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Abstract
Self-Consistency samples diverse reasoning001
chains with answers and chooses the final an-002
swer by majority voting. It is based on for-003
ward reasoning and cannot further improve per-004
formance by sampling more reasoning chains005
when saturated. To further boost performance,006
we introduce backward reasoning to verify can-007
didate answers. Specifically, for mathematical008
tasks, we mask a number in the question and009
ask the LLM to answer a backward question010
created by a simple template, i.e., to predict011
the masked number when a candidate answer is012
provided. Instead of using forward or backward013
reasoning alone, we propose FOBAR to com-014
bine FOrward and BAckward Reasoning for015
verification. Extensive experiments on six stan-016
dard mathematical data sets and three LLMs017
show that FOBAR achieves state-of-the-art per-018
formance. In particular, FOBAR outperforms019
Self-Consistency, which uses forward reason-020
ing alone, demonstrating that combining for-021
ward and forward reasoning is better. In ad-022
dition, FOBAR performs better than existing023
verification methods, showing the effectiveness024
of the simple template used in backward rea-025
soning and the proposed combination. Exten-026
sions to non-mathematical problems are also027
discussed and validated empirically.028

1 Introduction029

Pre-trained large language models030

(LLMs) (Chowdhery et al., 2022; OpenAI,031

2023; Wu et al., 2023) generalize well on unseen032

tasks by few-shot prompting (or in-context learning033

(ICL) (Brown et al., 2020; Min et al., 2022; Chen034

et al., 2022; Li et al., 2023). This is performed035

by concatenating a few examples (e.g., question-036

answer pairs) as a prompt, and then appending the037

testing question. However, it is still challenging038

for LLMs to answer mathematical questions by039

simply prompting the question-answer pairs, as040

mathematics is more complex and often requires041

many steps to derive the answer.042
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Figure 1: Testing accuracy (averaged over six data sets) of
Self-Consistency versus number of sampling paths (MF).

Recently, Wei et al. (2022) propose chain-of- 043

thought (CoT) prompting for LLMs, which gen- 044

erates explicit intermediate steps that are used to 045

reach the answer. Specifically, each in-context ex- 046

ample is augmented with several thinking steps 047

described in natural language. A few examples are 048

concatenated as a CoT prompt. In inference, the 049

testing question is appended to the prompt and then 050

fed to an LLM. The LLM is expected to imitate the 051

in-context examples, i.e., generating several reason- 052

ing steps before giving the answer. CoT prompting 053

has achieved promising performance on mathemat- 054

ical reasoning tasks (Wei et al., 2022; Wang et al., 055

2023; Zheng et al., 2023; Zhang et al., 2023b), and 056

many works have been proposed to improve its 057

effectiveness (Fu et al., 2023; Zheng et al., 2023; 058

Zhou et al., 2023; Yao et al., 2023; Pitis et al., 2023) 059

and efficiency (Zhang et al., 2023b; Kojima et al., 060

2022; Diao et al., 2023; Lu et al., 2022). 061

Self-Consistency (Wang et al., 2023) is a simple 062

but effective approach to improve CoT prompting. 063

Using temperature sampling (Ackley et al., 1985; 064

Ficler and Goldberg, 2017), it samples a diverse 065

set of reasoning chains which may lead to multiple 066

candidate answers. The one that receives the most 067

votes is then chosen as the final answer. Figure 1 068

shows the testing accuracy (averaged over six data 069

sets) of Self-Consistency with different numbers 070

(denoted by MF) of sampling paths using three 071

LLMs (the experimental setup is in Section 4.1). 072

As can be seen, simply sampling more reasoning 073

paths may not lead to performance improvement, 074

particularly when MF is large. Moreover, among 075
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Figure 2: Accuracy (averaged over all backward questions
across the six data sets) of predicting the masked number in
backward questions with correct/wrong candidate answers.

