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ABSTRACT

Significant recent work has studied the ability of gradient descent to recover
a hidden planted direction #* € S? ! in different high-dimensional settings,
including tensor PCA and single-index models. The key quantity that governs
the ability of gradient descent to traverse these landscapes is the information
exponent k* (Ben Arous et al.,2021)), which corresponds to the order of the saddle
at initialization in the population landscape. [Ben Arous et al.| (2021) showed
that n 2 dmax(Lk"=1) samples were necessary and sufficient for online SGD
to recover 6*, and Ben Arous et al|(2020) proved a similar lower bound for
Langevin dynamics. More recently, Damian et al.| (2023) showed it was possible
to circumvent these lower bounds by running gradient descent on a smoothed
landscape, and that this algorithm succeeds with n > d™*(LE"/2) samples, which
is optimal in the worst case. This raises the question of whether it is possible
to achieve the same rate without explicit smoothing. In this paper, we show that
Langevin dynamics can succeed with n > d*"/2 samples if one considers the
average iterate, rather than the last iterate. The key idea is that the combination
of noise-injection and iterate averaging is able to emulate the effect of landscape
smoothing. We apply this result to both the tensor PCA and single-index model
settings. Finally, we conjecture that minibatch SGD can also achieve the same rate
without adding any additional noise.

1 INTRODUCTION

In many learning settings, gradient descent is the default algorithm, and recent years have seen
significant progress in understanding its theoretical properties and learnability guarantees in different
feature learning settings (Damian et al., |2022; Mei et al., [2022). While the optimization process is
non-convex in general, there are many settings in which we can nonetheless tractably give learning
guarantees. Single index models, or functions of the form o (6* - x), provide one such sandbox; here,
the goal is to recover this planted direction §* € S9~! through which the target depends on the input.
In the statistics literature, single index models have been studied for decades (Hristache et al., 2001}
Hirdle et al., [2004), and are also known as generalized linear models. In the special case where
the link function ¢ is monotonic, the information-theoretic sample complexity of n < d to learn
0* is achieved via perceptron-like algorithms (Kalai and Sastry, 2009} Kakade et al., |2011). For
non-monotonic link functions, one classic example is the phase-retrieval problem where o (t) = |¢|,
which has been well-studied (Chen et al., 2019; Maillard et al., [2020).

For the case of Gaussian input data, the information exponent k* of the link function o
tells us the sample complexity needed to learn 68* with “correlational learners” (Ben Arous et al.,
2021). This can be extended to allow for label preprocessing (Mondelli and Montanari, 2018}
Maillard et al., 2020; |Chen et al.| 2025 [Dandi et al., 2024} [Troiani et al.| 2024; Lee et al., |[2024;
Arnaboldi et al.| [2024) and the resulting exponent becomes the “generative exponent” (Damian et al.|
2024)). Ben Arous et al.[(2021) shows that using n > d*"—1 samples is necessary and sufficient for a
certain class of online stochastic gradient descent (SGD) algorithms. [Damian et al.|(2023)) improves
this to n > d™*<(LE"/2) samples by running online SGD on a smoothed loss, and they provide a
matching correlational statistical query (CSQ) lower bound. Key to their analysis is the fact that the
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smoothed loss boosts the signal-to-noise ratio in the region near initialization (i.e. when the current
iterate lies in the equatorial region with respect to 6*).

Overall, the information exponent has been shown to determine the sample complexity in
many settings (Ben Arous et al., 2021; |Damian et al., [2023; [Bietti et al., 2022} |Abbe et al.| 2023}
Dandi et al.l|2023)). A recent work of Joshi et al.| (2025)) analyzes the spherical symmetric distribution
case, which slightly relaxes the Gaussian data assumption. In particular, the work by |Abbe et al.
(2023) provides a generalization of the information exponent to the multi index setting, in which the
target depends on a low dimensional subspace of the input instead of just a single direction (Ren and
Leel 2024; |Damian et al.,2025)). We would also like to note the connection of learning information
exponent k single index models to the order & tensor PCA problem (Montanari and Richard, 2014).
In both problems, it turns out that the partial trace estimator returns the direction of the planted
spike with optimal sample complexity of d*/2 in the CSQ framework, and similar smoothing-based
approaches there (Anandkumar et al., [2017} |Biroli et al.| 2020) have been proposed to return this
estimator.

Notably, along this line of work, Ben Arous et al.|(2020) conjectures that Langevin dynamics in the
tensor PCA setting does not work due to the divergence of the computational-statistical gap in this
setting. In our work, we surprisingly show that Langevin dynamics can still be used to recover the
planted direction of the single index model. To achieve this, we run Langevin dynamics, but we take
the time average of all the iterates. Our analysis reveals that with n 2> dl¥" /21 samples, we are able to
recover the direction of the partial trace estimator and hence 6*. The key insight is that this Langevin
dynamics process closely tracks the Brownian motion on the sphere, and averaging out the iterates
roughly corresponds to an ergodicity concentration argument on the sphere. Our main theorem is the
following.

Theorem 1 (Main theorem (informal)). Consider a link function o with information exponent k*.
Then, withn 2, d [k* /2] samples drawn i.i.d. from the standard d-dimensional Gaussian, running
Algorithm[I|recovers the ground truth direction 6*.

We can also shave off a factor of v/d to improve the sample complexity to n > d*"/2 by running
Algorithm|l|and running online SGD on the returned time averaged estimator. This corresponds to
the warm start in [Damian et al.| (2023) for the odd case.

2 SETUP AND MAIN CONTRIBUTIONS

2.1 NOTATION

We use || - ||, to denote the vector ¢,,-norm; furthermore, when p = 2, we often drop the subscript and

write || - ||. Given a probability measure v over R, we denote L?(R?, ~) the space of y-measurable
and square-integral functions; we shorthand this to L?(y) when the domain is clear. For f € L?(v),
we denote ||f||2L2(7) = E.[f(2)?]. We also denote y to be the uniform measure on S4~1.

2.2  SETTING

We consider in this paper tensor PCA (Montanari and Richard, [2014) and single-index models.

