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ABSTRACT

One of the challenges of quantizing a large language model (LLM) is the presence
of outliers. Outliers often make uniform quantization schemes less effective, par-
ticularly in extreme cases such as 4-bit quantization. We introduce KurTail, a new
post-training quantization (PTQ) scheme that leverages Kurtosis-based rotation to
mitigate outliers in the activations of LLMs. Our method optimizes Kurtosis as
a measure of tailedness. This approach enables the quantization of weights, ac-
tivations, and the KV cache in 4 bits. KurTail utilizes layer-wise optimization,
ensuring memory efficiency. KurTail outperforms existing quantization methods,
offering a 13.3% boost in MMLU accuracy and a 15.5% drop in Wiki perplex-
ity compared to QuaRot (Ashkboos et al., 2024b). It also outperforms SpinQuant
(Liu et al., 2024) with a 2.6% MMLU gain and reduces perplexity by 2.9%, all
while reducing the cost of training the rotation. For comparison, learning the rota-
tion using SpinQuant for Llama3-70B requires at least four NVIDIA H100 80GB
GPUs, whereas our method requires only a single GPU, making it a more acces-
sible solution for consumer GPU.

1 INTRODUCTION

Large language models (LLMs) have advanced significantly in recent years, showcasing remarkable
performance and capabilities. As these models grow in size and complexity, the computational cost
required for their deployment and inference has increased dramatically. This has shifted the focus
toward accelerating model performance while reducing memory and computational requirements.
An effective method to achieve this is post-training quantization (PTQ), which involves represent-
ing model weights and/or activations in lower numerical precisions. PTQ can significantly reduce
the memory footprint and computational overhead and subsequently decrease latency and energy
consumption, which are especially beneficial for inference on resource-constrained edge devices.

Serving a model involves two stages of prefilling and generation. During prefilling, the model
processes the input prompt and stores the internal state, which is known as key-value (KV)
caching. During generation, tokens are produced auto-regressively. The prefilling stage is con-
sidered compute-bound, while the generation stage is memory-bound due to repeated access to and
updates of the KV cache. Quantizing each stage offers distinct advantages for improving inference
efficiency. KV-cache quantization reduces memory requirements and accelerates data movement,
which enhances the generation stage, particularly in scenarios involving long-context inference.
Weight quantization, on the other hand, reduces the memory footprint independently, and when it
is combined with activation quantization, it also reduces the computational demands, which mainly
speeds up the prefilling stage. However, activation quantization presents challenges due to large out-
liers (Dettmers et al., 2022; Xiao et al., 2023) in certain channels, which limits the effectiveness of
uniform integer quantization as it destroys the dynamic range of the activations. While channel-wise
quantization can effectively address this issue, the lack of hardware support makes it computation-
ally expensive in practice. Several methods have been proposed to address this challenge. Dettmers
et al. (2022) and Ashkboos et al. (2023) advocate for mixed-precision computation in which they
store some of the channels in higher precision and less sensitive channels in lower precision to
balance accuracy and efficiency. Xiao et al. (2023) introduces channel-wise scaling into the layer
normalization and the weights of linear layers. Ashkboos et al. (2024b) proposed random rotation
which takes the advantage of the computational invariance framework (Ashkboos et al., 2024a) to
mitigate the outliers problem.
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We introduce KurTail – a novel approach to mitigating activation outliers by applying a learnable
rotation to the activations. We advocate for learnable rotation instead of random rotation, which is
suboptimal (Liu et al., 2024). Unlike SpinQuant (Liu et al., 2024), which requires end-to-end train-
ing KurTail focuses on reducing the tail density of activations independently per layer. We perform
layer-wise inference to store activations and optimize the transformation based on the Kurtosis of
activations. As a result, KurTail can be implemented in a significantly more memory-efficient man-
ner. For instance, while SpinQuant requires at least four NVIDIA H100 80GB GPUs to compute
rotations for Llama3-70B, KurTail achieves the same with just a single GPU. Despite its lower com-
putational requirements, KurTail outperforms existing methods in terms of perplexity and zero-shot
reasoning tasks. KurTail outperforms existing quantization methods with a 13.3% improvement in
MMLU accuracy and a 15.5% decrease in Wiki perplexity compared to QuaRot(Ashkboos et al.,
2024b). It also performs better than SpinQuant(Liu et al., 2024), achieving a 2.6% boost in MMLU
accuracy and a 2.9% drop in perplexity, all while reducing the cost of training the rotation.