the failure questions of Self-Consistency, about076

60% have at least one reasoning chain reaches the077

correct answer (Table 4 in Appendix A). Hence,078

the majority voting of Self-Consistency can be im-079

proved using a better verifier.080

In this paper, we introduce backward reasoning081

(or backward chaining) (Pettit and Sugden, 1989;082

Russell and Norvig, 1995; Khot et al., 2021; Liang083

et al., 2021; Yu et al., 2023) for verifying candi-084

date answers. While Self-Consistency uses forward085

reasoning for verification (i.e., starting with a ques-086

tion, the LLM generates multiple reasoning steps to087

reach its answer), backward reasoning works back-088

ward from a candidate answer to the antecedent for089

checking if any data supports this answer.090

To use backward reasoning for verifying an-091

swers, we mask an informative word in the ques-092

tion and ask the LLM to predict the masked word093

when a candidate answer Âc is provided. We fo-094

cus on mathematical reasoning tasks, where num-095

bers are the informative words being masked. Ex-096

tending backward reasoning to non-mathematical097

tasks is discussed in Section 3.4. For mathematical098

tasks, we mask a number in the question by “x”099

and design a template “If we know the answer to100

the above question is {Âc}, what is the value of un-101

known variable x?” to form a backward question,102

which is then fed to the LLM to generate multi-103

ple steps before predicting the value of x. As the104

ground-truth value of x is known, we can check105

whether the masked number is predicted exactly. In-106

tuitively, a correct candidate answer is more likely107

to help predict the masked number than wrong108

answers (as verified in Figure 2). Unlike Self-109

Verification (Weng et al., 2023) which needs the110

assistance of an LLM to rewrite the question into a111

declarative statement (e.g., “How many hours does112

he spend on TV and reading in 4 weeks?” with a113

candidate answer of 36 is rewritten to “He spends114

36 hours on TV and reading in 4 weeks”), we ap-115

pend the aforementioned simple template to the116

question without rewriting.117

As forward reasoning and backward reason-118

ing are complementary, we propose a FOrward- 119

BAckward Reasoning (FOBAR) method to com- 120

bine them. An illustration is shown in Figure 3. 121

In the forward direction, we estimate PF(Âc), the 122

probability that a candidate answer Âc is correct, 123

as the proportion of votes Âc gets. In the backward 124

direction, for each candidate Âc, we create sev- 125

eral questions for backward reasoning by masking 126

numbers and sample a set of backward reasoning 127

chains to predict each masked number. Then, by 128

defining the vote of Âc as the number of chains 129

that predict the masked number exactly, we es- 130

timate the probability PB(Âc) as the proportion 131

of votes Âc gets in the backward direction. As a 132

result, by combining backward and forward rea- 133

soning, we estimate the probability P(Âc) as the 134

geometric mean of forward and backward proba- 135

bilities. Extensive experiments on six data sets and 136

three OpenAI’s LLMs (i.e., text-davinci-003 (Ope- 137

nAI, 2022a), GPT-3.5-Turbo (OpenAI, 2022b), 138

and GPT-4 (OpenAI, 2023)) show that FOBAR 139

achieves state-of-the-art (SOTA) performance. 140

Our contributions are summarized as follows. 141

(i) We introduce backward reasoning to mathe- 142

matical verification by masking a number in the 143

original question and asking the LLM to predict 144

the masked number when a candidate answer is 145

provided. (ii) We propose FOBAR to combine 146

forward and backward reasoning for verification. 147

(iii) Experimental results on six standard mathe- 148

matical benchmarks and three LLMs show that FO- 149

BAR achieves SOTA performance. In particular, 150

FOBAR outperforms Self-Consistency which uses 151

forward reasoning alone, demonstrating that com- 152

bining forward and backward reasoning together is 153

better. Additionally, FOBAR outperforms Self-Ver- 154

ification, confirming that using the simple template 155

and the proposed combination are more effective. 156

(iv) Empirical results on two non-mathematical rea- 157

soning tasks show that FOBAR also performs well. 158

2 Related Work 159

Chain-of-Thought (CoT) Prompting. Wei et al. 160

(2022) propose augmenting question-answer pairs 161

with intermediate steps such that the LLM can 162

solve questions step-by-step. Specifically, each 163

in-context example is a triplet (Q(i), R(i), A⋆(i)), 164

where R(i) is a reasoning chain with natural lan- 165

guage descriptions of steps leading from the ques- 166

tion Q(i) to the ground-truth answer A⋆(i). In infer- 167
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A: Jim spends 2 hours 
watching TV … spend 
4*9=36 hours on TV and 
reading. The answer is 36. 

A: Jim spends 2 hours 
watching TV and reads for 
half ... The answer is 12.

…

Q: Jim spends 2 hours watching TV and 
then decides to go to bed and reads for 
half as long.  He does this 3 times a 
week.  How many hours does he spend 
on TV and reading in 4 weeks? 
(answer: 36)

Forward Reasoning

FOBAR: FOrward-BAckward Reasoning

A: Jim spends 2 hours … The 
value of x is 3.

A: Jim watches 2 hours TV, 
then ... The value of x is 3.

…

Q: Jim spends 2 hours watching TV and 
then decides to go to bed and reads for 
half as long.  He does this x times a 
week.  How many hours does he spend 
on TV and reading in 4 weeks? If we 
know the answer of the above question is 
36, what is the value of unknown 
variable x? 

A: Jim spends 2 hours … 
The value of x is 4.

A: Jim watches 2 hours 
TV ... The value of x is 3.

Q: Jim spends 2 hours watching TV and 
then decides to go to bed and reads for 
half as long.  He does this x times a 
week.  How many hours does he spend 
on TV and reading in 4 weeks? If we 
know the answer of the above question is 
12, what is the value of unknown variable 
x? 

…

Backward Reasoning
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Figure 3: Overview of forward/backward reasoning and the proposed FOBAR. The detailed procedure is shown in Algorithm 1.

