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ABSTRACT

Program synthesis aims to create accurate, executable code from natural language
descriptions. This field has leveraged the power of reinforcement learning (RL)
in conjunction with large language models (LLMs), significantly enhancing code
generation capabilities. This integration focuses on directly optimizing functional
correctness, transcending conventional supervised losses. While current litera-
ture predominantly favors policy-based algorithms, attributes of program synthe-
sis suggest a natural compatibility with value-based methods. This stems from
rich collection of off-policy programs developed by human programmers, and the
straightforward verification of generated programs through automated unit test-
ing (i.e. easily obtainable rewards in RL language). Diverging from the pre-
dominant use of policy-based algorithms, our work explores the applicability of
value-based approaches, leading to the development of our B-Coder (pronounced
Bellman coder). Yet, training value-based methods presents challenges due to the
enormous search space inherent to program synthesis. To this end, we propose
an initialization protocol for RL agents utilizing pre-trained LMs and a conserva-
tive Bellman operator to reduce training complexities. Moreover, we demonstrate
how to leverage the learned value functions as a dual strategy to post-process gen-
erated programs. Our empirical evaluations demonstrated B-Coder’s capability
in achieving state-of-the-art performance compared with policy-based methods.
Remarkably, this achievement is reached with minimal reward engineering effort,
highlighting the effectiveness of value-based RL, independent of reward designs.

1 INTRODUCTION

Program synthesis (or code generation) aims to transform natural language descriptions into func-
tionally accurate executable code. The escalating attention towards this field can be attributed to
its transformative potential in reshaping the software development paradigm. Notably, AI-powered
tools have shown evidence of boosting efficiency within the software industry.

Recent advancements in large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Anil
et al., 2023; Chowdhery et al., 2022; Rae et al., 2021; Hoffmann et al., 2022; Touvron et al., 2023)
have garnered substantial interest and shown remarkable achievements. The utilization of compre-
hensive pre-training on vast amounts of data has yielded notable success in tasks related to natural
language generation. This trend extends its influence into the domain of program synthesis as well,
where numerous specialized code LLMs (Li et al., 2023; 2022; Nijkamp et al., 2022; Zheng et al.,
2023; Fried et al., 2022; Chen et al., 2021a; Wang et al., 2021; 2023; Xu et al., 2023; Rozière et al.,
2023) have been introduced to address challenges in program synthesis.

Unlike many free-form natural language generation tasks, where the quality of model’s output is
hard to assess, the correctness of synthesized program can be verified through automated execution
with predefined unit tests. This unique attribute has led to the line of execution-guided works (Chen
et al., 2018; Zohar & Wolf, 2018; Chen et al., 2021b). While these efforts leverage execution feed-
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back, they do not directly optimize towards higher execution success rate due to the inherent non-
differentiability of execution outcomes. Notably, reinforcement learning (RL) provides a pathway
to directly optimize non-differentiable objectives, and plentiful work (Zhong et al., 2017; Simmons-
Edler et al., 2018; Ellis et al., 2019; Wang et al., 2022) have studied enhancing code generation
through RL. CodeRL (Le et al., 2022) adapted REINFORCE (Williams, 1992), a classic policy
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Figure 1: A collection of RL appli-
cations. and represents value-
based and policy-based RL, respec-
tively. The x-axis shows the diffi-
culty of obtaining rewards, while the
y-axis measures the amount of off-
policy data. Tasks that face signifi-
cant hurdles in gathering rewards or
have limited off-policy data typically
lean towards policy-based algorithms.
Tasks where rewards are more readily
obtained or that benefit from a sub-
stantial collection of off-policy data
favors value-based methods. See de-
scriptions of each task in Appendix E.

gradient (PG) algorithm, along with the baseline trick for
variance reduction and a supervise-trained reward function
to alleviate the sparse execution feedback signals. They
also proposed a critic sampling strategy to refine and re-
pair program based on the example unit tests feedback.
PPOCoder (Shojaee et al., 2023) applied proximal policy
gradient (Schulman et al., 2017, PPO) to fine-tune pre-
trained LMs. In addition, they leverage the syntactic and
semantic structure of code, such as syntax trees (Rabi-
novich et al., 2017) and data-flow graphs (Yasunaga &
Liang, 2020), to improve reward function designs. Con-
current work RLTF (Liu et al., 2023) proposed an online
training framework for program synthesis using policy gra-
dient with heursitically-designed fine-grained rewards.

Policy-based vs. value-based RL. Our discussion focus
on recent works (Le et al., 2022; Shojaee et al., 2023;
Liu et al., 2023) that have achieved remarkable advance-
ments in Python text-to-code generation, especially when
tackling challenging benchmarks sourced from Codeforces
programming contests (Hendrycks et al., 2021, APPS; Li
et al., 2022). Notably, current program synthesis literature
predominantly favors policy-based algorithms. In a nut-
shell, policy-based RL directly optimizes a policy (or an
LM in NLP contexts), whereas value-based RL determines
the value of each action and subsequently infers the policy
that maximizes the values. Further details on these concepts
will be discussed in Section 2. To conceptually demonstrate
the differences between these methods, Figure 1 presents a
spectrum of RL applications. It could be observed that in scenarios where rewards are readily obtain-
able or there’s plenty of off-policy data - data not generated by the current policy/model - value-based
methods tend to be preferred. Consider, for instance, InstructGPT (Ouyang et al., 2022) (policy-
based) and AlphaGo (Silver et al., 2016) (value-based). The former relies on human annotators
(expensive) to label model-generated (on-policy) responses, while the latter obtains rewards from
simulators (cheap), and leverages human expert games (off-policy) during training. The aforemen-
tioned attributes of program synthesis - readily available reward function and off-policy programs1

provided by human developers - in fact hint at a natural compatibility with value-based methods,
which is potentially much more sample efficient than policy-based methods. However, value-based
RL are known to be less stable and suffer from poor convergence. The large state-action space in
NLP tasks further exacerbate these issues. To this end, we introduce B-Coder (Bellman coder) and
our contributions are three fold:

• We stabilize value-based RL for program synthesis by proposing an initialization protocol
for Q-functions and a conservative Bellman operator to mitigate the training complexities.

• We demonstrate how to leverage value functions as a dual strategy to improve generation.
• B-Coder achieves strong empirical performance with minimal reward engineering, provid-

ing further insights of RL algorithm design independent of reward function designs.

