
Medical Imaging with Deep Learning 2024

Weakly supervised lung cancer detection on label-free
intraoperative microscopy with higher harmonic generation

Siem de Jong1 siem.dejong@radboudumc.nl

Marie Louise Groot2 m.l.groot@vu.nl

Roel L. J. Verhoeven3 roel.lj.verhoeven@radboudumc.nl

Erik H. F. M. van der Heijden3 erik.vanderheijden@radboudumc.nl

Francesco Ciompi1 francesco.ciompi@radboudumc.nl
1 Radboud university medical center, Department of Pathology, Nijmegen, The Netherlands
2 Vrije Universiteit Amsterdam, Faculty of Science, Department of Physics, LaserLab, Amsterdam,

The Netherlands
3 Radboud university medical center, Department of Pulmonary Diseases, Nijmegen, The Nether-

lands

Abstract

Higher harmonic generation microscopy (HHGM) enables label-free on-site imaging of fresh
tissue, potentially allowing a new means of pathology assessment for disease diagnosis. We
investigate the potential of using self-supervised learning (SSL) in combination with weakly-
supervised, attention-based, clustering constrained multiple instance learning (CLAM) to
detect lung cancer in HHGM images. First, we tailor encoders to HHGM-specific data
domain via both SimCLR and DINO SSL. Second, we train a CLAM classifier with and
without an SSL feature extractor on 100 HHGM images acquired during bronchoscopy
procedures. We show that SSL pre-training with random initialization and CLAM are
beneficial to intraoperatively detect lung cancer in HHGM images.

Keywords: higher harmonic generation microscopy, self-supervised pre-training, weakly-
supervised learning, classification, attention, explainability, intraoperative, lung cancer

1. Introduction

Lung cancer is the second most deadly cancer in the Netherlands with more than 10.000
deaths in 2022 (Nederlandse Kankerregistratie, IKNL, 2024). Histopathology is at the core
of diagnosis and treatment planning, but implies time-consuming processes that are becom-
ing increasingly more difficult with the expected shortage on pathologists (Bychkov and
Fukuoka, 2022). Additionally, intraoperatively during the bronchoscopy procedure, tumor
detection has to be done quickly to optimally guide the next step and avoid longer pro-
cedures and increased patient discomfort. To decrease the time needed for tissue sample
assessment, higher harmonic generation microscopy (HHGM) might be used (Van Huizen
et al., 2020). The label-free HHGM images consist of second and third harmonic gen-
eration (SHG, THG) and two-photon excitation fluorescence (2PEF). SHG shows non-
centrosymmetric molecules, such as collagen, THG is generated by local differences of cell
and structure interfaces, and 2PEF is produced by endogenous fluorophores such as elastin.

To aid on-site tumor detection, we developed a deep learning model for tumor detec-
tion and investigated the potential of using self-supervised learning (SSL) in combination
with a weakly-supervised, attention-based, clustering constrained multiple instance learning
(CLAM) (Lu et al., 2021). The attention-based classifier can learn to focus on the most
important parts of the image and use instance clustering to constrain and refine the search
space, which is useful since only image level annotations are available. Out of the box,
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CLAM uses an ImageNet pre-trained backbone, but the domain of natural images is very
different from HHGM. Inspired by Saillard et al. (2021) and Schirris et al. (2022), we show
that employing SSL pre-training to obtain domain-specific features in combination with a
CLAM classifier improves lung cancer detection on HHGM.

2. Methods

Data. We use HHGM images acquired in AmsterdamUMC from October 2020 until
November 2021 (Van Huizen et al., 2024). Bronchoscopy or thoracoscopy patients with
suspected lung cancer or pleural malignancy were eligible for the study. The dataset con-
sists of 100 individually assessed HHGM images at 0.5mpp of 47 cases with multiple biopsies
and scans at multiple depths. SHG, THG, and 2PEF signals were mapped to the red, green,
and blue channels of RGB data, respectively (Figure 1C). Image-level ground truth as pres-
ence or absence of tumor was provided by two pathologists. The tissue was segmented using
EntropyMasker (Song et al., 2022) and tiled into 256x256 pixel images.