2 BACKGROUND

Kurtosis. Kurtosis is a statistical measure that describes the degree of tailedness in the distribu-
tion of a dataset. It helps determine whether the data have heavy or light tails compared to a normal
distribution. Mathematically, Kurtosis is defined as the standardized fourth moment of a population
around its mean, and it is calculated using κ = E[(x−µ)4]

(E[(x−µ)2])2 = µ4

σ4 where, µ is the mean, µ4 is the
fourth moment about the mean, and σ is the standard deviation. The Kurtosis of a normal distri-
bution is 3. To center the Kurtosis value at zero for the normal distribution, the adjusted measure
Kurtosis− 3 is often used, which is referred to as excess Kurtosis. Positive Kurtosis is characterized
by heavy tails and a sharp peak (indicating greater tail density than a normal distribution, e.g., the
Laplace or t-distribution). Positive Kurtosis also means the shift of mass from the shoulders to both
the tails and the center. On the contrary, negative Kurtosis is a sign of light tails and a flatter dis-
tribution (like uniform or beta distribution) caused by mass moving from the tails and center to the
shoulders. (Banner et al., 2019) demonstrates that deep neural network weights and activations typ-
ically follow Gaussian or Laplace distributions. Furthermore, Dettmers et al. (2022) identifies the
presence of extreme outliers in LLM parameters, which are critical for maintaining performance.
Our key insight is that distributions with outliers exhibit high kurtosis, which measures the pres-
ence of extreme values. Therefore, by minimizing kurtosis, we can reduce the impact of outliers
and bring the distribution closer to uniform by optimizing the rotation. Uniform distribution is the
desired distribution of the activation and weight for uniform quantization (§ A.1) since we use the
Kurtosis as a proxy for moving the distribution to get close to the uniform distribution. Therefore,
we defined the loss as Lκ = 1

L

∑L
i=1 |κ(

⊕N
j=1ai)− κu| where

⊕
denotes the concatenation of the

activation of all tokens at that layer and κu is the Kurtosis of the uniform distribution.

Quantization Sensitivity. Quantization sensitivity measures the difference in the quantization er-
ror when we slightly perturb the optimal scaling (Chmiel et al., 2020), see Theorem A.1 for formal
definition. Theoretically the sensitivity decreases as the distribution become closer to uniform (see
Theorem A.2). We evaluate our method by measuring activation sensitivity both before and af-
ter applying rotations optimized with Kurtosis. We expect that after applying these rotations, the
activation distribution will be closer to uniform, resulting in better quantization robustness. We
empirically measure the sensitivity of the activation distribution before and after applying the rota-
tion. We utilize the Llama3.1 8-B model and apply two rotation techniques: one using a random
Hadamard transformation and another using a Kurtosis-optimized rotation. First, we compute the
optimal scaling (Chmiel et al., 2020) for activation quantization and then calculate the quantization
sensitivity based on Theorem A.1.

In Fig. 1, the symbol α indicates the fraction of the optimal step size used to analyze quantiza-
tion sensitivity. The results show that the random Hadamard transformation reduces quantization
sensitivity. Additionally, our Kurtosis-based method exhibits an even more significant reduction in
sensitivity, suggesting that it more effectively aligns the distribution with uniformity.

Evaluation of KurTail on Channel Outliers. To demonstrate that the learned rotation by Kur-
Tail reduces the degree of tailedness in the distribution, we visualize the inputs of multi-head self-
attention (MHSA) and feed-forward network (FFN) blocks of layer 15 in Llama3-8B. In Fig. 2, we
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Figure 1: Empirical sensitivity of the
MHSA input distribution across differ-
ent rotations.

