
Hierarchical Joint Graph Learning and Multivariate
Time Series Forecasting

Juhyeon Kim, Hyungeun Lee, Seungwon Yu, Ung Hwang, Wooyul Jung, Miseon Park
Department of Electronic Engineering

Hanyang University, Seoul, Korea
{wngus1310,didls1228,ahddl1324,gogowinner,jung6231}@hanyang.ac.kr

{misun9631}@naver.com

Kijung Yoon
Department of Electronic Engineering
Department of Artificial Intelligence
Hanyang University, Seoul, Korea

kiyoon@hanyang.ac.kr

Abstract

Multivariate time series is prevalent in many scientific and industrial domains.
Modeling multivariate signals is challenging due to their long-range temporal
dependencies and intricate interactions–both direct and indirect. To confront these
complexities, we introduce a method of representing multivariate signals as nodes
in a graph with edges indicating interdependency between them. Specifically, we
leverage graph neural networks (GNN) and attention mechanisms to efficiently
learn the underlying relationships within the time series data. Moreover, we suggest
employing hierarchical signal decompositions running over the graphs to capture
multiple spatial dependencies. The effectiveness of our proposed model is evaluated
across various real-world benchmark datasets designed for long-term forecasting
tasks. The results consistently showcase the superiority of our model, achieving an
average 23% reduction in mean squared error (MSE) compared to existing models.

1 Introduction

Multivariate time series forecasting is a primary machine learning task in both scientific research
and industrial applications [1, 2]. The interactions and dependencies between many time series data
govern how they evolve, and these can range from simple linear correlations to complex relationships
such as the traffic flows underlying intelligent transportation systems [3–6] or physical forces affecting
the trajectories of objects in space [7–9].

Accurately predicting future values of the time series may require understanding their true relation-
ships, which can provide valuable insights into the system represented by the time series. Recent
studies aim to jointly infer these relationships and learn to forecast in an end-to-end manner, even
without prior knowledge of the underlying graph [5, 10]. However, inferring the graph from numerous
time series data has a quadratic computational complexity, making it prohibitively expensive to scale
to a large number of time signals.

Another important aspect of time series forecasting is the presence of non-stationary properties, such
as seasonal effects, trends, and other structures that depend on the time index [11]. Such properties
may need to be eliminated before modeling, and a recent line of work aims to incorporate trend and
seasonality decomposition into the model architecture to simplify the prediction process [12, 13].

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.

Therefore, it is natural to ask whether one can leverage deep neural networks to combine the strength
of both worlds: 1) using a latent graph structure that aids in time series forecasting with each signal
represented as a node and the interactions between them as edges, and 2) using end-to-end training
to model the time series by decomposing it into multiple levels, which enables separate modeling
of different patterns at each level, and then combining them to make accurate predictions. Existing
works have not addressed both of these strengths together in a unified framework, and this is precisely
the research question we seek to address in our current study.

To address this, we propose the use of graph neural networks (GNN) and a self-attention mechanism
that efficiently infers latent graph structures with a time complexity and memory usage of O(N logN)
where N is the number of time series. We further incorporate hierarchical residual blocks to
learn backcast and forecast outputs. These blocks operate across multiple inferred graphs, and the
aggregated forecasts contribute to producing the final prediction. By implementing this approach,
we have achieved a superior forecasting performance compared to baseline models, with an average
enhancement of 23%. For an overview, this paper brings the following contributions:

1. We introduce a novel approach that extends hierarchical signal decomposition, merging
it with concurrent hierarchical latent graphs learning. This is termed as hierarchical joint
graph learning and multivariate time series forecasting (HGMTS).

2. Our method incorporates a sparse self-attention mechanism, which we establish as a good
inductive bias when learning on latent graphs and addressing long sequence time series
forecasting (LSTF) challenges.

3. Through our experimental findings, it is evident that our proposed model outperforms
traditional transformer networks in multivariate time series forecasting. The design not
only sets a superior standard for direct multi-step forecasting but also establishes itself as a
promising spatio-temporal GNN benchmark for subsequent studies bridging latent graph
learning and time series forecasting.

2 Related Work

Until recently, deep learning methods for time series forecasting have primarily focused on utilizing
recurrent neural networks (RNN) and their variants to develop a sequence-to-sequence prediction
approach [14–17], which has shown remarkable outcomes. Despite significant progress, however,
these methods are yet to achieve accurate predictions for long sequence time series forecasting due
to challenges such as the accumulation of errors in many steps of unrolling, as well as vanishing
gradients and memory limitations [18].