ence, a new question Q is appended to the prompt:168

PCoT= “Question: Q(1) \n Answer: R(1), A⋆(1)169

. . . Question: Q(K)\n Answer: R(K), A⋆(K)”170

and “PCoT \n Question: Q \n Answer:” is fed to171

the LLM for generating both its reasoning chain R172

and answer A. CoT prompting has achieved SOTA173

performance on a wide variety of tasks (Wei et al.,174

2022; Kojima et al., 2022; Fu et al., 2023; Zhang175

et al., 2023b; Wang et al., 2023; Zheng et al., 2023;176

Zhou et al., 2023; Zhang et al., 2023c).177

Recently, many works (Fu et al., 2023; Zheng178

et al., 2023; Madaan et al., 2023; Paul et al., 2023;179

Shinn et al., 2023; Welleck et al., 2023; Zhou et al.,180

2023; Chen et al., 2023; Zhang et al., 2023a) have181

been proposed to improve the quality of reason-182

ing chains in CoT prompting. ComplexCoT (Fu183

et al., 2023) selects examples with more steps as in-184

context examples, while PHP (Zheng et al., 2023)185

iteratively uses the previous answers as hints in186

prompting. These methods can be viewed as for-187

ward reasoning, which starts from the question188

and generates a reasoning chain to reach the an-189

swer. Instead of taking a single reasoning chain 190

by greedy decoding, Self-Consistency (Wang et al., 191

2023) samples a diverse set of chains and obtains a 192

set of candidate answers. The final answer is then 193

selected by majority voting. 194

Backward Reasoning. Backward reasoning (a.k.a. 195

backward chaining) (Pettit and Sugden, 1989; Rus- 196

sell and Norvig, 1995; Khot et al., 2021; Liang 197

et al., 2021; Yu et al., 2023) starts with an an- 198

swer and works backward to verify the sequence 199

of steps or conditions necessary to reach this an- 200

swer. Backward reasoning is particularly useful in 201

domains when the answer is known, e.g., in auto- 202

mated theorem provers (Russell and Norvig, 1995; 203

Rocktäschel and Riedel, 2016; Wang and Deng, 204

2020; Kazemi et al., 2023; Poesia and Goodman, 205

2023). Recently, Self-Verification (Weng et al., 206

2023) rewrites the question with an answer into a 207

declarative statement and then asks the LLM to pre- 208

dict the masked number. RCoT (Xue et al., 2023) 209

regenerates a sentence (a sequence of tokens) in 210

the question conditioning on the answer and de- 211

tects whether there is factual inconsistency in the 212

3



constructed question by three complicated steps.213

The complicated checking procedure may lead to214

inaccurate verification. In contrast, for creating215

backward questions, we simply append a template216

to the original question without additional rewrit-217

ing and reconstruction; for verification, the pro-218

posed FOBAR just needs to check whether the219

number is predicted correctly by string comparison,220

which is much simpler and more accurate. Fur-221

thermore, the proposed FOBAR combines forward222

and backward reasoning together for verification,223

while Self-Verification and RCoT use backward224

reasoning alone.225

3 Forward-Backward Reasoning for226

Verification227

In this section, we propose the FOBAR method for228

verification. An overview is shown in Figure 3. We229

first consider mathematical reasoning tasks. A set230

of candidate answers is generated in the forward di-231

rection, and we estimate each answer’s probability232

based on the votes it receives (Section 3.1). Next,233

we mask a number in the question and propose234

a simple template to create backward questions235

for verifying candidate answers (Section 3.2). We236

further propose FOBAR (Section 3.3) to combine237

forward and backward reasoning. Extension to238

non-mathematical tasks is discussed in Section 3.4.239

3.1 Forward Reasoning240

Forward reasoning starts with a question and gener-241

ates multiple intermediate steps toward the answer.242

Specifically, for a question Q, we prepend it with a243

base prompt PF (e.g., CoT prompting (Wei et al.,244

2022) or ComplexCoT prompting (Fu et al., 2023))245

and feed the tuple (PF, Q) to the LLM for generat-246

ing a reasoning chain and candidate answer. Using247

temperature sampling (Ackley et al., 1985; Ficler248

and Goldberg, 2017), we sample MF candidate rea-249

soning chains {Ri}MF
i=1 and extract the correspond-250

ing candidate answers {Ai}MF
i=1 (see Figure 3, top).251

Let A = {Âc}|A|
c=1 be the set of answers dedupli-252

cated from {Ai}MF
i=1. Unlike greedy decoding (Wei253

et al., 2022), we may have several different can-254

didate answers (i.e., |A| > 1). We propose to255

estimate the probability that candidate Âc ∈ A is256

correct as the proportion of votes it receives from257

the reasoning paths:258

PF(Âc) =
1

MF

MF∑

i=1

I(Ai = Âc), (1)259

where I(·) is the indicator function. Choosing Âc 260

with the largest PF(Âc) corresponds to the state-of- 261

the-art method of Self-Consistency (Wang et al., 262

2023). However, as shown in Figure 1, the perfor- 263

mance of Self-Consistency saturates when MF 264

is sufficiently large. Thus, simply sampling more 265

reasoning paths brings negligible performance im- 266

provement. 267

3.2 Backward Reasoning 268

In backward reasoning, we mask a number con- 269

tained in the question and ask the LLM to pre- 270

dict the masked number by using a provided candi- 271

date answer. Specifically, suppose that question Q 272

involves NQ numbers {num(n)}NQ

n=1. We replace 273

each of them one by one with x. The resultant 274

masked question Q̂(n) is then concatenated with 275

the following template, which contains a candidate 276

answer Âc ∈ A. 277

Template For Creating Backward Question

T (Âc) = If we know the answer to the above question is

{Âc}, what is the value of unknown variable x?
278

Each (Q̂(n), T (Âc)) pair is called a backward 279

question. In total, we obtain NQ backward ques- 280

tions. Some examples of backward questions are 281

shown in Example B.1 of Appendix B. Note that 282

Self-Verification (Weng et al., 2023) needs the 283

assistance of an LLM to rewrite a (question, an- 284

swer) pair into a declarative statement.1 In con- 285

trast, the proposed template is simpler and avoids 286

possible mistakes (an example illustrating Self- 287

Verification’s rewriting mistakes is shown in Ap- 288

pendix C). 289

To predict the masked number, we prepend the 290

backward question with a prompt PB, which con- 291

sists of several (backward) question-answer de- 292

mos with reasoning chains. An example question- 293

answer demo is shown in Example B.2 of Appendix 294

B. We feed each of (PB, Q̂
(n), T (Âc)) (where 295

n = 1, . . . , NQ) to the LLM, which then imitates 296

the in-context examples in PB and generates a rea- 297

soning chain for the prediction of the masked num- 298

ber. We sample MB such reasoning chains with 299

predictions {n̂um(n)
c,b }

MB
b=1 (see Figure 3, middle). 300

For each candidate answer Âc, we count the num- 301

ber of times that the masked number is exactly 302

1For example, “How many hours does he spend on TV
and reading in 4 weeks?” with a candidate answer of 36 is
rewritten to “He spends 36 hours on TV and reading in 4
weeks”.
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predicted:303

Zc =

NQ∑

n=1

MB∑

b=1

I(n̂um(n)
c,b = num(n)). (2)304

The probability that candidate answer Âc is correct305

is estimated as306

PB(Âc) =
Zc + ϵ

∑|A|
c′=1 Zc′ + ϵ|A|

, (3)307

where ϵ = 10−8 is a small positive constant to308

avoid division by zero. One can simply choose Âc309

with the largest PB(Âc) as the prediction. A more310

effective method, as will be shown in Section 3.3, is311

to combine the probabilities obtained from forward312

and backward reasoning.313

3.3 FOBAR (FOrward and BAckward Reasoning)314

As forward and backward reasoning are comple-315

mentary (i.e., backward reasoning may succeed in316

the cases where forward reasoning fails and vice317

versa, as Examples D.1 and D.2 provided in Ap-318

pendix D), we propose to combine them for ver-319

ification. Intuitively, a candidate answer is likely320

to be correct when it receives many votes in for-321

ward reasoning and also helps the LLM to predict322

the masked numbers in backward reasoning. We323

estimate the probability that Âc is correct as324

P(Âc)∝
(
PF(Âc)

