q. The same argument as in
Theorem 7.4 in [HNWTW20] gives the bound.

Lemma A.6. Under Assumption 1, and with η set according to Lemma A.2 with b “ n,

P p}Zn ´ pI ` ηΣqn} ě t p1 ` ηλ1q
n

q ď maxpd, eq exp

ˆ

´
t2

2e2nγ

˙

@ t ď e.

where γ :“ 2pη2M2 ` κ2q and e “ expp1q is the Napier’s constant.

Proof. By Proposition A.1, for any positive real p,

P p}Zn ´ pI ` ηΣqn} ě t p1 ` ηλ1q
n

q ď
E r}Zn ´ pI ` ηΣqn}ps

tp p1 ` ηλ1q
p ď

~Zn ´ pI ` ηΣqn~p
p,p

tp p1 ` ηλ1q
p

ď
ϕ

p
2 pexppCpnγq ´ 1qp{2d

tp p1 ` ηλ1q
p ď d

`

t´2pexppCpnγq ´ 1q
˘p{2

,

where ϕ “ p1 ` ηλ1q2, γ “ 2pη2M2 ` κ2q, and Cp “ p ´ 1.

If t2

e2nγ ă 2, then e¨exp
´

´ t2

2e2nγ

¯

ě 1 and the Lemma holds trivially. Otherwise, let p :“ t2

e2nγ ě 2.

Since t ď e, Cpnγ ď pnγ ď t2

e2 ď 1. Therefore, exppCpnγq ´ 1 ď eCpnγ ď t2

e , which implies

P p}Zn ´ pI ` ηΣqn} ě t p1 ` ηλ1q
n

q ď d

ˆ

t´2 ¨
t2

e

˙p{2

“ d exp

ˆ

´
t2

2e2nγ

˙

.

Lemma A.7. Under Assumption 1 and with η set according to Lemma A.2 with b “ n,

E
”

∥Zn∥2
ı

ď exp
´

2
a

2nγmax t2nγ, log pdqu

¯

p1 ` ηλ1q
2n

,

where γ “ 2pη2M2 ` κ2q. Moreover, if 2nγ p1 ` 2 log pdqq ď 1, then

E
”

∥Zn ´ E rZns∥2
ı

ď 2e2nγ p1 ` 2 log pdqq p1 ` ηλ1q
2n

.

Proof. Using Proposition A.1 ϕ :“ p1 ` ηλ1q2, and γ :“ 2pη2M2 ` κ2q,

Er∥Zn∥2s ď ∥Zn∥2p,2 ď pϕ ` Cpγq
n ∥Z0∥2p,2 ď p1 ` ηλ1q

2n
exp pCpnγq ∥Z0∥2p,2 .

Set p :“ max
´

2,
b

2 log d
nγ

¯

. Then, ∥Z0∥p,2 “ d
1
p ď exp

`

pnγ
2

˘

. Therefore,

Er∥Zn∥2s ď p1 ` ηλ1q
2n

exp p2pnγq “ exp
´

2
a

2nγmax t2nγ, log pdqu

¯

p1 ` ηλ1q
2n

.
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For the second result, set p :“ 2 p1 ` log pdqq. Then, Cpnγ ď 1 by assumption and ∥Z0∥p “ d1{p ď
?
e. By Proposition A.1,

E
”

∥Zn ´ E rZns∥2
ı

ď ∥Zn ´ E rZns∥2p,2 ď pexp pCpnγq ´ 1q p1 ` ηλ1q
n ∥Z0∥2p

ď e2Cpnγ p1 ` ηλ1q
n

ă 2e2nγ p1 ` 2 log pdqq p1 ` ηλ1q
n
.

C.2 Proof of Lemma 4

Lemma A.8 (Lemma 4 in main paper). Let Assumption 1 hold and η be set according to Lemma A.2
with b “ n. Define γ :“ 2pη2M2 ` κ2q. If 2nγ p1 ` 2 log pdqq ď 1, then

E
”

Tr
´

VK
JZnZ

J
nVK

¯ı

ď exp
`

2ηnλ1 ` η2n
`

V0 ` λ2
1

˘˘

«

d

exp p2ηn pλ1 ´ λ2qq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

.