Figure 2: The input distribution of the MHSA and FFN
blocks in the LLaMA3-8B model is shown before and after
applying KurTail .

compare the input distribution once without rotation and once with KurTail learned rotation. Addi-
tionally, we highlight the maximum value for each token with a gray surface above each token. As
shown, KurTail effectively mitigates outliers in activation quantization. We also analyze per-token
maximum absolute values using rotations, with results in § A.5.

3 KURTAIL

Placement of the Rotations. Following the computational invariance theorem — as introduced by
Elhage et al. (2023); Ashkboos et al. (2024a) and later utilized by QuaRot (Ashkboos et al., 2024b)
and SpinQuant (Liu et al., 2024) — we adopted a similar framework to transform the activation
functions at each layer. The placement of rotations is illustrated in Fig. 3. This figure depicts
a single layer of a transformer model, where each square represents a computation block. The
rotations are categorized into fusible rotations (R1 and R2) and online rotations (R3, R4, and
R5). Fusible rotations do not add additional computational costs during inference since they can
be merged with the model’s original parameters. Specifically, we apply R1 to the left side of the
token embedding, Wo, and Wd within the MHSA and FFN blocks, respectively. The inverse of
R1 is applied to the right side of Wq , Wk, Wv in the attention block, and Wup, Wgate in the
FFN block. Due to the residual connection, the exact same rotation must also be applied across
subsequent layers (e.g., XR1 + Y R1 in one layer and Y R1 + X2R1 in the next). The second
fusible rotation, R2, is applied to the right side of Wv , with its inverse applied to the left side of Wo.
This transformation improves the distribution of value caches and can vary across layers. The second
group of rotations, R3, R4, and R5, are online and can increase computational costs compared to the
original model. To mitigate this, we utilize random Hadamard matrices, which are computationally
efficient, resulting in minimal overhead. For R3, the transformation is applied after each rotational
positional encoding for queries and keys. Since the transpose of any orthogonal matrix equals its
inverse, there is no need to add the inverse matrix explicitly. During the computation of attention
scores, the term QTK simplifies to QTRT

3 R3K, effectively nullifying the impact of the rotation.
For R4, we introduce the transformation after applying the softmax scores to the values and add
the inverse in the subsequent linear layer. Similarly, R5 is implemented in the FFN block using the
same approach.

XR1 RMSN R−1
1 Wk

R−1
1 Wq

R−1
1 WvR2

RoPE

RoPE

R3

R3

⊗ σ

+

⊗ R4 R−1
4 R−1

2 WoR1 Y R1 RMSN

R−1
1 Wup

R−1
1 Wgate Swish

⊙ R5 R−1
5 WdR1 X2R1

+

R1, R2: Fusible Rotations R3, R4, R5: Online Rotations ♢ : Quantization

Figure 3: Diagram of a single-layer decoder network after applying rotations. Blocks containing
both blue and black indicate that the rotation is fused into the network without adding extra compu-
tation. In contrast, blocks with only the rotation signify additional computations during inference.
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Learning the Rotations. To discover the optimal rotations, we first run the vanilla model and
store the inputs from both the MHSA and FFN blocks. Next, we create a small network consisting
of a linear layer and an RMSNorm, designed to simulate the inputs of the MHSA and FFN blocks
before quantization (Fig. 3). For optimization, we shuffle the stored input data from all transformer
layers and both blocks and then train the rotation using Kurtosis loss. Since the optimization
requires the rotations to remain within the orthogonal space, we use the Caley Adam (Li et al.,
2020) optimizer to enforce this constraint. We train this small network for 100 iterations using 500
samples from the WikiText (Merity et al., 2016b) training set. After training, the resulting rotation
is fused into the original network. For the R2, we did apply a similar approach: we removed the
RMSNorm and just optimized the linear layer with Kurtosis loss.

