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Abstract

Context-based fine-tuning methods like prompting, in-context learning, soft prompt-
ing (prompt tuning) and prefix-tuning have gained popularity as they often match
the performance of full fine-tuning with a fraction of the parameters. Still, there
is little theoretical understanding of how these techniques influence the internal
computation of the model and their expressiveness limitations. We show that
despite the continuous embedding space being more expressive than the discrete
token space, soft-prompting and prefix-tuning are strictly less expressive than
full fine-tuning. Concretely, context-based fine-tuning cannot change the relative
attention pattern over the content and can only bias the outputs of an attention layer
in a fixed direction. While this means that context-based fine-tuning techniques
can successfully elicit or combine skills already present in the pretrained model,
they cannot learn tasks requiring new attention patterns.

1 Introduction

Language model advancements are largely driven by larger models and amounts of training data
(Kaplan et al., 2020; Rae et al., 2021). Training cutting-edge models is out of reach for most academic
researchers, small enterprises, and individuals, and it has become common to instead fine-tune
open-source pretrained models (Devlin et al., 2019; Min et al., 2021). However, due to escalating
computational demands, even fine-tuning is becoming prohibitively expensive (Lialin et al., 2023).

As a result, there is an acute need for more efficient fine-tuning methods, either by sparsely modifying
the parameters of the model or modifying its input context. An example of the first type are adapter
modules which introduce a few trainable layers to modify the behaviour of the frozen pretrained
network (Rebuffi et al., 2017; Houlsby et al., 2019; Hu et al., 2023). One can also use low-rank
updates, which also results in a reduced number of trainable parameters (Hu et al., 2021).

Context-based fine-tuning has been motivated by the success of few-shot and zero-shot learning (Wei
et al., 2021; Kojima et al., 2022). The most popular context-based approach is prompting, where
generation is conditioned on either human-crafted or automatically optimized tokens (Shin et al.,
2020; Liu et al., 2023). In-context learning —prompting via providing input-label examples— is
another widely used technique (Brown et al., 2020). Given the challenges of discrete optimization
over tokens, there is a growing interest in methods that optimize real-valued embeddings (Lester
et al., 2021). It is widely believed that these soft prompts offer greater expressiveness due to the
expansive nature of continuous space. Furthermore, beyond only optimizing input embeddings, one
can optimize the inputs of every attention layer (Li and Liang, 2021). This technique, prefix-tuning,
has proven to be very successful and competitive to full fine-tuning (Liu et al., 2022).

While context-based fine-tuning approaches have witnessed impressive empirical successes and
widespread adoption, we have little theoretical understanding of how they work. In this work, we
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offer a mechanistic explanation of how prompts and prefixes influence the internal computations of a
pretrained model and delineate their limitations. Specifically, we address the following questions:

1. We show by construction that, given careful choice of the transformer weights, controlling a
single virtual token can generate any of the V N completions of N tokens, while controlling a
single token can produce only V completions, with V being the vocabulary size. Therefore, a
transformer can indeed utilize the additional capacity of the embedding space.

2. Despite the expressiveness of continuous space, prefix-tuning has structural limitations. A prefix
cannot change the relative attention over the content tokens and can only bias the output of the
attention block in a constant direction. In contrast, full fine-tuning can learn new attention patterns
and arbitrarily modify attention block outputs, making it strictly more powerful.

3. We show that the prefix-induced bias can steer the model towards a pretraining task and some new
tasks similar to pretraining tasks. Hence, while context-based fine-tuning is structurally unable to
learn all new skills, it can elicit or combine pretrained model skills.

2 Background

Assume vocabulary size V and input sequence (x1, . . . , xp), xi∈{1, . . . , V }. Each token is mapped to
a de-dimensional vector that is the xi-th column of an embedding matrix E∈Rde×V . For a model
with maximum input length N (context size), we use a one-hot position encoding eN (i) concatenated
with the embedding, resulting in xi = [E⊤

:,xi , e
⊤
N (i)]⊤. A transformer has attention blocks operating

across the whole sequence and Multi-Layer Perceptrons (MLPs) operating on each individual element.
An attention block consists of H heads. A head h is parameterized by query, key, and value matrices
W h

Q,W
h
K∈Rk×din ,W h

V ∈ Rdout×din .1 The attention matrix Ah∈Rp×p for head h then has elements

Ah
ij =

exp
(
T/

√
k(W h

Qxi)
⊤(W h

Kxj)
)

∑p
r=1 exp

(
T/

√
k(W h

Qxi)⊤(W h
Kxr)

) , (1)

where p ≤ N is the current length of the input and T > 0 is an inverse temperature parameter.2 The
output of the attention block A with H heads is the sum of the attention-weighted values:

A[(W 1
Q, . . . ,W

H
Q ), (W 1

K , . . . ,WH
K ), (W 1

V , . . . ,W
H
V )](x1, . . . ,xp) = (t1, . . . , tp),

ti =
∑H

h=1

∑p
j=1 A

h
ijW

h
V xj . (2)

A transformer then applies an MLP to each output of an attention block before passing them to next
attention block. We will consider linear layers L[M , b](x)=Mx+b and ReLU-activated linear layers
L̂[M , b](x)=ReLU(Mx+b). We use the then operator # for left-to-right function composition.
Therefore, a transformer model predicting confidences over the vocabulary can be represented as:

(y1, . . . ,yp) =
(
A1 # L̂1,1 # L1,2 # A2 # L̂2,1 # L2,2 # softmax

)([
E:,x1
eN (1)

]
, . . . ,

[
E:,xp
eN (p)

])
, (3)

with the dimension of the last layer being V . The next token is xp+1= argmaxu∈1,...,V yp,u. Thus, a
sequence conditional on user input is denoted as (S1, ..., SnS

, X1, ..., XnX
, Y1, ..., YnY

), with a system
prompt S, user provided input X and autoregressively generated response Y.

