

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVED HIGH-DIMENSIONAL ESTIMATION WITH LANGEVIN DYNAMICS AND STOCHASTIC WEIGHT AV- ERAGING

Anonymous authors

Paper under double-blind review

ABSTRACT

Significant recent work has studied the ability of gradient descent to recover a hidden planted direction $\theta^* \in S^{d-1}$ in different high-dimensional settings, including tensor PCA and single-index models. The key quantity that governs the ability of gradient descent to traverse these landscapes is the *information exponent* k^* (Ben Arous et al., 2021), which corresponds to the order of the saddle at initialization in the population landscape. Ben Arous et al. (2021) showed that $n \gtrsim d^{\max(1, k^*-1)}$ samples were necessary and sufficient for online SGD to recover θ^* , and Ben Arous et al. (2020) proved a similar lower bound for Langevin dynamics. More recently, Damian et al. (2023) showed it was possible to circumvent these lower bounds by running gradient descent on a smoothed landscape, and that this algorithm succeeds with $n \gtrsim d^{\max(1, k^*/2)}$ samples, which is optimal in the worst case. This raises the question of whether it is possible to achieve the same rate *without explicit smoothing*. In this paper, we show that Langevin dynamics can succeed with $n \gtrsim d^{k^*/2}$ samples if one considers the *average iterate*, rather than the last iterate. The key idea is that the combination of noise-injection and iterate averaging is able to emulate the effect of landscape smoothing. We apply this result to both the tensor PCA and single-index model settings. Finally, we conjecture that minibatch SGD can also achieve the same rate without adding any additional noise.

1 INTRODUCTION

In many learning settings, gradient descent is the default algorithm, and recent years have seen significant progress in understanding its theoretical properties and learnability guarantees in different feature learning settings (Damian et al., 2022; Mei et al., 2022). While the optimization process is non-convex in general, there are many settings in which we can nonetheless tractably give learning guarantees. Single index models, or functions of the form $\sigma(\theta^* \cdot x)$, provide one such sandbox; here, the goal is to recover this planted direction $\theta^* \in S^{d-1}$ through which the target depends on the input. In the statistics literature, single index models have been studied for decades (Hristache et al., 2001; Hürdle et al., 2004), and are also known as generalized linear models. In the special case where the link function σ is monotonic, the information-theoretic sample complexity of $n \asymp d$ to learn θ^* is achieved via perceptron-like algorithms (Kalai and Sastry, 2009; Kakade et al., 2011). For non-monotonic link functions, one classic example is the phase-retrieval problem where $\sigma(t) = |t|$, which has been well-studied (Chen et al., 2019; Maillard et al., 2020).

For the case of Gaussian input data, the information exponent k^* of the link function σ tells us the sample complexity needed to learn θ^* with “correlational learners” (Ben Arous et al., 2021). This can be extended to allow for label preprocessing (Mondelli and Montanari, 2018; Maillard et al., 2020; Chen et al., 2025; Dandi et al., 2024; Troiani et al., 2024; Lee et al., 2024; Arnaboldi et al., 2024) and the resulting exponent becomes the “generative exponent” (Damian et al., 2024). Ben Arous et al. (2021) shows that using $n \gtrsim d^{k^*-1}$ samples is necessary and sufficient for a certain class of online stochastic gradient descent (SGD) algorithms. Damian et al. (2023) improves this to $n \gtrsim d^{\max(1, k^*/2)}$ samples by running online SGD on a smoothed loss, and they provide a matching correlational statistical query (CSQ) lower bound. Key to their analysis is the fact that the

054 smoothed loss boosts the signal-to-noise ratio in the region near initialization (i.e. when the current
 055 iterate lies in the equatorial region with respect to θ^*).
 056

057 Overall, the information exponent has been shown to determine the sample complexity in
 058 many settings (Ben Arous et al., 2021; Damian et al., 2023; Bietti et al., 2022; Abbe et al., 2023;
 059 Dandi et al., 2023). A recent work of Joshi et al. (2025) analyzes the spherical symmetric distribution
 060 case, which slightly relaxes the Gaussian data assumption. In particular, the work by Abbe et al.
 061 (2023) provides a generalization of the information exponent to the multi index setting, in which the
 062 target depends on a low dimensional subspace of the input instead of just a single direction (Ren and
 063 Lee, 2024; Damian et al., 2025). We would also like to note the connection of learning information
 064 exponent k single index models to the order k tensor PCA problem (Montanari and Richard, 2014).
 065 In both problems, it turns out that the partial trace estimator returns the direction of the planted
 066 spike with optimal sample complexity of $d^{k/2}$ in the CSQ framework, and similar smoothing-based
 067 approaches there (Anandkumar et al., 2017; Biroli et al., 2020) have been proposed to return this
 068 estimator.

069 Notably, along this line of work, Ben Arous et al. (2020) conjectures that Langevin dynamics in the
 070 tensor PCA setting does not work due to the divergence of the computational-statistical gap in this
 071 setting. In our work, we *surprisingly* show that Langevin dynamics can still be used to recover the
 072 planted direction of the single index model. To achieve this, we run Langevin dynamics, but we take
 073 the *time average* of all the iterates. Our analysis reveals that with $n \gtrsim d^{\lceil k^*/2 \rceil}$ samples, we are able to
 074 recover the direction of the partial trace estimator and hence θ^* . The key insight is that this Langevin
 075 dynamics process closely tracks the Brownian motion on the sphere, and averaging out the iterates
 076 roughly corresponds to an ergodicity concentration argument on the sphere. Our main theorem is the
 077 following.

078 **Theorem 1** (Main theorem (informal)). *Consider a link function σ with information exponent k^* .
 079 Then, with $n \gtrsim d^{\lceil k^*/2 \rceil}$ samples drawn i.i.d. from the standard d -dimensional Gaussian, running
 080 Algorithm 1 recovers the ground truth direction θ^* .*

081 We can also shave off a factor of \sqrt{d} to improve the sample complexity to $n \gtrsim d^{k^*/2}$ by running
 082 Algorithm 1 and running online SGD on the returned time averaged estimator. This corresponds to
 083 the warm start in Damian et al. (2023) for the odd case.

085 2 SETUP AND MAIN CONTRIBUTIONS

087 2.1 NOTATION

089 We use $\|\cdot\|_p$ to denote the vector ℓ_p -norm; furthermore, when $p = 2$, we often drop the subscript and
 090 write $\|\cdot\|$. Given a probability measure γ over \mathbb{R}^d , we denote $L^2(\mathbb{R}^d, \gamma)$ the space of γ -measurable
 091 and square-integral functions; we shorthand this to $L^2(\gamma)$ when the domain is clear. For $f \in L^2(\gamma)$,
 092 we denote $\|f\|_{L^2(\gamma)}^2 = \mathbb{E}_{z \sim \gamma}[f(z)^2]$. We also denote μ to be the uniform measure on S^{d-1} .
 093

094 2.2 SETTING

096 We consider in this paper tensor PCA (Montanari and Richard, 2014) and single-index models.

098 2.2.1 TENSOR PCA

099 For tensor PCA, we will assume there is a planted direction $\theta^* \in S^{d-1}$ and we observe the k -tensor
 100 T defined by:
 101

$$102 \quad T = \theta^{*\otimes k} + n^{-1/2} Z \quad \text{where} \quad Z_{i_1, \dots, i_k} \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$$

104 We consider optimizing the negative log-likelihood:

$$105 \quad L(\theta) = -\langle T, \theta^{\otimes k} \rangle$$

107 Information theoretically, θ^* is possible to recover whenever $n \gtrsim d$. However, common techniques
 like approximate message passing (AMP), tensor power method, and online SGD require $n \gtrsim d^{k-1}$

108 to recover θ^* (Montanari and Richard, 2014; Ben Arous et al., 2021). Nevertheless, it is possible
 109 to recover θ^* with $n \gtrsim d^{k/2}$ samples using tensor unfolding (Montanari and Richard, 2014), the
 110 partial-trace estimator (Hopkins et al., 2016), and landscape smoothing (Anandkumar et al., 2017;
 111 Biroli et al., 2020; Damian et al., 2023). In our paper, we show Langevin dynamics combined with
 112 iterate averaging can recover θ^* with $n \gtrsim d^{\lceil \frac{k}{2} \rceil}$ without explicit unfolding or smoothing.
 113

114 2.2.2 SINGLE-INDEX MODELS

116 We mostly follow the setting of Damian et al. (2023). Let $\{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i \in [n]}$ be the set of
 117 training data. The input data x_i are drawn i.i.d. from a standard d -dimensional Gaussian $\mathcal{N}(0, I_d)$,
 118 and the labels y_i are generated through a target or teacher function f^* . In particular, we consider
 119 the setting where f^* is a single index model, in which the label only depends on the input through a
 120 planted direction $\theta^* \in S^{d-1}$. Formally, we have for each i :

$$121 \quad y_i = f^*(x_i) + \xi_i = \sigma(\theta^* \cdot x_i) + \xi_i, \quad x_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d), \quad \xi_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

123 where σ is a known link function. We will consider the setting where our learner is $f(\theta, x) := \sigma(\theta \cdot x)$,
 124 where $\theta \in S^{d-1}$ is the learnable parameter.

125 **Assumption 1.** *We will assume the following regarding the link function σ .*

- 126 • $\mathbb{E}_{x \sim \mathcal{N}(0,1)}[\sigma(x)^2] = 1$ (*Normalization*)
- 127 • $|\sigma^{(k)}(z)| \leq C$ for $k = 0, 1, 2$ and for all z . (*Lipschitzness*)

130 We note the assumption on the boundedness of $\sigma^{(k)}$ can be relaxed to it having polynomial tails
 131 Damian et al. (2023), but at the cost of increasing the complexity of the proof.

132 We consider training via the correlation loss; the loss on a specific sample (x, y) is:

$$134 \quad L(\theta; x, y) = 1 - f(\theta, x)y$$

135 The empirical loss on our training set is therefore:

$$137 \quad L_n(\theta) = \frac{1}{n} \sum_{i \in [n]} L(\theta; x_i, y_i)$$

140 We also denote the population loss over (x, y) from the data distribution to be $L(\theta) :=$
 141 $\mathbb{E}_{(x,y)}[L(\theta; x, y)]$.

142 In this setting, Ben Arous et al. (2021) showed that the sample complexity for learning depends on
 143 a quantity called the information exponent k^* of the link function σ . To motivate this definition,
 144 consider first the probabilist's Hermite polynomials.

145 **Definition 1** (Probabilist's Hermite polynomials). *For $k \geq 0$, the k th normalized probabilist Hermite
 146 polynomial $h_k : \mathbb{R} \rightarrow \mathbb{R}$ is:*

$$148 \quad h_k(x) = \frac{(-1)^k}{\sqrt{k!}} \gamma(x)^{-1} \frac{d^k}{dx^k} \gamma(x)$$

150 where $\gamma(x) := \frac{e^{-x^2/2}}{\sqrt{2\pi}}$ is the probability density function of a standard univariate Gaussian.

153 Of importance is that the Hermite polynomials form an orthogonal basis in $L^2(\gamma)$ (i.e. the space of
 154 square-integrable functions with respect to the standard Gaussian measure). Henceforth, for link
 155 function $\sigma \in L^2(\gamma)$, let $\{c_k\}_{k \geq 0}$ denote the Hermite coefficients of σ :

156 **Definition 2** (Hermite coefficients). *Let the Hermite coefficients of $\sigma \in L^2(\gamma)$ be $\{c_k\}_{k \geq 0}$. In other
 157 words,*

$$158 \quad \sigma(x) = \sum_{k=0}^{\infty} c_k h_k(x), \quad c_k = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z) h_k(z)]$$

161 This leads us to the key quantity, the information exponent.

162 **Definition 3** (Information exponent). *We define the information exponent to be:*

$$164 \quad k^* = \min\{k \geq 1 : c_k \neq 0\}$$

166 In other words, this is the first Hermite coefficient with positive index that is nonzero. Some examples
167 of information exponents are below:

168 **Example 1.** *(Link functions and their information exponents)*

- 170 • $\sigma(t) = t$ and $\sigma(t) = \text{ReLU}(t)$ have information exponent 1.
- 171 • $\sigma(t) = |t|$ and $\sigma(t) = t^2$ have information exponent 2.
- 173 • $\sigma(t) = t^2 e^{-t^2}$ has information exponent 4.
- 175 • $\sigma(t) = h_k(t)$ has information exponent k .

177 Ben Arous et al. (2021) showed that $n \gtrsim d^{\max(1, k^* - 1)}$ samples were necessary and sufficient for
178 online SGD to recover θ^* , mirroring the tensor PCA setting. Damian et al. (2023) showed that
179 this rate could be improved to $n \gtrsim d^{\max(1, k^*/2)}$ by running online SGD on a smoothed landscape.
180 A number of papers have managed to circumvent the information exponent by applying a label
181 transformation before running SGD Mondelli and Montanari (2018); Maillard et al. (2020); Chen
182 et al. (2025); Dandi et al. (2024); Troiani et al. (2024); Damian et al. (2024); Lee et al. (2024). These
183 results apply a transformation \mathcal{T} to the labels $\{y_i\}_{i=1}^n$ to derive samples from the single index model
184 defined by $\mathcal{T} \circ \sigma$. This link function can have smaller information exponent than σ , and the smallest
185 exponent such a transformation can achieve is called the “generative exponent” Damian et al. (2024).
186 For the purposes of this paper, we can assume that such a label transformation has already been
187 applied so that the information exponent and the generative exponent coincide.

188 2.3 THE LEARNING ALGORITHM

190 **Definition 4** (Spherical gradient operator). *For $\theta \in S^{d-1}$ and function $g : \mathbb{R}^d \rightarrow \mathbb{R}$, define the
191 spherical gradient operator to be $\nabla_\theta g(\theta) = P_z^\perp \nabla g(z)|_{z=\theta}$, where $P_\theta^\perp := I - \frac{\theta \theta^\top}{\|\theta\|^2}$ is the orthogonal
192 projection operator with respect to θ and ∇ is the standard Euclidean gradient.*

193 We now formally define our learning algorithm; here, $\{W_t\}_{t \geq 0}$ is the standard Wiener process in \mathbb{R}^d .