Self-attention based transformer models proposed recently for LSTF tasks have revolutionized
time series prediction and attained remarkable success. In contrast to traditional RNN models,
transformers have exhibited superior capability in capturing long-range temporal dependencies. Still,
recent advancements in this domain, as illustrated by LongFormer [19], Reformer [20], Informer [21],
AutoFormer [22], and ETSformer [23], have predominantly zeroed in on improving the efficiency of
the self-attention mechanism, particularly for handling long input and output sequences. Concurrently,
there has been a rise in the development of attention-free architectures, as seen in Oreshkin et al. [12]
and Challu et al. [13], which present a computationally efficient alternative for modeling extensive
input-output relationships by using deep stacks of fully connected layers. However, such models
often overlook the intricate interactions between signals in multivariate time series data, tending to
process each time series independently.

Spatio-temporal graph neural networks (ST-GNNs) are a specific type of GNNs that are tailored
to handle both time series data and their interactions. They have been used in a wide range of
applications such as action recognition [24, 25] and traffic forecasting [26–28]. These networks
integrate sequential models for capturing temporal dependencies with GNNs employed to encapsulate
spatial correlations among distinct nodes. However, a caveat with ST-GNNs is that they necessitate
prior information regarding structural connectivity to depict the interrelations in time series data. This
can be a limitation in cases where the structural information is not available.

Accordingly, GNNs that include structure learning components have been developed to learn effective
graph structures suitable for time series forecasting. Two such models, NRI [8] and GTS [6], calculate
the probability of an edge between nodes using pairwise scores, resulting in a discrete adjacency

2

 -th query
 keys

 computing query importance computing & selecting significant keys

a b c

top- queries

 selecting top- queries

top- keys

Figure 1: Overview of the latent graph structure learning (L-GSL). (a) Key nodes chosen at
random (depicted as gray circles) are used to measure the significance of a query node (shown as a
blue circle). (b) Top-n query nodes (blue circles) are picked according to the importance distribution
across all query nodes. (c) Key nodes, colored in orange, that hold sufficient relevance to be linked
with the chosen query node.

matrix. Nonetheless, this approach can be computationally intensive with a growing number of nodes.
In contrast, MTGNN [5] and GDN [10] utilize a randomly initialized node embedding matrix to infer
the latent graph structure. While this approach is less taxing on computational resources, it might
compromise the accuracy of predictions.

3 Methods

In this section, we detail our proposed method, HGMTS. The overarching framework and core
operational principles of this approach can be viewed in Figures 1 and 2.

3.1 Preliminaries

Let X ∈ RN×T×M represents a multivariate time series, where N signifies the count of signals
originating from various sensors, T denotes the length of the sequence, and M represents the
dimension of the signal input (usually M = 1). We depict this multivariate time series as a graph
G = {V, E ,A}, wherein the collection of nodes denoted by V corresponds to the sensors, the set E
pertains to the edges, and A represents the adjacency matrix. Notably, the precise composition of E
and A is not known initially; however, our model will acquire this knowledge through the learning
process.

3.2 Latent Graph Structure Learning (L-GSL)

We embrace the concept of self-attention (introduced by [29]) and employ the attention scores in
the role of edge weights. The process of learning the adjacency matrix of the graph, denoted as
A ∈ RN×N unfolds as follows:

Q = HWQ, K = HWK , A = softmax

(
QKT

√
D

)
(1)

where H ∈ RN×D corresponds to node embeddings1, WQ ∈ RD×D and WK ∈ RD×D are weight
matrices that project H into query Q and key K, respectively. The main limitation in estimating
latent graph structures in Eq.(1) for a large value of N is the necessity to perform quadratic time
dot-product computations along with the utilization of O(N2) memory. In an effort to achieve a
self-attention mechanism complexity of O(N logN), our approach involves identifying pivotal query
nodes and their associated significant key nodes in a sequential manner.

3.2.1 Identifying pivotal query nodes

For the purpose of determining which query nodes will establish connections with other nodes, our
initial step involves evaluating the significance of queries. Recent studies [30, 31, 19, 21] have

1The methodology for computing node embeddings from multivariate time series is detailed in Section 3.3

3

highlighted the existence of sparsity in the distribution of self-attention probabilities. Drawing
inspiration from these findings, we establish the importance of queries based on the Kullback-Leibler
(KL) divergence between a uniform distribution and the attention probability distribution of query
nodes.

Let qi and ki represent the i-th row in matrices Q and K respectively. For a given query node,
p(kj |qi) = exp(qik

⊤
j)/

∑
ℓ exp(qik

⊤
ℓ) denotes the attention probability of the i-th query towards

the j-th key node. Then, p(K|qi) = [p(k1|qi) . . . p(kN |qi)] indicates the probability distribution of
how the i-th query allocates its attention/weight across all nodes. In this context, DKL(U, p(K|qi))
quantifies the deviation of a query node’s attention probabilities from a uniform distribution U{1, N}.
This divergence measurement serves as a metric for identifying significant query nodes; a higher KL
divergence suggests that a query’s attention is mainly directed towards particular key nodes, rather
than being evenly distributed. As a result, these query nodes are postulated to be suitable candidates
for establishing sparse connections.