Proof. Let βi :“ E
”

Tr
´

VK
JZiZ

J
i VK

¯ı

for all 0 ď i ď n. Then, for i P rns,

βi “ E
”

Tr
´

VK
J

pI ` AiqZi´1Z
J
i´1

`

I ` AJ
i

˘

VK

¯ı

“ E
”

E
”

Tr
´

VK
J

pI ` AiqZi´1Z
J
i´1

`

I ` AJ
i

˘

VK

¯

|Fi´

ıı

“ E
”

E
”

Tr
´

VK
J

pI ` ηYiqZi´1Z
J
i´1 pI ` ηYiqVK

¯

|Fi´

ıı

` E
”

E
”

Tr
´

VK
JΞiZi´1Z

J
i´1Ξ

J
i VK

¯

|Fi´

ıı

.

The last line used E rΞi|Fi´s “ 0 and that Zi´1 is measurable with respect to Fi´. In other words,

βi “ E
”

Tr
´

VK
J

pI ` ηYiqZi´1Z
J
i´1 pI ` ηYiqVK

¯ı

` E
”

Tr
´

ZJ
i´1E

”

ΞJ
i VKVK

JΞi|Fi´

ı

Zi´1

¯ı

.

For the first term, following the analysis of Lemma 10 of [JJK`16],

E
”

Tr
´

VK
J

pI ` ηYiqZi´1Z
J
i´1 pI ` ηYiqVK

¯ı

ď
`

1 ` 2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βi´1 ` η2V0

∥∥E
“

Zi´1Z
J
i´1

‰
∥∥
2

ď
`

1 ` 2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βi´1 ` η2V0E
”

∥Zi´1∥22
ı

.

(A.19)

The second term can be bounded as

E
”

Tr
´

ZJ
i´1E

”

ΞJ
i VKVK

JΞi|Fi´

ı

Zi´1

¯ı

“ E
”

Tr
´

E
”

ΞJ
i VKVK

JΞi|Fi´

ı

Zi´1Z
J
i´1

¯ı

ď E
”

E
”

Tr
´

ΞJ
i VKVK

JΞi

¯

|Fi´

ı∥∥Zi´1Z
J
i´1

∥∥
2

ı

ď κ1E
“∥∥Zi´1Z

J
i´1

∥∥
2

‰

. (A.20)

Combining (A.19) and (A.20), we obtain the recurrence

βi ď
`

1 ` 2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βi´1 `
`

η2V0 ` κ1

˘

Er∥Zi´1∥22s.

By Lemma A.7, we have for γ :“ 2pη2M2 ` κ2q,

βi ď
`

1 ` 2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βi´1 `
`

η2V0 ` κ1

˘

exp
´

2
a

2nγ log d
¯

p1 ` ηλ1q
2pi´1q

ď exp
`

2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

βi´1 ` s exp
`

2ηλ1 ` η2pV0 ` λ2
1q
˘i´1

,
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where s “ pη2V0 ` κ1q exp
`

2
?
2nγ log d

˘

. Unrolling the recursion,

βn ď exp
`

2ηnλ1 ` η2n
`

V0 ` λ2
1

˘˘

»