196 **Algorithm 1** Learning algorithm

197 **Input:** Inverse temperature parameter ϵ , number of time steps T , data points $\{(x_i, y_i)\}_{i=1}^n$

198 Initialize $\theta_0 \sim \mu$ (e.g. uniform over S^{d-1})

199 Run the following SDE up to time T :

$$201 \quad d\theta = \left(-\frac{d-1}{2} \theta + \epsilon b(\theta) \right) dt + P_\theta^\perp dW_t, \quad b(\theta) := -\nabla_\theta L_n(\theta) \quad (1)$$

$$203 \quad \hat{\theta} := \frac{1}{T} \int_0^T \theta_t dt$$

$$205 \quad \hat{M} := \frac{1}{T} \int_0^T \theta_t \theta_t^\top dt$$

206 **If k^* is odd**, return $\hat{\theta}/\|\hat{\theta}\|$

207 **Otherwise if k^* is even**, return the top eigenvector v_1 of \hat{M}

210 It can be shown that when θ_t follows the SDE in Equation (1), it remains on the sphere for all time t .
211 Thus, this SDE is the natural analogue of the standard Langevin dynamics on the sphere. A discussion
212 regarding this is deferred to the appendix.

214 2.4 MAIN CONTRIBUTIONS

215 We now highlight our main contributions in this work.

- We show that by combining Langevin dynamics with weight averaging, we can recover θ^* in both the tensor PCA and single-index model settings with $n \gtrsim d^{\lceil k^*/2 \rceil}$ samples, which nearly matches the optimal computational-statistical tradeoff for these problems (Damian et al., 2024; Hopkins et al., 2015).
- In contrast with previous work (Damian et al., 2023; Biroli et al., 2020; Anandkumar et al., 2017), which attain the sample complexity guarantee via smoothing the existing loss landscape to create a high signal-to-noise ratio regime, we utilize the other end of the spectrum - a low signal-to-noise ratio setting. Our method of uniform averaging takes advantage of the noise, and allows us to learn the estimator that one would obtain by running landscape smoothing.
- One other feature of our algorithm is that it does not see the data in an online manner, unlike previous works (Damian et al., 2023; Ben Arous et al., 2021). We use the empirical risk minimization (ERM) loss to obtain our results.
- (Ben Arous et al., 2020) shows that Langevin dynamics struggles to escape the “equator” $\{\theta : |\theta \cdot \theta^*| \lesssim d^{-1/2}\}$ without $n \gtrsim d^{k^*-1}$ samples. Surprisingly, we show that it is not necessary to escape the equator to get a good estimate of θ^* – our process $\theta(t)$ indeed lies on the equator throughout the training process so that its correlation with θ^* remains small, but the *time-averaged iterate* can still converge to θ^* .

3 MAIN RESULTS

Our high level framework is to show ergodic concentration to an estimator that recovers the planted direction with enough samples. We will state our results for both the odd and even algorithm.

Theorem 2 (Odd k^*). *Let $\epsilon = o(d^{-(k^*-3)/2})$ and $T \gtrsim d^{k^*}/\epsilon^2$. Then, Algorithm 1 succeeds in estimating $\frac{2\epsilon}{d-1} \mathbb{E}_{z \sim \mu}[b(z)]$ up to $O(\epsilon)$ relative error. Moreover, for $\delta, \Delta > 0$, if $n \gtrsim d^{\lceil k^*/2 \rceil}/(\delta\Delta^2)$, we recover the ground truth θ^* up to error Δ with probability at least $1 - 2d^{-1} - \delta$.*

Consider first the setting where $\epsilon \rightarrow 0$; this corresponds to a convergence to the pure Brownian motion on S^{d-1} , which has Itô SDE

$$d\beta = \left(-\frac{d-1}{2} \beta \right) dt + P_\beta^\perp dW_t$$

In the regime of ϵ in Theorem 2, it turns out that at time t , we can write $\theta_t = \beta_t + E_t$ where E_t is an error term of order ϵ , and we couple the processes θ and β with the same noise process W_t . We set $\theta_0 = \beta_0$, and $E_0 = 0$, with the former being drawn from the uniform distribution on the sphere. Then, time averaging allows us to obtain:

$$\frac{1}{T} \int_0^T \theta_t dt = \frac{1}{T} \int_0^T \beta_t dt + \frac{1}{T} \int_0^T E_t dt$$

By ergodicity of Brownian motion, we can prove that the first term concentrates to zero. For the second term E_t , we show that the time average of it converges to the direction of $\mathbb{E}_{z \sim \mu}[\nabla L_n(z)]$. In both the tensor PCA and single-index model settings, this estimator can be shown to recover the planted direction θ^* with $n \gtrsim d^{\lceil k^*/2 \rceil}$ samples. Moreover, it is possible to use this estimator as a warm start before running online SGD. This idea was also used by Hopkins et al. (2016); Anandkumar et al. (2017); Damian et al. (2023) to boost this estimator, and allow it to recover θ^* with $n \gtrsim d^{k^*/2}$ samples:

Corollary 1. *Using the same ϵ and T in the setting of Theorem 2 and $n = \Omega(d^{k^*/2})$, we can run Algorithm 1, followed by online SGD with $\Omega(d^{k^*/2})$ samples to recover the ground truth θ^* to arbitrary accuracy.*

The idea here is with $n = \Omega(d^{k^*/2})$ samples (which is a multiple of \sqrt{d} less than in Theorem 2), the averaging estimator gives us a warm start that obtains correlation $\Theta(d^{-1/4})$ with θ^* . From here, we can run online SGD using the result from Ben Arous et al. (2021) to recover the ground truth. We now proceed to state our result for the even case.

270 **Theorem 3** (Even k^*). *Let $\epsilon = o(d^{-(k^*-2)/2})$, and let $T \gtrsim d^{k^*+1}/\epsilon^2$. Then, Algorithm 1 succeeds*
 271 *in estimating $\mathbb{E}_{z \sim \mu}[zz^\top] + \frac{\epsilon}{d}\mathbb{E}_{z \sim \mu}[zb(z)^\top + b(z)z^\top]$ up to $O(\epsilon)$ relative error with probability at*
 272 *least $1 - 2d^{-1}$.*

274 Intuitively, the algorithm for the odd case does not work here because of the first order terms vanish
 275 upon taking time average, due to the symmetry of the uniform distribution/Brownian motion. More
 276 specifically, $\mathbb{E}_{z \sim \mu}[\nabla L_n(z)] \approx 0$ and does not have any meaningful correlation with θ^* . On the other
 277 hand, when we consider the time average of the second order information given by $\theta\theta^\top$, we can
 278 precisely recover the planted direction θ^* by taking the top eigendirection of our estimator. More
 279 formally, time averaging gives us:

$$280 \quad \frac{1}{T} \int_0^T \theta_t \theta_t^\top dt = \frac{1}{T} \int_0^T \beta_t \beta_t^\top dt + \frac{1}{T} \int_0^T (\beta_t E_t^\top + E_t \beta_t^\top) dt + \frac{1}{T} \int_0^T E_t E_t^\top$$

283 We prove concentration of each of these terms to the stationary average via the ergodicity of the spheri-
 284 cal Brownian motion, which leads to a final quantity of approximately $\mathbb{E}_{z \sim \mu}[zz^\top] + \frac{\epsilon}{d}\mathbb{E}_{z \sim \mu}[zb(z)^\top +$
 285 $b(z)z^\top]$. The first term converges to I/d , and the final term is a negligible error term. When
 286 $n \gtrsim d^{k^*/2}$, the middle term converges to a matrix with a rank-one spike $\theta^* \theta^{*\top}$, which follows from
 287 Lemma F.9 of Damian et al. (2024) and the proof of which we omit for purpose of exposition.

289 4 OVERVIEW OF PROOF IDEAS

291 4.1 ERGODIC CONCENTRATION

293 In showing a general ergodic concentration result, we first give some preliminaries on Markov
 294 processes on compact Riemannian manifolds.

295 **Definition 5** (Markov semigroup). *Let $(X_t)_{t \geq 0}$ be a time-homogeneous Markov process. Then, its*
 296 *associated Markov semigroup $(P_t)_{t \geq 0}$ is the family of operators acting on bounded measurable*
 297 *functions f through:*

$$298 \quad P_t f(x) := \mathbb{E}[f(X_t) | X_0 = x]$$

300 At this point, it is useful to define the infinitesimal generator of a Markov process.

301 **Definition 6** (Infinitesimal generator). *Let $(P_t)_{t \geq 0}$ be the associated Markov semigroup for a Markov*
 302 *process. Then, the infinitesimal generator \mathcal{L} associated with this semigroup is defined as:*

$$304 \quad \mathcal{L}f := \lim_{t \rightarrow 0} \frac{P_t f - f}{t}$$

306 for all functions f for which this limit exists.

307 Having these definitions introduced, consider the Brownian motion on S^{d-1} that we defined earlier:

$$309 \quad d\beta = \left(-\frac{d-1}{2}\beta \right) dt + P_\beta^\perp dW_t$$

311 Note that by rotational invariance, the stationary distribution is μ . Moreover, by classic results
 312 (Saloff-Coste, 1994), we know that the infinitesimal generator of this process is $\mathcal{L} = \frac{1}{2}\Delta_{S^{d-1}}$, where
 313 $\Delta_{S^{d-1}}$ is the Laplace-Beltrami operator on S^{d-1} . We now give a general lemma for ergodic averages
 314 of functions of a Brownian motion over the sphere.

315 **Lemma 1.** *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $f \in L^2(\mu)$, where μ is the stationary uniform measure over*
 316 *the sphere for the Brownian motion, and $\int_{S^{d-1}} f d\mu = 0$. Then, we have:*

$$318 \quad \frac{1}{T} \int_0^T f(\beta_t) dt = \frac{\phi(\beta_0) - \phi(\beta_T)}{T} + \frac{M_T}{T}$$

320 where

$$321 \quad \phi(\beta) = \int_0^\infty P_t f(\beta) dt$$

323 and $M_T := \int_0^T \nabla \phi(\beta_t)^\top P_{\beta_t}^\perp dW_t$ is a martingale.

The proof is deferred to the appendix, and it now remains to bound these terms, which depends on our choice of f . Recall that we need to make this ergodicity argument for β_t and $b(\beta_t)$ (defined in Section 4.2). For both of these functions, we will look at this coordinate-wise. First, we give the following version of the Poincaré inequality.

Lemma 2 (Poincaré inequality). *Let $(P_t)_{t \geq 0}$ be a reversible ergodic Markov semigroup that has stationary measure μ , and let f be a mean-zero (with respect to μ) function in $L^2(\mu)$. Denote λ to be the spectral gap of the infinitesimal generator \mathcal{L} . Then, it holds that:*

$$\|P_t f\|_{L^2(\mu)} \leq e^{-\lambda t} \|f\|_{L^2(\mu)}$$

Poincaré's inequality allows us to prove the following result towards concentrating ϕ . Of particular notice is that since $\Delta_{S^{d-1}}$ has eigenvalues $-\ell(\ell + d - 2)$ for $\ell \geq 0$, we have that its spectral gap is $(d - 1)$ (Saloff-Coste, 1994). Therefore, the spectral gap of \mathcal{L} is $\frac{d-1}{2}$. From here, the following are can be shown to hold, with full proofs in the appendix.

Lemma 3. *In the setting of Lemma 1, we have that for $\beta_0 \sim \mu$, both the first and second moments of $\phi(\beta_0)$ are finite. That is, $\mathbb{E}[\phi(\beta_0)], \mathbb{E}[\phi(\beta_0)^2] < \infty$, and they are upper bounded as follows:*

$$\begin{aligned} \mathbb{E}[\phi(\beta_0)] &= \mathbb{E}[\phi(\beta_T)] \leq \frac{2}{d-1} \|f\|_{L^2(\mu)} \\ \mathbb{E}[\phi(\beta_0)^2] &= \mathbb{E}[\phi(\beta_T)^2] \leq \frac{4}{(d-1)^2} \|f\|_{L^2(\mu)}^2 \\ \mathbb{E}\left[\left(\frac{M_T}{T}\right)^2\right] &= \frac{4\|f\|_{L^2(\mu)}^2}{T(d-1)} \end{aligned}$$

We now sketch the remainder of the ergodicity arguments in the main result. The previous lemmas tell us that the concentration happens at time T that depends on the function f .

4.2 ANALYZING THE ERROR COMPONENT E

Recall in the previous section that the time average consists of a Brownian component that is averaged out to zero, and an error component $\frac{1}{T} \int_0^T E_t dt$. First, let us recall our definition $b(\theta) := -\nabla_\theta L_n(\theta) = \frac{1}{n} P_\theta^\perp \sum_{i \in [n]} y_i \sigma'(\theta \cdot x_i) x_i$. By decomposing the time average of E_t even further, it turns out we can write the above as roughly:

$$\frac{1}{T} \int_0^T E_t dt \approx \frac{\epsilon}{d} \frac{1}{T} \int_0^T b(\theta_t) dt$$

From here, we derive the following:

$$\frac{1}{T} \int_0^T b(\theta_t) dt = \frac{1}{T} \int_0^T b(\beta_t) dt + \frac{1}{T} \int_0^T (b(\theta_t) - b(\beta_t)) dt$$

The first term concentrates to $\bar{b} := \mathbb{E}_{z \sim \mu}[b(z)]$ using the ergodicity arguments from the previous section, and the second term can be controlled via upper bound on $\|E_t\| = \|\theta_t - \beta_t\|$ due to Lipschitzness. Indeed, in the regime of ϵ that we work in, we can further argue that with high probability, $\|\theta - \beta\|$ remains order $O(\epsilon)$ over all time, which we outline below. Recall the SDE's for the coupled processes θ, β :

$$\begin{aligned} d\theta &= \left(-\frac{d-1}{2} \theta + \epsilon b(\theta) \right) dt + P_\theta^\perp dW_t \\ d\beta &= -\frac{d-1}{2} \beta dt + P_\beta^\perp dW_t \end{aligned}$$

This tells us that:

$$dE = \left(-\frac{d-1}{2} E + \epsilon b(\theta) \right) dt + (P_\theta^\perp - P_\beta^\perp) dW_t$$

The key observation here is that the noise matrix $\Sigma^{1/2} := P_\theta^\perp - P_\beta^\perp$ satisfies the property that $\text{tr } \Sigma \leq 2\|E\|^2$. Intuitively, this means that the size of the noise scales with the norm of E , and this allows us to get a high probability uniform bound on $\|E\|$ over all time. The following lemma formalizes this, and the proof is deferred to the appendix.