Training Cost. While quantization make the inference of large models feasible on consumer
GPUs, finding the optimal rotation still requires substantial computational power. We address this
by avoiding end-to-end fine-tuning. Since each multi-head attention and FFN is affected by R1

, end-to-end approaches like SpinQuant cannot optimize the rotation layer by layer, and directly
optimizing R1 via gradient descent requires loading the entire model, which is memory-intensive.
Although SpinQuant reduces training costs by eliminating the need to store weight gradients and
states, it still requires loading the full model into GPU memory. Our approach uses layer-wise in-
ference, which eliminates the need to load all the network weight on the GPU at once, store the
activations for each layer, and optimize the rotation with a Kurtosis loss. This significantly lowers
GPU requirements—at most, a single NVIDIA H100 (or A100) is needed for LLaMA 70B.

Results. To evaluate KurTail we focus on 4-bit quantization for weights, activations and KV-cache,
which is a challenging bit-width for LLM quantization. The detail explanation of the experimental
setups, models and evaluation dataset provided in § C. Table 1 shows a summary where ”0-shot”
means the average performance over 8 tasks. For weight quantization we used GPTQ (Frantar et al.,
2022). For all of the result we have better perplexity in all of the models compared to previous
methods. At the same time, our method is significantly better that SpinQuant (Liu et al., 2024) and
QuaRot (Ashkboos et al., 2024b) in downstream tasks. We provide further results for mixture of
experts models in § B.1. We also provide results for math reasoning in § B.2.

Table 1: Comparison of different quantization methods across various models. All the result report
for 4 bit quantization for W/A/KV cache. Weights are quantized using GPTQ(Frantar et al., 2022)

Method Llama-2-7b Llama-2-13b Llama-3-8b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 5.5 64.1 42.1 4.9 66.5 52.7 6.1 67.2 63.2

GPTQ 9600.0s 38.9 23.8 3120.0 33.8 24.8 166.3 39.8 23.3
QuaRot 6.2 60.6 32.3 5.4 64.7 46.83 8.50 60.1 47.4

SpinQuant 6.0 61.0 34.8 5.2 64.8 47.8 7.4 63.8 56.2
Kurtail 5.9 61.3 32.9 5.2 65.2 49.1 7.2 64.6 57.3

Method Llama-3-70b Llama-3.2-1b Llama-3.2-3b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 2.8 73.1 76.3 9.75 54.9 37.9 7.8 62.7 54.8

GPTQ 452.7 45.5 23.2 108.9 38.0 24.9 178.3 40.3 24.8
QuaRot 6.19 65.1 62.9 17.4 49.0 23.8 10.1 56.1 42.0

SpinQuant 6.2 65.7 59.4 13.6 48.8 25.6 9.2 57.9 44.2
Kurtail 4.2 70.7 73.1 12.9 50.1 27.2 9.0 59.0 47.8

4 CONCLUSION

We introduced KurTail – a novel technique for learning orthogonal transformations that rotate the
activation distribution to address the outlier problem. KurTail effectively reduces quantization sen-
sitivity and minimizes quantization error by tackling important challenges, such as the outlier is-
sue, and overcomes the limitations of previous approaches. Compared to QuaRot (Ashkboos et al.,
2024b), which uses non-learnable rotation, and SpinQuant (Liu et al., 2024), which requires sub-
stantial computational resources for learning rotations, KurTail provides a more efficient and robust
solution. These results highlight KurTail ’s ability to deliver efficiency and high performance across
large-scale language models.
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A APPENDIX

A.1 UNIFORM QUANTIZATION FOR k-BIT PRECISION

For a given vector x, uniform integer quantization reduces its continuous range of values to a finite
set of discrete levels, enabling representation in lower precision. In k-bit quantization, the value
range [xmin, xmax] is divided into 2k equal intervals. Each element xi in x is mapped to its closest
quantization level by Q(xi) = round

(
xi−b
s

)
·s+b. Here s is the scale factor or step size and b is the

shift. The values of s and b depend on the specific quantization scheme. In symmetric quantization,
the range is assumed to be symmetric around zero. Therefore, b = 0, and s = max(|xmax|,|xmin|)

2k−1−1
.

Alternatively, in asymmetric quantization, the range is not assumed to be centered at zero and there-
fore, b = min(x), s = xmax−xmin

2k−1
. Given x sampled from distribution f , quantizer Q minimize

the error between the quantized and the original values. The expected mean-squared error (MSE), a
measure of error, is defined as MSE(x, Q) = E

[
(x−Q(x))

2
]
.