)α(PB(Âc)
)1−α

, (4)325

with weight α ∈ [0, 1] (see Figure 3, bottom).326

When α = 1, it reduces to Self-Consistency (Wang327

et al., 2023); When α equals 0, it reduces to back-328

ward reasoning for verification. In the experiments,329

we combine the forward and backward probabili-330

ties by the geometric mean (i.e., α = 0.5). Finally,331

we select the answer as argmaxÂc∈A P(Âc). The332

whole procedure is shown in Algorithm 1.333

Compared with training an LLM as veri-334

fier (Cobbe et al., 2021), which is computationally335

expensive and labor-intensive in collecting extra336

annotation data, FOBAR is training-free (thus, no337

additional data collection) and more effective in338

verification (Table 6 in Appendix E.1). The pro-339

posed backward reasoning can be combined with340

other forward reasoning methods such as step-by-341

step verification proposed by Ling et al. (2023)342

(Table 7 in Appendix E.2).343

Algorithm 1 FOBAR.
Require: number of reasoning chains MF and MB,

prompts PF and PB; ϵ = 10−8; α = 0.5;
1: Input: a question Q with NQ numbers;
2: feed (PF, Q) to LLM, sample MF reasoning

chains with candidate answers {Ai}MF
i=1;

3: deduplicate {Ai}MF
i=1 to A = {Âc}|A|

c=1;
4: compute PF(Âc) by Eq. (1) for Âc∈A;
5: for Âc ∈ A do
6: for n = 1, . . . , NQ do
7: create Q̂(n) by masking the nth

number num(n) in Q;
8: feed (PB, Q̂

(n), T (Âc)) to LLM;
9: sample MB predictions {n̂um(n)

c,b }
MB
b=1;

10: end for
11: compute Zc by Eq. (2);
12: end for
13: compute PB(Âc) by Eq. (3) for Âc∈A;
14: compute P(Âc) by Eq. (4) for Âc ∈ A;
15: return argmaxÂc∈A P(Âc).

3.4 Extension to Non-Mathematical Tasks 344

In mathematical questions, numbers are the most 345

informative words. For non-mathematical tasks, 346

we can analogously mask an informative word and 347

ask the LLM to guess the masked word given a 348

candidate answer. 349

For example, consider the following question- 350

answer pair from the Last Letter Concatenation 351

task (Wei et al., 2022; Zhou et al., 2023): “Take 352

the last letters of each word in ‘Whitney Erika Tj 353

Benito’ and concatenate them” with ground-truth 354

answer “yajo”. We can mask one of the four words 355

(e.g., “Erika”). Given a candidate answer Âc, we 356

create a backward question as “Take the last let- 357

ters of each word in ‘Whitney Tj Benito’ and 358

concatenate them. If we know the answer to the 359

above question is Âc, which is the word at the 360

blank, Erika or Dqhjz”, where “Dqhjz” is obtained 361

by shifting each letter of “Erika”. The LLM is 362

more likely to choose “Erika” if the second letter 363

in Âc is “a”. 364

4 Experiments 365

4.1 Setup 366

Datasets. Experiments are conducted on six 367

benchmark mathematical data sets which are com- 368

monly used in evaluating CoT reasoning abil- 369

ity (Zheng et al., 2023; Wang et al., 2023): 370
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(i) AddSub (Hosseini et al., 2014), (ii) Multi-371