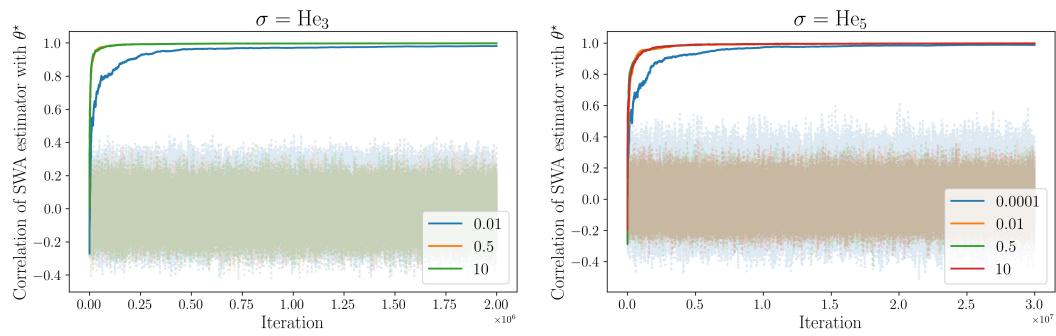


Figure 1: We run with $d = 100$ with $n = 10d^{\lceil k^* / 2 \rceil}$ samples, using various learning rates. Here, the dark curves correspond to the correlation of the time average as a function of iteration, in which it indeed converges to the direction of θ^* . The light curves correspond to the actual iterate as a function of time, which can be seen to stay near the equator over the entire training process.

Lemma 4 (High probability uniform bound of $\sup \|E\|$). *With probability at least $1 - dTe^{-d}$, there exists an absolute constant C' such that:*

$$\sup_{t \leq T} \|E(t)\| \leq C' \left[\frac{\epsilon \sup \|b\|}{d} \right]$$

The fact that $\|E\| = O(\epsilon)$ throughout training is key to both the proofs of odd and even k^* , since it heuristically reduces our process to a Brownian component plus an ϵ signal component that can leverage the randomness in the Brownian component.¹

4.3 RECOVERY OF θ^*

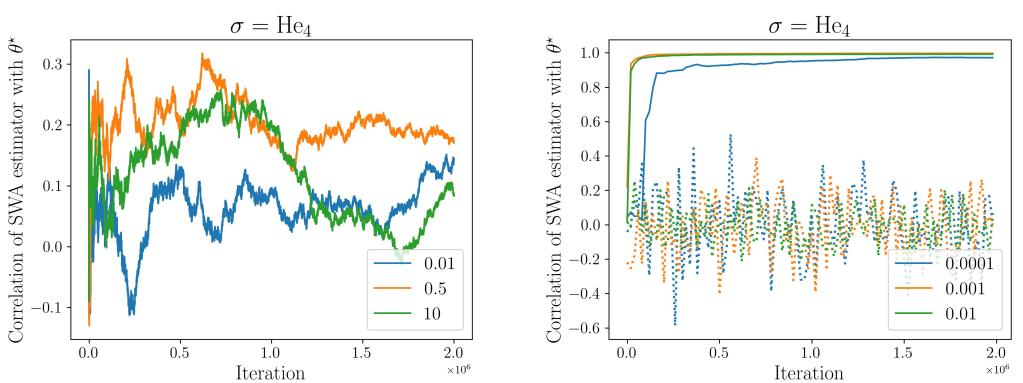
Let $\tilde{O}(\cdot)$ hide non- ϵ terms. In the odd case, our estimator converges to the direction of $\bar{b} = \mathbb{E}_{z \sim \mu}[b(z)]$ with a magnitude of $\tilde{O}(\epsilon)$. We prove in Appendix F that for the tensor PCA setting, this recovers θ^* with $n \gtrsim d^{\lceil k^* / 2 \rceil}$, and we prove in Appendix G that for the single-index model setting, it recovers θ^* with $n \gtrsim d^{\lceil k^* / 2 \rceil}$ as well. For the even case, we also leverage the uniform bound on $\sup \|E\|$ to prove convergence of our estimator \hat{M} to approximately $\frac{I}{d}$ plus $\tilde{O}(\epsilon)$ spike in $\theta^* \theta^{*\top}$. From here, we can perform PCA or a similar algorithm to recover θ^* .

5 DISCUSSION

5.1 EXPERIMENTS

We sanity check our findings experimentally via different choices of link functions which correspond to different k^* . For $k^* = 3, 4, 5$, we let $\sigma(t) = h_{k^*}(t)$, as defined in Definition 1. Specifically, we run the minibatch update defined in Section 5.2 with batch size 1. Our findings are included in Figure 1 and Figure 2 for the odd and even cases, respectively. For $k^* = 3, 5$, our first-order estimator indeed recovers θ^* , even though the iterates stay near the equator throughout training. For $k^* = 4$, this same estimator does not recover θ^* , but the second-order estimator's top eigendirection does, with the iterates once again staying near the equator. Our experiments are run with different learning rates, and we observe that smaller learning rates behave more and more like gradient flow, whereas larger ones behave more like Brownian motion and stay near the equator, as we would predict with Langevin dynamics. However, there are some more nuances to this, as we describe in the next section.

¹As an aside, our technique is one way to prove convergence to the stationary Gibbs distribution $\mu_\epsilon \propto \exp(-2\epsilon L_n)$, and we believe this can be a useful way to approach the our minibatch conjecture in Section 5.2.



(a) For various learning rate choices, we track the time average (e.g. the first order estimator) as a function of iteration, which can be seen to not have any meaningful correlation with θ^* . This is due to the σ' being an odd function, causing the first order estimator to vanish.

(b) The solid curves correspond to the correlation of θ^* with the top eigenvector of the time average of $\theta\theta^\top$, and the dotted lines are for the correlation between the actual iterate θ and θ^* . Indeed, the actual iterate itself remains near the equator over all time.

Figure 2: Simulations for $k^* = 4$, run with $d = 100$ with $n = 10d^2$ samples.

5.2 EXTENSION TO MINI-BATCH SGD

Our experimental results suggest that pure mini-batch SGD should have theoretically guarantees too. Consider mini-batch SGD with learning rate η and batch size 1:

$$\theta_{t+1} = \frac{\theta_t - \eta g_t}{\|\theta_t - \eta g_t\|}, \quad g_t := \nabla_\theta L(\theta_t; x_{i_t}, y_{i_t}), \quad i_t \sim \mathcal{U}([n])$$

g_t is approximately a standard Gaussian, since $\nabla L(\theta; x, y) = -y\sigma'(\theta \cdot x)x$ and $\theta \cdot x$ is $O(1)$ for the most part, and hence $\|g_t\| \approx O(\sqrt{d})$. For $\eta \ll d^{-1/2}$, we have the following approximation:

$$\theta_{t+1} = \frac{\theta_t - \eta g_t}{\|\theta_t - \eta g_t\|} = \frac{\theta_t - \eta g_t}{\sqrt{1 + \eta^2 \|g_t\|^2}} \approx (\theta_t - \eta g_t)(1 - \frac{1}{2}\eta^2(d-1))$$

Let $z_t := g_t + b(\theta_t)$ be the mini-batch noise². Because we are in a noise-dominated regime, z_t is approximately isotropic so if we approximate this process by an SDE, we would heuristically get:

$$\begin{aligned} \theta_{t+1} &\approx \theta_t - \eta g_t - \frac{1}{2}\eta^2(d-1)\theta_t \\ &= \theta_t - \sqrt{\eta} \cdot \sqrt{\eta} z_t - \eta \cdot \frac{1}{2}\eta(d-1)\theta + \eta b(\theta_t) \\ \implies d\theta &\approx \left(-\frac{d-1}{2}\eta\theta + b(\theta) \right) dt + \sqrt{\eta} P_\theta^\perp dW_t \\ \implies d\theta &\approx \left(-\frac{d-1}{2}\theta + \frac{1}{\eta}b(\theta) \right) dt + P_\theta^\perp dW_t \end{aligned}$$

which roughly recovers our Langevin setting with $\epsilon := \frac{1}{\eta}$. We therefore conjecture that there exists a learning rate regime for which this SGD argument holds even without the noise boosting that is present in Langevin dynamics. The main technical challenge in extending our results in this direction is not just controlling the discretization error, but also the dependencies that arise between the noise covariance and the smoothing estimator. In particular, the stationary distribution for the pure-noise process will no longer be isotropic over the sphere and will have a data-dependent stationary distribution, which introduces additional complications. However, extending our results and techniques to the minibatch SGD setting is a promising direction for future work.

²By choosing batch size $B = 1$, which is the best we can do to maximize the scale of the noise without explicit noise boosting.

486 REFERENCES
487

488 Emmanuel Abbe, Enric Boix-Adserà, and Theodor Misiakiewicz. Sgd learning on neural networks:
489 leap complexity and saddle-to-saddle dynamics, 2023.

490 Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy analysis for tensor pca,
491 2017.

492 Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita iu-
493 vant: Data repetition allows sgd to learn high-dimensional multi-index functions. *arXiv preprint*
494 *arXiv:2405.15459*, 2024.

495 Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
496 non-convex losses from high-dimensional inference, 2021.

497 Gérard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Algorithmic thresholds for tensor pca.
498 *The Annals of Probability*, 48(4), July 2020. ISSN 0091-1798. doi: 10.1214/19-aop1415. URL
499 <http://dx.doi.org/10.1214/19-AOP1415>.

500 Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
501 shallow neural networks, 2022.

502 Giulio Biroli, Chiara Cammarota, and Federico Ricci-Tersenghi. How to iron out rough landscapes
503 and get optimal performances: averaged gradient descent and its application to tensor pca. *Journal*
504 *of Physics A: Mathematical and Theoretical*, 53(17):174003, April 2020. ISSN 1751-8121. doi: 10.
505 1088/1751-8121/ab7b1f. URL <http://dx.doi.org/10.1088/1751-8121/ab7b1f>.

506 Siyu Chen, Beining Wu, Miao Lu, Zhuoran Yang, and Tianhao Wang. Can neural networks achieve
507 optimal computational-statistical tradeoff? an analysis on single-index model. In *The Thirteenth*
508 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=is4nCVkSFA>.

509 Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initialization:
510 fast global convergence for nonconvex phase retrieval. *Mathematical Programming*, 176(1–2):
511 5–37, February 2019. ISSN 1436-4646. doi: 10.1007/s10107-019-01363-6. URL <http://dx.doi.org/10.1007/s10107-019-01363-6>.

512 Alex Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
513 with gradient descent, 2022.

514 Alex Damian, Eshaan Nichani, Rong Ge, and Jason D. Lee. Smoothing the landscape boosts the
515 signal for sgd: Optimal sample complexity for learning single index models, 2023.

516 Alex Damian, Lucas Pillaud-Vivien, Jason D. Lee, and Joan Bruna. Computational-statistical gaps
517 in gaussian single-index models, 2024.

518 Alex Damian, Jason D. Lee, and Joan Bruna. The generative leap: Sharp sample complexity for
519 efficiently learning gaussian multi-index models, 2025. URL <https://arxiv.org/abs/2506.05500>.

520 Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
521 neural networks learn, one (giant) step at a time, 2023. URL <https://arxiv.org/abs/2305.18270>.

522 Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and Florent Krzakala.
523 The benefits of reusing batches for gradient descent in two-layer networks: Breaking the curse of
524 information and leap exponents, 2024. URL <https://arxiv.org/abs/2402.03220>.

525 Samuel B. Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via
526 sum-of-squares proofs, 2015.

527 Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral algorithms from
528 sum-of-squares proofs: tensor decomposition and planted sparse vectors, 2016.

540 Marian Hristache, Anatoli Juditsky, and Vladimir Spokoiny. Direct estimation of the index coefficient
 541 in a single-index model. *The Annals of Statistics*, 29(3):593 – 623, 2001. doi: 10.1214/aos/1009210682. URL <https://doi.org/10.1214/aos/1009210682>.

543

544 Wolfgang Karl Händle, Marlene Miller, Stefan Sperlich, and Axel Werwatz. *Nonparametric and*
 545 *Semiparametric Models / Edition 1*. Springer Berlin Heidelberg, 2004.

546

547 Nirmit Joshi, Hugo Koubbi, Theodor Misiakiewicz, and Nathan Srebro. Learning single-index models
 548 via harmonic decomposition. *arXiv preprint arXiv:2506.09887*, 2025.

549

550 Sham Kakade, Adam Tauman Kalai, Varun Kanade, and Ohad Shamir. Efficient learning of
 551 generalized linear and single index models with isotonic regression, 2011. URL <https://arxiv.org/abs/1104.2018>.

552

553 Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-dimensional isotonic regres-
 554 sion. In *Annual Conference Computational Learning Theory*, 2009. URL <https://api.semanticscholar.org/CorpusID:7415296>.

555

556 Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
 557 polynomials with sgd near the information-theoretic limit. *Advances in Neural Information*
 558 *Processing Systems*, 37:58716–58756, 2024.

559

560 Antoine Maillard, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase retrieval in
 561 high dimensions: Statistical and computational phase transitions, 2020. URL <https://arxiv.org/abs/2006.05228>.

562

563 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random feature and
 564 kernel methods: Hypercontractivity and kernel matrix concentration. *Applied and Computational*
 565 *Harmonic Analysis*, 59:3–84, 2022.

566

567 Marco Mondelli and Andrea Montanari. Fundamental limits of weak recovery with applications to
 568 phase retrieval, 2018. URL <https://arxiv.org/abs/1708.05932>.

569

570 Andrea Montanari and Emile Richard. A statistical model for tensor pca, 2014.

571

572 Yunwei Ren and Jason D. Lee. Learning orthogonal multi-index models: A fine-grained information
 573 exponent analysis, 2024. URL <https://arxiv.org/abs/2410.09678>.

574

575 L. Saloff-Coste. Precise estimates on the rate at which certain diffusions tend to equilibrium.
 576 *Mathematische Zeitschrift*, 94, 1994.

577

578 Emanuele Troiani, Yatin Dandi, Leonardo Defilippis, Lenka Zdeborová, Bruno Loureiro, and Florent
 579 Krzakala. Fundamental computational limits of weak learnability in high-dimensional multi-index
 580 models, 2024. URL <https://arxiv.org/abs/2405.15480>.