2.2.1 TENSOR PCA

For tensor PCA, we will assume there is a planted direction #* € S?~! and we observe the k-tensor
T defined by:

T=0°%4n Y27 where Z; . . i N(0,1)
We consider optimizing the negative log-likelihood:
L(0) = — (T, 0%%)

Information theoretically, 6* is possible to recover whenever n 2 d. However, common techniques
like approximate message passing (AMP), tensor power method, and online SGD require n > d*~1
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to recover 6* (Montanari and Richard, |2014; Ben Arous et al., 2021). Nevertheless, it is possible
to recover 6* with n > d*/2 samples using tensor unfolding (Montanari and Richard, 2014), the
partial-trace estimator (Hopkins et al.,[2016), and landscape smoothing (Anandkumar et al., 2017;
Biroli et al., 2020; |Damian et al.| [2023)). In our paper, we show Langevin dynamics combined with

iterate averaging can recover §* with n > d's71 without explicit unfolding or smoothing.

2.2.2 SINGLE-INDEX MODELS

We mostly follow the setting of Damian et al. (2023). Let {(z;,v;) € R? x R} ;e[ be the set of
training data. The input data z; are drawn i.i.d. from a standard d-dimensional Gaussian N (0, 1),
and the labels y; are generated through a target or teacher function f*. In particular, we consider
the setting where f* is a single index model, in which the label only depends on the input through a
planted direction §* € S?~!. Formally, we have for each i:

X X iid. iid.

yi = [ () + & =0(0" -xi) + &, w ~ N(0,1a), & ~ N(0,1)
where o is a known link function. We will consider the setting where our learner is f(6, z) := o(6-z),
where § € S9! is the learnable parameter.

Assumption 1. We will assume the following regarding the link function o.
* E,on(01)lo(@)?] = 1 (Normalization)
o o) (2)| < C for k = 0,1,2 and for all z. (Lipschitzness)

We note the assumption on the boundedness of o(*) can be relaxed to it having polynomial tails
Damian et al.[(2023), but at the cost of increasing the complexity of the proof.

We consider training via the correlation loss; the loss on a specific sample (x, y) is:

L(b;2,y) =1= f(6,2)y

The empirical loss on our training set is therefore:

Lo(0) = = Y L(6;2,:)

i€[n]

We also denote the population loss over (z,y) from the data distribution to be L(6) :=
E(g) [L(0; 2, y)].

In this setting, Ben Arous et al.|(2021)) showed that the sample complexity for learning depends on
a quantity called the information exponent k* of the link function . To motivate this definition,
consider first the probabilist’s Hermite polynomials.

Definition 1 (Probabilist’s Hermite polynomials). For k > 0O, the kth normalized probabilist Hermite
polynomial hy, : R — R is:
(—1F L d

hi () = \/Hv(w) (@)

—z%/2 N . . . . .
where ~y(x) := eﬁ is the probability density function of a standard univariate Gaussian.

Of importance is that the Hermite polynomials form an orthogonal basis in L2(7) (i.e. the space of
square-integrable functions with respect to the standard Gaussian measure). Henceforth, for link
function o € L?(v), let {ck } x>0 denote the Hermite coefficients of o:

Definition 2 (Hermite coefficients). Let the Hermite coefficients of o € L*(7y) be {ck }x>0. In other
words,

o(z) = chhk(w)» ek = E.ono,1)[0(2)hi(2)]
k=0

This leads us to the key quantity, the information exponent.
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Definition 3 (Information exponent). We define the information exponent to be:
k* =min{k > 1:¢; # 0}

In other words, this is the first Hermite coefficient with positive index that is nonzero. Some examples
of information exponents are below:

Example 1. (Link functions and their information exponents)

* o(t) =t and o(t) = ReLU(t) have information exponent 1.
 o(t) = |t| and o(t) = t* have information exponent 2.

e o(t) = 2¢=" has information exponent 4.

» o(t) = hg(t) has information exponent k.

Ben Arous et al.| (2021) showed that n > d™»*(1+"=1) samples were necessary and sufficient for
online SGD to recover 6*, mirroring the tensor PCA setting. |Damian et al.| (2023 showed that
this rate could be improved to n > d™*(1.k"/2) by running online SGD on a smoothed landscape.
A number of papers have managed to circumvent the information exponent by applying a label
transformation before running SGD Mondelli and Montanari| (2018); Maillard et al.| (2020); |Chen
et al. (2025); |Dandi et al.| (2024)); [Troiani et al.| (2024); Damian et al.| (2024); [Lee et al.| (2024)). These
results apply a transformation 7 to the labels {y; }?_; to derive samples from the single index model
defined by 7 o o. This link function can have smaller information exponent than o, and the smallest
exponent such a transformation can achieve is called the “generative exponent” |Damian et al.| (2024).
For the purposes of this paper, we can assume that such a label transformation has already been
applied so that the information exponent and the generative exponent coincide.

2.3 THE LEARNING ALGORITHM

Definition 4 (Spherical gradient operator). For § € S?~! and function g : RY — R, define the
spherical gradient operator to be Vg(0) = P}V g(z)|.=0, where Pg- := I — % is the orthogonal
projection operator with respect to 0 and V is the standard Euclidean gradient.

We now formally define our learning algorithm; here, {W; };>¢ is the standard Wiener process in R

Algorithm 1 Learning algorithm

Input: Inverse temperature parameter €, number of time steps 7, data points {(z;, v;) }7 4
Initialize 6 ~ j (e.g. uniform over S4—1)
Run the following SDE up to time 7:

9 = (—d;le + eb(e)) dt + PEdW;,  b(0) := —VoLn(0) (1

5 T
HAZ: % fO ﬁtdt

M = %fo 9t9t—rth .

If &* is odd, return 6/]0]|

Otherwise if £* is even, return the top eigenvector v; of M

It can be shown that when 6, follows the SDE in Equation (I)), it remains on the sphere for all time ¢.
Thus, this SDE is the natural analogue of the standard Langevin dynamics on the sphere. A discussion
regarding this is deferred to the appendix.

2.4 MAIN CONTRIBUTIONS

We now highlight our main contributions in this work.
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* We show that by combining Langevin dynamics with weight averaging, we can recover 6*
in both the tensor PCA and single-index model settings with n > d/*"/21 samples, which

nearly matches the optimal computational-statistical tradeoff for these problems (Damian
et al.,[2024} [Hopkins et al.| 2015)).