Arith (Roy and Roth, 2015), (iii) SingleEQ (Kon-372

cel-Kedziorski et al., 2015), (iv) SVAMP (Patel373

et al., 2021), (v) GSM8K (Cobbe et al., 2021),374

(vi) AQuA (Ling et al., 2017). Some statistics and375

example question-answer pairs are shown in Ta-376

ble 8 in Appendix F. Questions in AddSub and377

SingleEQ are easier and do not need multi-step cal-378

culations. Questions in the other data sets are more379

challenging as many steps are required.380

Baselines. We compare the proposed FOBAR381

with (i) In-Context Learning (ICL) using ques-382

tion-answer pairs as demonstrations (Brown383

et al., 2020), and recent CoT prompting meth-384

ods, including: (ii) CoT prompting (Wei et al.,385

2022); (iii) ComplexCoT prompting (Fu et al.,386

2023) which selects demonstrations with com-387

plex reasoning steps; (iv) RE2 (Xu et al.,388

2023) which re-reads the question in the prompt;389

(v) PHP (Zheng et al., 2023) which iteratively uses390

the previous answers as hints in designing prompts;391

(vi) RCoT (Xue et al., 2023) which reconstructs392

the question based on the candidate answer and393

checks the factual inconsistency for verification;394

(vii) Self-Consistency (Wang et al., 2023), which395

samples multiple reasoning chains and selects the396

answer by majority voting; (viii) Self-Verifica-397

tion (Weng et al., 2023), which chooses the top-2398

candidate answers obtained from Self-Consistency399

and re-ranks them based on the verification scores400

computed in the backward procedure.401

Following Zheng et al. (2023), we experiment402

with three LLMs: (i) text-davinci-003 (OpenAI,403

2022a), (ii) GPT-3.5-Turbo (OpenAI, 2022b),404

and (iii) GPT-4 (OpenAI, 2023). GPT-3.5-Turbo405

and GPT-4 are more powerful than text-davinci-406

003. The proposed FOBAR is general and can407

be integrated into any prompting method. Here,408

we choose the CoT prompting and ComplexCoT409

prompting as base prompts as in Zheng et al.410

(2023).411

Implementation Details. Following (Wang et al.,412

2023; Zhou et al., 2023; Zheng et al., 2023), the413

temperature for sampling is 0.7 for both forward414

and backward reasoning. The α in Eq. (4) is set415

to 0.5. For text-davinci-003, MF is 40 as in (Wang416

et al., 2023; Zheng et al., 2023); whereas the more417

powerful LLMs (GPT-3.5-Turbo and GPT-4) use418

a smaller MF (i.e., 10). MB is set to 8 for all three419

LLMs. We do not repeat the experiments using dif-420

ferent seeds as querying OpenAI’s LLMs is costly.421

4.2 Results 422

Table 1 shows the testing accuracies. As can be 423

seen, for all three LLMs, FOBAR with Complex- 424

CoT prompting achieves the highest average ac- 425

curacy. When using CoT as the base prompt, FO- 426

BAR outperforms Self-Consistency most of the 427

time, demonstrating that combining forward and 428

backward reasoning is better than using forward 429

reasoning alone. Furthermore, FOBAR performs 430

better than Self-Verification on almost all datasets, 431

demonstrating that using the proposed simple tem- 432

plate in backward reasoning and the proposed com- 433

bination is more effective in verification. FO- 434

BAR (with either CoT or ComplexCoT) on GPT-4 435

achieves the highest average accuracy, as GPT-4 is 436

currently the SOTA LLM. Moreover, for all three 437

LLMs, FOBAR using ComplexCoT as base prompt 438

achieves higher accuracy than using CoT on aver- 439

age, which is consistent with observations in (Fu 440

et al., 2023; Zheng et al., 2023) that ComplexCoT 441

is better than CoT. 442

4.3 Combining Forward and Backward 443

Probabilities 444

In this experiment, we study how the combination 445

weight α in Eq. (4) affects performance. Figure 4 446

shows the testing accuracies (averaged over the six 447

data sets) with α ∈ [0, 1] using the three LLMs. 448

As can be seen, FOBAR is insensitive to α over a 449

large range for all three LLMs. In the sequel, we 450

use α = 0.5, which corresponds to the geometric 451

mean of the forward and backward probabilities. 452

Alternatively, one can combine the forward and 453

backward probabilities by the arithmetic mean, i.e., 454

P(Âc) =
1
2

(
PF(Âc)+PB(Âc)

)
. Figure 5 shows the 455

testing accuracies for the three LLMs. As shown, 456

the arithmetic mean has comparable performance 457

as the geometric mean. Hence, Figures 4 and 5 458

together suggest that FOBAR is robust to the com- 459

bination of forward and backward probabilities. 460
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Figure 4: Testing accuracy (averaged over the six data sets)
of FOBAR w.r.t. α.

4.4 Usefulness of Forward and Backward 461

Reasoning 462

We perform an ablation study on forward (FO) 463

and backward (BA) reasoning. We consider the 464
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Table 1: Testing accuracies (%) on six data sets using three LLMs. For each LLM, methods are grouped according to the base
prompt they used. The best in each group is in bold. Results with † are from the original publications. “–” means that the result
is not reported in the original publication.

AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Average
te

xt
-d

av
in

ci
-0

03

ICL (Brown et al., 2020) 90.4 37.6 84.3 69.1 16.9 29.1 54.5
C

oT

CoT (Wei et al., 2022) 91.4 93.6 92.7 79.5 55.8 46.5 76.6
PHP† (Zheng et al., 2023) 91.1 94.0 93.5 81.3 57.5 44.4 77.0
RE2† (Xu et al., 2023) 91.7 93.3 93.3 81.0 61.6 44.5 77.6
Self-Consistency (Wang et al., 2023) 91.7 95.9 94.5 83.1 67.9 55.1 81.4
Self-Verification (Weng et al., 2023) 87.4 95.3 92.9 82.2 59.8 37.4 75.8
FOBAR 91.9 100.0 96.1 86.8 70.8 55.1 83.5

C
om

pl
ex

C
oT

ComplexCoT (Fu et al., 2023) 88.9 95.3 93.7 78.0 67.7 48.8 78.7
PHP† (Zheng et al., 2023) 91.6 96.6 95.0 83.7 68.4 53.1 81.4
Self-Consistency (Wang et al., 2023) 89.4 98.5 91.1 82.7 79.1 58.7 83.2
Self-Verification (Weng et al., 2023) 89.9 95.5 94.1 80.1 72.0 38.2 78.3
FOBAR 90.6 100.0 95.3 87.0 78.7 58.7 85.0

G
P

T-
3.

5-
Tu

rb
o

ICL (Brown et al., 2020) 88.6 87.6 88.8 80.6 32.2 31.1 68.2

C
oT

CoT (Wei et al., 2022) 89.4 97.9 92.9 84.2 77.2 54.3 82.7
RE2† (Xu et al., 2023) 89.9 96.5 95.3 80.0 80.6 58.3 83.4
Self-Consistency (Wang et al., 2023) 90.6 98.6 93.1 86.4 81.9 62.6 85.5
Self-Verification (Weng et al., 2023) 90.4 97.4 92.9 83.1 74.9 60.6 83.2
FOBAR 89.4 99.3 94.5 88.9 85.1 62.6 86.6

C
om

pl
ex

C
oT

Complex CoT (Fu et al., 2023) 87.9 98.3 94.5 81.1 80.7 59.1 83.6
RCoT† (Xue et al., 2023) 88.2 – 93.0 84.9 84.6 53.3 –
PHP† (Zheng et al., 2023) 85.3 98.0 92.9 83.1 85.1 60.6 84.2
Self-Consistency (Wang et al., 2023) 88.1 98.8 94.5 85.0 86.4 63.0 86.0
Self-Verification (Weng et al., 2023) 87.9 96.6 93.3 81.0 78.2 61.4 83.1
FOBAR 88.4 99.8 94.3 88.5 87.4 63.4 87.0

G
P

T-
4

ICL (Brown et al., 2020) 92.1 98.6 94.3 90.9 48.5 48.0 78.7

C
oT

CoT (Wei et al., 2022) 92.7 99.0 95.7 92.9 93.4 69.7 90.6
Self-Consistency (Wang et al., 2023) 92.2 99.0 95.9 93.3 94.8 71.3 91.1
Self-Verification (Weng et al., 2023) 92.7 99.0 95.7 93.1 93.7 70.1 90.7
FOBAR 92.4 99.0 96.1 94.1 95.4 71.3 91.4