581

582

583 Ramon van Handel. Probability in high dimension, 2016. <https://web.math.princeton.edu/~rvan/APC550.pdf>.

584

585

586

587

588

589

590

591

592

593

594 A ERGODIC CONCENTRATION
595596 **Proposition 1.** *The Itô stochastic differential equations for β and θ remain on S^{d-1} for all time.*
597598 *Proof.* This follows by Itô's lemma on $f(X) = \frac{1}{2}\|X\|^2$. More concretely,
599

600
$$d\left(\frac{1}{2}\|\theta\|^2\right) = \left(-\frac{d-1}{2}(\theta \cdot \theta) + P_\theta^\perp \cdot \epsilon b(\theta)\theta + \frac{1}{2} \text{tr } P_\theta^\perp\right)dt + \theta^\top P_\theta^\perp dW_t = 0$$

601
602

603 The derivation for β proceeds similarly. \square
604605 **Lemma 5** (Lemma 1, restated). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that $f \in L^2(\mu)$, where μ is the stationary
606 uniform measure over the sphere for the Brownian motion, and $\int_{S^{d-1}} f d\mu = 0$. Then, we have:*
607

608
$$\frac{1}{T} \int_0^T f(\beta_t)dt = \frac{\phi(\beta_0) - \phi(\beta_T)}{T} + \frac{M_T}{T}$$

609

610 where

611
$$\phi(\beta) = \int_0^\infty P_t f(\beta)dt$$

612
613

614 and $M_T := \int_0^T \nabla \phi(\beta_t)^\top P_{\beta_t}^\perp dW_t$ is a martingale.
615616 *Proof.* To begin, observe that ϕ satisfies $-\mathcal{L}\phi = f$. To see why, note that:
617

618
$$\mathcal{L}\phi(x) = \int_0^\infty \mathcal{L}(P_t f)(x)dt = [(P_t f)(x)]_0^\infty = -f(x)$$

619
620

621 where in the second equality we used Kolmogorov's backward equation:
622

623
$$\frac{d}{dt} P_t f = P_t \mathcal{L} f = \mathcal{L} P_t f, \quad P_0 f = f$$

624

625 Applying Itô's to $\phi(\beta_t)$, we obtain:
626

627
$$\begin{aligned} d\phi(\beta) &= \nabla \phi(\beta) \cdot d\beta + \mathcal{L}\phi(\beta)dt \\ &= \nabla \phi(\beta)^\top P_\beta^\perp d\beta + \mathcal{L}\phi(\beta)dt \\ &= \nabla \phi(\beta)^\top P_\beta^\perp dW_t + \mathcal{L}\phi(\beta)dt \end{aligned}$$

628
629
630

631 where the second line follows from that fact that $\beta^\top (d\beta) = 0$ (i.e. Brownian motion stays on the
632 sphere). Therefore, it holds that by integrating from 0 to T ,
633

634
$$\begin{aligned} \phi(\beta_T) - \phi(\beta_0) &= \int_0^T \nabla \phi(\beta_t)^\top P_{\beta_t}^\perp dW_t + \int_0^T \mathcal{L}\phi(\beta_t)dt \\ &= M_T - \int_0^T f(\beta_t)dt \end{aligned}$$

635
636
637
638

639 Rearranging gives the desired result. \square
640641 **Lemma 6.** *In the setting of Lemma 1, we have that for $\beta_0 \sim \mu$, both the first and second moments of
642 $\phi(\beta_0)$ are finite. That is, $\mathbb{E}[\phi(\beta_0)]$, $\mathbb{E}[\phi(\beta_0)^2] < \infty$, and they are upper bounded as follows:*
643

644
$$\begin{aligned} \mathbb{E}[\phi(\beta_0)] &\leq \frac{2}{d-1} \|f\|_{L^2(\mu)} \\ \mathbb{E}[\phi(\beta_0)^2] &\leq \frac{4}{(d-1)^2} \|f\|_{L^2(\mu)}^2 \end{aligned}$$

645
646
647

The same holds for β_T , since we initialize at the stationary distribution.

648 *Proof.* We begin with the following:
 649

$$650 \quad \|\phi\|_{L^2(\mu)} = \left\| \int_0^\infty P_t f dt \right\|_{L^2(\mu)} \leq \int_0^\infty \|P_t f\|_{L^2(\mu)} dt \leq \|f\|_{L^2(\mu)} \int_0^\infty e^{-\frac{d-1}{2}t} dt = \frac{2}{d-1} \|f\|_{L^2(\mu)}$$

652 where the first inequality follows from Minkowski's integral inequality, and the second inequality
 653 from the contraction in Poincaré. In addition, recall that $\beta_0 \sim \mu$. From here, we obtain:
 654

$$655 \quad \mathbb{E}[\phi(\beta_0)^2] = \|\phi\|_{L^2(\mu)}^2 \leq \frac{4}{(d-1)^2} \|f\|_{L^2(\mu)}^2 < \infty$$

657 Due to Jensen's, we also have that $\mathbb{E}[\phi(\beta_0)] \leq \|\phi\|_{L^2(\mu)} < \infty$, as desired. \square
 658

659 An adaptation of the above lemma for different f yields concentration of $\frac{\phi(\beta_0) - \phi(\beta_T)}{T}$. To concentrate
 660 the martingale M_T , we consider the quadratic variation.
 661

662 **Lemma 7.** *In the setting of Lemma 1, we have that for $\beta_0 \sim \mu$, the variance of M_T/T is the
 663 following:*

$$664 \quad \mathbb{E} \left[\left(\frac{M_T}{T} \right)^2 \right] = \frac{4\|f\|_{L^2(\mu)}^2}{T(d-1)}$$

668 *Proof.* Consider the quadratic variation $\langle M \rangle_T$.
 669

$$670 \quad \langle M \rangle_T = \int_0^T \|\nabla \phi(\beta_t)^\top P_{\beta_t}^\perp\|^2 dt \leq \int_0^T \|\nabla \phi(\beta_t)\|^2 dt$$

672 To bound the expected quadratic variation, we again make use of that fact that since $\beta_0 \sim \mu$, it holds
 673 that $\beta_t \sim \mu$ for all $t \geq 0$. Then by Fubini's, we have:
 674

$$675 \quad \mathbb{E}[\langle M \rangle_T] \leq \int_0^T \mathbb{E}[\|\nabla \phi(\beta_t)\|^2] dt = T \|\nabla \phi\|_{L^2(\mu)}^2$$

678 Before bounding this, first observe that

$$679 \quad \text{div}(\phi(\nabla \phi)) = (\nabla \phi) \cdot (\nabla \phi) + \phi \text{div}(\nabla \phi) = \|\nabla \phi\|^2 + \phi \Delta_{S^{d-1}} \phi$$

681 By the divergence theorem, we have:

$$683 \quad 0 = \int_{S^{d-1}} \text{div}(\phi(\nabla \phi)) d\mu \implies \int_{S^{d-1}} \|\nabla \phi\|^2 d\mu = - \int_{S^{d-1}} \phi \Delta_{S^{d-1}} \phi d\mu$$

685 Note that the right hand side is equivalent to $2 \int_{S^{d-1}} f \phi d\mu$ and the left hand side is equivalent to
 686 $\|\nabla \phi\|_{L^2(\mu)}^2$. Thus, we obtain:
 687

$$688 \quad \|\nabla \phi\|_{L^2(\mu)}^2 = 2 \langle f, \phi \rangle_{L^2(\mu)} \leq 2\|f\|_{L^2(\mu)} \|\phi\|_{L^2(\mu)} \leq \frac{4}{d-1} \|f\|_{L^2(\mu)}^2$$

690 where the first inequality comes from Cauchy-Schwarz, and the second inequality uses the bound
 691 from the proof of Lemma 6. Finally, this allows us to conclude that
 692

$$693 \quad \mathbb{E} \left[\frac{M_T^2}{T^2} \right] = \frac{1}{T^2} \mathbb{E}[\langle M \rangle_T] = \frac{1}{T^2} \cdot \frac{4T\|f\|_{L^2(\mu)}^2}{d-1} = \frac{4\|f\|_{L^2(\mu)}^2}{T(d-1)}$$

695 which vanishes with increasing T . \square
 696

697 B PROOF OF THE ODD k^* CASE

700 **Definition 7.** Let $\iota = C_\iota \log(d)$ for a sufficiently large constant C_ι . We define high probability events
 701 to be events that happen with probability at least $1 - \text{poly}(d)e^{-\iota}$ where $\text{poly}(d)$ does not depend on
 C_ι .

702 Note that high probability events are closed under polynomial number of union bounds.
 703

704 We begin by applying Lemma 20 that gives high probability control of E over all time.
 705

706 **Lemma 8** (High probability uniform bound of $\sup \|E\|$). *With probability at least $1 - dTe^{-d}$, there
 707 exists an absolute constant C' such that:*

$$708 \sup_{t \leq T} \|E(t)\| \leq C' \left[\frac{\epsilon \sup \|b\|}{d} \right]$$

710 *Proof.* Recall the SDE for $E(t)$:
 711

$$712 dE = \left(-\frac{d-1}{2}E + \epsilon b(\theta) \right) dt + (P_\theta^\perp - P_\beta^\perp) dW_t$$

713 By Lemma 20, we can apply the result with $C = \frac{d-1}{2} \asymp d$, $G \asymp \epsilon \sup \|b\|$, and $B = 2$. \square
 714

715 We now show that after sufficiently long running time, the time average of θ roughly approximates
 716 the time average of the Brownian motion, which in expectation over the stationary measure μ should
 717 converge to the partial trace estimator for k^* odd (i.e. $\mathbb{E}_{z \sim \mu}[b(z)]$).
 718

719 **Proposition 2** (Decomposition of E). *At time $t \geq 0$, it holds that:*
 720

$$721 E(t) = \int_0^t e^{-\frac{d-1}{2}(t-s)} \epsilon b(\theta_s) ds + \int_0^t e^{-\frac{d-1}{2}(t-s)} (P_\theta^\perp - P_\beta^\perp) dW_s$$

722 *Proof.* Recall the SDE's for the coupled processes θ and β .
 723

$$724 d\theta = \left(-\frac{d-1}{2}\theta + \epsilon b(\theta) \right) dt + P_\theta^\perp dW_t$$

$$725 d\beta = -\frac{d-1}{2}\beta dt + P_\beta^\perp dW_t$$

726 This implies that:
 727

$$728 dE = \left(-\frac{d-1}{2}E + \epsilon b(\theta) \right) dt + (P_\theta^\perp - P_\beta^\perp) dW_t$$

729 Integrating this gives the desired expression. \square
 730

731 We now give the ergodic concentration results for the relevant functions.
 732

733 **Lemma 9** (Ergodic concentration of b). *With probability at least $1 - d^{-1}$, we have:*
 734

$$735 \left\| \frac{1}{T} \int_0^T b(\beta_s) ds - \bar{b} \right\| \lesssim \frac{\sup \|b\|}{\sqrt{Td}} \quad (2)$$

736 *Proof.* First, define the function $f = b - \bar{b}$, which can be noted to satisfy $\|f\|_\infty = O(\sup \|b\|)$.
 737 By Corollary 2, we can apply Lemma 6. This implies that $\mathbb{E}[\|\phi(\beta)\|^2] = O(\sup \|b\|^2/d^2)$, and by
 738 Chebyshev's inequality it holds with probability $1 - d^{-1}$ that $\|\phi(\beta)\| \lesssim \sup \|b\| d^{-1/2}$. Therefore, at
 739 time T , it holds with this probability $1 - d^{-1}$ that
 740

$$741 \left\| \frac{\phi(\beta_0) - \phi(\beta_T)}{T} \right\| = O(\sup \|b\| / T \sqrt{d})$$

742 For the martingale term of the ergodic average, we have by Lemma 7 that the quadratic variation is
 743 $\frac{4\|f\|_{L^2(\mu)}^2}{T(d-1)}$. Therefore, with high probability (via union bounding), it holds that the martingale term
 744 has magnitude $\frac{\sup \|b\|}{\sqrt{Td}}$.
 745

Combining the above results, we have that norm of the difference between the time average and the stationary mean is $O\left(\frac{\sup\|b\|}{T\sqrt{d}} + \frac{\sup\|b\|}{\sqrt{Td}}\right)$. Therefore, with probability $1 - d^{-1}$,

$$\left\| \frac{1}{T} \int_0^T b(\beta_s) ds - \bar{b} \right\| \lesssim \frac{\sup\|b\|}{T\sqrt{d}} + \frac{\sup\|b\|}{\sqrt{Td}} \lesssim \frac{\sup\|b\|}{\sqrt{Td}}$$

□

Lemma 10 (Ergodic concentration of β). *With probability at least $1 - d^{-1}$, it holds that:*

$$\left\| \frac{1}{T} \int_0^T \beta_s ds \right\| \lesssim \frac{1}{\sqrt{Td}}$$

Proof. First, define f to be the identity function. In this setting, we have that $\|f\|_{L^2(\mu)} = 1$, since the Brownian motion is always on the sphere. Then, using Lemma 6, we have that by Chebyshev's inequality with probability $1 - d^{-1}$, it holds that $\|\phi(\beta)\| \lesssim 1/\sqrt{d}$. Therefore, at time T , it holds with this probability that:

$$\left\| \frac{\phi(\beta_0) - \phi(\beta_T)}{T} \right\| = O(1/\sqrt{dT})$$

For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is $\frac{4\|f\|_{L^2(\mu)}^2}{T(d-1)}$. Therefore, with high probability, it holds that the martingale term has magnitude $O(\frac{1}{\sqrt{Td}})$.

Combining the above results, we have probability $1 - d^{-1}$, the time average is bounded as:

$$\left\| \frac{1}{T} \int_0^T \beta_s ds \right\| \lesssim \frac{1}{\sqrt{dT}} + \frac{1}{\sqrt{Td}} \lesssim \frac{1}{\sqrt{Td}}$$

□

We now prove the main theorem.