Prompting. The most frequently used content-based fine-tuning approach is prompting: prefix-
ing the input (X1, ..., XnX

) with a token sequence S ∈ {1, ..., V }nS to guide the model response:
(S1, ..., SnS

, X1, ..., XnX
). This is how most people interact with language models such as ChatGPT.

Soft prompting. Soft prompting replaces the embeddings of the system input E:,Si with learned
vectors si ∈ Rde called virtual tokens (Hambardzumyan et al., 2021; Lester et al., 2021; Qin and
Eisner, 2021). Hence, the input in Equation (3) is modified to be:([

s1
eN (1)

]
, . . . ,

[
snS

eN (nS)

]
,

[
E:,X1

eN (nS + 1)

]
, . . . ,

[
E:,XnX

eN (nS + nX)

])
(4)

with si chosen to maximize the likelihood of a target response Y =(Y1, ..., YnY
), i.e.,

argmaxs1,...,snS
∈Rde

∑nY

j=1 log ynS+nX+j,Yj , where ynS+nX+j are autoregressively generated.

1For the first block, din must be de +N but may be different for the deeper blocks.
2A causal model has Aij = 0 for j > i. This does not affect our results so we will skip the masking step.
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Prefix-tuning. Prefix-tuning applies soft prompting across the depth of the model (Li and Liang,
2021; Liu et al., 2022). The first nS positions for all attention blocks are set as learnable parameters,
replacing the input (xl

1, ...,x
l
nX

) for layer l with (sl1, ..., s
l
nS

,xl
1, ...,x

l
nX

). Hence, prefix-tuning can be
formulated as: argmax{s1

i ,...,s
L
i }nS

i=1

∑nY

j=1 log ynS+nX+j,Yj . Prefix-tuning has been very successful
for fine-tuning models (Vu et al., 2022; Wu and Shi, 2022; Choi and Lee, 2023; Ouyang et al., 2023;
Bai et al., 2023), leading to calls for language models provided as a service (La Malfa et al., 2023) to
allow providing prefixes instead of token-based prompts (Sun et al., 2022).

Any token-based prompt (S1, ..., SnS
) has a corresponding soft prompt (si=E:,Si). Similarly, every

soft prompt (s1, ..., snS
) can be represented as a prefix by setting the deeper prefixes to be the values

that the model would compute (sli=(A1 # ... # Ll−1)([s
⊤
1 , e

⊤
N (1)]⊤, ..., [s⊤l , e

⊤
N (l)]⊤)). A hierarchy

emerges: prompting < soft prompting < prefix-tuning, with prefix-tuning the most powerful of the
three. Hence, we focus on prefix-tuning but our findings hold for prompting and soft prompting.

3 Soft prompting has more capacity than prompting

The success of soft prompting (and by extension, prefix-tuning) is commonly attributed to the larger
capacity of the uncountably infinite embedding space compared to the finite token space. Yet,
increased capacity from this larger domain is beneficial only if the model can utilize it. This section
confirms that this is indeed the case by constructing a transformer that can generate exponentially
more completions by varying a single virtual token than by varying a hard token.
Theorem 1 (Conditional generation capacity for a single virtual token (nX=nY =1)). For any V >0,
there exists a transformer with vocabulary size V , context size N=2, embedding size de=V , one at-
tention layer with two heads and a three-layer MLP that reproduces any map m:[1, ..., V ]→[1, ..., V ]
from a user input token to a model response token when conditioned on a single virtual token
s1=(m(1)/V , ...,m(V )/V ). That is, by selecting s1 we control the model response to any user input.

Theorem 1 shows that soft prompting is more expressive for governing the conditional behavior of a
transformer model. This also holds for longer responses nY > 1 by increasing the length of the soft
prompt, or longer user inputs nX > 1, by increasing the depth of the model. We provide explicit
constructions in Appendix A and working Python implementations.

4 Prefix-tuning can only bias the output of an attention head

We just saw that soft prompting and prefix-tuning can fully control the conditional behavior of a
transformer. However, that assumed a specific design for the network weights. Hence, if we have
a fixed pretrained model, rather than a carefully crafted one, is prefix-tuning still as powerful, and
specifically, is it as powerful as full fine-tuning? In this section we show that a prefix S cannot change
the relative attention over the content X,Y and can only bias the attention block outputs in a subspace
of rank nS , the length of the prefix, making it strictly less powerful than full fine-tuning.