C
om

pl
ex

C
oT

Complex CoT (Fu et al., 2023) 91.9 98.3 94.5 92.4 95.1 72.4 90.8
PHP† (Zheng et al., 2023) 89.6 98.1 93.1 91.9 95.5 79.9 91.3
Self-Consistency (Wang et al., 2023) 91.4 98.5 94.7 93.4 96.2 75.2 91.6
Self-Verification (Weng et al., 2023) 91.6 98.5 94.7 93.0 95.7 75.6 91.5
FOBAR 91.9 98.6 94.7 94.4 96.4 75.2 91.9

CoT ComplexCoT80

82

84

86

88

ac
cu

ra
cy

 (%
)

83.4

84.9

83.5

85.0

Arithmetic Mean
Geometric Mean

(a) text-davinci-003.
CoT ComplexCoT80

82

84

86

88

90

92

ac
cu

ra
cy

 (%
)

86.5 87.086.6 87.0

Arithmetic Mean
Geometric Mean

(b) GPT-3.5-Turbo.
CoT ComplexCoT86

88

90

92

94

96

ac
cu

ra
cy

 (%
)

91.4
91.9

91.4
91.9

Arithmetic Mean
Geometric Mean

(c) GPT-4.
Figure 5: Testing accuracy of FOBAR (averaged over the
six data sets) with geometric/arithmetic mean of forward and
backward probabilities.

four combinations: (i) using neither forward nor465

backward reasoning (which reduces to greedy de-466

coding (Wei et al., 2022)); (ii) use only for-467

ward reasoning (i.e., Self-Consistency); (iii) use468

only backward reasoning in selecting answers (i.e.,469

α = 0 in Algorithm 1); (iv) use both forward and470

backward reasoning (i.e., the proposed FOBAR).471

Table 2 shows the testing accuracies (averaged over472

the six data sets) for the three LLMs. As can be473

seen, in all the settings, using forward or backward 474

reasoning is consistently better than using neither 475

of them. Moreover, combining forward and back- 476

ward reasoning is always the best. Examples D.1 477

and D.2 (Appendix D) show that FOBAR is able to 478

rectify some failure cases of forward and backward 479

reasoning, respectively. 480

Table 2: Average testing accuracies (%) with different combi-
nations of forward (FO) and backward (BA) reasoning.

FO BA text-davinci-003 GPT-3.5-Turbo GPT-4

C
oT

✗ ✗ 76.6 82.7 90.6
✓ ✗ 81.4 85.5 91.1
✗ ✓ 82.1 86.2 91.2
✓ ✓ 83.5 86.6 91.4

C
om

pl
ex

C
oT ✗ ✗ 78.7 83.6 90.8

✓ ✗ 83.2 86.0 91.6
✗ ✓ 81.3 86.3 91.8
✓ ✓ 85.0 87.0 91.9
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4.5 Correct Candidate Helps Backward481

Reasoning482

In this experiment, we verify the intuition that the483

correct candidate answer helps LLM to predict the484

masked numbers. Figure 2 compares the accura-485

cies of predicting the masked numbers in backward486

questions with the correct/wrong candidates. As487

can be seen, using the correct candidate has 2×488

higher accuracy (averaged over the six data sets)489

than the wrong ones in predicting masked numbers,490

demonstrating that using backward reasoning for491

verifying candidate answers is reasonable.492

4.6 Number of Forward and Backward493

Reasoning Chains494

4.6.1 Varying MF495

In this section, we study how the performance of496

FOBAR varies with the number of forward reason-497

ing chains MF. Figure 6 shows the testing accura-498

cies (averaged over the six data sets) for the three499

LLMs. As can be seen, using a very small MF (e.g.,500

≤ 5) is clearly undesirable, but the accuracy sat-501

urates quickly with increasing MF. This suggests502

that one can use a small MF to reduce the com-503

putational cost. Moreover, the accuracy curves of504

FOBAR are higher than those of Self-Consistency505

in Figure 1, again demonstrating that integrating506

backward reasoning into verification is effective.507
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Figure 6: Testing accuracy of FOBAR (averaged over the six
data sets) with MF.

4.6.2 Varying MB508

Next, we study how the performance of FOBAR509

varies with the number of backward reasoning510

chains MB. Figure 7 shows the testing accuracies511

(averaged over the six data sets) for the three LLMs.512

Note that MB = 0 corresponds to using only for-513

ward reasoning. As shown, using a very small MB514

(e.g., ≤ 4) is clearly undesirable, but the accuracy515

saturates quickly when MB increases. Hence, using516

a small MB can achieve a good balance between517

performance and efficiency.518

4.7 Extension to Non-Mathematical Tasks519

In this section, we perform experiments on two520

commonly-used non-mathematical tasks: Date Un-521
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Figure 7: Testing accuracy of FOBAR (averaged over the six
data sets) with MB.

derstanding (Wei et al., 2022; Fu et al., 2023) and 522

Last Letter Concatenation (Wei et al., 2022; Zhou 523

et al., 2023). Examples are shown in Table 8 (Ap- 524

pendix F. We compare FOBAR with other CoT- 525

based methods and ICL using GPT-3.5-Turbo. PHP 526

does not report results on non-mathematical tasks. 527

Table 3 shows the testing accuracies. As shown, 528

FOBAR performs better than all the baselines with 529

either CoT or ComplexCoT as base prompt. More- 530

over, all CoT-based methods significantly outper- 531

form ICL. 532

Table 3: Accuracies on the non-mathematical tasks of Date
Understanding (denoted DateU) and Last Letter Concatena-
tion (denoted LastLetter) using GPT-3.5-Turbo. Results with
† are from the original publications. “–” means that the result
is not reported in the original publication.