* In contrast with previous work (Damian et al. [2023}; |Biroli et al., 2020} |Anandkumar|
et al., 2017), which attain the sample complexity guarantee via smoothing the existing
loss landscape to create a high signal-to-noise ratio regime, we utilize the other end of
the spectrum - a low signal-to-noise ratio setting. Our method of uniform averaging takes
advantage of the noise, and allows us to learn the estimator that one would obtain by running
landscape smoothing.

* One other feature of our algorithm is that it does not see the data in an online manner, unlike
previous works (Damian et al.,|2023; Ben Arous et al., 2021)). We use the empirical risk
minimization (ERM) loss to obtain our results.

* (Ben Arous et al.,[2020) shows that Langevin dynamics struggles to escape the “equator”
{6 : |0-6*| < d~'/?} without n > d* ' samples. Surprisingly, we show that it is not
necessary to escape the equator to get a good estimate of 8* — our process 0(t) indeed lies
on the equator throughout the training process so that its correlation with 6* remains small,
but the time-averaged iterate can still converge to 6*.

3 MAIN RESULTS

Our high level framework is to show ergodic concentration to an estimator that recovers the planted
direction with enough samples. We will state our results for both the odd and even algorithm.

Theorem 2 (Odd k*). Let € = o(d*(k*’?’)/z) and T 2, dk*/eg. Then, Algorithmsucceeds in
estimating 25 E...,,[b(2)] up to O(e) relative error. Moreover, for 6, A > 0, ifn 2 d'*" /21 /(§A?),
we recover the ground truth 0* up to error A with probability at least 1 — 2d~—1 — 6.

Consider first the setting where e — 0; this corresponds to a convergence to the pure Brownian
motion on S%~1, which has It SDE

d—1
B = (—25> dt + Pg-dW,

In the regime of € in Theorem 2] it turns out that at time ¢, we can write 6; = 3; + E; where E is
an error term of order €, and we couple the processes 6 and 3 with the same noise process W;. We
set 6y = By, and Ey = 0, with the former being drawn from the uniform distribution on the sphere.
Then, time averaging allows us to obtain:

— = — — E

By ergodicity of Brownian motion, we can prove that the first term concentrates to zero. For the
second term E;, we show that the time average of it converges to the direction of E...,,[V Ly (2)].
In both the tensor PCA and single-index model settings, this estimator can be shown to recover the
planted direction * with n > d/*"/21 samples. Moreover, it is possible to use this estimator as a
warm start before running online SGD. This idea was also used by |[Hopkins et al.|(2016); Anandkumar|
et al.[(2017); Damian et al.[(2023) to boost this estimator, and allow it to recover 8* with n > dk’ /2
samples:

Corollary 1. Using the same € and T in the setting of Theorem |2| and n = Q(dk*/z), we can
run Algorithm followed by online SGD with Q(dk*/Q) samples to recover the ground truth 8* to
arbitrary accuracy.

The idea here is with n = Q(dk*/ 2) samples (which is a multiple of v/d less than in Theorem , the
averaging estimator gives us a warm start that obtains correlation ©(d~'/*) with #*. From here, we
can run online SGD using the result from |Ben Arous et al.| (2021)) to recover the ground truth. We
now proceed to state our result for the even case.
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Theorem 3 (Even k*). Let e = o(d—(*" _2)/2) and let T > d*"+1/€2. Then, Algorlthmlsucceeds
in estimating B, [22"] + SE..[2b(2) T + b(2)z "] up 10 O(e) relative error with probability at
least 1 — 2d~".

Intuitively, the algorithm for the odd case does not work here because of the first order terms vanish
upon taking time average, due to the symmetry of the uniform distribution/Brownian motion. More
specifically, E...,[VLy(z)] ~ 0 and does not have any meaningful correlation with 6*. On the other

hand, when we consider the time average of the second order information given by #9 ", we can
precisely recover the planted direction 8* by taking the top eigendirection of our estimator. More
formally, time averaging gives us:

LT e e T T e T
T/ 0:0, dt:f ; ﬁtﬁtdt—i—f ; (BiE, + Ef; )dt—i—f ; E.E,

We prove concentration of each of these terms to the stationary average via the ergodicity of the spheri-
cal Brownian motion, which leads to a final quantity of approximately E. ., [z2" ]+ SE.,.[2b(z) "

b(z)z"]. The first term converges to I/d, and the final term is a negligible error term. When

n > d*"/2, the middle term converges to a matrix with a rank-one spike 0*6* ", which follows from
Lemma F.9 of Damian et al.[(2024) and the proof of which we omit for purpose of exposition.

4 OVERVIEW OF PROOF IDEAS

4.1 ERGODIC CONCENTRATION

In showing a general ergodic concentration result, we first give some preliminaries on Markov
processes on compact Riemannian manifolds.

Definition 5 (Markov semigroup). Let (X;):>0 be a time-homogeneous Markov process. Then, its
associated Markov semigroup (P,);>o is the family of operators acting on bounded measurable
Sfunctions f through:

Py f(x) == E[f(X:)|Xo = 2]

At this point, it is useful to define the infinitesimal generator of a Markov process.

Definition 6 (Infinitesimal generator). Let (P,);>¢ be the associated Markov semigroup for a Markov
process. Then, the infinitesimal generator L associated with this semigroup is defined as:

.o Bf-f
ﬁf.—hmf

t—0

Sor all functions f for which this limit exists.

Having these definitions introduced, consider the Brownian motion on .S d—1 that we defined earlier:

dp = (—Tﬁ) dt + PgdW,

Note that by rotational invariance, the stationary distribution is p. Moreover, by classic results
(Saloff-Coste, [1994), we know that the infinitesimal generator of this process is £ = %A ga—1, where
Aga-1 is the Laplace-Beltrami operator on S%~1. We now give a general lemma for ergodic averages
of functions of a Brownian motion over the sphere.

Lemma 1. Let f : R? — R such that f € L?(u), where y is the stationary uniform measure over
the sphere for the Brownian motion, and |, ga—1 fdp = 0. Then, we have:

¢(Bo) — ¢(Br)
/ e T + o T

where
oo

o(B)= [ Pf(B)dt

0
and My = L)T V(i) Pg,dW, is a martingale.
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The proof is deferred to the appendix, and it now remains to bound these terms, which depends on
our choice of f. Recall that we need to make this ergodicity argument for 8; and b(5;) (defined in
Section @]) For both of these functions, we will look at this coordinate-wise. First, we give the
following version of the Poincaré inequality.