–exp p´2ηn pλ1 ´ λ2qqβ0 ` s.
n´1
ÿ

t“0

˜

exp
`

2ηλ2 ` η2
`

V0 ` λ2
1

˘˘

exp p2ηλ1 ` η2 pV0 ` λ2
1qq

¸2pn´1´tq
fi

fl

ď exp
`

2ηnλ1 ` η2n
`

V0 ` λ2
1

˘˘

„

exp p´2ηn pλ1 ´ λ2qqβ0 `
s

1 ´ expp´2η pλ1 ´ λ2qq

ȷ

ď exp
`

2ηnλ1 ` η2n
`

V0 ` λ2
1

˘˘

„

exp p´2ηn pλ1 ´ λ2qqβ0 `
2.35s

2η pλ1 ´ λ2q

ȷ

ď exp
`

2ηnλ1 ` η2n
`

V0 ` λ2
1

˘˘

„

exp p´2ηn pλ1 ´ λ2qq d `
5pη2V0 ` κ1q

η pλ1 ´ λ2q

ȷ

where the third inequality holds because x ď 2.35p1 ´ e´xq for x ď 2 and the last inequality holds

because β0 ď d and
2.35 expp2

?
2nγ log dq

2 ď
2.35 expp

?
2q

2 ă 5.

D Proofs of Theorems 1, 2, and 3
D.1 Proof of Theorem 1
We are now ready to present the proof of Theorem 1, which follows from the following Theorem A.4
and setting a constant failure probability for θ.

Theorem A.4. Fix θ P p0, 1q. Then, for w being the output of Algorithm 1, under assumption 1,
learning rate η “

α logn
bpλ1´λ2q

with α is set as in Lemma A.2, κ1 ď 1{2, and

a

2e2bγ log pd{θq ď
1

2
,

where γ :“ 2pη2M2 ` κ2q. Then, with probability at least 1 ´ 3θ,

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

exp p2α logpnqq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

` 8κ1.

Proof. Note that by Algorithm 1 and the definition of Z in (A.18),

ub “
Zbu0

∥Zbu0∥
.

Since v1v
J
1 ` VKVK

J
“ Id,

sin2 pub,v1q “ 1 ´
`

uJ
b v1

˘2
“

∥∥∥∥∥VKVK
JZbu0

∥Zbu0∥

∥∥∥∥∥
2

.

By Lemma 6 from [JJK`16], with probability at least 1 ´ θ,

sin2 pub,v1q ď
2.5 log p1{θq

θ2

Tr
´

VK
JZbZ

J
b VK

¯

vJ
1 ZbZJ

b v1
.

By Lemma A.7 with q “ 2 and p “ 2 p1 ` log pdqq,

E
“

}Zb ´ pI ` ηΣqb}
‰

ď }Zb ´ pI ` ηΣqb}p,2 ď
a

e2bγ p1 ` 2 log pdqq p1 ` ηλ1q
b
. (A.21)

For the numerator, we use Lemma A.8 and Markov’s inequality to get

Tr
´

VK
JZbZ

J
b VK

¯

ď
1

θ
exp

`

2ηbλ1 ` η2b
`

V0 ` λ2
1

˘˘

«

d

exp p2ηb pλ1 ´ λ2qq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

.

(A.22)

with probability at least 1 ´ θ.
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The denominator can be bounded as∥∥ZJ
b v1

∥∥ ě

∥∥∥pI ` ηΣq
b
v1

∥∥∥ ´

∥∥∥∥´Zb ´ pI ` ηΣq
b
¯J

v1

∥∥∥∥ ě p1 ` ηλ1q
b

´

∥∥∥Zb ´ pI ` ηΣq
b
∥∥∥ .

Using Lemma A.6, with probability atleast 1 ´ θ,

∥Zbv1∥ ě p1 ` ηλ1q
b

´
a

2e2bγ log pd{θq p1 ` ηλ1q
b

“ p1 ` ηλ1q
b
´

1 ´
a

2e2bγ log pd{θq

¯

ě exp
`

ηλ1b ´ η2λ2
1b
˘

´

1 ´
a

2e2bγ log pd{θq

¯

. (A.23)

where the last line follows since p1 ` xq ě exp
`

x ´ x2
˘

for all x ě 0. From equa-
tions (A.22), (A.23), and the assumption

a

2e2bγ log pd{θq ď 1{2, it follows that with probability
1 ´ 3θ,

sin2 pub,v1q ď
12 log p1{θq

θ3

«

d

exp p2α logpnqq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

. (A.24)

Since w Ð Qpub,Qq, by Lemma A.9 and using ∥ξ∥ ď κ ď 0.5,

sin2 pw,ubq ď
∥ξ∥2

∥ub ` ξ∥2
ď

∥ξ∥2

p∥ub∥ ´ ∥ξ∥q2
ď

κ2

0.52
ď 4κ2. (A.25)

The result follows by using equations (A.24), (A.25), and Lemma A.5.