DateU LastLetter

ICL (Brown et al., 2020) 52.0 8.0

C
oT

CoT (Wei et al., 2022) 61.3 81.0
RE2† (Xu et al., 2023) 47.2 -

Self-Consistency (Wang et al., 2023) 65.6 81.4
Self-Verification (Weng et al., 2023) 66.1 81.8

FOBAR 66.4 82.6

C
om

pl
ex

C
oT ComplexCoT (Fu et al., 2023) 74.8 81.4

RCoT† (Xue et al., 2023) 71.7 -
Self-Consistency (Wang et al., 2023) 77.5 81.2
Self-Verification (Weng et al., 2023) 76.2 81.6

FOBAR 78.0 82.4

5 Conclusion 533

In this paper, we study the problem of verifying 534

candidate answers to mathematical problems us- 535

ing chain-of-thought prompting. To complement 536

the use of only forward reasoning for verification, 537

we introduce backward reasoning: A simple tem- 538

plate is introduced to create questions and a prompt 539

is designed to ask the LLM to predict a masked 540

word when a candidate answer is provided. Further- 541

more, we proposed FOBAR to combine forward 542

and backward reasoning for verification. Extensive 543

experiments on six standard mathematical data sets 544

and three LLMs show that the proposed FOBAR 545

achieves state-of-the-art performance on mathemat- 546

ical reasoning tasks. FOBAR can also be used 547

on non-mathematical tasks and achieves superior 548

performance. 549
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6 Limitations and Potential Risks550

Limitations In this paper, we focused on math-551

ematical reasoning tasks, with extension to two552

non-mathematical reasoning tasks. However, ex-553

tensions to more complicated non-mathematical554

reasoning tasks such as Common-Sense Question-555

Answering (CSQA) (Wei et al., 2022) and Strate-556

gyQA (Wei et al., 2022; Fu et al., 2023) are still to557

be explored, as identifying the informative words558

to mask is more challenging.559

Potential Risks All data sets used in this work do560

not contain any information that names or uniquely561

identifies individual people or offensive content.562

Hence, there is no concern about ethical considera-563

tions and data privacy.564
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A Failure Cases of Self-Consistency and FOBAR799

We conduct an analysis on the failure cases of Self-Consistency and FOBAR on the six data sets,800

using GPT-3.5-Turbo with ComplexCoT prompting. Table 4 shows the number of failure cases of Self-801

Consistency, with a breakdown into the numbers of cases with no chain reaching the correct answer and at802

least one chain reaching the correct answer. As can be seen, about 60% of the total failure cases have at803

least one correct chains (the remaining 40% have no correct chains and thus cannot be solved by backward804

reasoning). These 60% cases can potentially be fixed with a better verifı̀er (such as the proposed FOBAR).805

Table 5 shows the statistics on the failure cases of FOBAR. As can be seen, FOBAR rectifies 54 (i.e.,806

294− 240) out of the 294 failure cases that have at least one correct answer in Self-Consistency.807

Table 4: Statistics on the failure cases of Self-Consistency on the six data sets.
AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Total

#failures 47 7 28 150 179 94 505

#failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 19 7 14 93 119 42 294

Table 5: Statistics on the failure cases of FOBAR on the six data sets.
AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Total

#failures 46 1 29 115 166 94 451

##failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 18 1 15 58 106 42 240

B Question-Answer Demos of Backward Reasoning808

Example B.1 shows three backward questions that mask different numbers in the original question.809

Example B.2 shows a backward question and its answer.810

Example B.1: Backward questions.

Question: Jim spends x hours watching TV and then decides to go to bed and reads for half as long.
He does this 3 times a week. How many hours does he spend on TV and reading in 4 weeks? If we
know the answer to the above question is {Âc}, what is the value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long.
He does this x times a week. How many hours does he spend on TV and reading in 4 weeks? If we
know the answer to the above question is {Âc}, what is the value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long.
He does this 3 times a week. How many hours does he spend on TV and reading in x weeks? If we
know the answer to the above question is {Âc}, what is the value of unknown variable x?

811

Example B.2: Backward Reasoning.

Question: Randy has 60 mango trees on his farm. He also has x less than half as many coconut trees as
mango trees. How many trees does Randy have in all on his farm? If we know the answer to the above
question is 85, what is the value of unknown variable x?
Answer: Let’s think step by step. We know that Randy has 60 mango trees on his farm. We also know
that he has x less than half as many coconut trees as mango trees. Let’s use C to represent the number
of coconut trees. So we can write: C = (1/2)*60 - x = 30 - x. The total number of trees on Randy’s farm
is the sum of the number of mango trees and coconut trees: 60 + (30 - x) = 90 - x. We are given that the
total number of trees on Randy’s farm is 85, so we can write: 90 - x = 85. Solving for x, we get: x = 5.
The value of x is 5.

812
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C Example Rewriting Mistake in Self-Verification 813

1Question: A class of 50 students has various hobbies. 10 like to bake, 5 like to play basketball, and the
rest like to either play video games or play music. How many like to play video games if the number
that like to play music is twice the number that prefer playing basketball? (answer: 25)

814

We mask the first number (i.e., 50) by x and a candidate answer 25 is provided. The following shows 815

the backward questions obtained by Self-Verification and FOBAR. We can see that Self-Verification 816

makes a mistake in rewriting the question into a declarative statement, while the proposed simple template 817

in FOBAR does not need rewriting. 818

2Question (Self-Verification): A class of x students has various hobbies. 10 like to bake, 5 like to play
basketball, and the rest like to either play video games or play music. The number of people who like to
play video games is equal to the number of people who prefer playing basketball multiplied by two.
The number of people who like to play video games is 25. What is the answer of x?
Question (FOBAR): A class of x students has various hobbies. 10 like to bake, 5 like to play basketball,
and the rest like to either play video games or play music. How many like to play video games if the
number that like to play music is twice the number that prefer playing basketball? If we know the answer
to the above question is 25, what is the value of unknown variable x?

819

D Example Cases showing that Forward and Backward Reasoning are Complementary 820

In this section, we show that forward and backward reasoning are complementary, i.e., failure cases 821

in forward reasoning can be corrected by backward reasoning, and vice versa. We use cases from the 822

SingleEQ data set using text-davinci-003 with CoT prompting. Example D.1 shows a case where forward 823

reasoning (i.e., Self-Consistency) fails but backward reasoning succeeds. We can see that this problem is 824

difficult to solve in the forward direction, but the correctness of a candidate answer can be easily verified in 825

the backward direction. Example D.2 shows a case where backward reasoning fails but forward reasoning 826

succeeds. Moreover, FOBAR can choose the correct answer in both cases. 827

Example D.1: Forward reasoning fails but backward reasoning succeeds.