Theorem 4 (Theorem 2, restated). *Let $\epsilon = o(d^{-(k^*-3)/2})$ and $T \gtrsim d^{k^*}/\epsilon^2$. Then for $\delta, \Delta > 0$, if $n \gtrsim d^{\lceil k^* / 2 \rceil} / (\delta \Delta^2)$, Algorithm 1 succeeds in recovering the ground truth θ^* up to error Δ with probability at least $1 - 2d^{-1} - \delta$.*

Proof. The time average of the E up to time T is the sum of the time averages of the two terms in Proposition 2. For the second term, which is the noise term, we have the following:

$$\begin{aligned} M_T &:= \frac{1}{T} \int_0^T \int_0^t e^{-\frac{d-1}{2}(t-s)} (P_\theta^\perp - P_\beta^\perp) dW_s dt \\ &= \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \int_0^{T-s} e^{-\frac{d-1}{2}t} dt dW_s \\ &= \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \cdot \frac{2}{d-1} \left(1 - e^{-\frac{d-1}{2}(T-s)}\right) dW_s \end{aligned}$$

Note that the quadratic variation of M_T is:

$$\begin{aligned} &\mathbb{E} \left[\left\| \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \cdot \frac{2}{d-1} \left(1 - e^{-\frac{d-1}{2}(T-s)}\right) dW_s \right\|^2 \right] \\ &= \frac{1}{T^2} \mathbb{E} \left[\int_0^T \left(\frac{2}{d-1} \left(1 - e^{-\frac{d-1}{2}(T-s)}\right) \right)^2 \|P_\theta^\perp - P_\beta^\perp\|_F^2 ds \right] \\ &\lesssim \frac{1}{d^2 T} \sup_{t \leq T} \|E_t\|^2 \lesssim \frac{\epsilon^2}{d^4 T} \end{aligned}$$

810 By Gaussian concentration, we have that with high probability:
811

$$812 \|M_T\| \lesssim \frac{\epsilon}{d^2 \sqrt{T}} \\ 813$$

814 For the first term in Proposition 2, we have
815

$$816 \frac{1}{T} \int_0^T \int_0^t e^{-\frac{d-1}{2}(t-s)} \epsilon b(\theta_s) ds dt = \frac{1}{T} \int_0^T \epsilon b(\theta_s) \int_0^{T-s} e^{-\frac{d-1}{2}t} dt ds \\ 817 = \frac{1}{T} \int_0^T \epsilon b(\theta_s) \cdot \frac{2}{d-1} \left(1 - e^{-\frac{d-1}{2}(T-s)}\right) ds \\ 818 = \frac{1}{T} \int_0^T \epsilon b(\theta_s) \cdot \frac{2}{d-1} ds - \frac{1}{T} \int_0^T \epsilon b(\theta_s) \cdot \frac{2}{d-1} e^{-\frac{d-1}{2}(T-s)} ds \\ 821 \\ 822$$

823 We analyze these two terms separately. For the second term, note that:
824

$$825 \left\| \frac{1}{T} \int_0^T \epsilon b(\theta_s) \cdot \frac{2}{d-1} e^{-\frac{d-1}{2}(T-s)} ds \right\| \lesssim \frac{\epsilon \sup \|b(\theta)\|}{Td} \int_0^T e^{-\frac{d-1}{2}(T-s)} ds \lesssim \frac{\epsilon \sup \|b(\theta)\|}{Td} \\ 826 \\ 827$$

828 For the first term, we decompose it as follows to isolate the Brownian motion:
829

$$830 \frac{1}{T} \int_0^T \epsilon b(\theta_s) \cdot \frac{2}{d-1} ds = \frac{2}{T(d-1)} \int_0^T \epsilon b(\beta_s) ds + \frac{2}{T(d-1)} \int_0^T \epsilon (b(\theta_s) - b(\beta_s)) ds \\ 831$$

832 Once again, the second term can be bounded by the Lipschitz constant of b :

$$833 \left\| \frac{2}{T(d-1)} \int_0^T \epsilon (b(\theta_s) - b(\beta_s)) ds \right\| \leq \frac{2\epsilon \sup \|\nabla b\|_2}{T(d-1)} \int_0^T \|\theta_s - \beta_s\| ds \\ 834 \\ 835 \lesssim \frac{2\epsilon \sup \|\nabla b\|_2}{(d-1)} \left[\frac{\epsilon \sup \|b\|}{d} \right] \\ 836 \\ 837 \\ 838$$

839 The remaining term is the main term $\frac{2\epsilon}{d-1} \frac{1}{T} \int_0^T b(\beta_s) ds$, which we proved concentration around the
840 stationary average for in Lemma 9. Therefore, the time average of E satisfies via triangle inequality:
841

$$842 \left\| \frac{1}{T} \int_0^T E_s ds - \frac{2\epsilon}{d-1} \bar{b} \right\| \\ 843 \\ 844 \lesssim \left\| \frac{1}{T} \int_0^T \frac{2\epsilon}{d-1} (b(\beta) - \bar{b}) ds \right\| + \frac{\epsilon}{d^2 \sqrt{T}} + \frac{\epsilon \sup \|b\|}{Td} + \frac{2\epsilon^2 \sup \|\nabla b\|_2 \sup \|b\|}{d^2} \\ 845 \\ 846 \lesssim \frac{2\epsilon}{d-1} \frac{\sup \|b\|}{\sqrt{Td}} + \frac{\epsilon}{d^2 \sqrt{T}} + \frac{\epsilon \sup \|b\|}{Td} + \frac{2\epsilon^2 \sup \|\nabla b\|_2 \sup \|b\|}{d^2} \lesssim \frac{\epsilon}{\sqrt{Td^3}} + \frac{\epsilon^2}{d^2} \\ 847 \\ 848 \\ 849$$

850 Combining our results with Lemma 10 using triangle inequality, we obtain with probability at least
851 $1 - 2d^{-1}$:

$$852 \left\| \frac{1}{T} \int_0^T \theta_s ds - \frac{2\epsilon}{d-1} \bar{b} \right\| = \left\| \frac{1}{T} \int_0^T (\beta_s + E_s) ds - \frac{2\epsilon}{d-1} \bar{b} \right\| \\ 853 \\ 854 \leq \left\| \frac{1}{T} \int_0^T \beta_s ds \right\| + \left\| \frac{1}{T} \int_0^T E_s ds - \frac{2\epsilon}{d-1} \bar{b} \right\| \\ 855 \\ 856 \\ 857 \lesssim \frac{1}{\sqrt{Td}} + \frac{\epsilon}{\sqrt{Td^3}} + \frac{\epsilon^2}{d^2} \lesssim \frac{1}{\sqrt{Td}} + \frac{\epsilon^2}{d^2} \\ 858 \\ 859$$

860 Let $u := \frac{2\epsilon}{d-1} \bar{b}$ and $v := \frac{1}{T} \int_0^T \theta_t dt$. Then, in our regime of T and ϵ , the total error is bounded as:
861

$$862 \|u - v\| \lesssim \frac{1}{\sqrt{Td}} + \frac{\epsilon^2}{d^2} \ll \frac{2\epsilon}{d-1} \cdot d^{-(k^* - 1)/2} \\ 863$$

864 By Lemma 25 and Chebyshev's, it holds with probability at least $1 - \delta$ that
 865

$$866 \|\bar{b} - c\theta^*\| \leq \sqrt{\frac{d^{-(k^*-3)/2}}{\delta n}}$$

868 where $c = \Theta(d^{-(k^*-1)/2})$ is the absolute constant in that lemma, and denote $w := c\theta^*$. For
 869 $\Delta > 0$, when $n = \Theta(d^{(k^*+1)/2}/\Delta^2\delta)$, we have that $\|\bar{b} - c\theta^*\| \lesssim \Delta\|w\|$. Combining this with
 870 $\|\bar{b} - \frac{d-1}{2\epsilon}v\| \ll d^{-(k^*-1)/2} \asymp \|w\|$, we have that by triangle inequality:
 871

$$872 \|\hat{v} - w\| \lesssim \Delta\|w\|, \quad \hat{v} := \frac{d-1}{2\epsilon}v$$

874 Therefore, it holds that:
 875

$$876 \|\hat{v}\| = \|w + (\hat{v} - w)\| \leq \sqrt{2}\sqrt{\|w\|^2 + \|\hat{v} - w\|^2} \lesssim \|w\|\sqrt{1 + \Delta^2}$$

877 Therefore by law of cosines, we have:
 878

$$879 1 - \cos \angle(\hat{v}, w) = \frac{\|\hat{v} - w\|^2 - (\|\hat{v}\| - \|w\|)^2}{2\|\hat{v}\|\|w\|} \leq \frac{\|\hat{v} - w\|^2}{2\|\hat{v}\|\|w\|} \lesssim \frac{\Delta^2\|w\|^2}{\|w\|^2} = \Delta^2$$

881 By union bounding, the claim holds with probability at least $1 - 2d^{-1} - \delta$, as desired.
 882

□

885 C PROOF OF THE EVEN k^* CASE

887 **Lemma 11.** *With probability at least $1 - d^{-1}$, it holds that:*

$$888 \left\| \frac{1}{T} \int_0^T \beta_s \beta_s^\top ds - \frac{I}{d} \right\|_F \lesssim \frac{1}{\sqrt{Td}}$$

892 *Proof.* We wish to analyze $\frac{1}{T} \int_0^T \beta_s \beta_s^\top ds$. First, note that $\mathbb{E}_{z \sim \mu}[zz^\top] = \frac{1}{d}I$. In the setting of
 893 Lemma 1, let us define $f(\beta) = \beta\beta^\top - \mathbb{E}_{z \sim \mu}[zz^\top]$. Note that the maximum Frobenius norm of f
 894 is bounded by $O(1)$. In the setting of Lemma 6, we have that $\mathbb{E}[\|\phi(\beta)\|_F^2] \lesssim \frac{1}{d^2}$. Therefore, by
 895 Chebyshev's, it holds with probability at least $1 - d^{-1}$ that:
 896

$$897 \left\| \frac{\phi(\beta_0) - \phi(\beta_T)}{T} \right\|_F \lesssim \frac{1}{T\sqrt{d}}$$

900 For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is
 901 $O(1/Td)$. Combining the above results, it holds that with probability $1 - d^{-1}$,

$$902 \left\| \frac{1}{T} \int_0^T \beta_s \beta_s^\top ds - \frac{I}{d} \right\|_F \lesssim \frac{1}{T\sqrt{d}} + \frac{1}{\sqrt{Td}} \lesssim \frac{1}{\sqrt{Td}}$$

□

906 **Lemma 12.** *With probability at least $1 - d^{-1}$, we have that:*

$$907 \left\| \frac{1}{T} \int_0^T (\beta_s b(\beta_s)^\top + b(\beta_s)\beta_s^\top) ds - \mathbb{E}_{z \sim \mu}[zb(z)^\top + b(z)z^\top] \right\|_F \lesssim \frac{1}{\sqrt{Td}}$$

911 *Proof.* We wish to analyze $\frac{1}{T} \int_0^T (\beta_s b(\beta_s)^\top + b(\beta_s)\beta_s^\top) ds$. In the setting of Lemma 1, let us define
 912 $f(\beta) = (\beta b(\beta)^\top + b(\beta)\beta^\top) - \mathbb{E}_{z \sim \mu}[zb(z)^\top + b(z)z^\top]$. Note that the maximum Frobenius norm of
 913 f is bounded by $O(1)$. In the setting of Lemma 6, we have that $\mathbb{E}[\|\phi(\beta)\|_F^2] \lesssim \frac{1}{d^2}$. Therefore, by
 914 Chebyshev's, it holds with probability at least $1 - d^{-1}$ that:
 915

$$916 \left\| \frac{\phi(\beta_0) - \phi(\beta_T)}{T} \right\|_F \lesssim \frac{1}{T\sqrt{d}}$$

918 For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is
 919 $O(1/Td)$. Combining the above results, it holds that with probability $1 - d^{-1}$,
 920

$$921 \quad \left\| \frac{1}{T} \int_0^T f(\beta_s) ds \right\|_F \lesssim \frac{1}{T\sqrt{d}} + \frac{1}{\sqrt{Td}} \lesssim \frac{1}{\sqrt{Td}}$$

□

926 **Lemma 13.** *With probability $1 - d^{-1}$, it holds that:*

$$929 \quad \left\| \frac{1}{T} \int_0^T (E_s b(\theta_s)^\top + b(\theta_s) E_s^\top) ds - \frac{\epsilon}{d} \mathbb{E}_{z \sim \mu} [zb(z)^\top + b(z) z^\top] \right\|_F \lesssim \frac{\epsilon}{\sqrt{Td^3}} + \frac{\epsilon^2}{d^2}$$

933 *Proof.* Recall the SDE's for E and β :

$$935 \quad d\beta = -\frac{d-1}{2} \beta dt + P_\beta^\perp dW_t$$

$$937 \quad dE = \left(-\frac{d-1}{2} E + \epsilon b(\theta) \right) dt + (P_\theta^\perp - P_\beta^\perp) dW_t$$

939 By Itô's lemma, we calculate the SDE for $E\beta^\top$ as:

$$941 \quad d(E\beta^\top) = (-(d-1)E\beta^\top + \epsilon b(\theta)\beta^\top + (P_\theta^\perp - P_\beta^\perp)P_\beta^\perp) dt + (P_\theta^\perp - P_\beta^\perp) dW_t \beta^\top + EdW_t^\top P_\beta^\perp$$

943 The SDE of βE^\top is just the transpose of the above, so we have:

$$945 \quad d(E\beta^\top) = (-(d-1)\beta E^\top + \epsilon \beta b(\theta)^\top + P_\beta^\perp (P_\theta^\perp - P_\beta^\perp)) dt + \beta dW_t^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_t E^\top$$

947 Let $G := E\beta^\top + \beta E^\top$. Then the SDE for G is:

$$949 \quad d(G) = (-(d-1)G + \epsilon(b(\theta)\beta^\top + \beta b(\theta)^\top) + [(P_\theta^\perp - P_\beta^\perp)P_\beta^\perp + P_\beta^\perp(P_\theta^\perp - P_\beta^\perp)]) dt$$

$$950 \quad + (P_\theta^\perp - P_\beta^\perp) dW_t \beta^\top + EdW_t^\top P_\beta^\perp + \beta dW_t^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_t E^\top$$