Related work. Supervised LM training scheme using masked language modeling (Kenton &
Toutanova, 2019) or next token predictions (NTP), has recognized limitations. One prominent is-
sue is the exposure bias: given that the training is done in a “teacher-forcing” manner (Bengio
et al., 2015; Ranzato et al., 2015), errors tend to accumulate during the testing phase due to auto-
regressive generation. Furthermore, these supervised losses fall short when assessing the functional

1Program synthesis datasets often have a collection of ground truth code developed by human programmers.
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accuracy of synthesized programs (Hendrycks et al., 2021; Chen et al., 2021a). As such, relying
solely on supervised learning for program synthesis is not ideal. In sequence generation contexts,
prior works (Ranzato et al., 2015; Rennie et al., 2017) have demonstrated the efficacy of RL in op-
timizing non-differentiable metrics, e.g. BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), by
leveraging automatic scoring as reward function.

2 PRELIMINARIES

One could formulate the program synthesis task as a sequence-to-sequence generation task, where a
model takes a problem description D as input and outputs a program Ŵ which aims to achieve the
functionality specified by D. A generated program Ŵ = (ŵ0, . . . , ŵT ) is composed by a sequence
of tokens ŵt ∈ V . For brevity, we use constant T to denote the sequence length although it could
be a variable in practice, and W to denote a program in general (both generated and ground truth).
Let LM be an instance of LM, ℓ((w<t, D), ·) be the logits layer (language modelling head) output,
and p(·|w<t, D) be the probabilistic distribution over the vocabulary V (computed by passing ℓ(·, ·)
through softmax), conditioned on a sequence w<t and D. Suppose W ∗ is a ground truth program
and Dtrain is the train set, conventionally LM could be trained by minimizing the cross-entropy loss

Lce(p) = −EW∗∼Dtrain log p(W
∗|D) = −EW∗∼Dtrain

∑
t log p(w

∗
t |w∗

<t, D) (1)

2.1 RL NOTATIONS

To make notations easier to interpret, we bridge program synthesis notations to standard RL ones.
RL problems are typically formulated as Markov Decision Processes (MDPs) and an MDP M is
often composed by a 5-tuple M=(S,A,P, r, γ) which are state space, action space, transition func-
tion, reward function and discount factor, respectively. The discount factor γ discounts future values
to emphasize the near futures, and we use γ=0.999 (which slightly prefers more concise solution).
A (stochastic) transition function P : S ×A → ∆(S) is a distribution over S conditioned on a state-
action pair (s, a). In program synthesis, P is trivial as st+1 ≡ st◦at, where ◦ denotes concatenation.

State and action. In code generation contexts, an action at is a token ŵt. Hence the action space
A is the vocabulary V . As the information used to generate token ŵt is (ŵ<t, D), the state is hence
defined as st := (ŵ<t, D). For a given D, the state space S = VT . For brevity, we will mainly use
st, at rather than the wt notations, and sometimes omit the time index t if it leads to no confusion.
We will also use s′, a′ to denote st+1, at+1 whenever only the relative temporal position matters.

Policy. A policy π : S → ∆(A) assigns an action distribution ∆(A) to any state s ∈ S , meaning
predicting a token ŵt based on current sequence ŵ<t and the problem specification D. Prior works
often define πθ ≡ pθ and directly optimize LM parameters θ with PG methods. We however define
π := f(θ,□) to be a function of θ and other components □, see details in Section 3.

r(W ) = r(sT , aT ) =
+1.0, if W passed all unit tests
−0.3, if W failed any unit test
−0.6, if W cannot be executed
−1.0, if W cannot be compiled

(2)

Reward function. A reward function r : S × A → R
determines reward of taking action at at state st. We follow
the reward design of Le et al. (2022) in equation 2. We may
also use shorthand notation rt := r(st, at). Note that the
reward is determined when the program W is completed at
T . Thus rt = 0 if t ̸= T otherwise defined as equation 2.

Value functions. RL maximizes J(π) = E[
∑

t γ
trt|π,M], i.e. discounted cumulative rewards.

Value functions, including state-action value function Qπ : S × A → R and state value function
V π : S → R, are defined recursively as follow:

V π(s) := E
[∑∞

t=0γ
trt|π,M, S0 = s

]
= Ea∼π(·|s),s′∼P(·|s,a) [r(s, a) + γV π(s′)] (3)

Qπ(s, a) := E
[∑∞

t=0γ
trt|π,M, S0 = s,A0 = a

]
= Es′∼P(·|s,a) [r(s, a) + γQπ(s′, π)] (4)

where Q(s, π) := Ea∼πQ(s, a). Also, the advantage function is Aπ(s, a) := Qπ(s, a)− V π(s).

2.2 VALUE-BASED RL AND DUELING DQN

Value-based algorithms especially the Q-learning family (Watkins & Dayan, 1992; Mnih et al., 2013;
Van Hasselt et al., 2016; Bellemare et al., 2017) have achieved remarkable successes. A canonical
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framework of the Q-learning family iterates between policy evaluation and policy improvement:

policy evaluation: Qt = argminQ E[Qt−1(s, a)− (r + γQt−1(s
′, πt−1))]

2 (5)
policy improvement: πt = argmaxπ Qt(s, π(s)) (6)

where the evaluation step estimates the previous policy πt−1 using the Bellman equation (Bellman,
1966), and the improvement step finds an improved policy πt by maximizing the current Q estimates.

In particular, we build our framework on top of Dueling DQN (Wang et al., 2016, DDQN). In a
nutshell, DDQN approximates V (s) and A(s, a) with separate heads, and run evaluation and im-
provement steps with Q := V + A. This bifurcation enables a robust estimation of V (s) without
conflating it with the actions, which subsequently ensures a more stable learning of A(s, a) given
that it focuses solely on the relative values. As a consequence, DDQN often exhibits enhanced sta-
bility in learning dynamics and improved generalization. In addition to the prior mentioned advan-
tages, DDQN enables us to leverage a task structure that ground truth programs should attain highest
advantages, therefore reducing the searching space, which we will elaborate on in Section 3.1.

3 ALGORITHMIC DESIGNS - ACCELERATING VALUE-BASED TRAINING
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Figure 2: Training curves on APPS
train set. ■ represents B-Coder, ⋆ is
B-Coder without our conservative
operator, and ▼ is B-Coder without
both our operator and initialization
(i.e. vanilla DDQN).