Definition A.1. Quantization Sensitivity (Chmiel et al., 2020) For a given distribution f and its
corresponding vector x, let s̃ denote the optimal quantization step size, and let Qs̃(X) represent the
optimal quantizer. Quantization sensitivity Γ(X, ϵ) is defined as the increase in the mean squared
error (MSE) caused by a small perturbation ϵ > 0 in the quantization step size s around s̃, such that
|s− s̃| = ϵ. Specifically, the sensitivity is given by:

Γ(X, ϵ) = |MSE(X, s)− MSE(X, s̃)| , (1)

Theorem A.2. (Chmiel et al., 2020) Considering xU and xN be continuous random variables with
uniform and normal distributions. Then, for any given ε > 0, the quantization sensitivity Γ(X, ε)
satisfies Γ(XU , ε) < Γ(XN , ε),

This theorem indicates that, compared to the typical normal distribution, the uniform distribution is
more robust to changes in the quantization step size s. Therefore, it becomes apparent that there
is great benefit in adjusting he distribution of the activations and weight to get closer to uniform
distribution. It can also be shown for the uniform distribution the optimal scaling,s̃ is equal to
b = min(x), s = xmax−xmin

2k−1
. Chmiel et al. (2020) also show that the optimal step size for a

uniform distribution closely approximates the most robust quantization (less sensitive) step size.

A.2 RELATED WORKS

With the emergence of large foundation models and the continuous scaling of model sizes to billions
and even trillions of parameters, interest in quantization of LLMs also increased. Some previous
work introduced weight-only quantization (Frantar et al., 2022; Lin et al., 2024; Egiazarian et al.,
2024; Tseng et al., 2024). These methods project the weights into a lower precision such as 4 bits
or 3 bits or even less and then de-quantize to higher precision before actual computation, which
resulted in all computations still being done in high precision. Several studies (Xiao et al., 2023;
Ashkboos et al., 2024b; Liu et al., 2024) attempted to introduce quantization methods for both
weight and activation. They showed that uniform quantizing is not practical for quantizing large
language models since they suffer from the existence of large outliers. To address this issue Dettmers
et al. (2022) proposed a mixed-precision approach for handling outliers at higher precision. Others
(Xiao et al., 2023; Lin et al., 2024) proposed trading outliers between weights and activations by
introducing a re-scaling paradigm. Tseng et al. (2024) introduced an incoherence processing method
using random rotation matrices and applying vector quantization on the weights for compression,
which also added overhead to inference. QuaRot Ashkboos et al. (2024b) was inspired by (Tseng
et al., 2024) and taking the advantage of the previous the invariance compotation introduced by
(Ashkboos et al., 2024a) introduced a rotation-based approach to compress and remove outliers
from the space of activation using a random Hadamard rotation. Later SpinQuant (Liu et al., 2024)
employing a similar technique improves the results of QuaRot(Ashkboos et al., 2024b) by learning
some of this rotation using end-to-end training of quantization. SpinQuant improved the results
compared to QuaRot. In this work, we introduce KurTail similar to SpinQuant learns the rotation by
compressing outliers in the space of activation in contrast we use a unsupervised one-shot approach
which reduce the computational cost of finding the rotation, further empirically we show that it also
reduced over-fitting and improve the performance on downstream tasks.
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A.3 KURTOSIS OF DIFFERENT DISTIRBUTION
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Figure 4: Kurtosis of well known distribution

A.4 OPTIMIZATION IN THE ORTHOGONAL SPACE

As discussed in § 3, in order to be consistent with a computational invariance framework, the trans-
formation needs to be optimized in the orthogonal space. Therefore we optimize all of the transfor-
mation matrix within the Stiefel Manifodl (Li et al., 2020) i.e, the space of orthonormal matrices,
using Caley Stochastic Gradient Descent (SGD) or Caley Adam (Li et al., 2020). The Caley SGD al-
gorithm efficiently updates a transformation matrix T at each iteration. The updated transformation
T ′ is defined as follows:

