Forward-Backward Reasoning in Large Language Models for
Mathematical Verification

Anonymous ACL submission

Abstract

Self-Consistency samples diverse reasoning
chains with answers and chooses the final an-
swer by majority voting. It is based on for-
ward reasoning and cannot further improve per-
formance by sampling more reasoning chains
when saturated. To further boost performance,
we introduce backward reasoning to verify can-
didate answers. Specifically, for mathematical
tasks, we mask a number in the question and
ask the LLM to answer a backward question
created by a simple template, i.e., to predict
the masked number when a candidate answer is
provided. Instead of using forward or backward
reasoning alone, we propose FOBAR to com-
bine FOrward and BAckward Reasoning for
verification. Extensive experiments on six stan-
dard mathematical data sets and three LLMs
show that FOBAR achieves state-of-the-art per-
formance. In particular, FOBAR outperforms
Self-Consistency, which uses forward reason-
ing alone, demonstrating that combining for-
ward and forward reasoning is better. In ad-
dition, FOBAR performs better than existing
verification methods, showing the effectiveness
of the simple template used in backward rea-
soning and the proposed combination. Exten-
sions to non-mathematical problems are also
discussed and validated empirically.

1 Introduction

Pre-trained large language models
(LLMs) (Chowdhery et al., 2022; OpenAl,
2023; Wu et al., 2023) generalize well on unseen
tasks by few-shot prompting (or in-context learning
(ICL) (Brown et al., 2020; Min et al., 2022; Chen
et al., 2022; Li et al., 2023). This is performed
by concatenating a few examples (e.g., question-
answer pairs) as a prompt, and then appending the
testing question. However, it is still challenging
for LLMs to answer mathematical questions by
simply prompting the question-answer pairs, as
mathematics is more complex and often requires
many steps to derive the answer.

accuracy (%)
accuracy (%)

0.0 += ComplexCo’

8 16M 24 32 4 2 4 6 8 1 2 4 6 8 1
(a) text-davinci-003. (b) GPT-3.5-Turbo. (c) GPT-A.
Figure 1: Testing accuracy (averaged over six data sets) of
Self-Consistency versus number of sampling paths (MF).

\‘
o
)

Recently, Wei et al. (2022) propose chain-of-
thought (CoT) prompting for LLMs, which gen-
erates explicit intermediate steps that are used to
reach the answer. Specifically, each in-context ex-
ample is augmented with several thinking steps
described in natural language. A few examples are
concatenated as a CoT prompt. In inference, the
testing question is appended to the prompt and then
fed to an LLM. The LLM is expected to imitate the
in-context examples, i.e., generating several reason-
ing steps before giving the answer. CoT prompting
has achieved promising performance on mathemat-
ical reasoning tasks (Wei et al., 2022; Wang et al.,
2023; Zheng et al., 2023; Zhang et al., 2023b), and
many works have been proposed to improve its
effectiveness (Fu et al., 2023; Zheng et al., 2023;
Zhou et al., 2023; Yao et al., 2023; Pitis et al., 2023)
and efficiency (Zhang et al., 2023b; Kojima et al.,
2022; Diao et al., 2023; Lu et al., 2022).

Self-Consistency (Wang et al., 2023) is a simple
but effective approach to improve CoT prompting.
Using temperature sampling (Ackley et al., 1985;
Ficler and Goldberg, 2017), it samples a diverse
set of reasoning chains which may lead to multiple
candidate answers. The one that receives the most
votes is then chosen as the final answer. Figure 1
shows the testing accuracy (averaged over six data
sets) of Self-Consistency with different numbers
(denoted by Mp) of sampling paths using three
LLMs (the experimental setup is in Section 4.1).
As can be seen, simply sampling more reasoning
paths may not lead to performance improvement,
particularly when Mp is large. Moreover, among

== wrong
correct

wrong
correct

wrong

correct

41.3 47.2

accuracy (%)

0
CoT ComplexCoT CoT

ComplexCoT
(a) text-davinci-003. (b) GPT-3.5-Turbo.
Figure 2: Accuracy (averaged over all backward questions
across the six data sets) of predicting the masked number in
backward questions with correct/wrong candidate answers.

coT ComplexCoT

(c) GPT4.

the failure questions of Self-Consistency, about
60% have at least one reasoning chain reaches the
correct answer (Table 4 in Appendix A). Hence,
the majority voting of Self-Consistency can be im-
proved using a better verifier.

In this paper, we introduce backward reasoning
(or backward chaining) (Pettit and Sugden, 1989;
Russell and Norvig, 1995; Khot et al., 2021; Liang
et al., 2021; Yu et al., 2023) for verifying candi-
date answers. While Self-Consistency uses forward
reasoning for verification (i.e., starting with a ques-
tion, the LLM generates multiple reasoning steps to
reach its answer), backward reasoning works back-
ward from a candidate answer to the antecedent for
checking if any data supports this answer.

To use backward reasoning for verifying an-
swers, we mask an informative word in the ques-
tion and ask the LLLM to predict the masked word
when a candidate answer flc is provided. We fo-
cus on mathematical reasoning tasks, where num-
bers are the informative words being masked. Ex-
tending backward reasoning to non-mathematical
tasks is discussed in Section 3.4. For mathematical
tasks, we mask a number in the question by “x”
and design a template “If we know the answer to
the above question is { A.}, what is the value of un-
known variable x?” to form a backward question,
which is then fed to the LLM to generate multi-
ple steps before predicting the value of x. As the
ground-truth value of x is known, we can check
whether the masked number is predicted exactly. In-
tuitively, a correct candidate answer is more likely
to help predict the masked number than wrong
answers (as verified in Figure 2). Unlike Self-
Verification (Weng et al., 2023) which needs the
assistance of an LLM to rewrite the question into a
declarative statement (e.g., “How many hours does
he spend on TV and reading in 4 weeks?” with a
candidate answer of 36 is rewritten to “He spends
36 hours on TV and reading in 4 weeks”), we ap-
pend the aforementioned simple template to the
question without rewriting.

As forward reasoning and backward reason-

ing are complementary, we propose a FOrward-
BAckward Reasoning (FOBAR) method to com-
bine them. An illustration is shown in Figure 3.
In the forward direction, we estimate Pp(A,), the
probability that a candidate answer A, is correct,
as the proportion of votes A, gets. In the backward
direction, for each candidate AC, we create sev-
eral questions for backward reasoning by masking
numbers and sample a set of backward reasoning
chains to predict each masked number. Then, by
defining the vote of A, as the number of chains
that predict the masked number exactly, we es-
timate the probability]P’B(AC) as the proportion
of votes A, gets in the backward direction. As a
result, by combining backward and forward rea-
soning, we estimate the probability P(A,) as the
geometric mean of forward and backward proba-
bilities. Extensive experiments on six data sets and
three OpenAl’s LLMs (i.e., text-davinci-003 (Ope-
nAl, 2022a), GPT-3.5-Turbo (OpenAl, 2022b),
and GPT-4 (OpenAl, 2023)) show that FOBAR

achieves state-of-the-art (SOTA) performance.