While value-based RL offers exciting potential, its training
process presents challenges due to the large action space A =
V and the high-dimensional state space S = VT with dimen-
sions up to T . This leads to a notably large Q-table of size
O(|V|T ). And the policy search space has a cardinality of
|A||S| = O(|V||V|T ) that grows doubly exponentially. Both
challenges from large action spaces and high-dimensional state
spaces are pivotal research topics in RL. The action space
challenges are discussed by e.g. Dulac-Arnold et al. (2015);
Tavakoli et al. (2018); Kalashnikov et al. (2018), while He
et al. (2016); Nair et al. (2018), among others, considered the
state spaces complexities. In particular, Silver (2015); Duan
et al. (2016) commented on that the potentially better training
stability of policy-based methods in these scenarios.

To address the challenges inherent in training value-based RL for LMs, at a high level, we developed
B-Coder considering three key aspects: incorporation of task structure, initialization of Q-function,
and backup using a conservative Bellman operator. Figure 2 previews the effectiveness of our algo-
rithmic designs, which shows the training curve of different value-based RL algorithms on the APPS
dataset. Due to aforementioned challenges, the performance of the vanilla DDQN continuously de-
creases even evaluated on the training set. In contrast, both the Q-function initialization and the
conservative Bellman operator show benefits in stabilizing and accelerating the training dynamics.
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Figure 3: (a) A forward graph of conventional enc-dec
LMs, with a pre-trained checkpoint θckpt; (b) Our for-
ward graph for pre-training ϕ; (c) Our forward graph
for fine-tuning θ. A snowflake indicates a compo-
nent remaining frozen/constant during that stage.

For notational convenience in subsequent
sections, we begin with an overview of our
notations and parameterizations, summa-
rized in Figure 3. Figure 3(a) denotes a pre-
trained encoder-decoder LM parameterized
by θckpt (where subscript ckpt denotes the
fact it’s a checkpoint/constant). Figure 3(b)
and (c) show the forward graphs of our two
different training stages: (b) corresponds to
a pre-training stage on ϕ to provide good
initialization for (c) the subsequent fine-
tuning of θ. Details and motivations are de-
ferred to Section 3.2 and 3.3, respectively.
As we proceed to the rationale behind our
designs, maintaining an impression to θckpt,
ϕ, θ and their corresponding products, es-
pecially forward path to Qϕ and Qθ, might
help to clear confusions.
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3.1 LEVERAGING TASK STRUCTURES

As noted earlier, a key attribute of program synthesis task is the provision of human solutions,
which are guaranteed to be correct. As a result, these solutions should attain the highest Q-values,
even if the correct solutions might not be unique. As such, for a ground truth program W ∗ =
(s∗0, a

∗
0, . . . , s

∗
T , a

∗
T ), Q(s∗t , a

∗
t ) ≥ Q(s∗t , a) holds for all a ∈ V , thereby A(s∗t , a

∗
t ) ≥ A(s∗t , a).

To enforce this structure, one could ensure A(W ) ≤ 0 and A(W ∗) ≈ 0, where we slightly abuse
the notation and let A(W ) :=

∑T
t=0 A(st, at). It ensures that W ∗ has advantages that are roughly

the highest. To this end, suppose g(·) is a general neural network, we decompose Q as follows,

Q(s, a) = g(s, a)−maxa g(s, a)︸ ︷︷ ︸
non-positive advantage

+V (s) = A(s, a) + V (s). (7)

It enforces our first condition that A(W ) ≤ 0. For the second condition A(W ∗) ≈ 0, we optimize
an advantage function A by minimizing an auxiliary advantage loss function, namely Ladv,

Ladv(A) = E(s∗0 ,a
∗
0 ,...,s

∗
T ,a∗

T )∼Dtrain

∑T
t=0|A(s∗t , a

∗
t )|. (8)

We also set upper bound of Q-function with Rmax=1, max total rewards. See Appendix D for details.

3.2 Q-FUNCTION INITIALIZATION

Despite the task structures introduced, training the Q-function from scratch remains extremely chal-
lenging. While this is not a problem for policy-based learning (given that directly fine-tune pre-
trained LMs without requiring a Q-function at all), it presents significant challenges in value-based
approaches because one often does NOT have a pre-trained Q-function. To this end, we show that
one could initialize a Q-function from the logits (generator) function ℓ(·, ·) of a pre-trained LM.

Initialization of Q via pre-trained models. Yu & Zhang (2023) considered the fine-tuning of
RL agents after offline RL pre-training. Their main idea is to reconstruct a fine-tuning Q-function
from the pre-trained policy, which achieves strong performance during online fine-tuning. Drawing
inspiration from this approach, it’s feasible to similarly reconstruct or initialize a Q-function for
fine-tuning using a pre-trained LM, analogous to using a pre-trained policy.

This initialization was motivated by the energy-based policy line of works (Haarnoja et al., 2017;
2018), where a policy π is the product of passing a Q-function through a softmax transfer function.
Analogously, in LMs, p - the distribution over V - is produced by passing logits ℓ through softmax.

language modeling: p(a|s) = exp (ℓ(s, a))
/∑

a∈A exp (ℓ(s, a)) (9)

energy-based π: π(a|s) = exp
(
1
αQ(s, a)

)/∑
a∈A exp

(
1
αQ(s, a)

)
, (10)

where α is a temperature hyper-parameter. One could naturally set Q(s, a) = αℓ(s, a) for initial-
ization. Hence, with aforementioned dueling structure in equation 7 and our pre-defined parame-
terization, one could set the advantage function as Aθckpt(s, a) := α[ℓθckpt(s, a)−maxa ℓθckpt(s, a)],
leading to Qϕ(s, a) := Aθckpt(s, a)+Vϕ(s). See also our forward pass graph defined in Figure 3b. In
a nutshell, this Qϕ-function produces a policy πϕ identical to the output distribution pθckpt of LMθckpt ,

πϕ(a|s)=softmax[ 1αQϕ(s, a)][a]=softmax[ℓθckpt(s, a)−max
a

ℓθckpt(s, a) +
1
αVϕ(s)][a]=pθckpt(a|s).

(11)
Recalling equation 5 - 6, the Q-learning family can be viewed as iterations between policy evaluation
and improvement. We now elaborate on how this Qϕ-function initialization affects both steps.

Policy improvement. One could consider the operation of taking softmax with respect to 1
αQϕ(s, a)

as soft policy improvement (Haarnoja et al., 2018) step with temperature α. Therefore, equation 11
can be interpreted as: running soft policy improvement alone with this initialized Qϕ preserved the
performance of pre-trained LMθckpt , offering a good starting point of online fine-tuning.