Self-supervised pre-training. We used the extracted patches to pre-train four ResNet-
18 models via self-supervision. In two models, we used SimCLR (Chen et al., 2020) with
normalized temperature cross-entropy loss and in two other models, we used DINO (Caron
et al., 2021). For each pre-training approach, we initialized one model with ImageNet pre-
trained weights and the other with He initialization (He et al., 2015). We augmented tiles
with random resized crop, random horizontal flip, color jitter (brightness, contrast, satura-
tion, hue), and random solarization for DINO-based SSL. The SimCLR projection head has
three fully connected layers of dimensions 1024, 1024, and 64. The DINO projection head
has three fully connected layers of 512, 64, and 256. Stochastic gradient descend (SGD)
was used with learning rate 0.1 and momentum 0.001. The pre-trained models were used
to extract tile features of size 512 for the classifier.

Classification. CLAM was trained using the slide-level label to classify tile features as
tumor or non-tumor. The attention network has two gated attention layers of size 128 and
64. CLAM was trained with SGD with a minimum of 100 epochs, early stopping, dropout
with p = 0.25, and a learning rate of 1× 10−6. We leverage CLAM attention maps to gain
insight into areas important for the prediction.

Evaluation. The existing dataset is split in 45 training (86 images) and 2 test cases (14
images). On the training data, we perform 10-fold Monte Carlo cross-validation stratified
by outcome and grouped by patient. Receiver operating characteristic (ROC) curves were
interpolated, yielding a mean ROC curve. The area under the ROC curve (AUC) was
calculated for the mean ROC curves. After the cross-validation procedure, for evaluation
on the test set, we trained a new model using the learning setup with the highest cross-
validation AUC, using the complete training set for 100 epochs. Statistical bootstrapping
with 9999 predictions was used to obtain a mean test AUC and 95% tolerance interval (TI).

3. Results and discussion

The validation ROC curves are shown in Figure 1A. The SimCLR- and DINO pre-trained
models have a higher AUC than a model only pre-trained on ImageNet. The ImageNet
dataset shows features dissimilar to HHGM signals. The higher AUC for models with self-
supervised pre-training suggest that pre-training on HHGM images is beneficial for CLAM.
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Figure 1: A) Validation mean ROC curves with ±1 standard deviation per model across
folds. B) Hold out test ROC curve with 95% TI of the proposed random initialized DINO
pre-trained ResNet18 model. C) An original HHGM test image. Inset shows a zoomed-in
cell-rich region. D) CLAM attention map acquired by the proposed model.

The He initialized model trained with SimCLR has a +23.8% AUC increase compared
to fine-tuning an ImageNet pre-trained feature extractor. When using DINO, the He and
ImageNet initialized perform comparably. However, the standard deviation of the DINO
model is smaller. These results suggest that training a randomly initialized model with
self-supervision increases CLAM performance, but they also show that ImageNet initialized
models can be adapted to the target domain with self-supervision.

DINO pre-trained models seem to outperform SimCLR pre-trained models on AUC,
which might be a result of the DINO momentum encoder.

The DINO-pre-trained He initialized model has the highest AUC of 0.81± 0.13. There-
fore, we retrain this model on the complete training set and evaluate the model on the held
out test set. Statistical bootstrapping resulted in the test ROC curve shown in Figure 1B
and a mean test AUC of 0.896 (95% TI 0.712 to 1.000). An example of a CLAM heatmap
next to an HHGM image is shown in Figure 1C-D. The attention maps show that the model
focuses on the tumor regions as expected, but also on non-tumor areas, limiting the inter-
pretation. CLAM is a step towards interpretable models, but separating attention maps
per class like in Javed et al. (2022) might increase explainability.

A limitation of this study is the low amount of test data which also only includes invasive
adenocarcinoma and chronic inflammation. More data is being acquired to further train the
model and validate it on more cases with more variety. However, the results are promising
and suggest that it might be possible in the future to automatically detect lung cancer
intraoperatively using HHGM and artificial intelligence.
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