Lemma 2 (Poincaré inequality). Let (P,);>0 be a reversible ergodic Markov semigroup that has
stationary measure ji, and let f be a mean-zero (with respect to 1) function in L*(u). Denote \ to be
the spectral gap of the infinitesimal generator L. Then, it holds that:

1P fll 2oy < € MF Il L2

Poincaré’s inequality allows us to prove the following result towards concentrating ¢. Of particular
notice is that since A ga—1 has eigenvalues —¢(¢ + d — 2) for £ > 0, we have that its spectral gap is
(d — 1) (Saloff-Coste, |1994). Therefore, the spectral gap of L is dgl. From here, the following are
can be shown to hold, with full proofs in the appendix.

Lemma 3. In the setting of Lemmall| we have that for By ~ p, both the first and second moments of
&(Bo) are finite. That is, E[p(B0)], E[¢(B0)?] < oo, and they are upper bounded as follows:

Elg(fo)] = EI3(5r)] < 7o /200

Bl0()*] = Bl0(3r)) < = g5a e
MT 2 _ 4‘||fH%2([_L)
() |- a1

- T(d—1)
We now sketch the remainder of the ergodicity arguments in the main result. The previous lemmas
tell us that the concentration happens at time 7" that depends on the function f.

E

4.2 ANALYZING THE ERROR COMPONENT FE

Recall in the previous section that the time average consists of a Brownian component that is
averaged out to zero, and an error component % fOT E,dt. First, let us recall our definition b(6) :=
—VoL,(0) = %PQJ- Zie[n] y;0' (0 - z;)x;. By decomposing the time average of F; even further, it
turns out we can write the above as roughly:

T

1 €l
— E ~ == 0
T A fdt T ) b( t)dt

From here, we derive the following:

I e e

7 [ vende = [ weder 1 [ 000 - ve

T Jo B T Jo T Jo
The first term concentrates to b := E.,[b(z)] using the ergodicity arguments from the previous
section, and the second term can be controlled via upper bound on ||E;|| = ||6; — B:|| due to

Lipschitzness. Indeed, in the regime of € that we work in, we can further argue that with high
probability, ||@ — || remains order O(e) over all time, which we outline below. Recall the SDE’s for
the coupled processes 6, 3:

-1
do = (—d29 + eb(9)> dt 4+ P;-dW,

~1
B = —dTﬂdtJrPﬂlth

This tells us that:
—1
dE = (—dQE + eb(@))dt + (P — Pg)dw,

The key observation here is that the noise matrix ©1/2 := Pgl — PBL satisfies the property that
tr ¥ < 2||E||?. Intuitively, this means that the size of the noise scales with the norm of F, and
this allows us to get a high probability uniform bound on || E'|| over all time. The following lemma
formalizes this, and the proof is deferred to the appendix.
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Figure 1: We run with d = 100 with n. = 10d*"/21 samples, using various learning rates. Here, the
dark curves correspond to the correlation of the time average as a function of iteration, in which it
indeed converges to the direction of 8*. The light curves correspond to the actual iterate as a function
of time, which can be seen to stay near the equator over the entire training process.

Lemma 4 (High probability uniform bound of sup || E||). With probability at least 1 — dT'e~%, there
exists an absolute constant C' such that:

sup | E(1)]| < c’[

t<T

esup [|b]|
d

The fact that | E|| = O(e) throughout training is key to both the proofs of odd and even k*, since
it heuristically reduces our process to a Brownian component plus an e signal component that can
leverage the randomness in the Brownian component

4.3 RECOVERY OF 6*

Let O(-) hide non-e terms. In the odd case, our estimator converges to the direction of b = E....,, [b(2)]
with a magnitude of O(e) We prove in Appendix E|that for the tensor PCA setting, this recovers 6*
with n > d[*"/21, and we prove in Appendix @that for the single-index model setting, it recovers
6* with n > d'*"/21 as well. For the even case, we also leverage the uniform bound on sup || E|| to

prove convergence of our estimator M to approximately é plus O(e) spike in 6*0* " . From here, we
can perform PCA or a similar algorithm to recover 6*.

5 DISCUSSION

5.1 EXPERIMENTS

We sanity check our findings experimentally via different choices of link functions which correspond
to different k*. For k* = 3,4, 5, we let o(t) = hy«(t), as defined in Definition[T} Specifically, we run
the minibatch update defined in Section[5.2] with batch size 1. Our findings are included in FigureT]
and Figure |Z| for the odd and even cases, respectively. For k* = 3, 5, our first-order estimator indeed
recovers 6*, even though the iterates stay near the equator throughout training. For k* = 4, this same
estimator does not recover 6*, but the second-order estimator’s top eigendirection does, with the
iterates once again staying near the equator. Our experiments are run with different learning rates, and
we observe that smaller learning rates behave more and more like gradient flow, whereas larger ones
behave more like Brownian motion and stay near the equator, as we would predict with Langevin
dynamics. However, there are some more nuances to this, as we describe in the next section.

'As an aside, our technique is one way to prove convergence to the stationary Gibbs distribution . oc
exp(—2¢eL, ), and we believe this can be a useful way to approach the our minibatch conjecture in Section
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function, causing the first order estimator to vanish. remains near the equator over all time.

Figure 2: Simulations for k* = 4, run with d = 100 with n = 10d? samples.

5.2 EXTENSION TO MINI-BATCH SGD

Our experimental results suggest that pure mini-batch SGD should have theoretically guarantees too.
Consider mini-batch SGD with learning rate n and batch size 1:

0, — )
Ory1 = | Lo gt := VoL(0y;%i,,y3,), i ~U(n])

|0 — ngel| ,

g+ is approximately a standard Gaussian, since VL(0; z,y) = —yo’ (6 - z)x and 6 -  is O(1) for the
most part, and hence ||g;|| ~ O(+v/d). For n < d~'/2, we have the following approximation:

Or—nge _ bi—mgr (6 — nge)(1 — Ln2(d— 1))

Oi11 = = ~
16: — 194 1+ n2[|g. |2 2

Let z; := g; + b(6;) be the mini-batch noiseﬂ Because we are in a noise-dominated regime, z; is
approximately isotropic so if we approximate this process by an SDE, we would heuristically get:

1
Orv1 ~ 0y —nge — 5772(d - 1)0,

1
Or —/n-Mmze —m - §n(d —1)0 +nb(0:)

d—1
= df~ <—2779 + b(0)> dt + /nP;-dW;
d—1 1 n
Ui
which roughly recovers our Langevin setting with € := % We therefore conjecture that there

exists a learning rate regime for which this SGD argument holds even without the noise boosting
that is present in Langevin dynamics. The main technical challenge in extending our results in
this direction is not just controlling the discretization error, but also the dependencies that arise
between the noise covariance and the smoothing estimator. In particular, the stationary distribution
for the pure-noise process will no longer be isotropic over the sphere and will have a data-dependent
stationary distribution, which introduces additional complications. However, extending our results
and techniques to the minibatch SGD setting is a promising direction for future work.