Policy evaluation. Yet, this Qϕ-function only captures relative values, since we initialized only the
advantages Aθckpt - the relative information - as shown in equation 11. Vϕ can thereby have arbitrary
values. This would not affect the policy improvement step due to the translation invariance of the
softmax function. However, during the policy evaluation step, see e.g. equation 5, the Bellman error
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can be heavily influenced by the V -values. When the V -values is the dominant source of error, the
policy evaluation optimization be largely driven by the state-only V -values. This can lead to a loss
of the relative action values we intended to preserve in the previous step.

Pre-training of Vϕ. This can be addressed by adding a pre-training phase of Vϕ(s), during which we
freeze the advantage function Aθckpt and train Vϕ by minimizing Bellman error (or equivalently doing
policy evaluation). In this pre-training phase, we optimize the following loss until convergence

LV (Vϕ; ℓθckpt) =
1
T E(st,at,rt,st+1)∼Dtrain

∑T
t=0 [rt + γ SG (Qϕ(st+1, ât+1))−Qϕ(st, at)]

2 (12)

where SG is a stop gradient operator, SG(Qϕ(s
′, â′)) follows standard semi-gradient optimization,

ât+1 is a target action (details deferred to section 3.3), and Qϕ(s, a) = Aθckpt(s, a) + Vϕ(s).

In summary, our initialization steps ensures that, prior to fine-tuning θ, our Qϕ meets two important
conditions: it starts with the output distribution pθckpt of a pre-trained LMθckpt , it begins with low
Bellman error (because the pre-training of Vϕ directly minimizes Bellman error).

3.3 A CONSERVATIVE BELLMAN OPERATOR

With a pre-trained state value function Vϕ, we are now ready to learn a good state-action value func-
tion via fine-tuning. We parameterize Qθ(s, a) := Aθ(s, a)+Vθ(s) = α[ℓθ(s, a)−maxa ℓθ(s, a)]+
V r
θ + Vϕ, where we define Vθ = V r

θ + Vϕ, and we initialize θ in a way such that ℓθ = ℓθckpt and
V r
θ = 0. It ensures that Qθ = Qϕ on initialization, a good starting point for subsequent fine-tuning

on θ. Technically speaking, setting Vθ = V r
θ + Vϕ is not required, as one could finetune both θ and

ϕ. We however observed that finetuning a residual head, with ϕ frozen, leads to better stability.

Although we avoid training Qθ from scratch, optimizing Qθ by Q-learning family algorithms can
still be challenging. We attribute this to the characteristics of the Bellman optimality operator B∗ that
seeks to learn the optimal value function Q∗ and optimal policy π∗, which requires a good data cov-
erage of the state-action space S×A (e.g. Jiang & Huang, 2020; Xie et al., 2021a; Zhan et al., 2022).
In program synthesis, however, such assumption can hardly be met due to the large state-action space
and the high computational costs of Transformer inference. While conventional Q-learning family
relies on B∗, recent works in RL, especially those considering limited data regime (e.g. Agarwal
et al., 2020; Levine et al., 2020), often design “conservative” operators (e.g. Achiam et al., 2017;
Kumar et al., 2020; Brandfonbrener et al., 2021) to address difficulties led by B∗.

Conservative Bellman Operators. The concept behind conservative Bellman operators is to “aim
low”. Instead of learning the optimal Q∗ and π∗, these operators typically seeks to learn a policy π
that either surpasses a behavior policy (which is used to collect a RL dataset in offline RL literature,
see e.g. Achiam et al., 2017; Brandfonbrener et al., 2021) or fine-tune a pre-existing policy (e.g. Xie
et al., 2021b; Yu & Zhang, 2023). This is often achieved by introducing a regularizer that penalizes
deviations from the behavior/pre-existing policy. In particular, as shown in equation 14, we define
our conservative Bellman operator Bq , which depends on a fixed, pre-defined policy q, as follows:

optimality B: (B∗Q)(s, a) = r(s, a) + γEs′ [Q(s′, â′)],where â′ = argmaxa Q(s′, a) (13)

conservative B: (BqQ)(s, a) = r(s, a) + γEs′ [Q(s′, â′)],where â′ = argmaxa q(a|s′). (14)

The intuition behind our operator Bq is that we evaluate the action-value function Qq↑ of a greed-
ified policy q↑(a|s) := 1{a = argmaxa q(a|s)}, where 1 is the indicator function. The rationale
behind greedification is that q↑ can be seen as q in a greedy-decoding mode, which usually has bet-
ter (one-shot) capability than sampling mode (although the latter has better generation diversity).
Considering setting q = pθckpt , the operator Bpθckpt seeks to learn a policy π that outperforms pθckpt .

We further comment on some properties of Bq: proposition 3.1 shows Bq is a contraction, meaning
there is an unique fixed point. It leads to proposition 4.1, motivating our development of Section 4.
Proposition 3.1. Bq is γ-contraction in ℓ∞ norm.

Given our conservative Bellman operator, we could define our conservative Bellman error loss

LQ(Qθ; q) =
1
T E(st,at,rt,st+1)∼Dtrain

∑T
t=0 [rt + γ SG (Qθ(st+1, ât+1))−Qθ(st, at)]

2
, (15)

where ât+1 = argmaxa q(a|st+1), and Qθ(s, a) = α [ℓθ(s, a)−maxa ℓθ(s, a)] + V r
θ (s) + Vϕ(s).
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3.4 IMPLEMENTATION - OPTIMIZATION AND SAMPLING

Architecture and parameterization recap. Following (Le et al., 2022; Shojaee et al., 2023; Liu
et al., 2023), we choose T5 (Raffel et al., 2020) as our base architecture for θckpt, ϕ and θ; and θckpt

is initialized with CodeRL checkpoint that is publicly available. Specifically, θckpt, ϕ and θ share a
same encoder, and the encoder is frozen throughout, to reduce the amount of frozen parameters.

Two-stage training. As noted earlier, our training are composed with two stages: a pre-training
stage of ϕ, namely ϕ-stage, and a fine-tuning stage of θ, namely θ-stage. A pseudo-algorithm could
be found in Appendix A. In addition, further implementation details are deferred to Appendix G.

ϕ-stage: Given our development of Section 3.2, we pre-train Vϕ function using stochastic gradient
descent with ∇ϕLV (Vϕ; ℓθckpt), as defined in equation 12.