Prefix-tuning cannot change the attention pattern of an attention head while full fine-tuning
can. Recall the attention Aij position i gives to position j for a trained transformer (Equation (1)):

Aij =
exp

(
T/

√
k x⊤

i W
⊤
QWKxj

)
∑p

r=1 exp
(
T/

√
k x⊤

i W
⊤
QWKxr

) =
exp

(
T/

√
k x⊤

i Hxj

)∑p
r=1 exp

(
T/

√
k x⊤

i Hxr

) , (5)

where W⊤
QWK=H . Full fine-tuning can enact arbitrary changes to WQ and WK and hence, assuming

the input does not change (e.g., at the first attention layer), we get the following attention:

Aft
ij =

exp
(
T/

√
k x⊤

i Hxj + T/
√
k x⊤

i ∆Hxj

)∑p
r=1 exp

(
T/

√
k x⊤

i Hxr + T/
√
k x⊤

i ∆Hxr

) ,
where the changes to WQ and WK are folded into ∆H . It is clear that by varying ∆H full fine-
tuning can change the attention patterns arbitrarily. However, let us see how is attention affected by
the presence of a prefix. For now, assume we have a prefix of length one (s1) at position 0.

Apt
i0=

exp(T/√k x⊤
i Hs1)

exp
(

T√
k

x⊤
i Hs1

)
+

p∑
r=1

exp
(

T√
k

x⊤
i Hxr

) , Apt
ij=

exp(T/√k x⊤
i Hxj)

exp
(

T√
k

x⊤
i Hs1

)
+

p∑
r=1

exp
(

T√
k

x⊤
i Hxr

) for j≥1.
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Figure 1: Attention patterns of the head of a small transformer pretrained on sorting in ascending order.
The model is provided the prefix S and user input X and generates Y . Full fine-tuning successfully
sorts in descending order but prefix-tuning cannot as it cannot change the learned attention.
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Figure 2: The heads pretrained on the four tasks specialize in the skills necessary to solve them.

The attention position i gives to the content positions j≥1 is simply scaled down by the attention it
now gives to the prefix. Prefix-tuning cannot affect the relative attention patterns across the content,
it will only scale them down. This becomes evident by rewriting Apt

ij :

Apt
ij = Aij

∑p
j=1A

pt
ij = Aij(1−Apt

i0). (6)

Prefix-tuning only adds a bias to the attention block output. Let’s see how this attention scaling
down affects the output of the attention block. Following Equation (2), the output at position i for the
pretrained (ti), the fully fine-tuned (tft

i ) and the prefix-tuned (tpt
i ) models are as follows:3

ti =
∑p

j=1 AijWV xj , tft
i =

∑p
j=1 A

ft
ij(WV +∆WV )xj ,

tpt
i = Apt

i0WV s1+
∑p

j=1 A
pt
ijWV xj

(6)
= Apt

i0WV s1+
∑p

j=1Aij(1-A
pt
i0)WV xj=Apt

i0WV s1+(1-A
pt
i0)ti.

(7)

Therefore, prefix-tuning can only bias the output of the attention block towards the constant vector
WV s1, which is independent of the content (x1, ...,xp). The content only affects the scale Apt

i0 of
the bias via the amount of attention on the prefix. This is in contrast with full fine-tuning where WV

can change arbitrarily, allowing for a content-dependent change of the value computation. We show
that this also happens for real world transformers in Figures 5 and 6. Appendix B shows that longer
prefixes allow for the bias to be coming from a larger subspace but that subspace is not fully utilized.

So, is prefix-tuning equivalent to full fine-tuning or is it less powerful than full fine-tuning?
The constructions for the results in Section 3 steer the transformer precisely by acting as a bias to
determine which token to generate. Therefore, the observations in this section do not contradict them.
Soft prompting and prefix-tuning can be on par with full fine-tuning but in limited circumstances:
when all the knowledge is represented in the virtual token as a lookup table and the model simply
extracts the relevant entry. Transformers do not behave like this in practice. Moreover, if we had a
lookup table of the responses to each input we would not need a learning algorithm in the first place.

5 When and why prefix-tuning can work?

Prefix-tuning cannot change the content attention and only acts as a bias to the attention block, making
it strictly less expressive than full fine-tuning. To explain the prior empirical successes, we show

3He et al. (2021a) show a similar analysis but do not study the expressiveness of prefix-tuning.
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Figure 3: Attention block activations at
the last input position (10) when pre-
trained on the four tasks. The left plot
shows the pretrained activations t10 are
not predictive of the completion. The
right plot shows prefixes cluster the ac-
tivations tpt

10. Connecting the pretrained
and prefixed activations highlights the
bias. No dimensionality reduction is
used; the clustering is due to the prefixes.
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that this bias can be sufficient for some fine-tuning tasks. Additionally, Appendix C discusses the
non-linear effects of the prefix on the deeper layers, which also contribute to additional expressivity.
Pretraining exposes a model to different classes of completions for the same token sequence, e.g.,
text completion, sentiment analysis, or translation. Hence, following our results from Section 4, we
hypothesise that prefix-tuning cannot be used to gain new knowledge but can elicit latent knowledge
present in the pretrained model.4 We test this via small transformers (Karpathy, 2020).

Table 1: A transformer pretrained on sort-
ing in ascending order cannot be prefix-
tuned to sort in descending order.