D.2 Proofs of Theorems 2 and 3
Next, we apply Theorem A.4 to analyze the quantized version of Oja’s algorithm as described in
Algorithm 1. The idea is to show that the error from the rounding operation can be incorporated into
the noise in the iterates of Oja’s algorithm, which have mean zero. For this subsection, we will use:

Di “
ÿ

jPBi

XjX
T
j

n{b
,

where Ai “ η
`

Di ` ξa,iu
T
i´1

˘

` ξ2,iu
T
i´1 ` pI ` ηDiqξ1,iu

T
i´1.

We first state and prove some intermediate results needed to prove Theorems 2 and Theorems 3.
Theorem A.5. Let d, n, b P N, and let tXiuiPrns be a set of n IID vectors in Rd satisfying assump-
tion 1. Let η :“ α logn

bpλ1´λ2q
be the learning rate set as in Lemma A.2. Suppose the quantization grid

Q “ QL, and
a

4e2bp4η2 ` 9δ2dq log pd{θq ď 1
2 . Then, with probability at least 0.9, the output w

of Algorithm 1 satisfies

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

n2α
`

5αV log n

n pλ1 ´ λ2q
2 `

30bδ2d

α log n

ff

` 48δ2d.

Proof. In order to apply Theorem 1, we come up with valid choices of V0, κ, and κ1.

Since each Di is symmetric and tXiuiPrns are independent,∥∥ErpDi ´ ΣqpDi ´ ΣqT s
∥∥ “

∥∥∥∥ 1

n{b
ErpX1X

T
1 ´ Σq2s

∥∥∥∥ ď
bV
n

“: V0. (A.26)

Next,

Ξi “ ηξa,iu
T
i´1 ` ξ2,iu

T
i´1 ` pI ` ηDiqξ1,iu

T
i´1.

Also observe that

Erξ1,i|Fi´s “ 0, Erξa,i|Fi´s “ 0, Erξ2,i|ξa,i, ξ1,i,Fi´s “ 0, (A.27)

30



By equation A.27,

ErΞT
i Ξi|Fi´s “ Erη2ui´1ξ

T
a,iξa,iu

T
i´1 ` ui´1ξ

T
2,iξ2,iu

T
i´1 ` ui´1ξ

T
1,ipI ` ηDiqpI ` ηDiq

T ξ2,iu
T
i´1|Fi´s

ùñ
∥∥ErΞT

i Ξi|Fi´s
∥∥
F

ď η2δ2d ` δ2d ` p1 ` ηq2δ2d ď 6δ2d “: κ1.

As for κ, we have

∥Ξi∥ ď 2p1 ` ηqδ
?
d ď 3δ

?
d “: κ

We are now ready to obtain the sin-squared error. Note that M ď 2, since }Xi} ď 1 almost surely,
for all i P rns. By Theorem A.4, with probability at least 1 ´ 3θ,

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

exp p2α logpnqq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

` 8κ1.

as long as
a

2e2bγ log pd{θq ď 1
2 . Our parameter choices are V0 “ bV

n , κ “ 3δ
?
d, and κ1 “ 6δ2d.

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

n2α
`

5αV log n

n pλ1 ´ λ2q
2 `

30bδ2d

α log n

ff

` 48δ2d.