952 where the first line is the drift term, and the second line is the noise term. Moreover, we can further
 953 simplify the final term in the drift:

$$955 \quad (P_\theta^\perp - P_\beta^\perp)P_\beta^\perp + P_\beta^\perp(P_\theta^\perp - P_\beta^\perp)$$

$$956 \quad = (-\beta E^\top - EE^\top + (E^\top \beta)(\beta \beta^\top + E \beta^\top)) + (-E \beta^\top - EE^\top + (E^\top \beta)(\beta \beta^\top + \beta E^\top))$$

$$958 \quad = -(\beta E^\top + E \beta^\top) + \Xi$$

959 where Ξ is the remainder term satisfying $\|\Xi\|_F \lesssim \|E\|^2 \lesssim \epsilon^2/d^2$. The last line follows from
 960 Lemma 14 for simplification. Our SDE for G can therefore be rewritten as:

$$962 \quad dG = (-dG + \epsilon(b(\theta)\beta^\top + \beta b(\theta)^\top) + \Xi) dt$$

$$964 \quad + (P_\theta^\perp - P_\beta^\perp) dW_t \beta^\top + EdW_t^\top P_\beta^\perp + \beta dW_t^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_t E^\top$$

966 This implies that:

$$968 \quad G(t) = \int_0^t e^{-d(t-s)} (\epsilon(b(\theta_s)\beta_s^\top + \beta_s b(\theta_s)^\top) + \Xi_s) ds$$

$$970 \quad + \int_0^t e^{-d(t-s)} [(P_\theta^\perp - P_\beta^\perp) dW_t \beta^\top + EdW_t^\top P_\beta^\perp + \beta dW_t^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_t E^\top]$$

We first analyze the time average of the second term, which is the noise term. Intuitively, the time average of it should concentrate around 0 as time increases.

$$\begin{aligned}
& \frac{1}{T} \int_0^T \int_0^t e^{-d(t-s)} [(P_\theta^\perp - P_\beta^\perp) dW_s \beta_s^\top + EdW_s^\top P_\beta^\perp + \beta dW_s^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_s E^\top] dt \\
&= \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \int_0^{T-s} e^{-dt} dt dW_s \beta_s^\top + \frac{1}{T} \int_0^T E \int_0^{T-s} e^{-dt} dt dW_s^\top P_\beta^\perp \\
&+ \frac{1}{T} \int_0^T \beta \int_0^{T-s} e^{-dt} dt dW_s (P_\theta^\perp - P_\beta^\perp) + \frac{1}{T} \int_0^T P_\beta^\perp \int_0^{T-s} e^{-dt} dt dW_s E^\top \\
&= \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s \beta_s^\top + \frac{1}{T} \int_0^T E \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s^\top P_\beta^\perp \\
&+ \frac{1}{T} \int_0^T \beta \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s (P_\theta^\perp - P_\beta^\perp) + \frac{1}{T} \int_0^T P_\beta^\perp \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s E^\top
\end{aligned}$$

It now suffices to bound the Frobenius norm of the time average of the top two terms of the last expression (since the latter two terms are just transposes). For the first term, we have that:

$$\begin{aligned}
& \mathbb{E} \left[\left\| \frac{1}{T} \int_0^T (P_\theta^\perp - P_\beta^\perp) \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s \beta_s^\top \right\|_F^2 \right] \\
&= \frac{1}{T^2} \int_0^T \mathbb{E} \left[\left(\frac{1}{d} (1 - e^{-d(T-s)}) \right)^2 \|P_\theta^\perp - P_\beta^\perp\|_F^2 \right] ds \\
&\lesssim \frac{1}{d^2 T} \sup_{t \leq T} \|E_t\|^2 \\
&\lesssim \frac{\epsilon^2}{d^4 T}
\end{aligned}$$

where the second to last inequality follows from Lemma 15.

For the second term in the time average of the noise component, we have:

$$\begin{aligned}
& \mathbb{E} \left[\left\| \frac{1}{T} \int_0^T E \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) dW_s^\top P_\beta^\perp \right\|_F^2 \right] \\
&\leq \frac{1}{T^2} \int_0^T \mathbb{E} \left[\left(\frac{1}{d} (1 - e^{-d(T-s)}) \right)^2 \|E\|_F^2 \right] \\
&\lesssim \frac{\epsilon^2}{d^4 T}
\end{aligned}$$

Combining all four noise terms together using Gaussian concentration and triangle inequality, we have that with high probability,

$$\left\| \frac{1}{T} \int_0^T \int_0^t e^{-d(t-s)} [(P_\theta^\perp - P_\beta^\perp) dW_s \beta_s^\top + EdW_s^\top P_\beta^\perp + \beta dW_s^\top (P_\theta^\perp - P_\beta^\perp) + P_\beta^\perp dW_s E^\top] dt \right\|_F \lesssim \frac{\epsilon}{d^2 \sqrt{T}}$$

We now analyze the drift term of G . First, to isolate the Brownian motion, we once again do another decomposition:

$$\begin{aligned}
& \int_0^t e^{-d(t-s)} (\epsilon(b(\theta_s) \beta_s^\top + \beta_s b(\theta_s)^\top) + \Xi_s) ds \\
&= \int_0^t e^{-d(t-s)} (\epsilon((b(\beta_s) + v) \beta_s^\top + \beta_s (b(\beta_s) + v)^\top) + \Xi_s) ds \\
&= \int_0^t e^{-d(t-s)} \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds + \int_0^t e^{-d(t-s)} (\epsilon(v \beta_s^\top + \beta_s v^\top) + \Xi_s) ds
\end{aligned}$$

1026 where here we define $v := b(\theta) - b(\beta)$, which by Lipschitzness has norm bounded by $O(\|E\|) \lesssim \frac{\epsilon}{d}$.
1027 Hence, for all $t \leq T$, this second term satisfies:
1028

$$1029 \left\| \int_0^t e^{-d(t-s)} (\epsilon(v\beta_s^\top + \beta_s v^\top) + \Xi_s) ds \right\|_F \leq \frac{1}{d} \sup_{s \leq t} \|\epsilon(v\beta_s^\top + \beta_s v^\top) + \Xi_s\|_F \int_0^t e^{-d(t-s)} ds \lesssim \epsilon^2/d^2$$

1031 which means the time average over this component also has Frobenius norm $O(\epsilon^2)$. For the time
1032 average of the first term, we have the following:
1033

$$1034 \begin{aligned} & \frac{1}{T} \int_0^T \int_0^t e^{-d(t-s)} \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds \\ 1035 &= \frac{1}{T} \int_0^T \left(\frac{1}{d} (1 - e^{-d(T-s)}) \right) \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds \\ 1037 &= \frac{1}{T} \int_0^T \frac{1}{d} \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds - \frac{1}{T} \int_0^T \frac{1}{d} e^{-d(T-s)} \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds \end{aligned}$$

1041 For the second term, we can bound this in Frobenius norm by:
1042

$$1044 \left\| \frac{1}{T} \int_0^T \frac{1}{d} e^{-d(T-s)} \epsilon(b(\beta_s) \beta_s^\top + \beta_s b(\beta_s)^\top) ds \right\|_F \leq \frac{\epsilon}{Td} \sup \|b(\beta) \beta^\top + \beta b(\beta)^\top\|_F \lesssim \frac{\epsilon}{Td}$$

1047 Finally, for the first term, we have shown concentration to $\frac{\epsilon}{d} \mathbb{E}_{z \sim S^{d-1}} [b(z) z^\top + z b(z)^\top]$ in the
1048 previous lemma. Combining everything through triangle inequality, we have:
1049

$$1050 \begin{aligned} \left\| \frac{1}{T} \int_0^T G(s) ds - \frac{\epsilon}{d} \mathbb{E}_{z \sim \mu} [z b(z)^\top + b(z) z^\top] \right\|_F &\lesssim \frac{\epsilon}{d} \left\| \frac{1}{T} \int_0^T \beta_s b(\beta_s) + b(\beta_s) \beta_s^\top ds - \mathbb{E}_{z \sim \mu} [z b(z)^\top + b(z) z^\top] \right\|_F \\ 1051 &+ \frac{\epsilon}{Td} + \frac{\epsilon^2}{d^2} + \frac{\epsilon}{d^2 \sqrt{T}} \\ 1052 &\lesssim \frac{\epsilon}{\sqrt{T} d^3} + \frac{\epsilon}{Td} + \frac{\epsilon^2}{d^2} + \frac{\epsilon}{d^2 \sqrt{T}} \\ 1053 &\lesssim \frac{\epsilon}{\sqrt{T} d^3} + \frac{\epsilon^2}{d^2} \end{aligned}$$

1060 and the result follows. \square

1062 **Theorem 5** (Theorem 3, restated). *Let $\epsilon = o(d^{-(k^*-2)/2})$, and let $T \gtrsim d^{k^*+1}/\epsilon^2$. Then in the
1063 setting of Lemma F.9 in Damian et al. (2024), for $\Delta > 0$, if $n \gtrsim d^{k^*/2}/\Delta^2$, the algorithm succeeds
1064 in recovering θ^* up to error Δ with probability at least $1 - 2d^{-1}$.*

1066 *Proof.* Recall that $\theta\theta^\top = \beta\beta^\top + E\beta^\top + \beta E^\top + EE^\top$. In the previous lemmas, we have
1067 analyzed each of these terms separately, and our goal is to prove ergodic concentration to
1068 $\frac{1}{d} I + \frac{\epsilon}{d} \mathbb{E}_{z \sim S^{d-1}} [z b(z)^\top + b(z) z^\top]$.
1069

$$1070 \begin{aligned} & \left\| \frac{1}{T} \int_0^T \theta_s \theta_s^\top ds - \left(\frac{1}{d} I + \frac{\epsilon}{d} \mathbb{E}_{z \sim S^{d-1}} [z b(z)^\top + b(z) z^\top] \right) \right\|_F \\ 1071 &\leq \left\| \frac{1}{T} \int_0^T \beta_s \beta_s^\top ds - \frac{I}{d} \right\|_F + \left\| \frac{1}{T} \int_0^T (E\beta^\top + \beta E^\top) ds - \frac{\epsilon}{d} \mathbb{E}_{z \sim S^{d-1}} [z b(z)^\top + b(z) z^\top] \right\|_F + \left\| \frac{1}{T} \int_0^T EE^\top ds \right\|_F \\ 1072 &\lesssim \frac{1}{\sqrt{T} d} + \frac{\epsilon}{\sqrt{T} d^3} + \frac{\epsilon^2}{d^2} + \frac{\epsilon^2}{d^2} \\ 1073 &\lesssim \frac{1}{\sqrt{T} d} + \frac{\epsilon}{\sqrt{T} d^3} + \frac{\epsilon^2}{d^2} \\ 1074 &\lesssim \frac{1}{\sqrt{T} d} + \frac{\epsilon}{\sqrt{T} d^3} + \frac{\epsilon^2}{d^2} \end{aligned}$$

1080 Consider the stationary average of $M_n := \frac{1}{d}I + \frac{\epsilon}{d}\mathbb{E}_{z \sim S^{d-1}}[zb(z)^\top + b(z)z^\top]$. By Lemma F.9 in
 1081 Damian et al. (2024), with high probability, it holds that:
 1082

$$1083 \|\mathbb{E}_{z \sim S^{d-1}}[zb(z)^\top + b(z)z^\top] - \mathbb{E}_{z \sim S^{d-1}, x}[zb(z)^\top + b(z)z^\top]\|_2 \lesssim \sqrt{d^{-k^*/2}/n}$$

$$1084$$

1085 Therefore, we obtain via triangle inequality that:
 1086

$$1087 \left\| \frac{1}{T} \int_0^T \theta_s \theta_s^\top ds - \mathbb{E}_x[M_n] \right\|_2 \leq \left\| \frac{1}{T} \int_0^T \theta_s \theta_s^\top ds - M_n \right\|_2 + \|M_n - \mathbb{E}_x[M_n]\|_2$$

$$1088$$

$$1089 \lesssim \frac{1}{\sqrt{Td}} + \frac{\epsilon}{\sqrt{Td^3}} + \frac{\epsilon^2}{d^2} + \frac{\epsilon}{d} \sqrt{d^{-k^*/2}/n}$$

$$1090$$

$$1091$$

$$1092$$

1093 The eigengap for $\mathbb{E}_x[M_n]$ is $\frac{\epsilon}{d}\Theta(d^{-k^*/2})$. Then, when $n = \Theta(d^{k^*/2}/\Delta^2)$, when applying Davis-Kahan, we see that the top eigenvector can be recovered up to accuracy:
 1094

$$1095 \sin(u_1, \theta^*) \lesssim \frac{\frac{1}{\sqrt{Td}} + \frac{\epsilon}{\sqrt{Td^3}} + \frac{\epsilon^2}{d^2} + \frac{\epsilon}{d} \sqrt{d^{-k^*/2}/n}}{\frac{\epsilon}{d}\Theta(d^{-k^*/2})} \lesssim \Delta$$

$$1096$$

$$1097$$

$$1098$$

1099 where u_1 denotes the top eigenvector of our time averaged matrix. \square
 1100

1101 D USEFUL LEMMAS

$$1102$$

1103 **Corollary 2** (Tensorization of Lemma 1). *For any f over any finite-dimensional real vector space
 1104 such that $f \in L^2(\mu)$, where μ is the stationary uniform measure over the sphere for the Brownian
 1105 motion, and $\int_{S^{d-1}} f d\mu = 0$. Then, we have:*
 1106

$$1107 \frac{1}{T} \int_0^T f(\beta_t) dt = \frac{\phi(\beta_0) - \phi(\beta_T)}{T} + \frac{M_T}{T}$$

$$1108$$

$$1109$$

1110 where

$$1111 \phi(\beta) = \int_0^\infty P_t f(\beta) dt$$

$$1112$$

$$1113$$

1114 and $M_T := \int_0^T \nabla \phi(\beta_t)^\top P_{\beta_t}^\perp dW_t$ is a martingale. In particular, the natural extensions of Lemma 6
 1115 and Lemma 7 follow via Frobenius norms in $L^2(\mu)$.
 1116

Lemma 14. *Let $\beta, \beta' \in S^{d-1}$, and let $E = \beta - \beta'$. Then, we have that*
 1117

$$1118 E^\top \beta' = -\frac{1}{2} \|E\|^2$$

$$1119$$

1120 *Proof.*

$$1121$$

$$1122 \|\beta' + E\|^2 = \|\beta\|^2 \implies 2E^\top \beta' + \|E\|^2 = 0$$

$$1123$$

1124 since $\|\beta\| = \|\beta'\| = 1$. Rearranging gives the desired result. \square
 1125