Our contributions are summarized as follows.
(i) We introduce backward reasoning to mathe-
matical verification by masking a number in the
original question and asking the LLM to predict
the masked number when a candidate answer is
provided. (ii) We propose FOBAR to combine
forward and backward reasoning for verification.
(iii) Experimental results on six standard mathe-
matical benchmarks and three LLMs show that FO-
BAR achieves SOTA performance. In particular,
FOBAR outperforms Self-Consistency which uses
forward reasoning alone, demonstrating that com-
bining forward and backward reasoning together is
better. Additionally, FOBAR outperforms Self-Ver-
ification, confirming that using the simple template
and the proposed combination are more effective.
(iv) Empirical results on two non-mathematical rea-
soning tasks show that FOBAR also performs well.

2 Related Work

Chain-of-Thought (CoT) Prompting. Wei et al.
(2022) propose augmenting question-answer pairs
with intermediate steps such that the LLM can
solve questions step-by-step. Specifically, each
in-context example is a triplet (Q(), R() A*(),
where R is a reasoning chain with natural lan-
guage descriptions of steps leading from the ques-
tion Q) to the ground-truth answer A*(%). In infer-

- | Forward Reasoning I N

Q: Jim spends 2 hours watching TV and
then decides to go to bed and reads for
half as long. He does this 3 times a

A: Jim spends 2 hours
watching TV ... spend
4*9=36 hours on TV and

week. How many hours does he spend
on TV and reading in 4 weeks?
(answer: 36)

\

reading. The answer is 36.
(Mp reasoning paths)
A: Jim spends 2 hours

watching TV and reads for
half ... The answer is 12.

A T .
PF(AC):EZH(AFAC) J

[Al

candidate answers A = {A }4]

- I Backward Reasoning I N

Q: Jim spends 2 hours watching TV and

then decides to go to bed and reads for
half as long. He does this x times a

A: Jim spends 2 hours ... The
value of x is 3.

week. How many hours does he spend

on TV and reading in 4 weeks? If we
know the answer of the above question is
36, what is the value of unknown

A: Jim watches 2 hours TV,
then ... The value of x is 3.

variable x?

then decides to go to bed and reads for
half as long. He does this x times a
week. How many hours does he spend
on TV and reading in 4 weeks? If we

Q: Jim spends 2 hours watching TV and

A: Jim spends 2 hours ...
The value of x is 4.

- Ze.+ €
Po(de)= = ——
Z 14+ €| Al

o=

know the answer of the above question is
12, what is the value of unknown variable

A: Jim watches 2 hours
TV ... The value of x is 3.

Z. = #{correct backward chains|A.}

\X? e=10"8)

- l FOBAR: FOrward-BAckward Reasoning l N
P(Ac) o (Pr(4c)*(Pa(4c))

(& J

Figure 3: Overview of forward/backward reasoning and the proposed FOBAR. The detailed procedure is shown in Algorithm 1.

ence, a new question () is appended to the prompt:
Pcor= “Question: Q) \n Answer: R, A*(1)
... Question: QU)\n Answer: R A*(F)»

and “Pcor \n Question: Q \n Answer:” is fed to
the LLM for generating both its reasoning chain R
and answer A. CoT prompting has achieved SOTA
performance on a wide variety of tasks (Wei et al.,
2022; Kojima et al., 2022; Fu et al., 2023; Zhang
et al., 2023b; Wang et al., 2023; Zheng et al., 2023;
Zhou et al., 2023; Zhang et al., 2023c).

Recently, many works (Fu et al., 2023; Zheng
et al., 2023; Madaan et al., 2023; Paul et al., 2023;
Shinn et al., 2023; Welleck et al., 2023; Zhou et al.,
2023; Chen et al., 2023; Zhang et al., 2023a) have
been proposed to improve the quality of reason-
ing chains in CoT prompting. ComplexCoT (Fu
et al., 2023) selects examples with more steps as in-
context examples, while PHP (Zheng et al., 2023)
iteratively uses the previous answers as hints in
prompting. These methods can be viewed as for-
ward reasoning, which starts from the question
and generates a reasoning chain to reach the an-

swer. Instead of taking a single reasoning chain
by greedy decoding, Self-Consistency (Wang et al.,
2023) samples a diverse set of chains and obtains a
set of candidate answers. The final answer is then
selected by majority voting.

Backward Reasoning. Backward reasoning (a.k.a.
backward chaining) (Pettit and Sugden, 1989; Rus-
sell and Norvig, 1995; Khot et al., 2021; Liang
et al., 2021; Yu et al., 2023) starts with an an-
swer and works backward to verify the sequence
of steps or conditions necessary to reach this an-
swer. Backward reasoning is particularly useful in
domains when the answer is known, e.g., in auto-
mated theorem provers (Russell and Norvig, 1995;
Rocktédschel and Riedel, 2016; Wang and Deng,
2020; Kazemi et al., 2023; Poesia and Goodman,
2023). Recently, Self-Verification (Weng et al.,
2023) rewrites the question with an answer into a
declarative statement and then asks the LLLM to pre-
dict the masked number. RCoT (Xue et al., 2023)
regenerates a sentence (a sequence of tokens) in
the question conditioning on the answer and de-
tects whether there is factual inconsistency in the

constructed question by three complicated steps.
The complicated checking procedure may lead to
inaccurate verification. In contrast, for creating
backward questions, we simply append a template
to the original question without additional rewrit-
ing and reconstruction; for verification, the pro-
posed FOBAR just needs to check whether the
number is predicted correctly by string comparison,
which is much simpler and more accurate. Fur-
thermore, the proposed FOBAR combines forward
and backward reasoning together for verification,
while Self-Verification and RCoT use backward
reasoning alone.

3 Forward-Backward Reasoning for
Verification

In this section, we propose the FOBAR method for
verification. An overview is shown in Figure 3. We
first consider mathematical reasoning tasks. A set
of candidate answers is generated in the forward di-
rection, and we estimate each answer’s probability
based on the votes it receives (Section 3.1). Next,
we mask a number in the question and propose
a simple template to create backward questions
for verifying candidate answers (Section 3.2). We
further propose FOBAR (Section 3.3) to combine
forward and backward reasoning. Extension to
non-mathematical tasks is discussed in Section 3.4.