The traversal of all query nodes for this measurement, however, still entails a quadratic computational
requirement. It is worth noting that a recent study demonstrated that the relative magnitudes of
query importance remain unchanged even when the divergence metric is calculated using randomly
sampled keys [21]. Building on this idea, we determine the importance of query nodes through the
computation of DKL(Ū , p(K̄|qi)) instead, where Ū = U{1, n}, K̄ represents a matrix containing
randomly sampled n row vectors from K, and n = ⌊c · logN⌋ denotes the number of random samples
based on a constant sampling factor c (Figure 1a). Given this measurement of query importance, we
select top-n query nodes and denote it as Q̄ (Figure 1b).

3.2.2 Identifying associated key nodes

Using the selected set of n query nodes, our subsequent step involves identifying the corresponding
key nodes to establish connections. In pursuit of achieving this objective, we initiate by computing
the attention probabilities p(K|qi) of the i-th query across all keys nodes; this procedure is reiterated
for each of the n query nodes. Next, we choose the top-n key nodes for each query based on their
attention scores (Figure 1c), and we designate this collection as K̄. The ultimate adjacency matrix,
adhering to the sparsity constraint, is defined by the equation:

Ā = softmax

(
Q̄K̄T

√
D

)
(2)

In this equation, Q̄ and K̄ possess the same dimensions as Q and K, except that the row vectors
corresponding to insignificant query and key nodes are replaced with zeros. To sum up, the complexity
of all the necessary computations for evaluating the significance of a query node and determining
which key nodes to establish connections with, considering the top-n chosen queries, amounts to
O(N logN).

3.3 Hierarchical Signal Decomposition

This section provides an overview of the proposed approach shown in Figure 2 and discusses the
overall design principles. Our approach builds upon N-BEATS [12], enhancing its key elements
significantly. Our main methodology comprises of three primary elements: signal decomposition,
latent graph structure learning, and constructing forecasts and backcasts in a hierarchical manner.
Much like the N-BEATS approach, every block is trained to generate signals for both backcast
and forecast outputs. Here, the backcast output is designed to be subtracted from the input of the
subsequent block, whereas the forecasts are combined to produce the final prediction (Figure 2).
These blocks are arranged in stacks, each focusing on a distinct spatial dependency through a unique
set of graph structures.

3.3.1 Signal decomposition module

Recent research has witnessed a surging interest in disentangling time series data into its trend and
seasonal components. These components respectively represent the overall long-term pattern and the
seasonal fluctuations within the time signals. However, when it comes to future time series, directly
performing this decomposition becomes impractical due to the inherent uncertainty of the future.
To address this challenge, we propose the incorporation of a signal decomposition module within

4

Signal Decomposition

 MPNN

L-GSL

 MPNN

L-GSL

MLP MLPMLP MLP

+ +

Block Input

Backcast Forecast Stack residual

seasonal

trend -

Block 1

-

Block 2

-

Block B

+

Stack Input

Stack
forecast

a b c

Stack 1

Stack 2

Stack S

+

Model Input

Global
forecast

Figure 2: Overview of the proposed HGMTS model architecture. (a) The hierarchical residual
block is marked by signal decomposition and GNN-centric L-GSL modules. (b) The combination
of multiple blocks forms a stack, (c) culminating in the entire model design to ultimately produce a
global forecasting output.

a single block (Figure 2a). This module enables the gradual extraction of the consistent, long-term
trend from intermediate forecasting signals. Specifically, we employ the moving average technique to
smooth out recurring fluctuations and uncover the underlying long-term trends as outlined below:

Xtrend = AvgPool(Padding(X)), Xseas = X−Xtrend (3)

where Xtrend,Xseas denote the trend and seasonal components respectively. We opt for the
AvgPool(·) for the moving average, accompanied by the zero padding operation to maintain the
original series length intact.

