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Abstract

In domain generalization (DG), most existing methods focused on the loss function
design. This paper proposes to explore an orthogonal direction, i.e., the design of
the backbone architecture. It is motivated by an empirical finding that transformer-
based models trained with empirical risk minimization (ERM) outperform CNN-
based models employing state-of-the-art (SOTA) DG algorithms on multiple DG
datasets. We develop a formal framework to characterize a network’s robustness to
distribution shifts by studying its architecture’s alignment with the correlations in
the dataset. This analysis guides us to propose a novel DG model built upon vision
transformers, namely Generalizable Mixture-of-Experts (GMoE). Experiments on
DomainBed demonstrate that GMoE trained with ERM outperforms SOTA DG
baselines by a large margin.

1 Introduction

Generalizing to out-of-distribution (OOD) data is an innate ability for human vision, but highly
challenging for machine learning models [23, 11, 19]. Domain generalization (DG) is one approach
to address this problem, which encourages models to be resilient under various distribution shifts
such as background, lighting, texture, shape, and geographic/demographic attributes.

From the perspective of representation learning, there are several paradigms towards this goal,
including domain alignment [10, 15], invariant causality prediction [1, 17], meta-learning [2, 32],
ensemble learning [20, 3], and feature disentanglement [28, 31]. The most popular approach to
implementing these ideas is to design a specific loss function (e.g., [10] for domain alignment, [1, 17]
for invariant causal prediction, [2, 32] for meta-learning). Recent studies have shown that these
approaches improve ERM and achieve promising results on large-scale DG datasets [29].

Meanwhile, in various computer vision tasks, the innovations in backbone architectures play a pivotal
role in performance boost and have attracted much attention [14, 16, 18]. Inspired by these empirical
successes, we conjecture that backbone architecture design would be promising for DG. In this
paper, we formally investigate the impact of the backbone architecture on DG and propose to develop
effective DG methods by backbone architecture design. Specifically, our main contributions are
summarized as follows:

A Novel View of DG: In contrast to previous works, this paper initiates an exploration of the backbone
architecture in DG. Based on algorithmic alignment [30], we prove that a network is more robust to
distribution shifts if its architecture aligns with the invariant correlation.

∗Equal contribution

Workshop on Distribution Shifts, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A Novel Model for DG: Based on our theoretical analysis, we propose Generalizable Mixture-of-
Experts (GMoE) and prove that it enjoys a better alignment than vision transformers. GMoE is built
upon sparse mixture-of-experts [25] and vision transformer [7], with a theory-guided performance
enhancement for DG.

2 On the Importance of Neural Architecture for Domain Generalization

In this section, we investigate the impact of the backbone architecture on DG by using an algorithmic
alignment framework [30]. We first define the alignment.

Definition 1. (Alignment; [30]) Let N denote a neural network with n modules {Ni}ni=1 and assume
that a target function for learning y = g(x) can be decomposed into n functions f1, · · · , fn. The
network N aligns with the target function if replacing Ni with fi, it outputs the same value as
algorithm g. The alignment value between N and f is defined as

Alignment(N , f, ϵ, δ) := n ·max
i

M(fi,Ni, ϵ, δ), (1)

where M(fi,Ni, ϵ, δ) denotes the sample complexity measure for Ni to learn fi with ϵ precision at
failure probability δ under a learning algorithm when the training distribution is the same as the test
distribution.

To have a tractable analysis for nonlinear function approximation, we first make an assumption on
the distribution shift.

Assumption 1. Denote N1 as the first module of the network (including one or multiple layers) of the
network. Let ptrain,N1(s) and ptest,N1(s) denote the probability density functions of features after N1.
Assume that the support of the training feature distribution covers that of the test feature distribution,
i.e., maxs

ptest,N1
(s)

ptrain,N1
(s) ≤ C, where C is a constant independent of the number of training samples.

In DG, the target function is an invariant correlation across the training and test datasets. For
simplicity, we assume that the labels are noise-free.

Assumption 2. (Invariant correlation) Assume there exists a function gc such that for training data,
we have gc(N1(x)) = y,∀x ∈ Etr, and for test data, we have PDte [∥gc(N1(x))− y∥ ≤ ϵ] > 1− δ.

The following theorem shows that if the neural architecture aligns with the invariant correlation, ERM
is sufficient to achieve a good performance.