3.1 Forward Reasoning

Forward reasoning starts with a question and gener-
ates multiple intermediate steps toward the answer.
Specifically, for a question (), we prepend it with a
base prompt P (e.g., CoT prompting (Wei et al.,
2022) or ComplexCoT prompting (Fu et al., 2023))
and feed the tuple (Pg, @) to the LLM for generat-
ing a reasoning chain and candidate answer. Using
temperature sampling (Ackley et al., 1985; Ficler
and Goldberg, 2017), we sample Mg candidate rea-
soning chains {R; } Z]\i |, and extract the correspond-
ing candidate answers {Az}f\fl (see Figure 3, top).
Let A = {A.} C“i|1 be the set of answers dedupli-
cated from {Al}i\i’} Unlike greedy decoding (Wei
et al., 2022), we may have several different can-
didate answers (i.e., |[A| > 1). We propose to
estimate the probability that candidate A, € Ais
correct as the proportion of votes it receives from
the reasoning paths:

1

Pr(de) = 3 D MAi=Ao), ()
=1

where I(-) is the indicator function. Choosing A..
with the largest]P’F(flc) corresponds to the state-of-
the-art method of Self-Consistency (Wang et al.,
2023). However, as shown in Figure 1, the perfor-
mance of Self-Consistency saturates when Mg
is sufficiently large. Thus, simply sampling more
reasoning paths brings negligible performance im-

provement.

3.2 Backward Reasoning

In backward reasoning, we mask a number con-
tained in the question and ask the LLM to pre-
dict the masked number by using a provided candi-
date answer. Specifically, suppose that question ()
involves Ng numbers {num(”)}gfl. We replace
each of them one by one with x. The resultant
masked question Q(") is then concatenated with
the following template, which contains a candidate
answer A, € A.

Template For Creating Backward Question

T (A.) = If we know the answer to the above question is

{AC} what is the value of unknown variable x?

Each (Q, T (A.)) pair is called a backward
question. In total, we obtain Ng backward ques-
tions. Some examples of backward questions are
shown in Example B.1 of Appendix B. Note that
Self-Verification (Weng et al., 2023) needs the
assistance of an LLM to rewrite a (question, an-
swer) pair into a declarative statement.! In con-
trast, the proposed template is simpler and avoids
possible mistakes (an example illustrating Self-
Verification’s rewriting mistakes is shown in Ap-
pendix C).

To predict the masked number, we prepend the
backward question with a prompt Py, which con-
sists of several (backward) question-answer de-
mos with reasoning chains. An example question-
answer demo is shown in Example B.2 of Appendix
B. We feed each of (P, Q" T(A.)) (where
n=1,..., Ng) to the LLM, which then imitates
the in-context examples in Py and generates a rea-
soning chain for the prediction of the masked num-
ber. We sample Mp such reasoning chains with
predictions {rﬁﬁg}é\g (see Figure 3, middle).

For each candidate answer Ac, we count the num-
ber of times that the masked number is exactly

"For example, “How many hours does he spend on TV
and reading in 4 weeks?” with a candidate answer of 36 is
rewritten to “He spends 36 hours on TV and reading in 4
weeks”.

predicted:

Ng Mg
ZZ num b) = num® RN G))
n=1b=1

The probability that candidate answer A, is correct
is estimated as

Ze.+e€

P (Ac) =
? S Zo + A

3

where ¢ = 107% is a small positive constant to
avoid division by zero. One can simply choose A.
with the largest Pg(A,) as the prediction. A more
effective method, as will be shown in Section 3.3, is
to combine the probabilities obtained from forward
and backward reasoning.

3.3 FOBAR (FOrward and BAckward Reasoning)

As forward and backward reasoning are comple-
mentary (i.e., backward reasoning may succeed in
the cases where forward reasoning fails and vice
versa, as Examples D.1 and D.2 provided in Ap-
pendix D), we propose to combine them for ver-
ification. Intuitively, a candidate answer is likely
to be correct when it receives many votes in for-
ward reasoning and also helps the LLM to predict
the masked numbers in backward reasoning. We
estimate the probability that A, is correct as

P(A.) o (Pe(A.))* (Pe(A.))' ™%, @)

with weight a € [0,1] (see Figure 3, bottom).
When o = 1, it reduces to Self-Consistency (Wang
et al., 2023); When « equals 0, it reduces to back-
ward reasoning for verification. In the experiments,
we combine the forward and backward probabili-
ties by the geometric mean (i.e., « = 0.5). Finally,
we select the answer as argmax ;. 4 P(A,). The
whole procedure is shown in Algorithm 1.

Compared with training an LLM as veri-
fier (Cobbe et al., 2021), which is computationally
expensive and labor-intensive in collecting extra
annotation data, FOBAR is training-free (thus, no
additional data collection) and more effective in
verification (Table 6 in Appendix E.1). The pro-
posed backward reasoning can be combined with
other forward reasoning methods such as step-by-
step verification proposed by Ling et al. (2023)
(Table 7 in Appendix E.2).

Algorithm 1 FOBAR.

Require: number of reasoning chains Mg and Mp,
prompts Pr and Pg; e = 1078 o = 0.5;
1: Input: a question () with Ng numbers;
feed (Pg, Q) to LLM, sample Mg reasoning
chains with candidate answers { A; }Z 15

»

3. deduplicate {A Mo A = {A, }L’i‘l,

4: compute IP’F(AC) by Eq. (1) for A, € A;

5. for A, € Ado

6: forn=1,...,Ngdo

7: create Q(”) by masking the nth
number num(") in Q

8: feed (Pg, Q™ T(A.)) to LLM;

9: sample Mg predlctlons {num b) éWBl;

10: end for

11: compute Z. by Eq. (2);

12: end for

13: compute Pg (flc) by Eq. (3) forflC cA;
14: compute P(A.) by Eq. (4) for A, € A;
15: return arg max ; o P(A.).

3.4 Extension to Non-Mathematical Tasks

In mathematical questions, numbers are the most
informative words. For non-mathematical tasks,
we can analogously mask an informative word and
ask the LLLM to guess the masked word given a
candidate answer.