θ-stage (fine-tuning): In this stage, we seek to optimize Qθ to minimize our previously developed
losses: Ladv and LQ, as defined in equation 8 and 15, respectively. In addition, it is a common
practice to include a cross-entropy loss during fine-tuning. Therefore, we conclude our final loss
function as equation 17, and θ is updated using stochastic gradient descent with ∇θLft(Qθ; pθckpt).

Recall: Qθ(s, a) = Aθ(s, a) + Vθ(s) = α (ℓθ(s, a)−maxa ℓθ(s, a)) + V r
θ (s) + Vϕ(s) (16)

Lft(Qθ; pθckpt) = LQ(Qθ; pθckpt) + βadvLadv(Aθ) + βceLce(πθ), where πθ=softmax
(
1
αQθ

)
. (17)

Nucleus sampling with Qθ. Nucleus sampling (top-p sampling) (Holtzman et al., 2019) with sam-
pling temperature2 (Ackley et al., 1985) has been one of the most important sampling techniques. It
can also be easily implemented in our framework. One could simply consider Qθ/α as logits and
the sampling procedure would remain identical to standard LMs, see Appendix B for details.

4 A FREE REWARD MODEL

Reward modeling and beyond. Due to the successes of reinforcement learning from human/AI
feedback (Christiano et al., 2017; Bai et al., 2022b). Reward modeling and RL fine-tuning with
learned reward model has been a popular choice for post-SFT - supervised fine-tuning - refine-
ment (see e.g. Ziegler et al., 2019; Stiennon et al., 2020; Bai et al., 2022a; Ouyang et al., 2022). In
particular, in program synthesis, Le et al. (2022) trains a classifier, that predicts unit test outcomes,
as their reward model for RL fine-tuning. However, reward models can sometimes be expensive to
train and their quality can heavily impact RL fine-tuning performance. Recent works (e.g. Rafailov
et al., 2023; Diao et al., 2023) explore preference learning beyond conventional reward model.

Modeling reward function, on the other hand, has been a long-lasting topic in inverse RL or imi-
tation learning (IRL or IL, see e.g. Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Ho
& Ermon, 2016). While conventional IRL/IL often iterates between reward model fitting and RL
training stages, recent IL works (Jacq et al., 2019; Garg et al., 2021) also explore beyond explicitly
reward modeling to reduce training instability and optimization difficulty, caused by the iterative op-
timization scheme. Specifically, Garg et al. (2021) leverages the one-to-one correspondence between
Q-function and reward model, with soft Bellman operator, to eliminate the reward fitting step.

Analogously to Garg et al. (2021), this one-to-one correspondence also holds with our conservative
Bellman operator Bq . We define the inverse conservative Bellman operator T q : RS×A → RS×A,

(T qQ)(s, a) = Q(s, a)− γEs′Q (s′, argmaxa q(a|s′)) . (18)

Proposition 4.1. The inverse conservative Bellman operator T q is a bijection.

Proposition 4.1 shows that a Qθ is uniquely corresponding to a reward function r̃θ := T qQθ.3 Given
the definition of T q we could recover the reward model r̃θ with Qθ without additional training:

r̃θ(s, a) = Qθ(s, a)− γEs′Qθ

(
s′, argmaxa pθckpt(a|s

′)
)
≈ Qθ(s, a)− γVθ(s

′). (19)

We use the approximated r̃θ(s, a) ≈ Qθ(s, a) − γVθ(s
′) version of reward model due to com-

putational advantages. Imagining a scenario in which we sample/decode using a trained Qθ, the
2Sampling temperature is different from temperature α in equation 10. They can be different values.
3We use r̃ and r to name our recovered reward model and real reward signals, respectively.
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forward pass will compute Qθ(s, a) and Vθ(s) for each timestep. But pθckpt will not be evaluated
during generation, because pθckpt is only used when computing LQ( · ; pθckpt). Computing the exact
version Qθ(s, a) − γEs′Qθ(s

′, argmaxa pθckpt(a|s′)) will require additional computation of pθckpt

during generation. In contrast, Q(s, a) and V (s) are already computed during generation, therefore
it requires almost no additional computation to compute r̃θ(s, a).

Candidates selection with r̃θ. As a dual strategy, we leverage our reward model r̃θ to do candidate
programs selection, as an example to highlight the additional benefits of value-based RL. Existing
works have shown one could improve program pass rate by filtering out programs that are likely to
be incorrect. For instance, Chen et al. (2021a) filtered out programs that cannot pass example unit
tests given in doc-strings, and Chen et al. (2022) filtered out programs that cannot pass generated
unit tests. Furthermore, reward models are also often used to rank and select candidate programs
(see e.g. Gulcehre et al., 2023; Touvron et al., 2023).
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Figure 4: Kernel density estimation of
R̃θ(·) evaluated on a collection of gen-
erated programs. The x-axis represents
the predicted reward given by R̃θ and
the y-axis is its density. Color codes the
true outcomes defined in equation 2.

We rank generated programs by cumulative rewards, pre-
dicted by our reward model, R̃θ(W ) =

∑T
t=0 r̃θ(st, at)

to select the programs that are most likely to be correct.
Specifically, for pass@k metrics, we follow the evalua-
tion protocol used in CodeT (Chen et al., 2022), a work
that considered program selection via automatic gener-
ated tests. This protocol computes pass@k by first gen-
erating m programs and select a subset of k programs to
evaluate pass@k. In our case, we select the k-sized sub-
set with top-k highest R̃θ(·) from total m candidates. Our
results in Section 5 will follow this evaluation protocol.

To preview the effectiveness of our reward model, we
show the correlation between environmental reward r and
our cumulative reward R̃θ. As shown in Figure 4, ■ green
region corresponds to correct programs and, on average,
have the highest R̃θ. For incorrect programs, those with
compile error and runtime error have, on average, the lowest and second lowest R̃θ, respectively.
And programs, that can be executed but fail some tests, have second highest R̃θ. Hence, it concludes
that our reward model R̃θ(·) has an evident positive correlation to the true reward function r(·).

5 EMPIRICAL EVALUATION

APPS benchmark and baselines. In line with prior RL-based works (Le et al., 2022; Shojaee
et al., 2023; Liu et al., 2023), we evaluate B-Coder on the challenging code contests benchmark
APPS (Hendrycks et al., 2021). It contains 5,000 training and 5,000 testing problems, with three
difficulty levels: introductory, interview and competition. We compare our B-Coder with pre-
trained or supervise fine-tuned LLM baselines - GPT2 (Radford et al., 2019), GPT3 (Brown et al.,
2020), GPT-Neo (Black et al., 2021), GPT-J (Wang & Komatsuzaki, 2021), Codex (Chen et al.,
2021a) and AlphaCode (Li et al., 2022) - and RL fine-tuned baselines - CodeRL (Le et al., 2022),
PPOCoder (Shojaee et al., 2023) and concurrent RLTF (Liu et al., 2023).