3.3.2 Message-passing module

The message-passing module receives as input the past L time steps of both seasonal and trend
outputs Xseas

t−L:t,X
trend
t−L:t ∈ RN×L obtained from the signal decomposition. As the two components

go through the same set of distinct parameterized network modules, their differentiation will be
disregarded henceforth. At each time step t, the input consisting of N multivariate time series with
L lags are transformed into embedding vectors H ∈ RN×D using a multilayer perceptron (MLP).
Each row vector hi in this matrix represents an individual node embedding. Subsequently, these node
embeddings are employed in Eq.1 of the latent graph structure learning module to create a sparse
adjacency matrix Ā. This matrix, in conjunction with the node embedding matrix, serves as the input
for the message-passing neural network (Figure 2a). To be more specific, the r-th round of message
passing in the GNN is executed using the following equations:

h
(0)
i = f(xi,t−L:t) (4)

m
(r)
ij = g(h

(r)
i − h

(r)
j) (5)

Ā = L-GSL(H) (6)

h
(r+1)
i = GRU(h

(r)
i ,

∑
j∈N (i) āij ·m

(r)
ij) (7)

where h
(r)
i refers to the i-th node embedding after round r, and m

(r)
ij represents the message vector

from node i to j. The interaction strength associated with the edge (i, j), denoted as āij , corresponds
to the entry in Ā at the i-th row and j-th column. Both the encoding function f(·) and the message
function g(·) are implemented as two-layer MLPs with ReLU nonlinearities. Finally, the node
embeddings are updated using a GRU after aggregating all incoming messages through a weighted
sum over the neighborhood N (i) for each node i. This sequence of operations is repeated separately
for the seasonal and trend inputs, with no sharing of parameters (Figure 2a).

5

To enhance both the model’s expressivity and its capacity for generalization, we employ a multi-
module GNN framework [32]. More specifically, the next hidden state h

(r+1)
i is computed by

blending two intermediate node states, h(r)
i,1 and h

(r)
i,2 , through a linear combination defined as

follows:

h
(r+1)
i = β

(r)
i h

(r)
i,1 + (1− β

(r)
i)h

(r)
i,2 (8)

where the two intermediate representations h(r)
i,1 and h

(r)
i,2 are derived from Eq. (7) using two distinct

GRUs. The value of the gating variable β(r)
i is determined by another processing unit employing a

gating function ξg , which is a neural network producing a scalar output through a sigmoid activation.

3.3.3 Forecast and backcast module

Following the completion of the last R round of message passing (3 rounds in total), the backcast x̂
and forecast outputs ŷ are generated in this procedure. This is achieved by mapping the final node
embeddings through separate two MLPs. These MLPs are responsible for handling the generation of
backcast and forecast outputs individually (Figure 2a). It is important to note that the last layer of
these MLPs is designed as a linear layer. This process of generating backcast and forecast outputs is
applied to both the seasonal and trend pathways, and the ultimate backcast and forecast outputs are
obtained by summing up the respective outputs from the seasonal and trend components (Figure 2a):

x̂seas
i,t−L:t = ϕseas(h

(R)
i,seas)

x̂trend
i,t−L:t = ϕtrend(h

(R)
i,trend)

x̂i,t−L:t = x̂seas
i,t−L:t + x̂trend

i,t−L:t

ŷseas
i,t+1:t+K = ψseas(h

(R)
i,seas) (9)

ŷtrend
i,t+1:t+K = ψtrend(h

(R)
i,trend) (10)

ŷi,t+1:t+K = ŷseas
i,t+1:t+K + ŷtrend

i,t+1:t+K (11)

Here, ϕ
□

and ψ
□

represent two-layer MLPs designed to acquire the predictive decomposition of the
partial backcast x̂i,t−L:t of the preceding L time steps, and the forecast ŷi,t+1:t+K of the subsequent
K time steps. These MLPs operate on components denoted as □, which can be either the seasonal
or trend aspects. Note that the indexing related to block or stack levels has been excluded for clarity.
The resulting global forecast is constructed by summing the outputs of all blocks (Figure 2b-c).

4 Experimental Setup

We first provide an overview of the datasets (Table 1), evaluation metrics, and baselines employed
to quantitatively assess our model’s performance. The main results are summarized in Table 2,
demonstrating the competitive predictive performance of our approach in comparison to existing
works. We then elaborate on the specifics of our training and evaluation setups followed by detailing
the ablation studies.

4.1 Datasets

Our experimentation extensively covers six real-world benchmark datasets. Conforming to the
standard protocol [33, 21], the split of all datasets into training, validation, and test sets has been
conducted chronologically, following a split ratio of 60:20:20 for the ETTm2 dataset and a split ratio
of 70:10:20 for the remaining datasets.

• ETTm2 (Electricity Transformer Temperature): This dataset encompasses data obtained
from electricity transformers, featuring load and oil temperatures recorded every 15 minutes
during the period spanning from July 2016 to July 2018.

• ECL (Electricity Consuming Load): The ECL dataset compiles hourly electricity con-
sumption (in Kwh) data from 321 customers, spanning the years 2012 to 2014.