For example, consider the following question-
answer pair from the Last Letter Concatenation
task (Wei et al., 2022; Zhou et al., 2023): “Take
the last letters of each word in ‘Whitney Erika Tj
Benito’ and concatenate them” with ground-truth
answer “yajo”. We can mask one of the four words
(e.g., “Erika”). Given a candidate answer AC, we
create a backward question as “Take the last let-
ters of each word in ‘Whitney ___ Tj Benito’ and
concatenate them. If we know the answer to the
above question is A,, which is the word at the
blank, Erika or Dqhjz”, where “Dqhjz” is obtained
by shifting each letter of “Erika”. The LLM is
more likely to choose “Erika” if the second letter
in A, is “a”

4 Experiments

4.1 Setup

Datasets. Experiments are conducted on six
benchmark mathematical data sets which are com-
monly used in evaluating CoT reasoning abil-
ity (Zheng et al., 2023; Wang et al., 2023):

(i) AddSub (Hosseini et al., 2014), (i) Multi-
Arith (Roy and Roth, 2015), (iii) SingleEQ (Kon-
cel-Kedziorski et al., 2015), (iv) SVAMP (Patel
et al., 2021), (v) GSMS8K (Cobbe et al., 2021),
(vi) AQuA (Ling et al., 2017). Some statistics and
example question-answer pairs are shown in Ta-
ble 8 in Appendix F. Questions in AddSub and
SingleEQ are easier and do not need multi-step cal-
culations. Questions in the other data sets are more
challenging as many steps are required.

Baselines. We compare the proposed FOBAR
with (i) In-Context Learning (ICL) using ques-
tion-answer pairs as demonstrations (Brown
et al., 2020), and recent CoT prompting meth-
ods, including: (ii) CoT prompting (Wei et al.,
2022); (iii) ComplexCoT prompting (Fu et al.,
2023) which selects demonstrations with com-
plex reasoning steps; (iv) RE2 (Xu et al,
2023) which re-reads the question in the prompt;
(v) PHP (Zheng et al., 2023) which iteratively uses
the previous answers as hints in designing prompts;
(vi) RCoT (Xue et al., 2023) which reconstructs
the question based on the candidate answer and
checks the factual inconsistency for verification;
(vii) Self-Consistency (Wang et al., 2023), which
samples multiple reasoning chains and selects the
answer by majority voting; (viii) Self-Verifica-
tion (Weng et al., 2023), which chooses the top-2
candidate answers obtained from Self-Consistency
and re-ranks them based on the verification scores
computed in the backward procedure.

Following Zheng et al. (2023), we experiment
with three LLMs: (i) text-davinci-003 (OpenAl,
2022a), (ii) GPT-3.5-Turbo (OpenAl, 2022b),
and (iii) GPT-4 (OpenAl, 2023). GPT-3.5-Turbo
and GPT-4 are more powerful than text-davinci-
003. The proposed FOBAR is general and can
be integrated into any prompting method. Here,
we choose the CoT prompting and ComplexCoT
prompting as base prompts as in Zheng et al.
(2023).

Implementation Details. Following (Wang et al.,
2023; Zhou et al., 2023; Zheng et al., 2023), the
temperature for sampling is 0.7 for both forward
and backward reasoning. The « in Eq. (4) is set
to 0.5. For text-davinci-003, Mp is 40 as in (Wang
et al., 2023; Zheng et al., 2023); whereas the more
powerful LLMs (GPT-3.5-Turbo and GPT-4) use
a smaller ME (i.e., 10). Mgy is set to 8 for all three
LLMs. We do not repeat the experiments using dif-
ferent seeds as querying OpenAI’s LLMs is costly.

4.2 Results

Table 1 shows the testing accuracies. As can be
seen, for all three LLMs, FOBAR with Complex-
CoT prompting achieves the highest average ac-
curacy. When using CoT as the base prompt, FO-
BAR outperforms Self-Consistency most of the
time, demonstrating that combining forward and
backward reasoning is better than using forward
reasoning alone. Furthermore, FOBAR performs
better than Self-Verification on almost all datasets,
demonstrating that using the proposed simple tem-
plate in backward reasoning and the proposed com-
bination is more effective in verification. FO-
BAR (with either CoT or ComplexCoT) on GPT-4
achieves the highest average accuracy, as GPT-4 is
currently the SOTA LLM. Moreover, for all three
LLMs, FOBAR using ComplexCoT as base prompt
achieves higher accuracy than using CoT on aver-
age, which is consistent with observations in (Fu
et al., 2023; Zheng et al., 2023) that ComplexCoT
is better than CoT.

4.3 Combining Forward and Backward
Probabilities

In this experiment, we study how the combination
weight « in Eq. (4) affects performance. Figure 4
shows the testing accuracies (averaged over the six
data sets) with o € [0, 1] using the three LLMs.
As can be seen, FOBAR is insensitive to v over a
large range for all three LLMs. In the sequel, we
use o = 0.5, which corresponds to the geometric
mean of the forward and backward probabilities.
Alternatively, one can combine the forward and
backward probabilities by the arithmetic mean, i.e.,
P(A.) = 1 (Pr(A.)+Ps(A.)). Figure 5 shows the
testing accuracies for the three LLMs. As shown,
the arithmetic mean has comparable performance
as the geometric mean. Hence, Figures 4 and 5
together suggest that FOBAR is robust to the com-
bination of forward and backward probabilities.

86.0 88.0 93.0

85.0 e 875 9254

— - \ —~ —
[\ IS R Sep0d | ommmien
g g e e | & /

S I 86.5- \

£83.0 g

3 l 586.0- 3

8 8 89104

® 8201 8 g5.5] §91.0

! [== ComplexCoT —— ComplexCoT %05 —— ComplexCoT
81.0 CoT 85.07 coT CoT

00 025 05 075 1.0 00 025 05 075 1.0 00 025 05 075 10
a

(a) text-davinci-003. (b) GPT-3.5-Turbo. (c) GPT4.
Figure 4: Testing accuracy (averaged over the six data sets)
of FOBAR w.r.t. a.

4.4 Usefulness of Forward and Backward
Reasoning

3
89154
5

We perform an ablation study on forward (FO)
and backward (BA) reasoning. We consider the

Table 1: Testing accuracies (%) on six data sets using three LLMs. For each LLM, methods are grouped according to the base
prompt they used. The best in each group is in bold. Results with T are from the original publications.

is not reported in the original publication.