By choosing batch size B = 1, which is the best we can do to maximize the scale of the noise without
explicit noise boosting.
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A  ERGODIC CONCENTRATION

Proposition 1. The It6 stochastic differential equations for 3 and 0 remain on S~ for all time.
Proof. This follows by It6’s lemma on f(X) = 3||X||>. More concretely,
Loy _( d-1 1 1 1L Tpl _
d 2||9|| = 5 0-0)+ P, eb(9)9+2trP9 dt+60 PydW, =0

The derivation for 3 proceeds similarly. O

Lemma S (Lemmal restated). Let f : R? — R such that f € L?(u), where yu is the stationary
uniform measure over the sphere for the Brownian motion, and | ga—1 fdp = 0. Then, we have:

7/ F(By)dt = ¢(Bo) — ¢(Br) </)(5T) +—

T
z%=AWBﬂmﬁ

and Mt := fOT V¢(ﬂt)TP§;th is a martingale.

where

Proof. To begin, observe that ¢ satisfies —L¢ = f. To see why, note that:

o0

Lo(x) = [ LPf)(x)dt = [(Pf)(@)]g =—f(2)

0

where in the second equality we used Kolmogorov’s backward equation:

%Ptf — PLf=LPf, Pof =

Applying It6’s to ¢(5;), we obtain:

de(8) = Vé(B) - dB + Lo(B)dt
= Vo(B) T PFdB + Lo(B)dt
= Vo(B)" PydW, + Lo(B)dt

where the second line follows from that fact that 37 (d3) = 0 (i.e. Brownian motion stays on the
sphere). Therefore, it holds that by integrating from 0 to 7',

T T
$(Br) — $(Bo) = /0 Vo8 Praw,+ [ LBt

0
T
=t~ [ 1
0
Rearranging gives the desired result. O

Lemma 6. In the setting of Lemmall| we have that for By ~ p, both the first and second moments of
&(Bo) are finite. That is, E[¢(Bo)], E[¢(B0)?] < oo, and they are upper bounded as follows:

El6(00)] < 7o fllzsg
Blo(60)*) < =gl M

The same holds for [y, since we initialize at the stationary distribution.

12



Under review as a conference paper at ICLR 2026

Proof. We begin with the following:

o0
< [ 1P gt < sz [
L2y Jo 0

where the first inequality follows from Minkowski’s integral inequality, and the second inequality
from the contraction in Poincaré. In addition, recall that 5y ~ p. From here, we obtain:

(o}

_d-1 2
e T it = ﬁ”flll/z(ﬂ)

o
lDllL2(n) = H/ P, fdt
0

4
E[6(80)%] = |9l 72() < WHNQLQ(“) <

Due to Jensen’s, we also have that E[¢(50)] < |||l £2(u) < 00, as desired. O

An adaptation of the above lemma for different f yields concentration of w To concentrate
the martingale M7, we consider the quadratic variation.

Lemma 7. In the setting of Lemma |l we have that for By ~ u, the variance of My /T is the

following:
Mp\*
T

Proof. Consider the quadratic variation (M ).

2
A2

£  T(d-1)

T T
(M) = / V(8T P |2t < / IVo(30)|%dt

To bound the expected quadratic variation, we again make use of that fact that since 5y ~ p, it holds
that By ~ p for all t > 0. Then by Fubini’s, we have:

T
E[(M)7] < / E[IVe(8)I2)dt = T|IV6|2z .,

Before bounding this, first observe that

div(¢(V9)) = (Vo) - (V§) + ¢div(Ve) = [[Ve|* + ¢Aga-1¢

By the divergence theorem, we have:
0= [ dveVedn — [ IVoldu=- [ oAsiiodn
Sd*l Sd—l Sd—l

Note that the right hand side is equivalent to 2 f Gd-1 fodp and the left hand side is equivalent to
HquSH%z(M). Thus, we obtain:

4
IVlZ20u) = 2(F ) L2y < 20 f L2 |l 2y < m”f“%?(ﬂ)

where the first inequality comes from Cauchy-Schwarz, and the second inequality uses the bound
from the proof of Lemma@ Finally, this allows us to conclude that

1 AT A2 ANFI2 g
T2 d—1  T(d-1)

B[ 22] - FElar) -

which vanishes with increasing 7. O
B PROOF OF THE ODD k* CASE

Definition 7. Let . = C, log(d) for a sufficiently large constant C,. We define high probability events

to be events that happen with probability at least 1 — poly(d)e™* where poly(d) does not depend on
C,.

13
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Note that high probability events are closed under polynomial number of union bounds.
We begin by applying Lemma [20]that gives high probability control of E over all time.

Lemma 8 (High probability uniform bound of sup || E||). With probability at least 1 — dT'e~%, there
exists an absolute constant C' such that:

sup | E(1)] < c’[

€sup IIbII}
t<T

d
Proof. Recall the SDE for E(t):

dE = (—d;lE + eb(9)>dt + (Pg — Pg)dw,

By Lemma we can apply the result with C' = % =d,G < esup|b]|,and B = 2. O

We now show that after sufficiently long running time, the time average of 6 roughly approximates
the time average of the Brownian motion, which in expectation over the stationary measure p should
converge to the partial trace estimator for k* odd (i.e. E,~,[b(2)]).

Proposition 2 (Decomposition of E). At time t > 0, it holds that:

‘ t
BO)= [ e T e0ae s+ [ T mt - phaw,
0 0

Proof. Recall the SDE’s for the coupled processes 6 and .
d—1 i
d—1
df = ———Bdt + Py dW,
This implies that:
d—1 i N

Integrating this gives the desired expression. O

We now give the ergodic concentration results for the relevant functions.