Theorem 1. (Impact of Backbone Architecture in Domain Generalization) Denote N ′ =
{N2, · · · ,Nn}. Assuming we train the neural network with ERM, and Assumption 1, 2, hold.
If Alignment(N ′, gc, ϵ, δ) ≤ |Etr|, we have PDte [∥N (x)− y∥ ≤ O(ϵ)] > 1−O(δ).

ViT with ERM versus ResNet50 with DG algorithms The existing DG methods often adopt
ResNet50 as the backbone [13] and we compare ViT trained with ERM with ResNet50 trained with
SOTA DG algorithms in Table 1. It is shown that ViT outperforms ResNet50 on three datasets while
underperforms ResNet50 on TerraInc. We will use Theorem 1 to explain this experiment. According
to the analysis in [21], multi-head attentions (MHA) are low-pass filters with a shape bias while
convolutions are high-pass filters with a texture bias. In VLCS, OfficeHome, and DomainNet, the
shape is invariant across some domains (e.g., among natural, sketch, and paint of DomainNet). On the
contrary, the object to recognize is often in a narrowed local region in TerraInc, which corresponds to
the local bias of CNNs. As a result, a ViT simply trained with ERM can outperform CNNs trained
with SOTA DG algorithms on the four datasets while the ViT’s performance deteriorates on TerraInc.

To improve ViT’s performance, Theorem 1 suggests that we should exploit the properties of invariant
correlations. In image recognition, objects are described by functional parts (e.g., visual attributes),
with words associated with them [33]. The configuration of the objects has a large degree of freedom,
resulting in different shapes among one category. Therefore, functional parts are more fundamental
than shape in image recognition and we will develop backbone architectures to capture them in the
next section.
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3 Generalizable Mixture-of-Experts for Domain Generalization

In this section, we propose Generalizable Mixture-of-Experts (GMoE) for domain generalization,
supported by effective neural architecture design and theoretical analysis.

3.1 Mixture-of-Experts Layer

In this subsection, we introduce the mixture-of-experts (MoE) layer, which is an essential component
of GMoE. One ViT layer is composed of an MHA and an FFN. In the MoE layer, the FFN is replaced
by mixture-of-experts and each expert is implemented by an FFN [25]. Denoting the output of the
MHA as x, the output of the MoE layer with N experts is given by

fMoE(x) =

N∑
i=1

G(x)i · Ei(x) =

N∑
i=1

TOPk(Softmax(Wx)) ·W 2
FFNi

ϕ(W 1
FFNi

x), (2)

where W is the learnable parameter for the gate, W 1
FFNi

and W 2
FFNi

are learnable parameters for the
i-th expert, ϕ(·) is a nonlinear activation function, and TOPk(·) operation is a one-hot embedding
that sets all other elements in the output vector as zero except for the elements with the largest k
values where k is a hyperparameter. Given xin as the input of the MoE layer, the update is given by

x = fMHA(LN(xin)) + xin, xout = fMoE(LN(x)) + x,

where fMHA is the MHA layer, LN represents layer normalization, and xout is the output of the MoE
layer.

3.2 Visual Attributes and Sparse MoEs

Algorithm 1: Conditional
Statements
Define intervals
Ii ⊂ R, i = 1, · · · ,M

Define functions
hi, , i = 1, · · · ,M + 1

switch h1(x) do
case Ii do

apply hi+1 to x

In real world image data, the label depends on multiple attributes.
Capturing diverse visual attributes is especially important for DG.
For example, the definition of an elephant in the Oxford dictionary is
“a very large animal with thick grey skin, large ears, two curved outer
teeth called tusks, and a long nose called a trunk”. The definition
involves three shape attributes (i.e., large ears, curved outer teeth,
and a long nose) and one texture attribute (i.e., thick grey skin).
In the IID ImageNet task, using the most discriminative attribute,
i.e., the thick grey skin [12], is sufficient to achieve high accuracy.
However, in DomainNet, elephants no longer have grey skins while
the long nose and big ears are preserved and the network relying on
grey skins will fail to generalize.