[T

means that the result

AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Average

ICL (Brown et al., 2020) 90.4 37.6 84.3 69.1 16.9 29.1 54.5

CoT (Wei et al., 2022) 91.4 93.6 92.7 79.5 55.8 46.5 76.6

PHP! (Zheng et al., 2023) 91.1 94.0 93.5 81.3 57.5 44 4 77.0

o« BB RE2' (Xu et al., 2023) 91.7 93.3 93.3 81.0 61.6 44.5 77.6

%. O Self-Consistency (Wang et al., 2023) 91.7 95.9 94.5 83.1 67.9 55.1 814

g Self-Verification (Weng et al., 2023) 87.4 95.3 92.9 82.2 59.8 37.4 75.8

§ FOBAR 91.9 100.0 96.1 86.8 70.8 55.1 83.5

}'5 E ComplexCoT (Fu et al., 2023) 88.9 95.3 93.7 78.0 67.7 48.8 78.7

= o PHP! (Zheng et al., 2023) 91.6 96.6 95.0 83.7 68.4 53.1 81.4

.% Self-Consistency (Wang et al., 2023) 89.4 98.5 91.1 82.7 79.1 58.7 83.2

g Self-Verification (Weng et al., 2023) 89.9 95.5 94.1 80.1 72.0 38.2 78.3

O FOBAR 90.6 100.0 95.3 87.0 78.7 58.7 85.0

ICL (Brown et al., 2020) 88.6 87.6 88.8 80.6 322 31.1 68.2

CoT (Wei et al., 2022) 89.4 97.9 92.9 84.2 77.2 54.3 82.7

RE2' (Xu et al., 2023) 89.9 96.5 95.3 80.0 80.6 58.3 834

5 Self-Consistency (Wang et al., 2023) 90.6 98.6 93.1 86.4 81.9 62.6 85.5

N Self-Verification (Weng et al., 2023) 90.4 97.4 92.9 83.1 74.9 60.6 83.2

S FOBAR 89.4 99.3 94.5 88.9 85.1 62.6 86.6

,l':- Complex CoT (Fu et al., 2023) 87.9 98.3 94.5 81.1 80.7 59.1 83.6
E' S RCoT! (Xue et al., 2023) 88.2 - 93.0 84.9 84.6 53.3 -

O % PHP (Zheng et al., 2023) 85.3 98.0 92.9 83.1 85.1 60.6 84.2

—EL Self-Consistency (Wang et al., 2023) 88.1 98.8 94.5 85.0 86.4 63.0 86.0

8 Self-Verification (Weng et al., 2023) 87.9 96.6 93.3 81.0 78.2 61.4 83.1

FOBAR 88.4 99.8 94.3 88.5 87.4 63.4 87.0

ICL (Brown et al., 2020) 92.1 98.6 94.3 90.9 48.5 48.0 78.7

CoT (Wei et al., 2022) 92.7 99.0 95.7 92.9 93.4 69.7 90.6

& Self-Consistency (Wang et al., 2023) 92.2 99.0 95.9 93.3 94.8 71.3 91.1

O Self-Verification (Weng et al., 2023) 92.7 99.0 95.7 93.1 93.7 70.1 90.7

FOBAR 924 99.0 96.1 94.1 95.4 71.3 91.4

E E Complex CoT (Fu et al., 2023) 91.9 98.3 94.5 92.4 95.1 724 90.8

% o PHP! (Zheng et al., 2023) 89.6 98.1 93.1 91.9 95.5 79.9 91.3

% Self-Consistency (Wang et al., 2023) 91.4 98.5 94.7 93.4 96.2 75.2 91.6

g Self-Verification (Weng et al., 2023) 91.6 98.5 94.7 93.0 95.7 75.6 91.5

O FOBAR 91.9 98.6 94.7 94.4 96.4 75.2 91.9

mmm Arithmetic Mean
Geometric Mean

mmm Arithmetic Mean B Arithmetic Mean
Geometric Mean Geometric Mean

849 85.0

87.0 87.0 919 919

86.5 86.6
841 g34 835

accuracy (%)

CoT ComplexCoT CoT

(a) text-davinci-003. (b) GPT-3.5-Turbo.

ComplexCoT CoT
(c) GPT-4.
Figure 5: Testing accuracy of FOBAR (averaged over the
six data sets) with geometric/arithmetic mean of forward and
backward probabilities.

ComplexCoT

four combinations: (i) using neither forward nor
backward reasoning (which reduces to greedy de-
coding (Wei et al., 2022)); (ii) use only for-
ward reasoning (i.e., Self-Consistency); (iii) use
only backward reasoning in selecting answers (i.e.,
a = 0 in Algorithm 1); (iv) use both forward and
backward reasoning (i.e., the proposed FOBAR).
Table 2 shows the testing accuracies (averaged over
the six data sets) for the three LLMs. As can be

seen, in all the settings, using forward or backward
reasoning is consistently better than using neither
of them. Moreover, combining forward and back-
ward reasoning is always the best. Examples D.1
and D.2 (Appendix D) show that FOBAR is able to
rectify some failure cases of forward and backward
reasoning, respectively.

Table 2: Average testing accuracies (%) with different combi-
nations of forward (FO) and backward (BA) reasoning.

FO BA | text-davinci-003 GPT-3.5-Turbo GPT-4

X X 76.6 82.7 90.6
5 vV X 81.4 85.5 91.1
O x v 82.1 86.2 912

VA 83.5 86.6 91.4
2 x x 78.7 83.6 90.8
g v X 83.2 86.0 91.6
§~ X v/ 81.3 86.3 91.8
- WA 85.0 87.0 91.9

4.5 Correct Candidate Helps Backward
Reasoning

In this experiment, we verify the intuition that the
correct candidate answer helps LLM to predict the
masked numbers. Figure 2 compares the accura-
cies of predicting the masked numbers in backward
questions with the correct/wrong candidates. As
can be seen, using the correct candidate has 2x
higher accuracy (averaged over the six data sets)
than the wrong ones in predicting masked numbers,
demonstrating that using backward reasoning for
verifying candidate answers is reasonable.

4.6 Number of Forward and Backward
Reasoning Chains

4.6.1 Varying My

In this section, we study how the performance of
FOBAR varies with the number of forward reason-
ing chains M. Figure 6 shows the testing accura-
cies (averaged over the six data sets) for the three
LLMs. As can be seen, using a very small M (e.g.,
< b) is clearly undesirable, but the accuracy sat-
urates quickly with increasing M. This suggests
that one can use a small Mg to reduce the com-
putational cost. Moreover, the accuracy curves of
FOBAR are higher than those of Self-Consistency
in Figure 1, again demonstrating that integrating
backward reasoning into verification is effective.

8401t P 87.04 —~=1 w0
/ oz S~
£8207 28601 / Ko15
g g ~3 %
S > S
Se00 / g oo /
5 i 5 85.0 5 4
3 3 3
8 8 8
878.0 I © 8905
’ —.— ComplexCoT 84.04 ¥ [—— ComplexCoT —.— ComplexCoT
76.0 CoT CoT 90.0 CoT
6 & 6 4 32 4 PR PR L

F Me Mg

(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT-4.
Figure 6: Testing accuracy of FOBAR (averaged over the six
data sets) with M.