Lemma A.9. Let u “ Qpw,QNLq, where u P Rd and QNL is defined in equation 4. Then,

}w ´ Qpw,QNLq} ď δ0
?
d ` }w}ζ

Proof. Let ξ “ Qpw,QNLq´w. Say wi ą 0. Let k be the unique integer such that wi P rqk, qk`1s.
Equivalently for negative wi, say the bin is r´qk`1,´qks. We have:

|ξi| ď qk`1 ´ qk ď δ0 ` ζqk ď |wi|ζ ` δ0

Thus we have:

}ξ} ď δ0
?
d ` }w}ζ.

Theorem A.6. Fix θ P p0, 1q. Let the initial vector u0 „ N p0, Iq. Let the number of batches b

and quantization scale δ be such that
a

4e2bp4η2 ` 32δ20d ` 98ζ2q log pd{θq ď 1{2. Then, under
assumption 1with η set as α logn

bpλ1´λ2q
, where α is set as in Lemma A.2, δ0

?
d ď 0.25, and ζ ď 0.25,

with probability at least 1 ´ 3θ, the output wb of Algorithm 1 gives:

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

n2α
`

5αV log n

n pλ1 ´ λ2q
2 `

5bp4δ0
?
d ` 7ζq2

α log n

ff

` 8p4δ0
?
d ` 7ζq2.

Proof. In order to apply Theorem 1 we need to bound V , κ and κ1. We start with the first. For us,
Di is defined in Eq 9. Let Ri denote the random variables in the quantization up to and including the
ith update.

Our analysis is analogous to the previous theorem. Note that the V0 parameter is as in Eq A.26.

Now we will work out κ and κ1 since those are the only quantities that change for the nonlinear
quantization. Recall that we have,

Ξi “ ηξa,iu
T
i´1 ` ξ2,iu

T
i´1 ` pI ` ηDiqξ1,iu

T
i´1.

We have,

ErΞT
i Ξi|Fi´s

“ η2Erui´1ξ
T
a,iξa,iu

T
i´1|Fi´s ` Erui´1ξ

T
2,iξ2,iu

T
i´1|Fi´s ` Erui´1ξ

T
1,ipI ` ηDiqpI ` ηDiq

T ξ2,iu
T
i´1|Fi´s
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Now we obtain the Frobenius norm of ξa,i, ξ1, and ξ2 under the nonlinear quantization. We start
with the norm of wi, a quantized version of a unit vector ui´1.

By Lemma A.9, }wi} ď 1 ` δ0
?
d ` ζ. Let sj “ XjpXT

j wiq. Then,

}sj} ď }wi} ď 1 ` δ0
?
d ` ζ.

Another application of Lemma A.9 gives:

}ξa,j,i} “ ∥Qpsj ,QNLq ´ sj∥ ď δ0
?
d ` p1 ` δ0

?
d ` ζqζ ď δ0

?
d ` 1.5ζ

which implies }ξa,i} ď δ0
?
d`1.5ζ . Next, we bound ξ1,i “ Qpui´1,QNLq´ui´1. By Lemma A.9,

}ξ1,i} ď δ0
?
d ` ζ ∥ui´1∥ “ δ0

?
d ` ζ.

Finally we bound ξ2,i. Recall that:

yi “

ř

jPBj
XjpXT

j wiq

n{b
` ξa,i

ξ2,i “ Q pyi, δq ´ yi

Since each
∥∥XjX

J
j wi

∥∥ ď 1 ` δ0
?
d ` ζ,

}yi} ď 1 ` δ0
?
d ` ζ ` }ξa,i} ď 1 ` 2δ0

?
d ` 2.5ζ ď 3.25.

By Lemma A.9,

}ξ2,i} ď δ0
?
d ` ζ}yi} ď δ0

?
d ` 3.25ζ.

In all, it follows that

}Ξi} ď η}ξa,i} ` }ξ2,i} ` p1 ` ηq}ξ1,i} ď pδ0
?
d ` 1.5ζq ` pδ0

?
d ` 3.25ζq ` 2pδ0

?
d ` ζq ď 4δ0

?
d ` 7ζ “: κ.