Ascending Descending

Pretrain on asc. 91.41% 0.00%
Full fine-tune on desc. 0.00% 84.91%
Prefix-tune on desc. 0.09% 0.00%

Prefix-tuning cannot learn a new task requiring a dif-
ferent attention pattern. To check if prefix-tuning can
learn a new task, we train a 1-layer, 1-head transformer
to sort numbers into ascending order and then fine-tune
it to sort in descending order. The model sees random se-
quences of 10 digits from 0 to 7 followed by them sorted
in ascending order. The test accuracy of the pretrained
model is 91.41%. Full fine-tuning on the descending
task has 84.91% test accuracy, hence full fine-tuning successfully learns the new task. However,
prefix-tuning (nS=1) results in 0% test accuracy, hence prefix-tuning fails to learn the new task at all.

The attention patterns in Figure 1 show why this is the case: the pretrained model learns to attend
first to the smallest numbers and then to the larger ones. When fully fine-tuned, the attention patterns
are reversed: they now first attend to the largest values. However, following Section 4, prefix-tuning
cannot change the attention pattern over the input sequence and will still attend to the smallest values.
Therefore, prefix-tuning indeed cannot learn a new task if it requires new attention patterns.

Table 2: A transformer pretrained on several
tasks can be prefix-tuned for one of them.

Asc. Desc. Add 1 Add 2

Pretrain on random 31.4% 19.2% 30.0% 15.6%
Prefix-tune on asc. 94.1% 0.0% 0.0% 0.0%
Prefix-tune on desc. 0.0% 83.7% 0.2% 0.7%
Prefix-tune on add 1 0.0% 0.0% 99.6% 0.0%
Prefix-tune on add 2 0.0% 0.0% 0.2% 99.8%

Prefix-tuning can elicit a skill from the pretrained
model. The second part of our hypothesis was that
prefix-tuning can elicit latent skills in the pretrained
model. We test it by pretraining a 1-layer, 4-head
model with solutions sorted in ascending or descend-
ing order, or adding one or two to each element of
the input sequence. Each solution is shown with
25% probability. We provide no indication of what
the task is, leading to test accuracy between 15%
and 32% for all tasks. Full fine-tuning for each task
naturally results in high accuracy. However, prefix-tuning can also reach very high accuracy for all
tasks: above 83%. Compared to the previous case, prefix-tuning is more successful here because the
pretrained model contains the attention mechanisms for solving the four tasks (Figure 2).

If all a prefix does is bias the attention layer activations in some direction, how can it steer the model
towards a single task? This is likely due to the attention block placing the solutions for all tasks
in different subspaces of the residual stream (Elhage et al., 2021). As the MLP needs to select one
of these solutions to generate, a further indicator on the selected task (or lack of selection thereof)
should also be represented. The bias induced by the prefix then acts on this “selection subspace” to
nudge the MLP to select the solution of the desired task. This can be seen from the activations of
the attention layer at the last input position (XnX

) where the task selection happens. The activations
of the pretrained model show no correlation with the output it generates, demonstrating that the
choice of completion is not determined by the activation block (Figure 3). However, the prefix-tuned

4A similar hypothesis has also been proposed by Reynolds and McDonell (2021) for fine-tuning in general.

5



activations for the same inputs are clustered as a result of the prefix-induced bias. Hence, the bias
acts as a “task selector” of the subspace of the residual stream specializing in the desired task.

Prefix-tuning can combine knowledge from pretraining tasks to solve new tasks. Prefix-tuning
eliciting one type of completion learned in pretraining starts to explain its practical utility. Still, it
seems to be successful also at tasks that the pretrained model has not seen. This can happen if the
“skill” required to solve the new task is a combination of “skills” of the pretrained model.

Table 3: Prefix tuning can combine pretraining
skills to solve a new task requiring the same
skills.

Iterations Pretraining tasks Asc.+1

Pretrain on
random tasks 40 000 8.2%–39.6% 0.0%

Prefix-tune on a
pretraining task 20 000 99.8%– 100% 0.0%

Prefix-tune on
ascending + 1 500 000 0.0% 34.5%

We pretrain a 4-layer 4-head model with the same
tasks and prefix-tune (nS=10) for incrementing the
ascending sorted sequence by 1. The pretrained
model has never seen such a task but prefix-tuning
results in 34.5% accuracy. Hence, it successfully
combines two pretraining skills to solve a novel
task. Still, prefix-tuning for a new task is more
challenging to optimize than for a pre-training task:
25 times more iterations for a third of the accuracy.
Hence, the ease of prefix-tuning can be used as a
proxy for a task’s similarity to pretraining tasks.

6 Discussion and related works

Understanding fine-tuning and prefix-tuning. Prior works show that prefixes have low intrinsic
dimension allowing transfer to similar tasks (Qin et al., 2021; Su et al., 2022; Zhong et al., 2022;
Wang et al., 2022b; Zheng et al., 2023). This work offered theoretical insights to their results: this
subspace is the span of the prefix-induced bias. Other works shows that skills can be localized in the
parameter space of pretrained models (Wang et al., 2022a; Panigrahi et al., 2023). We showed that it
is also possible to identify subspaces of the residual stream corresponding to individual tasks.