4.6.2 Varying Mp

Next, we study how the performance of FOBAR
varies with the number of backward reasoning
chains Mpg. Figure 7 shows the testing accuracies
(averaged over the six data sets) for the three LLMs.
Note that Mp = 0 corresponds to using only for-
ward reasoning. As shown, using a very small Mp
(e.g., < 4) is clearly undesirable, but the accuracy
saturates quickly when Mg increases. Hence, using
a small My can achieve a good balance between
performance and efficiency.

4.7 Extension to Non-Mathematical Tasks

In this section, we perform experiments on two
commonly-used non-mathematical tasks: Date Un-

850 =TT 92.0

o~ T

accuracy (%)
@
£
o
~
(
@
&
o
~__
Y (
2
>

®
8
°

—— ComplexCoT —— ComplexCoT —— ComplexCoT
CoT 855 CoT 91.0 CoT

R 6 2 i 6 5 M 6 2 4 6 & 1
M M Mg

(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT4.
Figure 7: Testing accuracy of FOBAR (averaged over the six
data sets) with Mg.
derstanding (Wei et al., 2022; Fu et al., 2023) and
Last Letter Concatenation (Wei et al., 2022; Zhou
et al., 2023). Examples are shown in Table 8 (Ap-
pendix F. We compare FOBAR with other CoT-
based methods and ICL using GPT-3.5-Turbo. PHP
does not report results on non-mathematical tasks.

Table 3 shows the testing accuracies. As shown,
FOBAR performs better than all the baselines with
either CoT or ComplexCoT as base prompt. More-
over, all CoT-based methods significantly outper-
form ICL.

Table 3: Accuracies on the non-mathematical tasks of Date
Understanding (denoted DateU) and Last Letter Concatena-
tion (denoted LastLetter) using GPT-3.5-Turbo. Results with
T are from the original publications. “~” means that the result
is not reported in the original publication.

DateU LastLetter

ICL (Brown et al., 2020) 52.0 8.0
CoT (Wei et al., 2022) 61.3 81.0
= RE2" (Xu et al., 2023) 47.2 -
O Self-Consistency (Wang et al., 2023) 65.6 81.4
Self-Verification (Weng et al., 2023) 66.1 81.8
FOBAR 66.4 82.6
% ComplexCoT (Fu et al., 2023) 74.8 81.4
% RCOT' (Xue et al., 2023) 71.7 ;
Té‘* Self-Consistency (Wang et al., 2023) 77.5 81.2
8 Self-Verification (Weng et al., 2023) 76.2 81.6
FOBAR 78.0 824

5 Conclusion

In this paper, we study the problem of verifying
candidate answers to mathematical problems us-
ing chain-of-thought prompting. To complement
the use of only forward reasoning for verification,
we introduce backward reasoning: A simple tem-
plate is introduced to create questions and a prompt
is designed to ask the LLM to predict a masked
word when a candidate answer is provided. Further-
more, we proposed FOBAR to combine forward
and backward reasoning for verification. Extensive
experiments on six standard mathematical data sets
and three LLMs show that the proposed FOBAR
achieves state-of-the-art performance on mathemat-
ical reasoning tasks. FOBAR can also be used
on non-mathematical tasks and achieves superior
performance.

6 Limitations and Potential Risks

Limitations In this paper, we focused on math-
ematical reasoning tasks, with extension to two
non-mathematical reasoning tasks. However, ex-
tensions to more complicated non-mathematical
reasoning tasks such as Common-Sense Question-
Answering (CSQA) (Wei et al., 2022) and Strate-
gyQA (Wei et al., 2022; Fu et al., 2023) are still to
be explored, as identifying the informative words
to mask is more challenging.

Potential Risks All data sets used in this work do
not contain any information that names or uniquely
identifies individual people or offensive content.
Hence, there is no concern about ethical considera-
tions and data privacy.

References

David H Ackley, Geoffrey E Hinton, and Terrence J Se-
jnowski. 1985. A learning algorithm for Boltzmann
machines. Cognitive Science.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Neural
Information Processing Systems.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to Self-Debug. Preprint arXiv:2304.05128.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,
and He He. 2022. Meta-learning via language model
in-context tuning. In Annual Meeting of the Associa-
tion for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick,

Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-
eira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. PalLM: Scal-
ing language modeling with pathways. Preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Hesse Christopher, and Schulman John.
2021. Training verifiers to solve math word prob-
lems. Preprint arXiv:2110.14168.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models. Preprint
arXiv:2302.12246.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Workshop on Stylistic Variation.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning. In International Conference on
Learning Representations.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Seyed Mehran Kazemi, Najoung Kim, Deepti Bhatia,
Xin Xu, and Deepak Ramachandran. 2023. LAM-
BADA: Backward chaining for automated reasoning
in natural language. In Annual Meeting of the Asso-
ciation for Computational Linguistics.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2021. Text modular
networks: Learning to decompose tasks in the lan-
guage of existing models. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Neural
Information Processing Systems.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,
Tongliang Liu, and Bo Han. 2023. Deeplnception:
Hypnotize large language model to be jailbreaker.
Preprint arXiv:2311.03191.

Zhengzhong Liang, Steven Bethard, and Mihai Sur-
deanu. 2021. Explainable multi-hop verbal reasoning
through internal monologue. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.
Let’s verify step by step. Preprint arXiv:2305.20050.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Annual Meeting of the Association for
Computational Linguistics.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of Chain-of-Thought reason-
ing. In Neural Information Processing Systems.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. In International Conference on Learning
Representations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-Refine: Iterative
refinement with self-feedback. In Neural Information
Processing Systems.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. MetalCL: Learning to learn
in context. In North American Chapter of the Associ-
ation for Computational Linguistics.

OpenAl. 2022a. GPT-3.5. Technical Report.

OpenAl. 2022b. Introducing ChatGPT. Technical Re-
port.

OpenAl. 2023. GPT-4. Technical Report.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. REFINER: Reasoning feed-
back on intermediate representations. Preprint
arXiv:2304.01904.

Philip Pettit and Robert Sugden. 1989. The backward
induction paradox. The Journal of Philosophy.

10

Silviu Pitis, Michael R Zhang, Andrew Wang, and
Jimmy Ba. 2023. Boosted prompt ensembles for
large language models. Preprint arXiv:2304.05970.

Gabriel Poesia and Noah D Goodman. 2023. Peano:
learning formal mathematical reasoning. Philosophi-
cal Transactions of the Royal Society A.

Tim Rocktédschel and Sebastian Riedel. 2016. Learn-
ing knowledge base inference with neural theorem
provers. In Workshop on Automated Knowledge Base
Construction.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Empirical Methods in Nat-
ural Language Processing.

Staurt J Russell and Peter Norvig. 1995. Artificial Intel-
ligence: A Modern Approach. Prentice Hall.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. In Neural Information Process-
ing Systems.