We are ready to obtain the sin-squared error. Note that M ď 2, since }Xi} ď 1 almost surely, for all
i P rns. By Theorem A.4, with probability at least 1 ´ 3θ,

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

exp p2α logpnqq
`

5
`

η2V0 ` κ1

˘

η pλ1 ´ λ2q

ff

` 8κ1.

as long as
a

2e2bγ log pd{θq ď 1
2 . Our parameter choices are V0 “ bV

n , κ “ 4δ0
?
d ` 7ζ, and

κ1 “ p4δ0
?
d ` 7ζq2. Therefore,

sin2pw,v1q ď
24 log p1{θq

θ3

«

d

n2α
`

5αV log n

n pλ1 ´ λ2q
2 `

5bp4δ0
?
d ` 7ζq2

α log n

ff

` 8p4δ0
?
d ` 7ζq2.

D.2.1 Finishing the Proofs of Theorems 2 and 3

Proof of Theorem 2. For the linear quantization scheme, we apply Theorem A.5 with θ “

1{30 and b “ Θ
´

α2 log2 n log d
pλ1´λ2q2

¯

. Moreover, since δ “ Õ
´

λ1´λ2

α
?
d

¯

, the condition
a

4e2bp4η2 ` 9δ2dq log pd{θq ď 1
2 holds. The Theorem follows by substituting these values into the

bound of Theorem A.5.

The proof of the logarithmic scheme follows analogously from Theorem A.6.

Proof of Theorem 3. We set θ “ 1{30. For the linear quantization scheme, we apply Theo-
rem A.5 with b “ n. Moreover, since δ “ 22´β “ O

´

min
´

λ1´λ2

α
?
d logpnq

, 1?
dn

¯¯

, the condition
a

4e2bp4η2 ` 9δ2dq log pd{θq ď 1
2 holds. The Theorem follows by substituting these values into the

bound of Theorem A.5.

For the non-linear scheme, the proof follows analogously from Theorem A.6.
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D.3 Optimal Choice of Parameters
We want to minimize the quantity

κ1 :“ ζ2 ` δ20d,

where ζ “ 2´βm and δ0 “ 4 ¨ 2´2βe´1

. Here, βm and βe are the number of bits used by the mantissa
and the exponent, respectively, and satisfy the constraint

βm ` βe “ β.

Then,
ζ2 ` δ20d “ 2´2pβ´βeq ` 16d2´2βe

“: fpβeq.

To find βe that minimizes fpβeq we differentiate with respect to βe and set it to 0.

f 1pβeq “ 2´2pβ´βeq ¨ 2 ln 2 ` 16d ¨ p2´2βe
ln 2q ¨ p´2βe ln 2q

“

ˆ

2βe

4β
´ 8d2´2βe

ln 2

˙

2βe ¨ 2 ln 2.

It is optimal to take βe such that
2βe22

βe
“ 8d ¨ 4β ln 2.

Equivalently, βe ` 2βe “ 2β ` log2p8d ln 2q. This in particular implies

2βe ă 2β ` log2p8d ln 2q ă 2βe`1,

so
2β ` log2p8d ln 2q ´ 1 ă βe ă log2 p2β ` log2p8d ln 2qq .

Therefore, we choose

β˚
e “ rlog2 p2β ` log2p8d ln 2qqs , β˚

m “ β ´ β˚
e .

This choice of β˚
e is valid as long as it does not make β˚

m non-positive. This is true as long as
β ě maxp8, log2pdqq. With these values of β˚

e and β˚
m,

ζ “ 2β
˚
e ´β ă

2p1`log2p2β`log2p8d ln 2qqq

2β
“

2p2β ` log2p8d ln 2qq

2β

and

δ20 “

´

4 ¨ 2´2β
˚
e ´1

¯2

“ 16 ¨ 2´2β
˚
e

ď 16 ¨ 2´p2β`log2p8d ln 2qq “
2

4βd ln 2
.