To efficiently capture the visual attributes and combine them for DG, conditional statements (e.g.,
IF/ELSE in programming) are needed. First, to obtain these diverse attributes, different filters should
be applied to different regions of the image. For example, the operation for curved outer teeth is that
if the patches belong to the teeth, we apply a filter to obtain its shape. Second, for image recognition,
the network should leverage conditional statements to integrate multiple visual attributes for learning
the definition of this class. For example, the recognition of an elephant should check if the key
attributes are placed in the proper position. In literature, the MoE layer is considered as an effective
approach to implement conditional computations [25, 24]. We formalize this intuition in the next
theorem.
Theorem 2. An MoE module in equation 2 with N experts and k = 1 aligns with the conditional
statements in Algorithm 1 with

Alignment =


(N + 1) ·max (M∗

P ,M(G, h1, ϵ, δ)) , if N < M,

(N + 1) ·max

(
max

i∈{1,··· ,M}
M(fFFNi

, hi+1, ϵ, δ),M(G, h1, ϵ, δ)

)
, if N ≥ M,

(3)
where M(·, ·, ·, ·) is defined in Definition 1, and M∗

P is the optimal objective value of the following
optimization problem:

P :minimize
I1,···IN

max
i∈{1,··· ,N}

M(fFFNi
, ([1Ij ]j∈Ii

◦ h1)
T · [hj ]j∈Ii

, ϵ, δ)

subject to ∪N
i=1 Ii = {2, 3, · · · ,M + 1},

, (4)
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Figure 1: Overview architecture of GMoE. The cosine router distributes normalized image patches of
different visual attributes to corresponding experts.

where 1Ij is the indicator function on interval Ij .

Remark 1. (Interpretations of Theorem 2) In algorithmic alignment, the network better aligns with
the algorithm if the alignment value in equation 1 is lower. The alignment value between MoE and
conditional statements depends on the product of N + 1 and a sample complexity term. When we
increase the number of experts N , the alignment value first decreases as multiple experts decompose
the original conditional statements into several simpler tasks. As we further increase N , the alignment
value increases because of the factor N + 1 in the product. Therefore, the MoE aligns better with
conditional statements than with the original FFN (i.e., N = 1).

3.3 Adapting MoE to Domain Generalization

In literature, there are several variants of MoE architectures, e.g., [24, 8], and we should identify
one for DG. By algorithmic alignment, in order to achieve a better generalization, the architecture of
sparse MoEs should be designed to effectively handle visual attributes. In the following, we discuss
our architecture design for this purpose.

For the routing scheme, linear routers (i.e., equation 2) are often adopted in MoEs for vision tasks [24]
while recent studies in NLP show that the cosine router achieves better performance in cross-lingual
language tasks [6]. For the cosine router, given input x ∈ Rd, the embedding Wx ∈ Rde is
first projected onto a hypersphere, followed by multiplying a learned embedding E ∈ Rde×N .
Specifically, the expression for the gate is given by G(x) = TOPk

(
Softmax

(
ETWx

τ∥Wx∥∥E∥

))
, where

τ is a hyper-parameter. We opine that cosine routers are more powerful in DG as E can be interpreted
as the codebook for for visual attributes [9, 33] and the dot product between E and Wx with ℓ2
normalization is a matched filter.

As for the number of MoE layers, Every-two and last-two are two commonly adopted placement
methods in existing MoE studies [24]. Specifically, every-two refers to replacing the even layer’s
FFN with MoE, and last-two refers to placing MoE at the last two even layers. For IID generalization,
every-two often outperforms last-two [24]. We argue that last-two is more suitable for DG as the
conditional sentences for processing visual attributes are high-level.

4 Experimental Results

We evaluate GMoE on DomainBed [13]. We present results in Table 1 with train-validation selection,
which include baseline methods and recent SOTA DG algorithms and GMoE trained with ERM. The
results demonstrate that GMoE without DG algorithms already outperforms counterparts on almost
all the datasets.
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Table 1: Overall out-of-domain accuracies with train-validation selection criterion.

Algorithm PACS VLCS OfficeHome TerraInc DomainNet
ERM (ResNet50) [27] 85.7 ± 0.5 77.4 ± 0.3 67.5 ± 0.5 47.2 ± 0.4 41.2 ± 0.2
IRM [ArXiv 20] [1] 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8

FISH [ICLR 22] [26] 85.5 ± 0.3 77.8 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2
SWAD [NeurIPS 21] [4] 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1

Fishr [ICML 22] [22] 85.5 ± 0.2 77.8 ± 0.2 68.6 ± 0.2 47.4 ± 1.6 41.7 ± 0.0
MIRO [ECCV 22] [5] 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2

ERM (ViT-S/16) [ICLR 21] [7] 86.2 ± 0.1 79.7 ± 0.0 72.2 ± 0.4 42.0 ± 0.8 47.3 ± 0.2
GMoE-S/16 (Ours) 88.1 ± 0.1 80.2 ± 0.2 74.2 ± 0.4 48.5 ± 0.4 48.7 ± 0.2
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