Prompting and in-context learning. Prompting and in-context learning are a special case of prefix-
tuning so prompting is unlikely to enable the model to solve a completely new task. Our theory thus
explains why Kossen et al. (2023) observed that in-context examples cannot overcome pre-training
skills. While context-based fine-tuning approaches cannot learn arbitrary new tasks, as shown in
Section 5, they can leverage pre-trained skills. For instance, transformers can learn linear models
in-context by mimicking gradient descent (Von Oswald et al., 2023) or by approximating matrix
inversion (Akyürek et al., 2022). This is consistent with our theory: the prediction updates are enacted
as biases in the activations of the attention block. Still, there are non-algorithmic applications where
our theory predicts that in-context learning will fail, for example, translating to a language that the
model has never seen before, even if large number of translation pair are provided in-context.

Implications for catastrophic forgetting and model alignment. The lack of expressiveness of
context-based fine-tuning can be a feature: desirable properties will be maintained. Full fine-tuning
can result in catastrophic forgetting (He et al., 2021b; Luo et al., 2023; Mukhoti et al., 2023). Our
theory shows that context-based methods will not destroy pretrained skills. Model alignment poses
the reverse problem: ensuring that the model cannot pick up undesirable skills during fine-tuning.
Our results show that prompting and prefix-tuning cannot steer the model towards new adversarial
behaviors. Hence, the recent successes in adversarial prompting (Zou et al., 2023) indicate that
current model alignment methods just mask the undesirable skills rather than removing them.

Implications for model interpretability. An open question for language model interpretability
is whether attention is sufficient for explainability (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Section 5 points toward the negative: by interfering in the output of the attention layer, we can
drastically change the behavior of the model, without changing its attention patterns.
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A Constructing transformers that utilize the capacity of the embedding space

A.1 Unconditional generation for a single virtual token

This section provides an explicit construction of a transformer with the properties described in ??.
The goal is to construct a transformer that, by varying the choice of the virtual token, can generate
any sequence of N tokens.

First, we need to specify how we encode the target sequence (Y1, . . . , YN ) into the virtual token s1.
We chose the size of the embedding (and hence of s1) to be N . This way, each element of s1 can
represent one position of the target sequence. We then represent the token value by discretizing each
element of s1 into V levels:

s1 = ((Y1−1)/V , . . . , (YN−1)/V ) .

Note that this means that each element of s1 is in [0, 1).

When predicting the token for the i+ 1 position, the transformer needs to pick the i-th element of s1,
and then decode the corresponding value as a one-hot encoding representing the Yi-th token.

We extract the i-th element of s1 using one attention block of two heads. The fst head always looks
at the first position which is our virtual token s1. For that purpose we create an attention head that
always has Afst

ij = 1 if j = 1 and Afst
ij = 0 otherwise together with a value matrix W fst

V that extracts
the embedding. This is achieved with

W fst
Q = [0N ,1N ], W fst

K = [0N , 1,1N−1], W fst
V = [IN ,0N×N ], (8)

and a sufficiently high inverse temperature parameter T .

The pos head instead extracts the one-hot encoding of the current position. This can be done with an
attention head that always attends only to the current position and a value matrix W pos

V that extracts
the position embedding as a one-hot vector:

W pos
Q = [0N×N , IN ], W pos

K = [0N×N , IN ], W pos
V = [0N×N , IN ]. (9)

When the outputs of these two attention heads are summed, then only the element of s1 that
corresponds to the current position will be larger than 1. From Equation (2) the output at the i-th
position of the attention block is:

ti =

p∑
j=1

Afst
ijxj +

p∑
j=1

Apos
ij eN (j) = s1 + eN (i),

where x1 = s1 and xj = E:,Yj−1 for j > 1.

We can extract the value of s1 corresponding to the current position by substracting 1 from the hidden
state and apply ReLU: L̂ex = L̂[IN ,−1N ]. Now, we are left with only one non-zero entry and that’s
the one corresponding to the next token. We can retain only the non-zero entry if we just sum all the
entries of the hidden state with L̂sum = L̂[1⊤

N , 0].

The final step is to map this scalar to a V -dimensional vector which has its maximum value at index
Yi. This task is equivalent to designing V linear functions, each attaining its maximum at one of
0, 1/V , . . . , (V−1)/V . To construct this, we use the property of convex functions that their tangent is
always under the plot of the function. Therefore, given a convex function γ(x), we construct the i-th
linear function to be simply the tangent of γ at i−1/V . If we take γ(x) = (x− 1/2)2, this results in
the following linear layer:

Lproj = L

[[
2(1− 1)

V
− 1, . . . ,

2(V − 1)

V
− 1

]T
,

[
1

4
− (1− 1)2

V 2
, . . . ,

1

4
− (V − 1)2

V 2

]⊤]
. (10)

Figure 4 shows the predictors for each individual token id.

With just two attention heads and three linear layers, the transformer
A[(W fst

Q ,W pos
Q ), (W fst

K ,W pos
K ), (W fst

V ,W pos
V )] # L̂ex # L̂sum # Lproj # softmax achieves the up-

per bound of V N unique outputs by controlling a single virtual token at its input. Note that for this
construction, the choice of embedding matrix E ∈ RN×V does not matter. The same transformer
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Figure 4: Illustration of the predictors for each token in the Lproj linear layer for V = 10. The layer
is constructed in such a way that the i-th token has the highest confidence when the input is i−1/V .

architecture can generate only V unique outputs if we only control the first token instead. Therefore,
it is indeed the case that the embedding space has exponentially more capacity for control than the
token space. You can see this transformer implemented and running in practice in Section 2 of the
constructions Jupyter notebook.