1126 **Lemma 15.** *Let $\beta, \beta' \in S^{d-1}$. Then, we have that*
 1127

$$1128 \text{tr}((P_\beta^\perp - P_{\beta'}^\perp)(P_\beta^\perp - P_{\beta'}^\perp)^\top) = 2\|E\|^2 - \frac{1}{2}\|E\|^4$$

$$1129$$

1130 where $E = \beta - \beta'$.
 1131

1132 *Proof.*

$$1133 \text{tr}((P_\beta^\perp - P_{\beta'}^\perp)(P_\beta^\perp - P_{\beta'}^\perp)^\top) = \text{tr}(P_\beta^\perp(\beta' \beta'^\top) + P_{\beta'}(\beta \beta^\top))$$

1134 Note that

$$\begin{aligned}
 P_{\beta'}^\perp(\beta\beta^\top) &= P_{\beta'}^\perp(\beta'\beta'^\top + \beta'E^\top + E\beta'^\top + EE^\top) \\
 &= P_{\beta'}^\perp(E\beta'^\top + EE^\top) \\
 &= E\beta'^\top + EE^\top - \beta'\beta'^\top E\beta'^\top - \beta'\beta'^\top EE^\top
 \end{aligned}$$

1140

1141 and similarly

$$P_\beta^\perp(\beta'\beta'^\top) = -E\beta^\top + EE^\top + \beta\beta^\top E\beta^\top - \beta\beta^\top EE^\top$$

1144 Summing these, we get the trace to be

$$2\|E\|^2 - 1/2\|E\|^4$$

1147

1148 **Lemma 16.** Let $z \sim S^{d-1}$. Then, for integers $k \geq 0$, it holds that:

$$\mathbb{E}_z[z_1^{2k}] = \frac{(2k-1)!!}{\prod_{j=0}^{k-1} (d+2j)} = \Theta(d^{-k})$$

1153 E MISCELLANEOUS CONCENTRATION INEQUALITIES

1154

1155 **Lemma 17** (Concentration of norm). Let $Z \sim \mathcal{N}(0, I_d)$. Then, it holds that:

$$\Pr[\|Z\| - \mathbb{E}[\|Z\|] \geq s] \leq \exp(-s^2/2)$$

1158 **Lemma 18.** Let $X : \mathbb{R} \rightarrow \mathbb{R}$ satisfy $X(0) = 0$ and

$$dX = -AXdt + \sigma(X)dW_t.$$

1161 If $\sigma(X) \leq \sigma$ for all X , then for all $0 \leq s \leq t$, it holds that $X(t) - X(s)$ is $\frac{\sigma^2}{C}(1 - e^{-2C(t-s)})$ -
1162 subgaussian.

1163

1164 *Proof.* Let $Y(t) := e^{At}X_t$. Then,

$$dY(t) = e^{At}\sigma(X(t))dW_t$$

1166 Thus, $Y(t)$ is a martingale. Furthermore, the quadratic variation of Y satisfies

$$\langle Y \rangle_t = \int_0^t e^{2At}\sigma(X(t))^2dt \leq \sigma^2 \int_0^t e^{2At}dt = \sigma^2 \cdot \frac{e^{2At} - 1}{2A} < \infty$$

1170 Therefore, Novikov's condition tells us that

$$\mathcal{E}(\lambda Y)_t := \exp\left(\lambda Y(t) - \frac{\lambda^2}{2}\langle Y \rangle_t\right)$$

1174 is a martingale. Hence,

$$\mathcal{E}(\lambda Y)_s = \mathbb{E}[\mathcal{E}(\lambda Y)_t | \mathcal{F}_s] = \mathbb{E}\left[\exp\left(\lambda Y(t) - \frac{\lambda^2}{2}\langle Y \rangle_t\right) | \mathcal{F}_s\right]$$

1178 Rearranging the above inequality gives us

$$\begin{aligned}
 \mathbb{E}[\exp(\lambda Y(t)) | \mathcal{F}_s] \\
 \leq \mathbb{E}\left[\exp\left(\lambda Y(s) + \frac{\lambda^2\sigma^2}{2} \frac{e^{2At} - e^{2As}}{2A}\right) | \mathcal{F}_s\right]
 \end{aligned}$$

1184 Now, converting back to X and replacing $\lambda \leftarrow \lambda e^{-At}$, we obtain

$$\begin{aligned}
 \mathbb{E}[\exp(\lambda(X(t) - X(s))) | \mathcal{F}_s] \\
 \leq \mathbb{E}\left[\exp\left(\lambda X(s)(e^{-A(t-s)} - 1) + \frac{\lambda^2\sigma^2}{2} \frac{1 - e^{-2A(t-s)}}{2A}\right) | \mathcal{F}_s\right]
 \end{aligned}$$

1188 Applying this for $(s, 0)$ instead of (t, s) gives us
 1189

$$1190 \mathbb{E}[\exp(\lambda X(s))] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2} \frac{1 - e^{-2As}}{2A}\right) \leq \exp\left(\frac{\lambda^2 \sigma^2}{4A}\right)$$

1192 Plugging this in the previous equation upon taking expectation over \mathcal{F}_s , we obtain
 1193

$$1194 \mathbb{E}[\exp(\lambda(X(t) - X(s)))] \leq \exp\left(\frac{\lambda^2 \sigma^2 (e^{-A(t-s)} - 1)^2}{4A} + \frac{\lambda^2 \sigma^2 (1 - e^{-2A(t-s)})}{4A}\right)$$

$$1196 \leq \exp\left(\frac{\lambda^2 \sigma^2}{2A} (1 - e^{-2A(t-s)})\right)$$

1198 where we substituted and used the fact that
 1199

$$1200 (e^{-A(t-s)} - 1)^2 \leq 1 - e^{-2A(t-s)}$$

□

1202 **Lemma 19** (Chaining tail inequality (van Handel, 2016)). *Let $\{X_t\}_{t \in T}$ be a separable subgaussian process on the metric space (T, d) . Then for all $t_0 \in T$ and $x \geq 0$,*
 1204

$$1205 \Pr\left[\sup_{t \in T} \{X_t - X_{t_0}\} \geq C \int_0^\infty \sqrt{\log N(T, d, \epsilon)} d\epsilon + x\right] \leq C e^{-\frac{x^2}{C \text{diam}(T)^2}}$$

1207 where $C < \infty$ is a universal constant.
 1208

1209 **Corollary 3.** *In the setting of Lemma 18, there exists an absolute constant $C < \infty$ such that for any
 1210 $\delta > 0$,*

$$1211 \Pr\left[\sup_{t \leq T} |X_t| \geq C \times \frac{\sigma}{\sqrt{A}} \sqrt{\log \frac{1 + AT}{\delta}}\right] \leq \delta$$

1214 *Proof.* Define
 1215

$$1216 d(s, t) := \sqrt{\frac{\sigma^2}{A} (1 - e^{-2A(t-s)})}$$

1218 Then, $X_t - X_s$ is $d(s, t)$ -subgaussian from the Lemma 18. When we invert this distance, we obtain
 1219

$$1220 N([0, T], d, \epsilon) \lesssim \frac{2AT}{-\log\left(1 - \frac{A\epsilon^2}{\sigma^2}\right)}$$

1222 Note that for $\epsilon < \sigma/\sqrt{A}$, this can be upper bounded by $1 + \frac{2T\sigma^2}{\epsilon^2}$ and the diameter is upper bounded
 1223 by σ/\sqrt{A} . Applying the chaining tail inequality in Lemma 19, we have:
 1224

$$1225 \Pr\left[\sup_{t \leq T} \|X_t\| \geq C \times \frac{\sigma}{\sqrt{A}} \sqrt{\log(1 + AT)} + x\right] \leq e^{-\frac{x^2 A}{C' \sigma^2}}$$

1228 where we used the fact that:
 1229

$$\int_0^\infty \sqrt{\log N([0, T], d, \epsilon)} d\epsilon \lesssim \frac{R}{\sqrt{A}} \sqrt{\log(1 + AT)}$$

1231 Rearranging gives the desired result. □
 1232

1233 **Lemma 20.** *Let $X(0) = 0$ and suppose X satisfies the following SDE.*

$$1234 dX = [-AX + b(X)]dt + \Sigma^{1/2}(X)dW_t$$

1235 and that uniformly for all X ,

$$1237 \|b(X)\| \leq G, \quad \text{tr } \Sigma(X) \leq B \|X\|^2$$

1238 Then, there exists an absolute constant $C > 0$ such that for any $\delta, T > 0$, if $L := 1 \vee \log \frac{1+AT}{\delta}$ and
 1239 $A \geq CBL$, then with probability at least $1 - \delta$:

$$1241 \sup_{t \leq T} \|X(t)\| \leq \frac{CG}{A}.$$

1242 *Proof.* We begin by decomposing $X(t) = X_1(t) + X_2(t)$ where X_1, X_2 follow:

$$1244 \quad dX_1 = [-AX_1 + b(X)]dt, \quad dX_2 = -AX_2dt + \Sigma^{1/2}(X)dW_t$$

1245 and $X_1(0) = X_2(0) = 0$. Define $R := \frac{G}{A}$. Observe that for all t ,

$$1247 \quad X_1(t) = \int_0^t e^{-A(t-s)}b(X(s))ds \implies \|X_1(t)\| \leq G \int_0^t e^{-A(t-s)}ds \leq \frac{G}{A} = R.$$

1250 For X_2 , note that:

$$1251 \quad d\|X_2\|^2 = [-2A\|X_2\|^2 + \text{tr } \Sigma(X)]dt + X_2^\top \Sigma^{1/2}(X)dW_t$$

1253 We now decompose $\|X_2\|^2 = Y_1 + Y_2$ so that:

$$1254 \quad dY_1 = [-2AY_1 + \text{tr } \Sigma(X)]dt, \quad dY_2 = -2AY_2dt + X_2^\top \Sigma^{1/2}(X)dW_t.$$

1256 Define the stopping time $\tau := \inf\{t \geq 0 : \|X_2(t)\| \geq R\}$. Then

$$1258 \quad \text{tr } \Sigma(X(t \wedge \tau)) \leq B\|X(t \wedge \tau)\|^2 \leq 2B\left[\frac{G^2}{A^2} + R^2\right] = 4BR^2.$$

1260 Therefore $Y_1(t \wedge \tau) \leq 2BR^2/A$. Next, the noise term in the SDE for Y_2 can be bounded by:

$$1262 \quad X_2(t \wedge \tau)^T \Sigma(X(t \wedge \tau)) X_2(t \wedge \tau) \leq \|X_2(t \wedge \tau)\|^2 \text{tr } \Sigma(X(t \wedge \tau)) \leq 4BR^4.$$

1263 Now, let C be a sufficiently large constant. Substituting into Corollary 3, we have that with probability
1264 at least $1 - \delta$,

$$1266 \quad \sup_{t \leq T} \|Y_2(t \wedge \tau)\| \leq C \sqrt{\frac{BR^4}{A} \log\left(\frac{2(1 + AT)}{\delta}\right)}.$$

1269 Under this event, we have that

$$1271 \quad \sup_{t \leq T} \|X_2(t \wedge \tau)\|^2 \leq CR^2 \left[\frac{B}{A} + \sqrt{\frac{B}{A} \log\left(\frac{2(1 + AT)}{\delta}\right)} \right].$$

1274 Now since $A \geq C'B(1 \vee \log(1 + AT))$ where C' is a sufficiently large constant then the right
1275 hand side is strictly less than R , which implies that with probability at least $1 - \delta$, $\tau < T$ and
1276 $\sup_{t \leq T} \|X(t)\| \lesssim R$. \square

1277 F TENSOR PCA

1280 Let $T = (\theta^*)^{\otimes k} + n^{-1/2}Z$ where every coordinate of Z is $N(0, 1)$. We consider the negative
1281 log-likelihood:

$$1282 \quad L(\theta) = -\langle \theta^{\otimes k}, T \rangle.$$

1284 The spherical gradient is given by:

$$1285 \quad b(\theta) = kP_\theta^\perp T[\theta^{\otimes k-1}].$$

1287 **Lemma 21.** $\mathbb{E}_{z, Z} b(z) = c\theta^*$ where $c = \Theta(d^{-\frac{k-1}{2}})$.

1289 *Proof.* A direct calculation shows:

$$1291 \quad \mathbb{E}_{z, Z} b(z) = k\theta^* \mathbb{E}_z [(\theta^* \cdot z)^{k-1} - (\theta^* \cdot z)^{k+1}].$$

1292 Note that $\theta^* \cdot z$ is equal in distribution to z_1 so

$$1294 \quad c := \mathbb{E}_z [(\theta^* \cdot z)^{k-1} - (\theta^* \cdot z)^{k+1}]$$

1295 is of order $\Theta(d^{-\frac{k-1}{2}})$. \square

1296 Next, we will control the variance of the smoothing estimator.
1297

1298 **Lemma 22.** $\text{Var}_Z[\mathbb{E}_z b(z)] \lesssim d^{-\frac{k-1}{2}}/n$.