Lemma 9 (Ergodic concentration of b). With probability at least 1 — d~*, we have:

1 (T . sup || 0|
— b(Bs)ds — b|| < 2

Proof. First, define the function f = b — b, which can be noted to satsify || f|| = O(sup ||b]|).
By Corollary we can apply Lemma@ This implies that E[||¢(8)]|?] = O(sup ||b]|*/d?), and by
Chebyshev’s inequality it holds with probability 1 — d~" that ||¢(3)|| < sup ||b]|d~1/2. Therefore, at
time T, it holds with this probability 1 — d~! that

H ¢(Bo) — ¢(Br)
T

\ — O(sup b],/7/d)

For the martingale term of the ergodic average, we have by Lemma (7] that the quadratic variation is

401113 2 . . - . . . . .

%. Therefore, with high probability (via union bounding), it holds that the martingale term
: sup ||b]|

has magnitude T

14
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Combining the above results, we have that norm of the difference between the time average and the

stationary mean is O (pr\”fbH + b%”) Therefore, with probability 1 — d~1,

1 (T _
T/o b(Bs)ds — b

< sup [|b]] | sup |[b] _ sup||b]|
TVd VTd ~ VTd

Lemma 10 (Ergodic concentration of 3). With probability at least 1 — d~", it holds that:

1 T
- od
T/o Bsds

Proof. First, define f to be the identity function. In this setting, we have that || f|| z2(,) = 1, since
the Brownian motion is always on the sphere. Then, using Lemma[6] we have that by Chebyshev ]
inequality with probability 1 — d~!, it holds that ||¢(3)|| < 1/+/d. Therefore, at time T, it holds
with this probability that:

<
~VTd

H ¢(Bo) — ¢(Br)
T

‘ = O(1/VdT)

For the martingale term of the ergodic average, we have by Lemma 7] the quadratic variation is

4 2
%. Therefore, with high probability, it holds that the martingale term has magnitude O(\/%).

Combining the above results, we have probability 1 — d !, the time average is bounded as:

T
; / Bsds

1 1
<
f dT \/Td ~ VTd

We now prove the main theorem.

Theorem 4 (Theorem | restated). Let € = o(d~*"=3/2) and T > d*" /. Then for 6,A > 0,
ifn > dlF /21 /(5A2), Algorzthmlsucceeds in recovering the ground truth 6* up to error A with
probablllty at least 1 — 2d~1 — 6.

Proof. The time average of the E' up to time 7T is the sum of the time averages of the two terms in
Proposition@ For the second term, which is the noise term, we have the following:

I —4=L—s) pl 1
o Jo
1 [T T-s 4
= f/ (P — Pﬁi)/ e~ 2 tdtdW,
T Jo 0

e i 1 2 —421(T—s)
*f[;“%*P%VJiI@*e ),

Note that the quadratic variation of My is:
2

e il 1 2 — 421 (T—s)

E T O(Pg _Pﬁ)ﬁ(l_e 2 )dWS
1 T 2 _d=lep_, 2

= 75k /O (d_l(l—e . ))> 1P = Py |l | ds
1 €2

< 2 <

< apow Bl S o
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By Gaussian concentration, we have that with high probability:

€
M <
240 5

For the first term in Proposition |2} we have

_7(1& 9 1 T T—s _ﬁt
— eb(0s)dsdt = T eb(0 ) T 'dtds
= 7/ (1 —e” 1(T*S))ds

f/ b0 o 1/T b(0) - ——e= 5T
€ s Toe s d—le S

We analyze these two terms separately. For the second term, note that:

e 2 _asip_ Gsupllb i < €sup [[b(8)]
L e, - (T-5)4 / 152 (1-5) g < €SUPNIWO)]
T/o ) T o= Td

For the first term, we decompose it as follows to isolate the Brownian motion:

1 (7 2 2 r 2 r
T/O Gb(es) : mds = mA Eb(ﬁs)ds + mA E(b(es) - b(ﬂs))ds

Once again, the second term can be bounded by the Lipschitz constant of b:

2 T 2esup || V|2
—_— b(0s) —b(Bs))ds|| £ ———7— 0s — Bs||d
i [ w0 boas| < I g
_ 2esup | Vb [esup b]
~oo(d-1) d
The remaining term is the main term d261% o b(Bs)ds, which we proved concentration around the

stationary average for in Lemmal9] Therefore, the time average of E satisfies via triangle inequality:

T
l / E.ds — 2¢ b
0 d—1

T _
1 [T 2 - € esup||b]]  2¢%sup || Vb2 sup ||b]|
= b(B) —b)d
7| e s+ S S =
< 2 sup ||b]| € esup ||b]| = 2¢? sup||Vngsup||b|| € 62
~d-1 /Td d2\/T Td d? S VT
Combining our results with Lemma|10|using triangle inequality, we obtain with probability at least
1—2d~ %
I 2 - e % -
— | O.ds— b == s+ Es)ds — ——b
T/O M T/O(ﬂ+ Jds =75
I I 2¢
<= sd = E.d b
= T/O Peds) + T/U Td-1
1 € €2 1 €2
S—+ + 5SS 7=+
VTd  VT® &~ VTad  d
Letu := 25 bandv T fo 0.dt. Then, in our regime of 1" and e, the total error is bounded as:
1 62 26 *
< — 4 = cd— k=12
el S =+ 5 <
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By Lemma [25]and Chebyshev’s, it holds with probability at least 1 — ¢ that

b— 0] < a7
Py
where ¢ = @(d_(k*_l)/ ?) is the absolute constant in that lemma, and denote w := c#*. For

A > 0, when n = O(d*"+1)/2/A25), we have that [[b — c6*|| < Aljw||. Combining this with
b — LLo|| < d= " =D/2 < ||jw||, we have that by triangle inequality:
d—1

o —wl S Allwl, ="

Therefore, it holds that:
8] = llw + (8 — w)[| < V2y/[Jw]® + |6 — w[? < [Jw||v/1+ A2
Therefore by law of cosines, we have:
16 —wl — (o]l — lwl)? _ [Io —w]® _ A*w|* _ 5
2/[9][[|w|| ~ 200l lwll 7 fJw]?