• Exchange: This dataset aggregates daily exchange rates of eight different countries relative
to the US dollar. The data spans from 1990 to 2016.

• Traffic: The Traffic dataset is a collection of road occupancy rates from 862 sensors situated
along San Francisco Bay area freeways. These rates are recorded every hour, spanning from
January 2015 to December 2016.

6

• Weather: This dataset comprises 21 meteorological measurements, including air temper-
ature and humidity. These measurements are recorded every 10 minutes throughout the
entirety of the year 2020 in Germany.

• ILI (Influenza-Like Illness): This dataset provides a record of weekly influenza-like illness
(ILI) patients and the total patient count, sourced from the Centers for Disease Control and
Prevention of the US. The data covers the extensive period from 2002 to 2021. It represents
the ratio of ILI patients versus the total count for each week.

4.2 Evaluation metrics

We evaluate the effectiveness of our approach by measuring its accuracy using the mean squared
error (MSE) and mean absolute error (MAE) metrics. These evaluations are conducted for various
prediction horizon lengths K ∈ {96, 192, 336, 720} given a fixed input length L = 96, except for
ILI where L = 36:

MSE =
1

NK

N∑
i=1

t+K∑
τ=t

(yi,τ − ŷi,τ)
2
, MAE =

1

NK

N∑
i=1

t+K∑
τ=t

|yi,τ − ŷi,τ | (12)

4.3 Baselines

We evaluate our proposed model by comparing it with seven baseline models. These include: (1)
N-BEATS [12], which aligns with the external structure of our model, (2) Autoformer [33], (3)
Informer [21], (4) Reformer [20], (5) LogTrans [31] – latest transformer-based models. Additionally,
we compare with two conventional RNN-based models: (6) LSTNet [34] and (7) LSTM [35].

4.4 Hyperparameters

Our model is trained using the ADAM optimizer, starting with a learning rate of 10−4 that gets
reduced by half every two epochs. We employ early stopping during training, stopping the process if
there is no improvement after 10 epochs. The training is carried out with a batch size of 32. We have
configured our model with 3 stacks, each containing 1 block. All tests are conducted three times,
making use of the PyTorch framework, and are executed on a single NVIDIA RTX 3090 with 24GB
GPU.

5 Experimental Results

5.1 Multivariate time series forecasting

In the multivariate setting, our proposed model, HGMTS, consistently achieves state-of-the-art
performance across all benchmark datasets and prediction length configurations (Table 2). Notably,
under the input-96-predict-192 setting, HGMTS demonstrates significant improvements over previous
state-of-the-art results, with a 34% (0.273→0.180) reduction in MSE for ETT, 19% (0.180→0.146)
reduction for ECL, 53% (0.225→0.105) reduction for Exchange, 5% (0.409→0.389) reduction
for Traffic, and 10% (0.229→0.207) reduction for Weather. In the case of the input-36-predict-60
setting for ILI, HGMTS achieves 17% (2.547→2.118) reduction in MSE. Overall, HGMTS delivers
an average MSE reduction of 23% across these settings. It is particularly striking how HGMTS
drastically improves predictions for the Exchange dataset, where it records an average MSE reduction
of 52% for all prediction lengths. Moreover, HGMTS stands out for its outstanding long-term stability,
an essential attribute for real-world applications.

5.2 Effect of sparsity in graphs on forecasting

Within the HGMTS model framework, a key hyperparameter is the sampling factor in L-GSL. This
factor determines how many query nodes are selected and subsequently linked to key nodes. For the
sake of simplicity, we ensure that the number of chosen query and key nodes remains the same. We
then measure the sparsity of the latent graphs by computing the proportion of selected pivotal query
or key nodes relative to the total time series count. This proportion is denoted as γ = ⌊c · logN⌋/N
and acts as an indicator of the sparsity in building these latent graphs.

7

Signal Decomposition

 MPNN

L-GSL

 MPNN

L-GSL

MLP MLPMLP MLP

+ +

-

Block 1

-

Block 2

-

Block B

+

Signal Decomposition

 MPNN

L-GSL

 MPNN

L-GSL

MLP MLPMLP MLP

+ +

-

Block 1

-

Block 2

-

Block B

+

Signal Decomposition

MLP MLPMLP MLP

+ +

-

Block 1

-

Block 2

-

Block B

+

 MPNN

L-GSL

MLP MLP

-

Block 1

-

Block 2

-

Block B

+

HGMTS2 HGMTS3 HGMTS4 HGMTS5

Figure 3: Ablation study overview. Displayed are four distinct model architectures explored to
understand the impact of specific components on overall LSTF performance.