A.2 Conditional generation for a single virtual token (nX = nY = 1)

This section provides an explicit construction of a transformer with the properties described in
Theorem 1. The goal is to construct a transformer that, by varying the choice of the virtual token,
can cause the model to act as any map m : [1, . . . , V ] → [1, . . . , V ]. In other words, by selecting the
virtual token, we can fully control how the model will respond to any token the user may provide.

First, we need to specify how the map m will be encoded in the virtual token s1. We choose the
embedding size de to be V . Now, we can use the same encoding scheme as before, but now each
element in s1 corresponds to a different user token, rather than to a position in the generated sequence:

s1 = (m(1)/V , . . . ,m(V )/V ).

Therefore, the first element of s1 designates the response if the user provides token 1, the second
element is the response to the token 2, and so on.

Extracting the Yi-th value from s1 and decoding it can be done in a very similar way as for the
unconditional case. The only difference is that instead of looking at the user input position, we look
at its value. Take E = IV and N = 2.

Hence we have the following val head (only differing in the WV matrix from Equation (9)):

W val
Q = [02×V , I2], W val

K = [02×V , I2], W val
V = [IV ,0V×2].

We also need embedding of the first token, so we have a modified version of Equation (8):

W fst
Q = [0V , 1, 1], W fst

K = [0V , 1, 0], W fst
V = [IV ,0V×2].

And hence the output of this attention block at the second position would be:

t2 =

2∑
j=1

Afst
ijxj +

2∑
j=1

Aval
ij W

fst
V xj = s1 + eV (Y1).

Similarly to the unconditional case, only the entry of t2 corresponding to the user token will have a
value above 1 and that value would be 1 +m(x1)/V .

We can now extract the one-hot representation of the target token using the same approach
as before, just adjusting for the different hidden state size: L̂ex = L̂[IV ,−1V ], L̂sum =
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L̂[1⊤
V , 0], and the same projection had as before (Equation (10)). The final transformer is then:

A[(W fst
Q ,W val

Q ), (W fst
K ,W val

K ), (W fst
V ,W val

V )] # L̂ex # L̂sum # Lproj # softmax . You can see this trans-
former implemented and running in practice in Section 3 of the constructions Jupyter notebook.

A.3 Conditional generation for longer responses (nX = 1, nY > 1)

We can obtain longer responses via a simple extension. If the response length is N0, then we can
encode the map m : [1, . . . , V ] → [1, . . . , V ]N0 in N0 virtual tokens, each corresponding to one of
the target positions:

si = (m(1)i/V , . . . ,m(V )i/V ) for i = 1, . . . , N0.

For this model we would then have N = 2N0 and de = V .

First, we need a head that always looks at the token provided by the user, which will be at position
No + 1:

W user
Q = [0V ,1N ], W user

K = [0(V+No), 1,0(No−1)], W user
V = [IV ,0V×N ].

In order to consume the map at the right location, we need to also look at the embedding of the token
No positions before the one we are trying to generate:

W back
Q =

[
0N0×(N0+V ) IN0

0N0×(N0+V ) 0N0×N0

]
, W back

K = [0N×V , IN ], W back
V = [IV ,0V×N ].

From here on, the decoding is exactly the same as in the nX = nY = 1 case. The final transformer
is then: A[(W user

Q ,W back
Q ), (W user

K ,W back
K ), (W user

V ,W back
V )] # L̂ex # L̂sum #Lproj # softmax . You can

see this transformer implemented and running in practice in Section 4 of the constructions Jupyter
notebook.

A.4 Conditional generation for longer user inputs (nX > 1, nY = 1)

Finally, we consider the case when the user input X is longer. This is a bit more complicated because
we need to search through a domain of size V V . We will only consider the case with nX = 2 where
we would need two attention layers. A similar approach can be used to construct deeper models for
nX > 2. Finally, combining the strategy in the previous section for longer responses with the strategy
in this section for longer user inputs allows us to construct transformers that map from arbitrary
length user strings to arbitrary length responses.

In order to encode a map m : [1, . . . , V ]2 → [1, . . . , V ] into a single virtual token we would need a
more involved construction than before. Similarly to how we discretized each element of the virtual
token s1 in V levels before, we are going to now discretize it into V V levels. Each one of these levels
would be one of the V V possible maps from the second user token to the response. The first user
token would be used to select the corresponding element of s1. Then this scalar will be “unpacked”
into a new vector of V elements using the first attention block. Then, the second user token will
select an element from this unpacked vector, which will correspond to the target token.

We construct the virtual token as follows:

s1 =

[
V∑
i=1

m1(i)×
V i−1

V V
, . . . ,

V∑
i=1

mV (i)×
V i−1

V V

]
,

where mf (x) = m(f, x) is a map from the second user token to the response when the first token is
fixed to be f .