APPS: without example test outcomes. In the APPS dataset, each problem has several example
unit tests (different from the hidden unit tests used for evaluation). These example tests are usually
leveraged to refine generated samples. For example, CodeRL and RLTF considers a critic sampling
(CS) strategy that refines and repairs generated programs based on the execution results of example
tests. We start with experiments results in which example test outcomes are not used (hence CodeRL
and RLTF results in Table 1 are without CS). Table 1 shows that our B-Coder has overall the best
pass@k for k={1, 5} and achieves second best place for k=1000 (best result reported by concurrent
work RLTF). For Table 1 results, we use nucleus sampling with sampling temperature=0.6, m=256
for k={1, 5}, and temperature =0.6, m=2500 for k=1000, where m is a hyper-parameter of our
ranking protocol introduced in Section 4 (see Appendix F for an ablation study on m).

4For both ϕ and θ-stage, our model trains a decoder and heads, i.e. ≤770M trainable params per stage.
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Table 1: Empirical evaluation on APPS test set. †, ‡ and ‡‡ indicates results duplicated from Le et al.
(2022), Shojaee et al. (2023) and Liu et al. (2023), respectively. Bold number indicates the best
result and underlined number means our result are the second best.

Model # trainable
parameters

Pass@1 Pass@5 Pass@1000

Intro Inter Comp All Intro Inter Comp All Intro Inter Comp All

Codex† 12B 4.14 0.14 0.02 0.92 9.65 0.51 0.09 2.25 25.02 3.70 3.23 7.87
AlphaCode† 1B - - - - - - - - 17.67 5.24 7.06 8.09

GPT3† 175B 0.20 0.03 0.00 0.06 - - - - - - - -
GPT2† 0.1B 1.00 0.33 0.00 0.40 2.70 0.73 0.00 1.02 - - - -
GPT2† 1.5B 1.30 0.70 0.00 0.68 3.60 1.03 0.00 1.34 25.00 9.27 8.80 12.32

GPT-Neo† 2.7B 3.90 0.57 0.00 1.12 5.50 0.80 0.00 1.58 27.90 9.83 11.40 13.76
GPT-J† 6B 5.60 1.00 0.50 1.82 9.20 1.73 1.00 3.08 35.20 13.15 13.51 17.63

RL based methods - without using example unit tests

CodeRL† 770M 6.20 1.50 0.30 2.20 9.39 1.90 0.42 3.10 35.30 13.33 13.60 17.78
PPOCoder‡ 770M 5.20 1.00 0.50 1.74 9.10 2.50 1.20 3.56 35.20 13.35 13.90 17.77

RLTF‡‡ 770M 4.16 0.97 0.20 1.45 10.12 2.65 0.82 3.78 38.30 15.13 15.90 19.92
B-Coder ≤770M/stage4 6.70 1.50 0.30 2.30 10.40 2.63 0.70 3.80 37.00 13.67 12.60 18.12

Table 2: APPS results when using example test outcomes.

Model Pass@1 Pass@5

Intro Inter Comp All Intro Inter Comp All

Codex† filtered 22.78 2.64 3.04 6.75 24.52 3.23 3.08 7.46
AlphaCode† filtered - - - - 14.36 5.63 4.58 7.17

CodeRL† cs 6.77 1.80 0.69 2.57 15.27 4.48 2.36 6.21
CodeRL† filtered 16.27 6.00 4.27 7.71 - - - -
CodeRL† cs+filtered 16.52 6.16 4.15 7.83 24.49 8.58 7.82 11.61
RLTF‡‡ cs 8.40 2.28 1.10 3.27 18.60 5.57 3.70 7.80
B-Coder filtered 18.00 6.63 2.30 8.04 23.30 8.83 6.40 11.30

APPS: using example test out-
comes. We then report results
of using example test outcomes,
in Table 2. In addition to the
CS strategy that uses example
tests to refine and repair pro-
grams, Chen et al. (2021a) and
Li et al. (2022) also consider a
filtered setting in which they fil-
tered out those programs fail ex-
ample tests and compute pass@k with (a subset of) those programs which pass example tests. We
also evaluate our B-Coder with this filtered setting. Similarly, we start by filtering out programs
that cannot pass example tests. Suppose n programs out of m pass, we follow our previous ranking
protocol and select top-k programs for evaluation. (In the case n < k, we additionally select top-
(k − n) programs from the rest m − n programs, those fail example tests.) B-Coder outperforms
all baselines with either CS or filtered setting for k = {1, 5}. The baseline, CodeRL+CS+filtered,
incorporated both strategies achieved only a small advantage over B-Coder for pass@5 while being
surpassed by B-Coder for pass@1. We remark that CS is a plug-and-play strategy, it can be also
combined with B-Coder, to further improve pass rate. For the results in Table 2, we use the same
temperature and m, as those used in the setting without example test outcomes.

Table 3: Generalization to CodeRL. Pass@k eval-
uated with top-k ranked programs, generated by
CodeRL. · indicates absolute improvement achieved
by ranking, compared to un-ranked pass@k.

k Temp. Pass@k

Intro Inter Comp All

1 0.4 6.30 1.91 1.27 0.37 0.50 0.37 2.12 0.68
0.6 6.00 2.13 1.23 0.42 0.50 0.36 2.04 0.75

5 0.4 9.30 -0.2 2.10 0.01 0.70 0.15 3.26 0.00
0.6 10.20 0.58 2.57 0.41 0.80 0.16 3.74 0.39

Table 4: Zero-shot pass@k on MBPP. · indicates
absolute improvement achieved by ranking.

Temp. k=1 k=5 k=10 k=80

0.7 20.13 6.61 37.04 5.61 44.45 4.63 64.00 1.41

0.8 18.89 6.99 36.59 7.21 44.46 6.59 65.20 4.28

0.9 17.32 7.34 35.04 8.58 43.15 8.22 63.20 4.33

Generalization ability. In addition, we test
the generalization ability of our dual strat-
egy, i.e. our reward model r̃θ. In particular,
we consider - generalization to other mod-
els and generalization to other domains - and
designed the subsequent experiments, which
confirmed its generalizability in positive.