To understand the impact of sparsity in the learned graphs, we modify γ values between 0.2 and
0.7 and then document the findings from the multivariate forecasting studies. As detailed in Table
2, there is a consistent trend: all the graphs lean towards sparse interactions (γ ≤ 0.5), targeting
optimal predictive outcomes in LSTF tasks. Additionally, different benchmark datasets exhibit unique
preferences regarding the optimal sparsity level for predictive performance, as displayed in Table 2.

5.3 Ablation studies

We posit that the strengths of the HGMTS architecture stem from its ability to hierarchically model
the interplay between time series, particularly in the realms of trend and seasonality components. To
delve deeper into this proposition, we present a series of control models for a comparative analysis:

• HGMTS1: The model as showcased in Figure 2.

• HGMTS2: A model that has shared latent graphs between trend and seasonality channels,
but not across different blocks and stacks.

• HGMTS3: A model where latent graphs are shared throughout all blocks and stacks but
remain distinct between trend and seasonality channels.

• HGMTS4: This model omits the L-GSL and MPNN modules.

• HGMTS5: A model focusing solely on either the trend or seasonality channel, essentially
lacking the signal decomposition module.

• HGMTS6: A model that has used a single GRU module in Eq (8).

Under the same multivariate setting, the evaluation metrics for each control model, averaged over all
benchmark datasets excluding ILI, are detailed in Table 4. The HGMTS4, which forgoes the L-GSL
and MPNN modules, experiences a noticeable average MSE surge of 30% (0.258→0.336) across all
horizons. This rise is the most significant among all controls, indicating that capturing interdepen-
dencies between multivariate signals is vital in our suggested model. HGMTS5, which emphasizes
solely on a single channel between trend and seasonality, registers the second most pronounced
MSE growth (18%: 0.258→0.305), suggesting that signal decomposition is also instrumental in
LSTF tasks. Sharing the latent graphs – whether between the trend and seasonality pathways (as
in HGMTS2) or among blocks (as in HGMTS3) – does elevate the average MSE, but the rise is
modest when compared with the first two control models. Additionally, our findings highlight that
incorporating multiple node update mechanisms in MPNN, as seen in HGMTS6, brings about a slight
enhancement in forecasting precision.

The information presented in Table 4 robustly supports the idea that best performance is achieved
by integrating both suggested components: the latent graph structure and hierarchical signal decom-
position. This emphasizes their synergistic role in enhancing the accuracy of long sequence time
series predictions. Furthermore, it is confirmed that crafting distinct latent associations between time
series hierarchically, spanning both trend and seasonal channels, is instrumental in attaining improved
prediction outcomes.

6 Conclusions

In this paper, we delved into the challenge of long-term multivariate time series forecasting, an area
that has seen notable progress recently. However, the intricate temporal patterns often impede models
from effectively learning reliable dependencies. In response, we introduce HGMTS, a spatio-temporal

8

multivariate time series forecasting model that incorporates a signal decomposition module and
employs a latent graph structure learning as intrinsic operators. This unique approach allows for the
hierarchical aggregation of long-term trend and seasonal information from intermediate predictions.
Furthermore, we adopt a multi-module message-passing framework to enhance our model’s capacity
to capture diverse time series data from a range of heterogeneous sensors. This approach distinctly
sets us apart from previous neural forecasting models. Notably, HGMTS naturally achieves a
computational complexity of O(N logN) and consistently delivers state-of-the-art performance
across a wide array of real-world datasets.

Learning a latent graph typically poses considerable challenges. Even though our model leverages
the top-k pooling method to infer the latent graph, there are many other deep learning techniques that
could be investigated in upcoming studies to uncover hidden structural patterns. Enhancements related
to both representation capacity and computational efficiency might expand its broader adoption.

References
[1] Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K

Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan,
et al. Forecasting: theory and practice. International Journal of Forecasting, 2022.

[2] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast:
Learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794,
2022.

[3] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph
neural networks in google maps. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 3767–3776, 2021.

[4] Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph neural
networks for intelligent transportation systems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 2023.

[5] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.
Connecting the dots: Multivariate time series forecasting with graph neural networks. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 753–763, 2020.

[6] Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple
time series. arXiv preprint arXiv:2101.06861, 2021.

[7] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. In Advances in Neural Information
Processing Systems, pages 4502–4510, 2016.

[8] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In International Conference on Machine Learninga-
chine learning, pages 2688–2697. PMLR, 2018.

[9] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[10] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4027–4035, 2021.

[11] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A
seasonal-trend decomposition. Journal of Official Statistics, 6(1):3–73, 1990.

[12] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference
on Learning Representations, 2020.

9

[13] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series fore-
casting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
6989–6997, 2023.

[14] Rose Yu, Stephan Zheng, Anima Anandkumar, and Yisong Yue. Long-term forecasting using
tensor-train rnns. Arxiv, 2017.