An additional change from the previous constructions is that we are going to divide the residual
stream into two sections. This is in line with the theory that different parts of the residual stream
specialize for different communications needs by different attention heads (Elhage et al., 2021). We
will use the first half of the residual stream to extract and “unpack” the correct mapping from second
token to target token, while the second half of the residual stream will be used to copy the second
token value so that the second attention layer can use it to extract the target. As usual, the embedding
matrix will be the identity matrix: E = IV . Finally, for convenience, we will also use a dummy zero
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virtual token that we will attend to when we want to not attend to anything. This results in context
size N = 4 with the input being([

0V
eN (1)

]
,

[
s1

eN (2)

]
,

[
E:,X1
eN (3)

]
,

[
E:,X2
eN (4)

])
=

([
0V

eN (1)

]
,

[
s1

eN (2)

]
,

[
eV (X1)
eN (3)

]
,

[
eV (X2)
eN (4)

])
.

We want the output at the last position to be the target m(X1, X2), that is:

arg max
u∈1,...,V

y4,u = m(X1, X2) for any m, X1, X2.

The first attention block will have three attention heads.

As before, we want to extract the value of s1 that corresponds to the first token the user provided
(X1) and place it in the first half of the residual stream. We want only the third position to do that,
while the rest of the positions keep the first half of their residual stream with zeros. Hence we have
the following fst head:

W fst
Q =

[
02×V

1 1 0 1
0 0 1 0

]
, W fst

K =

[
02×V

1 0 0 0
0 1 0 0

]
, W fst

V =

[
IV 0V×N

0V×V 0V×N

]
.

The user1 head extracts the value of the first user-provided token (X1) and also places it in the first
half of the residual stream:

W user1
Q =

[
02×V

1 1 0 1
0 0 1 0

]
, W user1

K =

[
02×V

1 0 0 0
0 0 1 0

]
, W user1

V =

[
IV 0V×N

0V×V 0V×N

]
.

And the user2 head does the same for the value of the second user-provided token (X2), placing it in
the second half of the residual stream:

W user2
Q =

[
02×V

1 1 1 0
0 0 0 1

]
, W user2

K =

[
02×V

1 0 0 0
0 0 0 1

]
, W user2

V =

[
0V×V 0V×N

2IV 0V×N

]
,

where the factor 2 is there because, as usual, the first linear layer will subtract 1 from everything in
order to extract the value selected by the first token.

This linear layer looks as usual: L̂ex2 = L̂[I2V ,−12V ]. The result is that the first V elements will
be 0 except one which designates which map from second user token to output we should use, and
the second V elements have a one hot-encoding of the second user token. Constructing an MLP that
unpacks the mapping can become quite involved so we do not provide an explicit form for it. But
from the universal approximation theorems and the finiteness of the domain and range, we know that
such an MLP should exist. We thus designate by unpack the MLP that decodes the first half of the
residual stream to: (

mX1(1)

V
, . . . ,

mX1(V )

V

)
and keeps the second half unchanged.

And now, by using two attention heads, the second attention block extracts the value of the above
vector at the position designated by the second token, in a fashion not dissimilar to all the previous
cases:

W emb
Q = [0⊤

V ,1
⊤
V ], W emb

K = [1⊤
V ,0

⊤
V ], W emb

V = [IV 0V×V ] ,

W user2’
Q = [0⊤

V ,1
⊤
V ], W user2’

K = [0⊤
V ,1

⊤
V ], W user2’

V = [0V×V IV ] ,

And finally, with L̂ex = L̂[IV ,−1V ], L̂sum = L̂[1⊤
V , 0], and the same projection

had as before (Equation (10)), we get the target token. The final transformer is
then: A[(W fst

Q ,W user1
Q ,W user2

Q ), (W fst
K ,W user1

K ,W user2
K ), (W fst

V ,W user1
V ,W user2

V )] # L̂ex2 # unpack #
A[(W emb

Q ,W user2’
Q ), (W emb

K ,W user2’
K ), (W emb

V ,W user2’
V )] # L̂ex # L̂sum # Lproj # softmax . You can see

this transformer implemented and running in practice in Section 5 of the constructions Jupyter
notebook.
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without a pre�x

Figure 5: The attention of the twelfth head of the first layer of LLaMA (Touvron et al., 2023). The
left plot shows the attention with a prefix of length one. The second plot shows the same attention but
normalized such that the attenion over the non-prefix positions sums to 1. The right plot shows the
attention of the pre-trained model (without prefix). The center and the right plots are the same, illustrat-
ing that the presence of the prefix indeed only scales down the attention over the content (non-prefix
positions) but does not change its relative distribution, providing empirical validation of Equation (6).
The test sequence is TABLE: Fourth Round Qualifying : NEW_ENTRIES_THIS_ROUND :
24 TEXT: Fourth round qualifying had 24 new entries. from the DART table-to-test
dataset (Nan et al., 2021).
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Figure 6: The activations of the twelfth head of the first layer of LLaMA (Touvron et al., 2023). The
left plot shows the activations in the presence of the prefix. The right plot shows the activations
ti of the pretrained model, scaled by one minus the attention that the prefix would take and then
biased in the direction WV s1. The two plots are the same, illustrating that our theory, Equation (7)
in particular, also holds for real-world large transformer models. The test sequence is the same as in
Figure 5.
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Figure 7: The range of attention (1st to 99th percentile) for a single GPT-2 (Radford et al., 2019)
prefix trained on the Emotion dataset (Saravia et al., 2018). The prefix is of size 10 (nS = 10). This is
the attention of the last user input token (nX ) because this is the position at which the class prediction
is done. For illustration purposes, we have normalized the attention so that the attention over the 10
prefix positions sums to 1. The range of attention over the 10 positions for each layer are shown.