For the former, we generate (off-policy) pro-
grams using CodeRL (with m=256), and
rank those programs by R̃θ. Table 3 shows
our ranking strategy leads to improvements
in most cases, even though the programs to
be ranked are not generated by B-Coder.

For the latter, we test our dual strategy with
another dataset MBPP (Austin et al., 2021)
(with m=512). Table 4 shows consistent im-
provements for all temperatures and k.
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6 CONCLUSION

In this work, we explore applicability of value-based RL algorithms in program synthesis task. We
show how to stabilize and accelerate training through Q-function initialization and conservative
backups. Moreover, our work is conducted under minimal reward engineering effort, focusing on
pure algorithmic perspective. Appendix C presents a further comparison with baselines regarding
reward engineering. While policy-based algorithms being mainstream in current code generation
literature, it is recognized being sample-inefficient (see e.g. Nachum et al., 2017), meaning poorly
using off-policy data, even data previously generated. We believe, value-based RL is a key direction
to scale RL for code generation at large by (re)-using the extensive collection of off-policy programs.
Our work could serves as an important initial step towards this direction.
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A PSEUDO-CODE FOR TRAINING

Algorithm 1 Training Procedure with ϕ- and θ-stages

Require: θckpt, ϕ, and θ with a shared frozen encoder
1: # pre-training stage, update ϕ only
2: procedure PRETRAINV VALUE(ϕ) ▷ ϕ-stage
3: for num iters do
4: Draw sample (s, a, r, s′) from dataset
5: Compute logits ℓθckpt(s, ·)
6: Compute state value Vϕ(s)
7: Compute loss LV (Vϕ; ℓθckpt) ▷ arguments omitted for brevity
8: Gradient step with ∇ϕLV (Vϕ; ℓθckpt) ▷ equation 12
9: end for

10: end procedure
11: # fine-tuning stage, update θ only
12: procedure FINETUNEQVALUE(θ) ▷ θ-stage
13: for num iters do
14: Draw sample (s, a, r, s′) from dataset
15: Compute residual state-value V r

θ (s)
16: Compute pre-trained state-value Vϕ(s)
17: Compute state-value Vθ(s) = V r

θ (s) + Vϕ(s)
18: Compute advantage Aθ(s, ·) = ℓθ(s, ·)−maxa ℓθ(s, a)
19: Compute Qθ(s, ·) = αAθ(s, ·) + Vθ(s) ▷ equation 16
20: Compute πθ(·|s) = softmax(Qθ(s, ·)/α)
21: Compute pθckpt(·|s) ▷ equation 14
22: Compute LQ(Qθ; pθckpt) ▷ equation 15
23: Compute Lce(πθ) and Ladv(Aθ) ▷ equation 1 and 8
24: Compute fine-tune loss Lft(Qθ; pθckpt) = LQ(Qθ; pθckpt) + βceLce(πθ) + βadvLadv(Aθ)

25: Gradient step with ∇θLft(Qθ; pθckpt)
26: end for
27: end procedure

B PSEUDO-CODE FOR SAMPLING

Algorithm 2 Sampling Procedure

Require: θ, ϕ; SAMPLERp,t(·) : R|V|×1 → V that maps a logits vector to a token with hyper-
parameters p (top-p sampling) and temperature t

1:
2: procedure SAMPLEONETOKEN(s)
3: Obtain current state s
4: Compute logits vector ℓθ(s) ∈ R|V|×1

5: Compute advantage vector Aθ(s) = ℓθ(s)−maxa ℓθ(s)[a]
6: Compute Vθ(s) = V r

θ (s) + Vϕ(s)
7: Compute Q vector Qθ(s) = αAθ(s) + Vθ(s)
8: Run SAMPLERp,t (Qθ(s)/α) ▷ sample with Qθ(s)/α
9: end procedure

C REWARD ENGINEERING COMPARISON

Table 5 shows that ours has the least reward engineering effort. Note that our reward model r̃θ is
directly derived from Qθ, and is not used for training.
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Table 5: Comparison of reward designs

Reward Remark Ours CodeRL RLTF PPOCoder

Basic equation 2 ✓ ✓ ✓ ✓
Reward Model learned reward model ✓
Fine-Grained fine-grained error type & location of error ✓
Adaptive ratio of passed tests ✓
Syntactic Correctness compilable ✓
Syntactic Matching syntactic similarity to ground truth ✓
Semantic Matching semantic similarity to ground truth ✓

Table 6: Performance with only basic reward (equation 2). †and ‡‡ indicates results duplicated
from Le et al. (2022) and Liu et al. (2023), respectively.

Model Pass@1 Pass@5

Intro Inter Comp All Intro Inter Comp All

CodeRL† 4.60 1.10 0.20 1.62 7.10 1.57 0.40 2.44
RLTF‡‡ - - - 1.37 - - - 3.50
B-Coder 6.70 1.50 0.30 2.30 10.40 2.63 0.70 3.80

Table 6 shows the results when only basic reward function (defined in equation 2) is used, under no
example test outcomes setting. CodeRL and RLTF results are duplicated from reports.

D UPPER BOUND OF Q-FUNCTION

Given our reward design in equation 2, the cumulative reward is upper bounded by Rmax = 1.
We enforce Q(s, a) ≤ Rmax by transform the state value function as V (s) = −SOFTABS (V (s)) +
Rmax ≤ Rmax, where SOFTABS(x) := [SOFTPLUS(x)+ SOFTPLUS(−x)]/2+ln 2 is a soft absolute
function. Given A(s, a) ≤ 0, enforcing V (s) ≤ Rmax leads to Q(s, a) ≤ Rmax.

E A SPECTRUM OF RL APPLICATIONS

Table 7 provides explanations our application plot of Figure 1. Applications in games typically find
it easy to obtain rewards and make extensive use of off-policy data. Conversely, InstructGPT obtains
its rewards from preferences labeled by human annotators, with the data predominantly generated
by the GPT model itself. The self-driving application notable has high cost of gathering rewards,
due to the risks of real-world driving. While existing driving data could be utilized, Kendall et al.
(2019) specifically choose not to use pre-collected data, leading to their choice of a policy-based
algorithm. As for code generation, despite the availability of cheap rewards and available collection
of human (off-policy) programs, current literature leans towards policy-based methods.

Table 7: Summary of RL applications.