Question: The sum of three consecutive odd numbers is 69. What is the smallest of the three numbers?
Ground-truth answer: 21
Forward reasoning: PF(21) = 0.4,PF(23) = 0.6
Backward reasoning: PB(21) = 0.8,PB(23) = 0.2
FOBAR: P(21) = 0.62,P(23) = 0.38
A backward question: The sum of three consecutive odd numbers is x. What is the smallest of the
three numbers? If we know the answer to the above question is 21, what is the value of unknown
variable x?

828

Example D.2: Forward reasoning succeeds but backward reasoning fails.

Question: While digging through her clothes for ice cream money, Joan found 15 dimes in her jacket,
and 4 dimes in her shorts. How much money did Joan find?
Ground-Truth answer: 1.9
Forward reasoning: PF(1.9) = 0.7,PF(190) = 0.3
Backward reasoning: PB(1.9) = 0.43,PB(190) = 0.57
FOBAR: P(1.9) = 0.57,P(190) = 0.43
A backward question: While digging through her clothes for ice cream money, Joan found 15 dimes
in her jacket, and x dimes in her shorts. How much money did Joan find? If we know the answer to the
above question is 1.9, what is the value of unknown variable x?

829
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E Additional Experiments830

E.1 Comparison between FOBAR and Trained Verifiers831

Compared with Cobbe et al. (2021), which trains an LLM for verifying answers, FOBAR has two832

advantages. (i) (training-free) Training an LLM for verification is computationally expensive and labor-833

intensive in collecting extra annotation data, while backward reasoning for verification is training-free834

and requires no additional data collection. (ii) (more effective) As training the GPT-3 (175B) model is835

extremely expensive and their code is not publicly available, we compare our FOBAR with the result836

reported in Figure 5 of (Cobbe et al., 2021), where the candidate answers are generated by GPT-3. Table 6837

shows the accuracy of GSM8K. As shown, FOBAR consistently performs much better than the trained838

verifier (+14.8).839

Table 6: Comparison between FOBAR and a trained verifier on GSM8K.
Training GPT-3 (175B) for Verification (Cobbe et al., 2021) 56.0
FOBAR (text-davinci-003 + CoT) 70.8
FOBAR (text-davinci-003 + ComplexCoT) 78.7
FOBAR (GPT-3.5-Turbo + CoT) 85.1
FOBAR (GPT-3.5-Turbo + ComplexCoT) 87.4
FOBAR (GPT-4 + CoT) 95.4
FOBAR (GPT-4 + ComplexCoT) 96.4

E.2 Comparison between FOBAR and Step-by-Step Forward Verification840

Recent works (Lightman et al., 2023; Ling et al., 2023) propose verifying the steps of forward reasoning841

chains. Lightman et al. (2023) propose to label exclusively steps of forward reasoning chains generated842

by LLMs. The labeled data are then used to train an LLM for verification. Compared with (Lightman843

et al., 2023), which is computationally expensive in training an LLM and labor-intensive in labeling data,844

our backward reasoning is training-free for verification and requires no additional data annotation.845

Ling et al. (2023) propose a natural language-based deductive reasoning format that allows the LLM846

to verify forward reasoning steps. Different from (Ling et al., 2023), we use backward reasoning to847

verify the candidate answers instead of the steps in forward chains. As backward and forward reasoning848

are complementary, the proposed backward reasoning can be combined with their step-by-step forward849

methods. We replace the forward reasoning in FOBAR (i.e., Eq. (4)) with step-by-step verification850

proposed by Ling et al. (2023), and conduct experiments on AddSub, GSM8K, and AQuA using GPT-3.5-851

Turbo. Table 7 shows the testing accuracy. As can be seen, combining backward reasoning with forward852

reasoning methods consistently boosts performance.853

Table 7: Accuracy of FOBAR when combining backward reasoning with three types of forward reasoning for verification.

AddSub GSM8K AQuA

Self-Consistency 88.1 86.4 63.0
Self-Consistency + Backward Reasoning 88.4 87.4 63.4

NP (Ling et al., 2023) 93.67 87.05 70.34
NP + Backward Reasoning 93.92 87.89 71.65

NP + Deductive Verification + UPV (Ling et al., 2023) 93.54 86.01 69.49
NP + Deductive Verification + UPV + Backward Reasoning 93.92 87.19 70.86
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F Data Sets 854

Table 8 shows the statistics on the data sets used in the experiments. 855

Table 8: Statistics of data sets used in the experiments.
#samples NQ (mean ± std) example

M
at

h

AddSub 395 2.6± 0.7
Benny picked 2 apples and Dan picked 9 apples from the apple tree. How
many apples were picked in total?

MultiArith 600 3.1± 0.3
Katie picked 3 tulips and 9 roses to make flower bouquets. If she only
used 10 of the flowers though, how many extra flowers did Katie pick?

SingleEQ 508 2.2± 0.7
Joan went to 4 football games this year. She went to 9 football games last
year. How many football games did Joan go to in all?

SVAMP 1000 2.8± 0.7

Rachel has 4 apple trees. She picked 7 apples from each of her trees. Now
the trees have a total 29 apples still on them. How many apples did Rachel
pick in all?

GSM8K 1319 3.8± 1.6
A robe takes 2 bolts of blue fiber and half that much white fiber. How
many bolts in total does it take?

AQuA 254 2.9± 1.3

If the population of a city increases by 5% annually, what will be the
population of the city in 2 years time if its current population is 78000?
Answer Choices: (A) 81900 (B) 85995 (C) 85800 (D) 90000 (E) None of
these

N
on

-M
at

h Last Letter Concatenation 500 4.0± 0.0
Take the last letters of each word in “Whitney Erika Tj Benito” and con-
catenate them.

Date Understanding 369 1.2± 0.7
The deadline is Jun 1, 2021, which is 2 days away from now. What is the
date a month ago in MM/DD/YYYY?
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