1299 *Proof.*

1300 $\text{Var}_Z[\mathbb{E}_z b(z)] = n^{-1} \mathbb{E}_{z,z',Z} \langle P_z^\perp Z[z^{\otimes k-1}], P_{z'}^\perp Z[(z')^{\otimes k}] \rangle = n^{-1} \mathbb{E}_{z,z'} [(z \cdot z')^{k-1} \langle P_z^\perp, P_{z'}^\perp \rangle]$.
1301

1302 Next, note that this product simplifies as:
1303

$$1304 \langle I - zz^T, I - z'(z')^T \rangle = d - 2 + (z \cdot z')^2. \\ 1305$$

1306 Therefore this variance is $\Theta(d^{-\frac{k-1}{2}}/n)$. \square
1307

1308 Finally, by Chebyshev's inequality we have with probability at least $1 - \delta$,
1309

$$1310 \|\mathbb{E}_z b(z) - c\theta^*\| \lesssim \sqrt{\frac{d^{\frac{k-1}{2}}}{n\delta}} \\ 1311$$

1312 so we can recover θ^* when $n \gtrsim d^{\frac{k+1}{2}}/\delta$.
1313

1314 It remains to show that b is bounded and Lipschitz. First with probability at least $1 - e^{-cd}$,
1315

$$1316 \sup_{\theta} \|b(\theta)\| \lesssim 1 + n^{-1/2} \sup_{\theta} Z[\theta^{\otimes k-1}] \leq 1 + n^{-1/2} \|Z\|_{op} \lesssim 1 + \sqrt{d/n} \\ 1317$$

1318 where the operator norm bound on Z follows from a standard covering argument. Similarly,
1319

$$1320 \|b(\theta) - b(\theta')\| \leq k \|P_{\theta}^\perp T[\theta^{\otimes k-1}] - P_{\theta'}^\perp T[(\theta')^{\otimes k-1}]\| \\ 1321 \leq k \|(P_{\theta}^\perp - P_{\theta'}^\perp)T[\theta^{\otimes k-1}] + P_{\theta'}^\perp(T[\theta^{\otimes k-1} - (\theta')^{\otimes k-1}])\| \\ 1322 \lesssim (1 + \sqrt{d/n}) \|\theta - \theta'\| \\ 1323$$

1324 where the inequality for the second term follows from the fact that if $\theta' = \theta + E$:
1325

$$1326 \|T[(\theta + E)^{\otimes k-1} - \theta^{\otimes k-1}]\| = \sum_{j=1}^{k-1} \binom{k-1}{j} T[E^{\otimes j} \otimes \theta^{\otimes k-1-j}] \leq \|T\|_{op} \sum_{j=1}^{k-1} \|E\|^j \lesssim \|T\|_{op} \|E\|. \\ 1327$$

1329 G SINGLE INDEX MODELS

1330 We will assume throughout this section that the activation satisfies $\sup_z \sigma^{(k)}(z) = O(1)$ for $k = 1331$
1332 0, 1, 2. Define $b_i(\theta)$ to be the negative spherical gradient on the i th datapoint:
1333

$$1334 b_i(\theta) := y_i P_{\theta}^\perp x_i \sigma'(\theta \cdot x_i).$$

1335 We will use \mathbb{E}_i to denote the expectation with respect to the data. We will also let $z \sim \text{Unif}(S^{d-1})$.
1336

1337 **Lemma 23.** $\mathbb{E}_{i,z} b_i(z) = c\theta^*$ where $c = \Theta(d^{-\frac{k^*-1}{2}})$.
1338

1339 *Proof.* First note that by Hermite expanding y and σ we have that:
1340

$$1341 \mathbb{E}_i y_i \sigma(z \cdot x_i) = \mathbb{E}[\sigma(\theta^* \cdot x) \sigma(z \cdot x)] = \sum_{k \geq k^*} c_k^2 (\theta \cdot \theta^*)^k. \\ 1342$$

1343 Taking a spherical gradient with respect to θ gives:
1344

$$1345 \mathbb{E}_i b_i(z) = \sum_{k \geq k^*} k c_k^2 (P_z^\perp \theta^*) (z \cdot \theta^*)^{k-1}. \\ 1346$$

1347 We can now average over the sphere. First by (Damian et al., 2023, Lemma 26),
1348

$$1349 \mathbb{E}_z \sum_{k \geq k^*} k c_k^2 (z \cdot \theta^*)^{k-1} \lesssim d^{-\frac{k^*-1}{2}}.$$

1350 In addition by isolating the $k = k^*$ term, it is at least order $d^{-\frac{k-1}{2}}$. Next we handle the projection
 1351 term:

$$1353 \mathbb{E}_z \sum_{k \geq k^*} c_k^2 z(z \cdot \theta^*)^k = \theta^* \sum_{k \geq k^*} c_k^2 (z \cdot \theta^*)^{k+1}$$

$$1354$$

1355 and this is upper bounded by $d^{-\frac{k+1}{2}}$ which completes the proof. \square
 1356

1357 Finally, it suffices to control the variance of the estimator. We will use the following general purpose
 1358 lemma:

1360 **Lemma 24.** *Let $g = \sum_k c_k h_k$ where h_k is the k -th normalized Hermite polynomial and let ℓ be the
 1361 index of the first nonzero even coefficient. Then,*

$$1362 \mathbb{E}[(\mathbb{E}_z g(z \cdot x))^2] \lesssim \mathbb{E}_{x \sim N(0,1)}[g(x)^2] d^{-\ell/2}.$$

$$1363$$

1364 *Proof.* Note that we can rearrange this as:

$$1365$$

$$1366 \mathbb{E}_{z,z',x}[g(z \cdot x)g(z' \cdot x)] = \sum_k c_k^2 \mathbb{E}_{z,z'}[(z \cdot z')^k] = \sum_k c_{2k}^2 \mathbb{E}_{z,z'}[(z \cdot z')^{2k}].$$

$$1367$$

1368 We can now upper bound this by:

$$1369$$

$$1370 \mathbb{E}_{x \sim N(0,1)}[g(x)^2] \mathbb{E}_{z,z'} \left[\sum_{k \geq \ell/2} (z \cdot z')^{2k} \right] = \mathbb{E}_{x \sim N(0,1)}[g(x)^2] \mathbb{E} \left[\frac{(z \cdot z')^\ell}{1 - (z \cdot z')^2} \right].$$

$$1371$$

1372 The result now follows from (Damian et al., 2023, Lemma 26). \square
 1373

1374 **Lemma 25.** *Let $b(z) := \frac{1}{n} \sum_{i=1}^n b_i(z)$. Then there exists $c = \Theta(d^{-\frac{k^*-1}{2}})$ such that*

$$1375 \mathbb{E} \|\mathbb{E}_z[b(z)] - c\theta^*\|^2 \lesssim_{k^*} \frac{d^{-\frac{k^*-3}{2}}}{n}.$$

$$1376$$

1377 *Proof.* We can decompose:

$$1378$$

$$1379 \mathbb{E}_z b_i(z) = y_i x_i \mathbb{E}_z \sigma'(z \cdot x_i) + y_i \mathbb{E}_z[z(z \cdot x_i) \sigma'(z \cdot x_i)].$$

$$1380$$

1381 For the first term:

$$1382$$

$$1383 \mathbb{E}[\|y_i x_i \mathbb{E}_z \sigma'(z \cdot x_i)\|^2]$$

$$1384 = \mathbb{E}[\|y_i x_i \mathbf{1}_{x_i \leq C\sqrt{d}} \mathbb{E}_z \sigma'(z \cdot x_i)\|^2] + \mathbb{E}[\|y_i x_i \mathbf{1}_{x_i \geq C\sqrt{d}} \mathbb{E}_z \sigma'(z \cdot x_i)\|^2]$$

$$1385 \lesssim d \mathbb{E}_i[(\mathbb{E}_z \sigma'(z \cdot x_i))^2] + d \mathbb{P}[\|x_i\| \geq C\sqrt{d}]$$

$$1386 \lesssim d^{-\frac{k^*-3}{2}}.$$

$$1387$$

1388 Similarly for the second term, we have by symmetry that

$$1389$$

$$1390 \mathbb{E}_z[z(z \cdot x_i) \sigma'(z \cdot x_i)] = \frac{x_i}{\|x_i\|^2} \mathbb{E}_z[(z \cdot x_i)^2 \sigma'(z \cdot x_i)]$$

$$1391$$

1392 The expression inside the expectation has information exponent at most $k^* - 3$ so by the same
 1393 argument as above, the variance of this term is bounded by

$$1394$$

$$1395 O(d^{-1} d^{-\frac{k^*-3}{2}}) \ll d^{-\frac{k^*-3}{2}}.$$

$$1396$$

1397 Now we can conclude by:

$$1398$$

$$1399 \mathbb{E} \|\mathbb{E}_z[b(z)] - \mathbb{E}_{(x,y),z}[b(z)]\|^2 \leq \frac{\mathbb{E} \|\mathbb{E}_z b_i(z)\|^2}{n} \lesssim \frac{d^{-\frac{k^*-3}{2}}}{n}.$$

$$1400$$

\square

1404 Therefore by Chebyshev, with probability at least $1 - \delta$ we have that
 1405

$$1406 \quad \|\mathbb{E}_z b(z) - c\theta^*\| \leq \sqrt{\frac{d^{-\frac{k^* - 3}{2}}}{\delta n}}.$$

1407 so we can recover θ^* with $n \gtrsim \frac{d^{-\frac{k^* - 3}{2}}}{\delta c^2} = \Theta(d^{\frac{k^* + 1}{2}}/\delta)$ samples.
 1408

1409 **Lemma 26.** *With probability at least $1 - e^{-cd}$,*
 1410

$$1412 \quad \sup_{\theta} \|b(\theta)\| \lesssim 1 + \sqrt{\frac{d}{n}}.$$

1413 *Proof.* Let $X \in \mathbb{R}^{n \times d}$ be the stacked matrix with all the data points. Then,
 1414

$$1415 \quad \|b(\theta)\| = \left\| \frac{1}{n} \sum_{i=1}^n y_i P_{\theta}^{\perp} x_i \sigma'(\theta \cdot x_i) \right\| \leq \frac{1}{n} \|X\|_2 \sqrt{\sum_{i=1}^n y_i^2 \sigma'(\theta \cdot x_i)^2} \lesssim 1 + \sqrt{\frac{d}{n}}.$$

□

1416 **Lemma 27.** *In the same setting as Lemma 26*
 1417

$$1418 \quad \sup_{\theta} \|b(\theta) - b(\theta')\| \leq (1 + \sqrt{d/n}) \|\theta - \theta'\|.$$

1419 *Proof.* We have
 1420

$$1421 \quad \|b(\theta) - b(\theta')\| \leq \frac{1}{n} \sum_{i=1}^n y_i [P_{\theta}^{\perp} \sigma'(\theta \cdot x_i) - P_{\theta'}^{\perp} \sigma'(\theta' \cdot x_i)] x_i.$$

1422 Now we have that:
 1423

$$1424 \quad \begin{aligned} P_{\theta}^{\perp} \sigma'(\theta \cdot x_i) - P_{\theta'}^{\perp} \sigma'(\theta' \cdot x_i) \\ = P_{\theta}^{\perp} [\sigma'(\theta \cdot x_i) - \sigma'(\theta' \cdot x_i)] + \sigma'(\theta' \cdot x_i) [P_{\theta}^{\perp} - P_{\theta'}^{\perp}]. \end{aligned}$$

1425 For the first term, the same argument as above proves that the sum is bounded by:
 1426

$$1427 \quad O\left(\frac{\|X\|_2}{\sqrt{n}} \|\theta - \theta'\|\right) \lesssim (1 + \sqrt{d/n}) \|\theta - \theta'\|.$$

1428 For the second term, it is bounded by:
 1429

$$1430 \quad O\left(\frac{\|X\|_2 \|P_{\theta}^{\perp} - P_{\theta'}^{\perp}\|_2}{\sqrt{n}}\right) \lesssim (1 + \sqrt{d/n}) \|\theta - \theta'\|$$

1431 which completes the proof. □
 1432

1433 **Lemma 28.** $\mathbb{E}_{i,z} [zb(z)^{\top}] = c\theta^*\theta^{*\top} + gP_{\theta^*}^{\perp}$ where $c = \Theta(d^{-k^*/2})$ and $g = O(d^{-(k^*+2)/2})$.
 1434

1435 *Proof.* We will fix z first and then take average over the sphere of z . First,
 1436

$$1437 \quad \mathbb{E}_i [zx_i^{\top} \sigma(\theta^* \cdot x_i) \sigma'(z \cdot x_i) P_z^{\perp}] = z \mathbb{E}_i [x_i^{\top} \sigma(\theta^* \cdot x_i) \sigma'(z \cdot x_i)] - z \mathbb{E}_i [x_i^{\top} \sigma(\theta^* \cdot x_i) \sigma'(z \cdot x_i)] z z^{\top}$$

1438 Let c_i be the Hermite coefficients for σ . For the first term, we have by Stein's lemma that:
 1439

$$1440 \quad \begin{aligned} z \mathbb{E}_i [x_i^{\top} \sigma(\theta^* \cdot x_i) \sigma'(z \cdot x_i)] &= z \mathbb{E}_i [\sigma'(\theta^* \cdot x_i) \sigma'(z \cdot x)] \theta^{*\top} + \mathbb{E}_i [\sigma(\theta^* \cdot x_i) \sigma''(z \cdot x_i)] z z^{\top} \\ &= z \sum_{k \geq k^*-1} c_k^2 (\theta^* \cdot z)^k \theta^{*\top} + \sum_{k \geq k^*} (k+2)(k+1) c_k c_{k+2} (\theta^* \cdot z)^k z z^{\top} \end{aligned}$$

1441 We now proceed to handle the projection term:
 1442

$$1443 \quad \begin{aligned} z \mathbb{E}_i [x_i^{\top} \sigma(\theta^* \cdot x_i) \sigma'(z \cdot x_i)] z z^{\top} &= z \sum_{k \geq k^*-1} c_k^2 (\theta^* \cdot z)^k \theta^{*\top} z z^{\top} + \sum_{k \geq k^*} (k+2)(k+1) c_k c_{k+2} (\theta^* \cdot z)^k z z^{\top} z z^{\top} \\ &= z \sum_{k \geq k^*-1} c_k^2 (\theta^* \cdot z)^{k+1} z^{\top} + \sum_{k \geq k^*} (k+2)(k+1) c_k c_{k+2} (\theta^* \cdot z)^k z z^{\top} \end{aligned}$$

1458 Therefore, after combining and before taking expectation over z , our expression is:
 1459

$$1460 \quad z \sum_{k \geq k^* - 1} c_k^2 (\theta^* \cdot z)^k \theta^{*\top} - z \sum_{k \geq k^* - 1} c_k^2 (\theta^* \cdot z)^{k+1} z^\top$$

1462

1463 We now take expectation of z over the sphere. For the first term, we have that

$$1464 \quad \mathbb{E}_z \left[z \sum_{k \geq k^* - 1} c_k^2 (\theta^* \cdot z)^k \right] \theta^* = \sum_{j \geq 0} \Theta(d^{-(k^*+2j)/2}) \theta^* \theta^{*\top} = \Theta(d^{-k^*/2}) \theta^* \theta^{*\top}$$

1468 For the second term, we have that

$$1469 \quad \mathbb{E}_z \left[\sum_{k \geq k^* - 1} c_k^2 (\theta^* \cdot z)^{k+1} z z^\top \right] = \Theta(d^{-(k^*+2)/2}) \theta^* \theta^{*\top} + \Theta(d^{-(k^*+2)/2}) P_{\theta^*}^\perp$$

1473 where the two Θ hide different absolute constants. Nonetheless, the main part of our desired
 1474 expression is $\Theta(d^{-k^*/2}) \theta^* \theta^{*\top}$, and this gives the desired result. \square

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511