B Longer prefixes define larger subspaces for the bias but are not fully
utilized in practice.

In the case of a longer prefix (s1, . . . , snS
), the bias vector is in a subspace of dimensionality

nS : tpt
i =

∑nS

j=1 A
pt
i,Sj

WV sj + (1−
∑nS

j=1 A
pt
i,Sj

)ti, where i goes over the content and j over the prefix
positions. Larger prefixes thus have a larger subspace to modify the attention block output. The
specific direction is determined by the relative distribution of attention across the prefix positions.

One would expect that different prefix positions specialize for different sub-tasks. However, when we
look at the distribution of attention across the prefix positions for various inputs as in Appendix B
this does not seem to be the case: the attention for each prefix position is in a limited range. That
indicates that in practice, prefix-tuning does not make full use of the whole space that the vectors
WV sj span. We hypothesise that this is due to the two competing optimization goals for the vectors
sj : at the same time they need to “grab attention” when interacting with WK and determine the bias
direction when multiplied with WV .

Longer prefixes define a subspace from which the bias for the attention block is selected. For a prefix
of size nS , that means that this subspace is nS-dimensional. Each of prefix position j defines a basis
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vector WV sj for this subspace, while the attention Apt
i,Sj

on this position determines how much of
this basis component contributes to the bias.

In ordered to span the whole subspace and make full use of the capacity of the prefix, Apt
i,Sj

should
vary between 0 and 1 for different inputs. However, we observe that this does not happen in practice.
Figure 7 shows the ranges of attention the different prefix positions take for the GPT-2 model (Radford
et al., 2019). For layer 1, for example, the attention each prefix positions gets is almost constant hence,
the effective subspace is collapsed and there is a single bias vector that’s applied to the attention layer
output, regardless of the user input X .

Some other layers show slightly higher variation. For example, layer 3 has three prefix positions with
large variations. Therefore, the effective bias subspace is 3-dimensional and the user input X governs
which bias vector from this subspace will be selected.

C Prefix-tuning can change the attention, albeit the one of the next layer

The empirical success of prefix-tuning is also due the non-linear behavior of the prefix-induced bias
when passed through the following MLP and later attention layers. Let’s see how the prefix of one
attention layer affects the following attention layer. For simplicity, assume no MLP between them,
residual connections or layer norms: the output t(1)i of one attention layer is the input x(2)

i of the next.

The pretrained model then has outputs t
(1)
i =

∑p
j=1 A

(1)
ij W

(1)
V x

(1)
j , resulting in the following attention

for the second layer: Ã
(2)
ij = T/

√
k t

(1)⊤
i H(2)t

(1)
j . Here Ãij is the attention before exponentiation and

normalization, i.e., Aij = exp Ãij/
∑p

r=1 exp Ãir. For prefix-tuning we have:

t
pt(1)
i = A

pt(1)
i0 WV s

(1)
1 +

p∑
j=1

A
pt(1)
ij W

(1)
V x

(1)
j

(7)
= A

pt(1)
i0︸ ︷︷ ︸
αi

WV s
(1)
1︸ ︷︷ ︸

µ

+(1−A
pt(1)
i0 )t

(1)
i

Ã
pt(2)
ij = T√

k
t

pt(1)⊤
i H(2)t

pt(1)
j

= T√
k
(αiαj µ

⊤H(2)µ︸ ︷︷ ︸
constant

+αj(1-αi) t
(1)⊤
i H(2)µ︸ ︷︷ ︸

depends only on t
(1)
i

+αi(1-αj)µ
⊤H(2)t

(1)
j︸ ︷︷ ︸

depends only on t
(1)
j

+(1-αi)(1-αj) t
(1)⊤
i H(2)t

(1)
j︸ ︷︷ ︸

Ã
(2)
ij

)

The presence of µ shows that the prefix of layer 1 can result in a changed attention pattern at the
following layer. In contrast to the effect of the prefix on the attention of layer 1, this change is
content-specific: the second and the third terms depend on the inputs. This demonstrates that a simple
bias can have complex behavior when passed through non-linear MLPs and attention blocks.

Still, even considering this cross-layer effect, prefix-tuning is more limited in its expressiveness than
full fine-tuning. While the second and the third terms are input-dependent, each depends on one input
position only. The prefix does not change the bilinear dependency on both the query and key. This is
something that the full fine-tuning can achieve: Ã

ft(2)
ij = T/

√
k t

ft(1)⊤
i (H(2) +∆H(2))t

ft(1)
j . Hence, deeper

prefix-tuned models also cannot learn new tasks that fully fine-tuned models can.

Prefix-tuning is can only bias the activations of attention blocks but we showed that this is enough for
many practical tasks. If the pretrained model has seen the task, or if it can be solved with “skills” the
pretrained model has, then prefix-tuning can successfully fine-tune the model for it. Otherwise, if the
task is completely new (e.g., fine-tuning a model trained only on English to translate Bulgarian to
Arabic), then prefix-tuning is doomed to fail, no matter how much data or compute one has.
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