[15] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. International
Joint Conference on Artificial Intelligence, 2017.

[16] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-
horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053, 2017.

[17] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

[19] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[20] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

[21] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11106–11115,
2021.

[22] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching trans-
formers for visual recognition. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 12270–12280, 2021.

[23] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Expo-
nential smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381,
2022.

[24] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks
for skeleton-based action recognition. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[25] Zhen Huang, Xu Shen, Xinmei Tian, Houqiang Li, Jianqiang Huang, and Xian-Sheng Hua.
Spatio-temporal inception graph convolutional networks for skeleton-based action recognition.
In Proceedings of the 28th ACM International Conference on Multimedia, pages 2122–2130,
2020.

[26] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

[27] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured
sequence modeling with graph convolutional recurrent networks. In Neural Information Pro-
cessing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16,
2018, Proceedings, Part I 25, pages 362–373. Springer, 2018.

[28] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li.
T-gcn: A temporal graph convolutional network for traffic prediction. IEEE transactions on
intelligent transportation systems, 21(9):3848–3858, 2019.

10

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[30] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[31] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in Neural Information Processing Systems, 32, 2019.

[32] HyunGeun Lee and Kijung Yoon. Towards better generalization with flexible representation
of multi-module graph neural networks. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=EYjfLeJL4l.

[33] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

[34] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pages 95–104, 2018.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

7 Supplementary Material

Table 1: Summary statistics for the benchmark datasets used in our empirical study.

DATASET FREQUENCY # TIME SERIES INPUT LENGTH (L) HORIZON (K)

ETTM2 15 MINUTE 7 96 {96, 192, 336, 720}
ECL HOURLY 321 96 {96, 192, 336, 720}

EXCHANGE DAILY 8 96 {96, 192, 336, 720}
TRAFFIC HOURLY 862 96 {96, 192, 336, 720}

WEATHER 10 MINUTE 21 96 {96, 192, 336, 720}
ILI WEEKLY 7 36 {24, 36, 48, 60}

Table 2: Multivariate forecasting results for different prediction length K ∈ {96, 192, 336, 720}.
For the ILI dataset, we set the input length (L) to 36, while for the other datasets, we set it to 96.
A prediction is considered more precise if it has a lower MSE or MAE value. The metrics are the
average of three trials, with the best results highlighted in bold for emphasis.

Models HGMTS N-BEATS[12] Autoformer[33] Informer[21] LongTrans[31] Reformer[20] LSTNet[34] LSTM[35]
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

96 0.145 0.232 0.184 0.263 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365 2.041 1.073
192 0.180 0.311 0.273 0.337 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827 3.154 1.369 2.249 1.112
336 0.227 0.349 0.309 0.355 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972 3.160 1.369 2.568 1.238
720 0.280 0.398 0.411 0.425 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242 3.171 1.368 2.720 1.287

ECL

96 0.128 0.226 0.145 0.247 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 0.680 0.645 0.375 0.437
192 0.146 0.249 0.180 0.283 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 0.725 0.676 0.442 0.473
336 0.175 0.277 0.200 0.308 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 0.828 0.727 0.439 0.473
720 0.238 0.332 0.266 0.362 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420 0.957 0.811 0.980 0.814

Exchange

96 0.055 0.172 0.098 0.206 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058 1.453 1.049
192 0.105 0.242 0.225 0.329 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028 1.846 1.179
336 0.182 0.334 0.493 0.482 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031 2.136 1.231
720 0.560 0.609 1.108 0.804 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243 2.984 1.427

Traffic

96 0.371 0.264 0.398 0.282 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 1.107 0.685 0.843 0.453
192 0.389 0.281 0.409 0.293 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420 1.157 0.706 0.847 0.453
336 0.439 0.302 0.449 0.318 0.622 0.377 0.777 0.420 0.733 0.408 0.742 0.420 1.216 0.730 0.853 0.455
720 0.577 0.386 0.589 0.391 0.660 0.408 0.864 0.472 0.717 0..396 0.755 0.423 1.481 0.805 1.500 0.805

Weather

96 0.146 0.185 0.167 0.203 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587 0.369 0.406
192 0.207 0.236 0.229 0.261 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.560 0.565 0.416 0.435
336 0.268 0.291 0.287 0.304 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587 0.455 0.454
720 0.348 0.351 0.368 0.359 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599 0.535 0.520

ILI

24 1.827 0.839 1.879 0.886 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770 5.914 1.734
36 2.034 0.903 2.210 1.018 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668 6.631 1.845
48 2.102 0.915 2.440 1.088 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787 6.736 1.857
60 2.118 0.956 2.547 1.057 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720 6.870 1.879

11

https://openreview.net/forum?id=EYjfLeJL4l

Table 3: The HGMTS performance evaluated under various selections of the graph sparsity hyper-
parameter γ. The forecasting setup remains consistent with what is presented in Table 2.