T ′ = ∆T (Y )T :=
(
I − α

2
Y
)−1 (

I +
α

2
Y
)
T (2)

where :
∆T (Y ) :=

(
I − α

2
Y
)−1 (

I +
α

2
Y
)

(3)

is referred to as the Cayley Transform of the skew-symmetric matrix Y (i.e., Y ⊤ = −Y ). The matrix
Y is derived from a projection Ĝ, which in turn is related to the gradient G := ∇TLQ of the loss
function:

Y = Ĝ− Ĝ⊤, Ĝ := GT⊤ − 1

2
TT⊤GT⊤. (4)

It can be shown that the operator ∆T (Y ) preserves orthonormality, ensuring that T ′ remains or-
thonormal (T ′⊤T ′ = I) as long as T is orthonormal. While Eq. 3 involves a matrix inversion,
the updated transformation T ′ can also be efficiently computed using a fixed-point iteration method.
This approach can achieve orthonormality with comparable computation time per iteration compared
to a standard SGD update.

A.5 FURTHER EVALUATION OF KURTAIL ON CHANNEL OUTLIERS

In dynamic per-token quantization, the maximum value of a token’s vector plays a critical role in
determining the quantization step size and range. Larger maximum values increase the quantization
range, which results in larger quantization steps and greater precision loss. Alternatively reducing
the maximum value allows for smaller quantization steps, which result in more efficient represen-
tation of token values with minimal degradation of information. Therefore, lowering the maximum
values across tokens is directly connected to overall quantization error and model performance. To
evaluate how well different methods achieve this goal, we measure the success rate of our proposed
method, KurTail , compared to its un-rotated counterpart (baseline vector) and an alternative rotation
method, QuaRot. A “success” is defined as a case where the maximum value of a token’s vector af-
ter applying a rotation-based transformation (KurTail or QuaRot) is smaller than that of the baseline
vector. The success rate defined the percentage of tokens where the rotated version achieves this
reduction. In Table 2, we present the average success rates for LLAMA3-8B. KurTail consistently
produces smaller maximum values across all layers, samples, and tokens, achieving a higher suc-
cess rate compared to the baseline vector in nearly all cases. Additionally, it outperforms QuaRot in
approximately 63.29% in MSHA, 62.99% in FFN on average.
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Table 2: The success rate of minimum max values per-token under different rotations.

Comparison Success Rate (%)
MHSA Input

Vanilla vs. KurTail 0.26% - 99.74%
Vanilla vs. QuaRot 0.57% - 99.43%
Kurtail vs. QuaRot 63.29% - 36.71%

FFN Input
Vanilla vs. KurTail 0.04% - 99.96%
Vanilla vs. QuaRot 0.04% - 99.96%
Kurtail vs. QuaRot 62.99% - 37.01%

B FURTHER EVALUATIONS

B.1 EXPERIMENT ON MIXTURE OF EXPERTS

Given the growing popularity of the Mixture of Experts (MoE) models, we also explore the idea of
applying rotation within the mixture of experts. For this purpose, we utilize Mixtral (Jiang et al.,
2024), which employs the exact same attention block. However, for the mixture of experts com-
ponent, we apply rotation across all the experts. Table 3 presents the results for 4-bit quantization,
where we used rounding to the nearest value. In principle, other quantization methods, such as
GPTQ, HQQ, and similar approaches, can also be employed to further enhance performance.

Table 3: Comparison of different quantization methods for Mixtral. All the result report for 4 bit
quantization for W/A/KV cache. For weight quantization we used RTN.

Method Mixtral-8x7B
Wiki (↓) Avg. 0-shot (↑) MMLU (↑)

16-bit 3.8 71.2 68.8
QuaRot 8.7 55.7 36.8
Kurtail 6.5 59.4 44.8

B.2 EVALUATING MATHEMATICAL REASONING

To explore more complex reasoning tasks, we further provide the performance quantized model
on tasks involving mathematical reasoning in Table 4 by reporting results on the MathQA(Amini
et al., 2019) dataset. MathQA is a benchmark designed to test problem-solving and quantitative rea-
soning abilities. The dataset consists of real-world mathematical problems covering topics such as
arithmetic, algebra, probability, and geometry. Each problem is accompanied by a natural language
description, multiple-choice answers, and an annotated solution program that outlines the reasoning
steps required to reach the correct answer.