Mingzhe Wang and Jia Deng. 2020. Learning to prove
theorems by learning to generate theorems. In Neural
Information Processing Systems.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-Consistency improves
chain of thought reasoning in language models. In
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. In Neural
Information Processing Systems.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman,
Tianxiao Shen, Daniel Khashabi, and Yejin Choi.
2023. Generating sequences by learning to Self-
Correct. In International Conference on Learning
Representations.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with Self-Verification. In Empirical Methods in Nat-
ural Language Processing.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao
Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu. 2023.
OpenICL: An open-source framework for in-context
learning. In Annual Meeting of the Association for
Computational Linguistics.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu,
Hongbo Xu, Guodong Long, and Jian-guang Lou.
2023. Re-Reading improves reasoning in language
models. Preprint arXiv:2309.06275.

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han,
Pengfei Yu, and Heng Ji. 2023. RCOT: De-
tecting and rectifying factual inconsistency in rea-
soning by reversing chain-of-thought. Preprint
arXiv:2305.11499.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliberate
problem solving with large language models. In Neu-
ral Information Processing Systems.

Fei Yu, Hongbo Zhang, and Benyou Wang. 2023.
Nature language reasoning: A survey. Preprint
arXiv:2303.14725.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a.
Self-Edit: Fault-aware code editor for code genera-
tion. In Annual Meeting of the Association for Com-
putational Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023b. Automatic chain of thought prompt-
ing in large language models. In International Con-
ference on Learning Representations.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023c. Multi-
modal chain-of-thought reasoning in language mod-
els. In International Conference on Machine Learn-

ing.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting im-
proves reasoning in large language models. Preprint
arXiv: 2304.09797.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables complex
reasoning in large language models. In International
Conference on Learning Representations.

11

A Failure Cases of Self-Consistency and FOBAR

We conduct an analysis on the failure cases of Self-Consistency and FOBAR on the six data sets,
using GPT-3.5-Turbo with ComplexCoT prompting. Table 4 shows the number of failure cases of Self-
Consistency, with a breakdown into the numbers of cases with no chain reaching the correct answer and at
least one chain reaching the correct answer. As can be seen, about 60% of the total failure cases have at
least one correct chains (the remaining 40% have no correct chains and thus cannot be solved by backward
reasoning). These 60% cases can potentially be fixed with a better verifier (such as the proposed FOBAR).
Table 5 shows the statistics on the failure cases of FOBAR. As can be seen, FOBAR rectifies 54 (i.e.,
294 — 240) out of the 294 failure cases that have at least one correct answer in Self-Consistency.

Table 4: Statistics on the failure cases of Self-Consistency on the six data sets.
AddSub MultiArith ~ SingleEQ SVAMP GSM8K AQuA Total

#failures 47 7 28 150 179 94 505
#failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 19 7 14 93 119 42 294

Table 5: Statistics on the failure cases of FOBAR on the six data sets.
AddSub MultiArith SingleEQ SVAMP GSM8SK AQuA Total

#failures 46 1 29 115 166 94 451
##failures with no correct answer 28 0 14 57 60 52 211
#failures with at least one correct answer 18 1 15 58 106 42 240

B Question-Answer Demos of Backward Reasoning

Example B.1 shows three backward questions that mask different numbers in the original question.
Example B.2 shows a backward question and its answer.

Example B.1: Backward questions.

Question: Jim spends x hours watching TV and then decides to go to bed and reads for half as long.

He does this 3 times a week. How many hours does he spend on TV and reading in 4 weeks? If we

know the answer to the above question is {Ac} what is the value of unknown variable x?

Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long.

He does this x times a week. How many hours does he spend on TV and reading in 4 weeks? If we

know the answer to the above question is {AC}, what is the value of unknown variable x?

Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as long.

He does this 3 times a week. How many hours does he spend on TV and reading in x weeks? If we
know the answer to the above question is {flc}, what is the value of unknown variable x?

Example B.2: Backward Reasoning.

Question: Randy has 60 mango trees on his farm. He also has x less than half as many coconut trees as
mango trees. How many trees does Randy have in all on his farm? If we know the answer to the above
question is 85, what is the value of unknown variable x?

Answer: Let’s think step by step. We know that Randy has 60 mango trees on his farm. We also know
that he has x less than half as many coconut trees as mango trees. Let’s use C to represent the number
of coconut trees. So we can write: C = (1/2)*60 - x = 30 - x. The total number of trees on Randy’s farm
is the sum of the number of mango trees and coconut trees: 60 + (30 - x) = 90 - x. We are given that the
total number of trees on Randy’s farm is 85, so we can write: 90 - x = 85. Solving for x, we get: x = 5.

| The value of x is 5.

C Example Rewriting Mistake in Self-Verification

Question: A class of 50 students has various hobbies. 10 like to bake, 5 like to play basketball, and the
rest like to either play video games or play music. How many like to play video games if the number
that like to play music is twice the number that prefer playing basketball? (answer: 25)

We mask the first number (i.e., 50) by x and a candidate answer 25 is provided. The following shows
the backward questions obtained by Self-Verification and FOBAR. We can see that Self-Verification
makes a mistake in rewriting the question into a declarative statement, while the proposed simple template
in FOBAR does not need rewriting.

'Question (Self-Verification): A class of x students has various hobbies. 10 like to bake, 5 like to play
basketball, and the rest like to either play video games or play music. The number of people who like to
play video games is equal to the number of people who prefer playing basketball multiplied by two.
The number of people who like to play video games is 25. What is the answer of x?

Question (FOBAR): A class of x students has various hobbies. 10 like to bake, 5 like to play basketball,
and the rest like to either play video games or play music. How many like to play video games if the
number that like to play music is twice the number that prefer playing basketball? If we know the answer
to the above question is 25, what is the value of unknown variable x?

D Example Cases showing that Forward and Backward Reasoning are Complementary

In this section, we show that forward and backward reasoning are complementary, i.e., failure cases
in forward reasoning can be corrected by backward reasoning, and vice versa. We use cases from the
SingleEQ data set using text-davinci-003 with CoT prompting. Example D.1 shows a case where forward
reasoning (i.e., Self-Consistency) fails but backward reasoning succeeds. We can see that this problem is
difficult to solve in the forward direction, but the correctness of a candidate answer can be easily verified in
the backward direction. Example D.2 shows a case where backward reasoning fails but forward reasoning
succeeds. Moreover, FOBAR can choose the correct answer in both cases.

Example D.1: Forward reasoning fails but backward reasoning succeeds.