Sparsity (γ) 0.2 0.3 0.4 0.5 0.6 0.7
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2

96 0.151 0.240 0.149 0.238 0.146 0.234 0.145 0.232 – – 0.146 0.235
192 0.187 0.324 0.183 0.315 0.181 0.313 0.180 0.311 – – 1.182 0.314
336 0.239 0.364 0.234 0.358 0.230 0.353 0.227 0.349 – – 0.229 0.352
720 0.292 0.418 0.286 0.407 0.283 0.402 0.280 0.398 – – 0.282 0.401

ECL

96 0.128 0.226 0.130 0.229 0.133 0.234 0.138 0.241 0.145 0.249 0.156 0.263
192 0.146 0.249 0.149 0.253 0.152 0.257 0.158 0.266 0.164 0.274 0.169 0.280
336 0.175 0.277 0.177 0.280 0.181 0.285 0.189 0.294 0.193 0.301 0.198 0.307
720 0.238 0.332 0.240 0.335 0.243 0.338 0.247 0.345 0.252 0.351 0.256 0.359

Exchange

96 – – 0.056 0.173 0.055 0.172 0.057 0.174 0.058 0.176 0.061 0.180
192 – – 0.107 0.244 0.105 0.242 0.106 0.244 0.107 0.246 0.109 0.249
336 – – 0.184 0.336 0.182 0.334 0.183 0.336 0.184 0.338 0.187 0.341
720 – – 0.563 0.613 0.560 0.609 0.562 0.611 0.564 0.613 0.567 0.617

Traffic

96 0.371 0.264 0.374 0.268 0.377 0.272 0.381 0.276 0.386 0.280 0.391 0.287
192 0.389 0.281 0.394 0.286 0.398 0.291 0.405 0.299 0.412 0.308 0.423 0.316
336 0.439 0.302 0.445 0.309 0.451 0.316 0.460 0.327 0.463 0.332 0.466 0.338
720 0.577 0.386 0.581 0.392 0.584 0.395 0.589 0.401 0.594 0.407 0.598 0.414

Weather

96 0.147 0.186 0.146 0.185 0.147 0.187 0.149 0.190 0.150 0.191 0.152 0.193
192 0.208 0.238 0.207 0.236 0.209 0.238 0.212 0.240 0.215 0.244 0.218 0.248
336 0.270 0.293 0.268 0.291 0.269 0.292 0.271 0.294 0.274 0.298 0.277 0.301
720 0.350 0.354 0.348 0.351 0.349 0.353 0.352 0.356 0.354 0.359 0.357 0.364

ILI

24 1.832 0.845 1.830 0.842 1.828 0.840 1.827 0.839 – – 1.829 0.842
36 2.041 0.911 2.037 0.906 2.036 0.905 2.034 0.903 – – 2.035 0.905
48 2.113 0.926 2.108 0.922 2.105 0.918 2.102 0.915 – – 2.104 0.918
60 2.123 0.964 2.122 0.962 2.120 0.959 2.118 0.956 – – 2.119 0.959

Table 4: Empirical evaluation of long sequence time series forecasts for HGMTS. MAE and MSE are
averaged over three runs and five datasets, with the best result highlighted in bold and the second best
in blue.

HGMTS1 HGMTS2 HGMTS3 HGMTS4 HGMTS5 HGMTS6

A
.M

SE

96 0.168 0.171 0.170 0.195 0.183 0.169
192 0.205 0.209 0.208 0.261 0.232 0.206
336 0.258 0.263 0.271 0.344 0.309 0.264
720 0.401 0.412 0.428 0.545 0.496 0.414

A
.M

A
E 96 0.214 0.219 0.218 0.237 0.229 0.216

192 0.264 0.268 0.266 0.296 0.286 0.265
336 0.311 0.316 0.328 0.349 0.337 0.318
720 0.415 0.418 0.421 0.464 0.435 0.420

12

	Introduction
	Related Work
	Methods
	Preliminaries
	Latent Graph Structure Learning (L-GSL)
	Identifying pivotal query nodes
	Identifying associated key nodes

	Hierarchical Signal Decomposition
	Signal decomposition module
	Message-passing module
	Forecast and backcast module

	Experimental Setup
	Datasets
	Evaluation metrics
	Baselines
	Hyperparameters

	Experimental Results
	Multivariate time series forecasting
	Effect of sparsity in graphs on forecasting
	Ablation studies

	Conclusions
	Supplementary Material