References Type of RL Costs of Getting Rewards Available Off-Policy Data

Atari (Mnih et al., 2013) value cheap: simulator extensive: history/human games

GO (Silver et al., 2016) value cheap: simulator extensive: history/human games

Poker (Moravčı́k et al., 2017)
(Brown & Sandholm, 2018) value5 cheap: simulator extensive: history/human games

StarCraft II (Arulkumaran et al., 2019) value cheap: simulator extensive: history/human games

InstructGPT (Ouyang et al., 2022) policy expensive: human annotators limited: mostly model-generated data

Image
Caption

(Ranzato et al., 2015)
(Rennie et al., 2017) policy cheap: automatic metrics limited: mostly model-generated data

Self-driving (Kendall et al., 2019) policy expensive: driving in real-world limited: mostly model-generated data

Code
Generation

(Le et al., 2022)
(Shojaee et al., 2023)
(Liu et al., 2023)

policy cheap: unit testing extensive: collection of human programs
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F ABLATION ON m
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Figure 5: Ablation on m: our ranking strategy achieves consistent improvements under different
budgets m.

Table 5 conduct an ablation study on ranking budgets m, it can be observed that our ranking strategy
achieves consistent improvements under different budgets m.

G TRAINING AND EVALUATION DETAILS

In supplement to implementation details in Section 3.4 and 5, we give more low-level details here.

APPS dataset. In addition to the train/test split details described in Section 5, APPS datast, on
average, consists of 2 example unit tests, 21 hidden unit tests, and 23 ground truth programs. We
follow the same procudure as Hendrycks et al. (2021); Le et al. (2022) to construct prompts for both
training and evaluation. Specifically, see Section 3 of Hendrycks et al. (2021).

MBPP dataset. MBPP has 974 instances with a 374/90/500 train/val/test splits and, in addition, 10
problems reserved for few-shot learning. Because we only do zero-shot evaluation on MBPP, only
the 500 test problems are used for evaluation. Each problem of MBPP usually comes with three unit
tests. In addition, these tests are usually not hidden. Therefore, prior works Le et al. (2022); Shojaee
et al. (2023); Liu et al. (2023) often explicitly incorporate the tests into prompt string. We follow
WizardCoder (Luo et al., 2023) to construct our input format. Details could be found in this repo.

Pre-trained model. We initialize our model with CodeRL checkpoint publicly available at here,
meaning we initialize θckpt, ϕ, and θ from it. Note that we freeze encoder for both ϕ-stage and
θ-stage, therefore the encoder is shared during both training and generation. For both training and
generation, we set the maximum length to 600 and 512 for source and target sequences, respectively.

Training data preparation. While we use Dtrain to represent our training dataset, yet we have not
elaborated on how it is constructed. In general, we follow the protocol of prior RL-based works that
combining all ground truth programs and a set of programs generated by the pre-trained model, for
each problem D. Specifically, we generate 256 programs per problem using pre-trained checkpoint.
Combined with ground truth programs, there are, on average, 278 programs per problem.

Mini-batch preparation. By prior definition, our dataset Dtrain now contains both ground truth
programs and generated programs. Notably, the volume of generated programs is significantly larger
than that of the ground truth programs. This means that if one were to randomly sample from the
dataset, generated programs would dominate the mini-batches. To address this, when preparing a
mini-batch, we sample ρreal × B ground truth programs and (1 − ρreal) × B generated programs,
where B is batch size.

ϕ-stage training. In the ϕ-stage, we pre-train state-value function Vϕ(s). We conduct our exper-
iment with 4×A100-80G GPUs. Specifically, we use batch size of 16 for each GPU and gradient
accumulation step of 4, resulting in a total batch size of 256. For optimizer and scheduler, we use

5While Poker AI often uses counterfactual regret minimization (Zinkevich et al., 2007), which isn’t strictly
reinforcement learning, the shared principle of estimating action values allows us to categorize it under value-
based methods.
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AdamW optimizer (Loshchilov & Hutter, 2018) with a constant learning rate of 1e-5 and a weight
decay of 0.05. We train ϕ for 18k gradient steps.

θ-stage training. In the θ-stage, we conduct our experiment with 8×A100-80G GPUs. Specificaly
we use batch size of 16 for each GPU and gradient accumulation step of 1, resulting in a total batch
size of 128. For optimizer and scheduler, we use AdamW with a peak learning rate 3e-5, a weight
decay of 0.05, and a linear decay scheduler with no warmup. We train θ for 10k gradient steps.

Other hyper-parameters. We set the ground truth data ratio ρreal = 0.5 and the energy-based
policy temperature α = 1 (see equation 10) for all experiments. In θ-stage, we use βadv = 0.1 and
βce = 0.5 .

H COMMENTS ON Bq PROPERTIES

H.1 PROPOSITION 3.1

Proof.

∥BqQ1 − BqQ2∥∞ = max
s,a

|r(s, a) + γEs′Q1 (s
′, â′)− r(s, a)− γEs′Q2(s

′, â′)|

(â′ = argmaxa q(a|s′))
= max

s,a
γ |Es′ [Q1(s

′, â′)−Q2(s
′, â′)]| (20)

≤ max
s,a

γEs′ |Q1(s
′, â′)−Q2(s

′, â′)| (21)

≤ max
s,a

γEs′ max
s′,a′

|Q1(s
′, a′)−Q2(s

′, a′)| (22)

= γ∥Q1 −Q2∥∞ (23)

H.2 PROPOSITION 4.1

Proof. The proof is similar to Lemma C.3. in Garg et al. (2021). To prove that T p is a bijection,
it suffices to show that for any r : S × A → R, there exists a unique Q : S × A → R such that
r = T pQ. Note that by proposition 3.1, there exists a unique Qp = Bpr that satisfies Qp(s, a) =
r(s, a) + γEs′Q

p (s′, argmaxa p(a|s′)). Rearranging the terms gives r = T pQp. This completes
the proof.

I DISCUSSION ON LIMITATIONS

Table 8: Pass@1 is evaluated with greedy decoded
programs, Pass@{5, 50, 100} are computed by
sampled programs using temperature = 0.4.

Pass@ CodeRL B-Coder

1 1.60 1.60
5 3.28 2.88

50 7.16 7.35
100 8.76 9.18

While being exploratory, our work admits cer-
tain limitations including: additional frozen pa-
rameters introduced, and we observe that raw
performance (without ranking) is mixed com-
pared to CodeRL (see Table 8) (which we be-
lieve is somewhat excusable as we use less re-
ward designs). However, we remark the effec-
tiveness of our overall framework including the
dual strategy is non-trivial, especially with lim-
ited reward engineering.
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