Question: The sum of three consecutive odd numbers is 69. What is the smallest of the three numbers?
Ground-truth answer: 21

Forward reasoning: Pr(21) = 0.4, Pp(23) = 0.6

Backward reasoning: Pg(21) = 0.8,P5(23) = 0.2

FOBAR: P(21) = 0.62,[P(23) = 0.38

A backward question: The sum of three consecutive odd numbers is x. What is the smallest of the
three numbers? If we know the answer to the above question is 21, what is the value of unknown
| variable x?

Example D.2: Forward reasoning succeeds but backward reasoning fails.

Question: While digging through her clothes for ice cream money, Joan found 15 dimes in her jacket,
and 4 dimes in her shorts. How much money did Joan find?

Ground-Truth answer: 1.9

Forward reasoning: Pr(1.9) = 0.7, Pg(190) = 0.3

Backward reasoning: Pg(1.9) = 0.43,P(190) = 0.57

FOBAR: P(1.9) = 0.57,[P(190) = 0.43

A backward question: While digging through her clothes for ice cream money, Joan found 15 dimes
in her jacket, and x dimes in her shorts. How much money did Joan find? If we know the answer to the
above question is 1.9, what is the value of unknown variable x?

13

E Additional Experiments

E.1 Comparison between FOBAR and Trained Verifiers

Compared with Cobbe et al. (2021), which trains an LLM for verifying answers, FOBAR has two
advantages. (i) (training-free) Training an LLM for verification is computationally expensive and labor-
intensive in collecting extra annotation data, while backward reasoning for verification is training-free
and requires no additional data collection. (ii) (more effective) As training the GPT-3 (175B) model is
extremely expensive and their code is not publicly available, we compare our FOBAR with the result
reported in Figure 5 of (Cobbe et al., 2021), where the candidate answers are generated by GPT-3. Table 6
shows the accuracy of GSM8K. As shown, FOBAR consistently performs much better than the trained
verifier (+14.8).

Table 6: Comparison between FOBAR and a trained verifier on GSMS8K.
Training GPT-3 (175B) for Verification (Cobbe et al., 2021) 56.0

FOBAR (text-davinci-003 + CoT) 70.8
FOBAR (text-davinci-003 + ComplexCoT) 78.7
FOBAR (GPT-3.5-Turbo + CoT) 85.1
FOBAR (GPT-3.5-Turbo + ComplexCoT) 87.4
FOBAR (GPT-4 + CoT) 95.4
FOBAR (GPT-4 + ComplexCoT) 96.4

E.2 Comparison between FOBAR and Step-by-Step Forward Verification

Recent works (Lightman et al., 2023; Ling et al., 2023) propose verifying the steps of forward reasoning
chains. Lightman et al. (2023) propose to label exclusively steps of forward reasoning chains generated
by LLMs. The labeled data are then used to train an LLM for verification. Compared with (Lightman
et al., 2023), which is computationally expensive in training an LLM and labor-intensive in labeling data,
our backward reasoning is training-free for verification and requires no additional data annotation.

Ling et al. (2023) propose a natural language-based deductive reasoning format that allows the LLM
to verify forward reasoning steps. Different from (Ling et al., 2023), we use backward reasoning to
verify the candidate answers instead of the steps in forward chains. As backward and forward reasoning
are complementary, the proposed backward reasoning can be combined with their step-by-step forward
methods. We replace the forward reasoning in FOBAR (i.e., Eq. (4)) with step-by-step verification
proposed by Ling et al. (2023), and conduct experiments on AddSub, GSMS8K, and AQuA using GPT-3.5-
Turbo. Table 7 shows the testing accuracy. As can be seen, combining backward reasoning with forward
reasoning methods consistently boosts performance.

Table 7: Accuracy of FOBAR when combining backward reasoning with three types of forward reasoning for verification.

AddSub GSMS8K ~ AQuA

Self-Consistency 88.1 86.4 63.0
Self-Consistency + Backward Reasoning 88.4 87.4 63.4
NP (Ling et al., 2023) 93.67 87.05 70.34
NP + Backward Reasoning 93.92 87.89 71.65
NP + Deductive Verification + UPV (Ling et al., 2023) 93.54 86.01 69.49

NP + Deductive Verification + UPV + Backward Reasoning 93.92 87.19 70.86

14

F Data Sets

Table 8 shows the statistics on the data sets used in the experiments.

Table 8: Statistics of data sets used in the experiments.

#samples Ng (mean =+ std) example
AddSub 395 9.6 4 0.7 Benny picked 2 appl‘es anq Dan picked 9 apples from the apple tree. How
many apples were picked in total?
o . . Katie picked 3 tulips and 9 roses to make flower bouquets. If she only
MultiArith 600 31403 used 10 of the flowers though, how many extra flowers did Katie pick?
. Joan went to 4 football games this year. She went to 9 football games last
SingleEQ 08 22407 year. How many football games did Joan go to in all?
Rachel has 4 apple trees. She picked 7 apples from each of her trees. Now
g SVAMP 1000 2.8+0.7 the trees have a total 29 apples still on them. How many apples did Rachel
= pick in all?
GSMSK 1319 384 1.6 A robe takés 2 bolts of !olue fiber and half that much white fiber. How
many bolts in total does it take?
If the population of a city increases by 5% annually, what will be the
AQuA 254 29+1.3 population of the city in 2 years time if its current population is 780007
’ ’ Answer Choices: (A) 81900 (B) 85995 (C) 85800 (D) 90000 (E) None of
these
g Last Letter Concatenation 500 4.0+ 0.0 Take the last letters of each word in “Whitney Erika Tj Benito” and con-
= catenate them.
& . The deadline is Jun 1, 2021, which is 2 days away from now. What is the
:2 Date Understanding 369 12407 date a month ago in MM/DD/YYYY?

15

	Introduction
	Related Work
	Forward-Backward Reasoning for Verification
	Forward Reasoning
	Backward Reasoning
	FOBAR (FOrward and BAckward Reasoning)
	Extension to Non-Mathematical Tasks

	Experiments
	Setup
	Results
	Combining Forward and Backward Probabilities
	Usefulness of Forward and Backward Reasoning
	Correct Candidate Helps Backward Reasoning
	Number of Forward and Backward Reasoning Chains
	Varying MF
	Varying MB

	Extension to Non-Mathematical Tasks

	Conclusion
	Limitations and Potential Risks
	Failure Cases of Self-Consistency and FOBAR
	Question-Answer Demos of Backward Reasoning
	Example Rewriting Mistake in Self-Verification
	Example Cases showing that Forward and Backward Reasoning are Complementary
	Additional Experiments
	Comparison between FOBAR and Trained Verifiers
	Comparison between FOBAR and Step-by-Step Forward Verification

	Data Sets