E Proof of Boosting Lemma (Lemma 3)
In this section, we present the proof of the boosting procedure. Our boosting procedure requires a
modest assumption that the number of bits β ě 4, which is already assumed in Section 3.4 while
optimizing the parameters.

Proof of Lemma 3

Proof. For each i P rrs, define the indicator random variable

χi :“ 1
`

sin2pui,vq ď ϵ
˘

.

Then, by the guarantees of A, Prpχi “ 1q ě 1 ´ p, where p “ 0.1. Let S :“ ti P rrs : χi “ 1u, and
define the event

E :“ t|S| ą 0.6ru.

The Chernoff bound for the sum of independent Bernoulli random variables gives

P p|S| ď p1 ´ θq E r|S|sq ď exp

ˆ

´
θ2E r|S|s

2

˙

@ θ P p0, 1q.

By linearity of expectation, E r|S|s ě p1 ´ pqr. Setting θ “ 1{3,

P pEcq ď P p|S| ď 0.6rq ď e´r{20 ď δ.
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It suffices to show that if the event E holds, then ū is well-defined and has small sin-squared error
with v. Recall,

ū :“ ui such that |tj P rrs : ρ̃ pui,ujq ď 5ϵu| ě 0.5r,

Conditioned on E , any i that belongs to the set S satisfies ci ě 0.6r. Indeed, Lemma A.5 gives for
any i, j P S

sin2 pui,ujq ď 2 sin2 pui,vq ` 2 sin2 pv,ujq ď 4ϵ,

which implies
|ρ̃ pui,ujq| ď sin2 pui,ujq ` ϵ ď 5ϵ

because 4ϵ is within the range of the quantization grid QLpϵq. Therefore, the algorithm does not
return K and ū is well-defined.

Now, |ρ̃pū,ujq| ď 5ϵ for at least 0.5r indices j P rrs and |S| ě 0.6r. In particular, there exists
an index j˚ P S for which |ρ̃pū,uj˚ q| ď 5ϵ. Since 5ϵ is strictly inside the grid QLpϵq, we get
sin2pū,uj˚ q ď 6ϵ. We conclude

sin2pū,vq ď 2 sin2pū,ujq ` 2 sin2puj ,vq ď 2p6ϵq ` 2ϵ “ 14ϵ.

Theorem A.7. Suppose A is the Oja’s algorithm with the setting of Theorem 2 or 3. Let ϵ be the prob-
ability 0.9 error bound guaranteed by Theorem 2, r “ r20 logp1{θqs, and m “ nr. Let tXiuiPrms be
n IID data drawn from a distribution satisfying assumption 1, and uj Ð AptXiupj´1qn`1ďiďjn for
all j P rrs. Then, the output of algorithm 2 satisfies

sin2pū,v1q ď 14ϵ

with probability at least 1 ´ θ.

Proof. The vectors u1, . . . ,ur are mutually independent. By Theorem 2, Pr
`

sin2pui,v1q ą ϵ
˘

ď

0.1@ i P rrs. Therefore, Lemma 3 applies and the theorem follows.

F Experimental Details
F.1 Additional Synthetic Experiments

(a) Varying sample size n, fixed d “

100, bits “ 8.
(b) Varying dimension d, fixed n “

5000, bits “ 8.
(c) Varying bits β, fixed n “ 1000,
d “ 100.

Figure A.1: Variation of sin2-error with: (a) sample size, (b) dimension, and (c) quantization bits.