C SETUP

C.1 SETUP

We developed KurTail using the Hugging Face library (Wolf et al., 2019) integrated with the PyTorch
framework (Paszke et al., 2019). For learning the transformation, we used 512 calibration samples
for all model except the Mixteral and LLAMA 70B models which we use 256 calibration sample
from the WikiText-2 (Merity et al., 2016b) training set, each with a sequence length of 2048. For
storing the activation we used layer-wise inference and cpu offloading to reduce the GPU memory
requirement. For optimizing the rotation, we use AdamG (Li et al., 2020) optimizer to find the
rotation in the Stiefel manifold i.e., the set of all orthonormal matrices. The activation quantization
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Table 4: Comparison of different quantization methods across various Llama model families and
Phi3 model for mathematical reasoning. All the result report for 4 bit quantization for W/A/KV
cache. For weight quantization we used GPTQ(Frantar et al., 2022)

Method MathQA
16-bit QuaRot KurTail

Llama-2-7b 28.24 26.70 26.77
Llama-2-13b 31.76 28.81 30.35
Llama-2-70b 38.39 33.97 35.68
Llama-3-8b 40.30 31.36 34.71
Llama-3-70b 51.79 35.54 45.76
Llama-3.2-1b 28.94 25.29 26.00
Phi3-mini 39.93 31.89 34.81

was achieved through per-token dynamic symmetric quantization, where a single scale was applied
to each row, and all them clip with a quantile of 0.98 in all experiments. For the KV caches, we
employed asymmetric quantization. For the Weight quantization, we use round-to-nearest (RTN),
HQQ (Badri & Shaji, 2023), and GPTQ (Frantar et al., 2022), using per-column (or per-channel)
symmetric quantization. The clipping ratio was optimized via a linear search to reduce squared
error. For GPTQ quantization, we uses 128 calibration samples from the WikiText-2, each with
a sequence length of 2048. Learning the transformation and Transforming LLAMA3-70B with
KurTail on an NVIDIA H100 GPU took around one hour which compare the SpinQuant it uses way
less memory. (8 GPU and 2 hours).

C.2 MODEL

We evaluate KurTail on the LLAMA-2 (Touvron et al., 2023), LLAMA-3 (Dubey et al., 2024), Phi-
model family (Abdin et al., 2024) on both language generation and zero-shot tasks. We further also
target the mixture of expert model and provide the result for Mixtral (Jiang et al., 2024). We imple-
ment an memory efficient of training the the transformation by CPU offloading layers and saving
the activation and optimizing the Kurtosis of the layer by implementing a simple linear layer later.
Our implementation can be run a 70 billion model on the consumer gpus which can be useful for the
user with private fine-tuned model that use consumer gpus. Due to similarity of the architecture with
(Ashkboos et al., 2024b), we didn’t re-implement the low level kernel for 4 bit matrix multiplication
since the same performance result expected.

C.3 EVALUATION SETTING

To compare the performance of the model after quantization, we report the perplexity (PPL) score on
the WikiText-2 (Merity et al., 2016a) test set. We also report results on zero-shot tasks since, while
perplexity is a standard measure of language modeling performance, it may not be sufficient for
evaluating the model’s effectiveness after quantization. For zero-shot reasoning, we assess perfor-
mance using the lm-evaluation-harness (Gao et al., 2024), testing the models on eight tasks: BoolQ
(Clark et al., 2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and
ARC-Challenge (Boratko et al., 2018) (Avg 0-shot). Additionally, to assess the model on more com-
plex tasks, we benchmark its language comprehension and general understanding using the MMLU
benchmark (Hendrycks et al., 2021) and for mathematical reasoning we utilize MathQA(Amini
et al., 2019). We report the average performance in Table 1.
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