We generate synthetic datasets via the procedure described in [LSW21]. The generation process takes
as input the number of samples, n, the dimension d and an eigenvalue decay parameter λ. We defer
the details of the generation process to the Appendix Section F. Given the sample size n, dimension
d, and decay exponent λ in the eigenvalues, we first draw an nˆ d matrix Z with independent entries
uniformly distributed on r´

?
3,

?
3s so that each coordinate has unit variance. We then build a kernel

matrix K P Rdˆd with entries Kij “ exp
`

´|i ´ j|0.01
˘

and define a variance profile σi “ 5 i´λ

for i “ 1, . . . , d. The population covariance is formed as Σ “ pσσJq ˝ K, where ˝ denotes the
Hadamard product. Computing the eigendecomposition of Σ yields its square root Σ1{2, and the
observed data matrix is taken as X “

`

Σ1{2ZJ
˘J

. We then extract the largest two eigenvalues
λ1 ą λ2 of Σ and the associated top eigenvector v1 for evaluation. Figure A.1 shows the results for
this dataset, which shows similar trends as the experiments described in Figure 2.
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F.2 Real data experiments
This section presents experiments on two real-world datasets. For each dataset, we show sin2 error
with respect to the true offline eigenvector, used as a proxy for the ground truth, varying with the
number of bits. The results are plotted in Figure A.2.

The goal of this section is to determine whether real-world experiments reflect the behavior of batched
vs. standard methods with linear and logarithmic quantization. Therefore, we use the eigengap
computed offline as a proxy of the true eigengap. If we wanted to compute the eigengap in an online
manner, we could split the dataset randomly into a holdout set S and a training set rnszS; run Oja’s
algorithm with quantization on a range of eigengaps with outputs u1, . . . ,um, and select the one
with the largest argmaxi u

T
i p
ř

jPS DjD
T
j qui for a held out set S.

(a) (b)

Figure A.2: Variation of sin2-error with bits for (a) HAR dataset (b) MNIST dataset.

Time series + missing data: The Human Activity Recognition (HAR) Dataset [AGO`13] contains
smartphone sensor readings from 30 subjects performing daily activities (walking, sitting, standing,
etc.). Each data instance is a 2.56-second window of inertial sensor signals represented as a feature
vector. Here, n “ 7352 and d “ 561. For each datum, we also replace 10% of features randomly by
zero to simulate missing data.

Image data: We use the MNIST dataset [LBBH98] of images of handwritten digits (0 through 9).
Here, n “ 60, 000, d “ 784, with each image normalized to a 28 ˆ 28 pixel resolution.

These results collectively highlight that using the true offline eigengap (i) under stochastic rounding,
batching provides a significant boost in performance since the quantization error does not depend
linearly on n, and (ii) the logarithmic quantization attains a nearly dimension-free quantization error
in comparison to linear quantization across a wide range of number of bits.

G Related Work
In this section, we provide some more related work on low-precision optimization. [DPHZ23] intro-
duced QLoRA, which back-propagates through a frozen 4-bit quantized LLM into LoRA modules,
enabling efficient finetuning of 65B-parameter models on a single 48 GB GPU with full 16-bit
performance retention. Earlier works [XMHK23] examined the impact of stochastic round-off
errors and their bias on gradient descent convergence under low-precision arithmetic. [YGG`24]
propose Collage, a lightweight low-precision scheme for LLM training in distributed settings,
combining block-wise quantization with feedback error to stabilize large-scale pretraining. Fi-
nally, communication-efficient distributed SGD techniques, such as 1-bit SGD with error feedback
[SFD`14] and randomized sketching primitives (e.g., Johnson–Lindenstrauss projections [JL84]),
further underscore the broad efficacy of low-precision computation.

Low-Precision Optimization: Reducing the bit-width of model parameters and gradient updates
has proven effective for alleviating communication and memory bottlenecks in large-scale learning.
QSGD [AGL`17] uses randomized rounding to compress each coordinate to a few bits while pre-
serving unbiasedness, incurring only an Op

?
d{2βq increase in gradient noise for β bits. [WXY`17]

35



maps gradients to t´1, 0,`1u plus a shared scale and demonstrates negligible accuracy loss on
ImageNet and CIFAR benchmarks. [SYKM17] achieve optimal communication–accuracy trade-offs
via randomized rotations and scalar quantization. More recently, “dimension-free” analyses such
as [LDS19] avoid scaling the required error rate with model dimension, instead depending on a
suitably defined smoothness parameter.
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