1 —cosZ(b,w) =

By union bounding, the claim holds with probability at least 1 — 2d~! — 4, as desired.

C PROOF OF THE EVEN k* CASE

Lemma 11. With probability at least 1 — d™', it holds that:
- I
il Bl ds — =
T /0 Bsbs ds = 3

Proof. We wish to analyze + fOT Bs4 ds. First, note that E.,[22"] = LI. In the setting of
Lemma let us define f(8) = B8" — E,~,[2z"]. Note that the maximum Frobenius norm of f
is bounded by O(1). In the setting of Lemma@ we have that E[||¢(8)||2] < 7. Therefore, by

Chebyshev’s, it holds with probability at least 1 — d ! that:

‘ ¢(Bo) —o(Br)|| 1

T = TVd
For the martingale term of the ergodic average, we have by Lemma /| the quadratic variation is
O(1/Td). Combining the above results, it holds that with probability 1 — d~!,

- I
T/o ﬁsﬁst—g

S
r VTd

1 N 11
TVd Td"~ VTd

S

F

Lemma 12. With probability at least 1 — d—', we have that:

1

r T T T T
T [ (BB + (38T s — B lb2)T + b(2)2T

F

Proof. We wish to analyze + fOT(ﬂsb(ﬁs)T + b(Bs)B4 )ds. In the setting of Lemma let us define
f(B)=(Bb(B)T +b(B)BT) —E..[2b(2) " +b(2)z"]. Note that the maximum Frobenius norm of
f is bounded by O(1). In the setting of Lemma@ we have that E[[|¢(8)[|%] < 7. Therefore, by
Chebyshev’s, it holds with probability at least 1 — d~! that:

H ¢(Bo) — ¢(Br)
T

< 1

r TV

17



Under review as a conference paper at ICLR 2026

For the martingale term of the ergodic average, we have by Lemma(7] the quadratic variation is
O(1/Td). Combining the above results, it holds that with probability 1 — d !,

T
LY T

< + <
- TVd Td "~ VTd

Lemma 13. With probability 1 — d—1, it holds that:

€ 62

1
< +
~ VT d?

= /T(Esb(es)T +b(0,)E] )ds — EEZNM [2b(2) " +b(2)2"]
0

T d

F

Proof. Recall the SDE’s for E and 3:

-1
B = —dTﬂdt + PgdW,

dE = (—d;lE + eb(9)>dt + (P — Pg)dw,
By It6’s lemma, we calculate the SDE for E,BT as:
d(EB") = (—(d—1)EB" +eb(0)B" + (P)- — Py )Py )dt + (P — Py )dW,8" + EdW,' Py
The SDE of BET is just the transpose of the above, so we have:
d(EBT) = (—(d—1)BET +€Bb(0)" + Py (P;~ — Py))dt + BdW, (Pg- — Pg) + PgdW,E"
Let G := EB" 4+ BET. Then the SDE for G is:

d(G) = (—(d—=1)G+e(®(®)B" +Bb(0)") + [(Ps- — P3)Py + Py (Pg- — Py)])dt
+ (P — PF)AW,ST + EdW, P{ + BAW, (P — P§) + PFdW,E"

where the first line is the drift term, and the second line is the noise term. Moreover, we can further
simplify the final term in the drift:

(Pj- — Py )Py + Py (P — Py)
=(—BE" —EE" +(E"B)(B8" + EB"))+ (—EB" —EE"T + (E"B)(B8" + BET))
=-(BE"+EB")+E

where = is the remainder term satisfying ||Z||r < ||E||? < €2/d?. The last line follows from

~

Lemma [T4] for simplification. Our SDE for G can therefore be rewritten as:

dG = (—dG + e(b(0)BT + Bb(0)T) + E)dt
+ (P — Pg)dW BT + EdW,' Py + BdW,! (P — Py ) + PdW,E'

This implies that:
t
G(t) = / 409 (c(b(0,)8T + B:b(0)) + Eu)ds
0

t
+ /0 e~ [(P — P)dW BT + EdW," P3 + BdW," (Pf — Py) + P3dW,E]
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We first analyze the time average of the second term, which is the noise term. Intuitively, the time
average of it should concentrate around 0 as time increases.

i/ / —d(t—s) PIB )dWsﬁT +EdWTPB —i—BdWT(P@ PﬁL) —i—PBJ‘dWSETdet

T—s T T—s
1
- (Pel — Py) / e~ Mdtdw,B8] + — / E / e~ "dtdw, Py
T 0 0 T 0 0

1 g T d €L L 1 g € T d T
= - Pq—Py)+ = | P —dt E
wp o[ etaawirt —ph e g [k [ e taaw,
—1/T(P (51— et dWﬂT+1/TE L — ety )aw] ps
2 B d SHs T o d s B

17 1
f/ < <TS>))dWS(P@L —P)+ T/o Py <d(1 - 6d(T5))>dWsET

It now suffices to bound the Frobenius norm of the time average of the top two terms of the last
expression (since the latter two terms are just transposes). For the first term, we have that:

2

1T 1 CA(Ts
E f/ (P&Pﬁ)(due o ))>dWsﬁsT
0
F
1 4 1 d(T ? € 1512
= T2 E (d(l—e_( _S))> 1P~ — Py l|%|ds
1
S ET 5 SupllEtll
2
< &
~ dAT

where the second to last inequality follows from Lemma [T3]

For the second term in the time average of the noise component, we have:

1/TE 1(176*‘1”*5)) dw Py
T Jo d s P

1 4 1 (T ? 2
= | B|(Ga- ) e

€2

diT

E

F

S
Combining all four noise terms together using Gaussian concentration and triangle inequality, we
have that with high probability,

€

2T

S

F

We now analyze the drift term of G. First, to isolate the Brownian motion, we once again do another
decomposition:
t

™M) (e(b(05)B) + Bsb(05) ) + Es)ds
e~ (e((b(Ba) +v)BT + Ba(b(Ba) +v)T) +E)ds

t t

e~ =) e(b(B,) 8] + Bsb(Bs) )ds+/ e_d(t_s)(e(vﬁz+BSUT)—|—ES)ds

0

S—

o—
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where here we define v := b(6) — b(3), which by Lipschitzness has norm bounded by O(|| E||) < §.
Hence, for all t < T, this second term satisfies:

t
‘ / e~ dt=9) (e(wB) +Bsv") + Es)ds
0

which means the time average over this component also has Frobenius norm O(€?). For the time
average of the first term, we have the following:

: / / (b(B2)BT + Bab(B) T )ds

1/ (d(l—e_d(T_s))>€(b(5s)l3;r +B,0(8) T )ds

T T
_ % /0 %db(ﬁs)ﬁz + B:b(Bs) " )ds — % /O ée‘d@—%(b(ﬂs)ﬁl + Bab(Bs) ") ds

1 t
< gsuplle (B +BsvT) + ES||F/ e Mds < € fd?
0

For the second term, we can bound this in Frobenius norm by:

€

sup [b(8)8" + Bb(A) "I r < 7

T
%/0 ée’d@*s)e(b(ﬁs)ﬁl + Bsb(8s) " )ds

Td

Finally, for the first term, we have shown concentration to SE..ga-1[b(2)z" + 2b(z)"] in the
previous lemma. Combining everything through triangle inequality, we have:

€
/ G(s)ds — zw#[zb( ) +b(z)zT] ﬁ / Bsb(Bs) +b(ﬂs)ﬂTds Zwu[zb( ) +b(z)zT]
F
P e e
Td d?>  @2JT
L.
~VTd  Td o d* 2T
€ . €2
~NVTB AP
and the result follows. O

Theorem 5 (Theorem [3] restated). Let e = o(d~*"~2)/2), and let T > d*'*1/e®. Then in the

setting of Lemma F.9 in\Damian et al.|(2024), for A > 0, if n 2> dk*/z/Az, the algorithm succeeds
in recovering 0* up to error /\ with probability at least 1 — 2d~1.

Proof. Recall that 09T = BBT + EBT + BET + EET. In the previous lemmas, we have
analyzed each of these terms separately, and our goal is to prove ergodic concentration to
LI+ £E, ga-1[2b(2) T +b(2)z"].

e T 1 € T T
= /O 0,07 ds — <dI+dEZNSd1[zb(z) +b(2)z ])

F

T
/ BBlds — = + % / (E5T+ﬁET)ds—gEZNS(H[zb(z)T+b(z)zT})
0
< —+ . i
~ \/Td \/Td3 2 &
L, e @
T VTd T A2
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Consider the stationary average of M,, := 21 + £E, ga-1[2b(2) " + b(z)z"]. By Lemma F.9 in
Damian et al.[(2024), with high probability, it holds that:

|E.nsa-1 [2b(2) " 4+ b(2)2"] — E,ga1 . [2b(2) " + b(z)zT]H2 <y/d=k/2/n

Therefore, we obtain via triangle inequality that:

1 T
f/ 0,0 ds — E,.[M /99115— n
0
6 62
-+ \/d k*/2 Ip
N1/ 1/

The eigengap for E, [M,,] is £©(d~*"/2). Then, when n = ©(d*'/2/A?), when applying Davis-
Kahan, we see that the top eigenvector can be recovered up to accuracy:

+ ”Mn - ]Ez[Mn]”Q

+ S+ SVdF 2 /n
. * «/* ,/7 d2
< < A
Sln(ulag ) 5@(d k*/2) ~

where u; denotes the top eigenvector of our time averaged matrix. O

D USEFUL LEMMAS

Corollary 2 (Tensorlzatlon of Lemma. For any f over any finite-dimensional real vector space
such that f € L*(p), where yu is the stationary uniform measure over the sphere for the Brownian
motion, and de71 fdu = 0. Then, we have:

¢ (Bo) — ¢(ﬁ)
*/fﬁtdt . T+T

where
= Pt d
o(8) /O f(B)dt

and Mp = fOT ng(ﬂt)TPé; dWy is a martingale. In particular, the natural extensions ofLemmaE]
and Lemmal7|follow via Frobenius norms in L*(y).

Lemma 14. Let 3,3 € S 1, and let E = 3 — 3. Then, we have that
1
BT =3B
2
Proof.
18"+ E|* = |8]]* = 2E78'+[|E|* =0
since ||3]| = ||8’|] = 1. Rearranging gives the desired result. O

Lemma 15. Let 3,3 € S 1. Then, we have that
1
tr (Pg — P3)(P; — Pg) ") =2||E|* - §||EH4
where E = 3 — 3.
Proof.

tr (P — Py)(Pg — Pyr)") =t (P (8'6"7) + Py (B57))
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Note that
Py(B8T) =Ps(BB" +B'E" +EFT +EET)
= Ps(EB" +EE")
=ERT+EET -3 TERT -3 TEET

and similarly
Py(8'8")=~EB" + EET + BB EFT — BT EET
Summing these, we get the trace to be
21E)* - 1/2]| E|*

Lemma 16. Letr z ~ S% 1. Then, for integers k > 0, it holds that:

B = 2D g

k—1 ;
Hj:O (d+25)
E MISCELLANEOUS CONCENTRATION INEQUALITIES
Lemma 17 (Concentration of norm). Let Z ~ N(0, I). Then, it holds that:
Pr{]| Z|| - E[[| Z]]] > 5] < exp(~57/2)

Lemma 18. Ler X : R — R satisfy X (0) = 0 and
dX = —AXdt+ o(X)dW;.

If o(X) < o for all X, then for all 0 < s < t, it holds that X (t) — X (s) is % (1 — e72¢(t=%)).

subgaussian.

Proof. LetY (t) := et X;. Then,
dy (t) = eMo(X (t))dW;
Thus, Y (t) is a martingale. Furthermore, the quadratic variation of Y satisfies

62At -1

t t
(V) = / 2o (X (t))2dt < 02/ 2Atgy — 2.5 T o
0 0 2A

Therefore, Novikov’s condition tells us that
£ )= e (W (0 - 3 1))
is a martingale. Hence,
£ ). = BEOWIF] =B |exp (WY (1) - ). )17
Rearranging the above inequality gives us
Elexp(AY (£))[F]

A202 24t _ 245
§E{exp ()\Y(s)—i— 20 ¢ 2Ae )|FS}

Now, converting back to X and replacing \ < A\e~“*, we obtain
Elexp(A(X(t) = X (s)))|Fs]

229 _ —2A(t—s)
<E {exp ()\X(S)(G_A(t_s) -1)+ A 20 : eQA >|}—S}
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Applying this for (s, 0) instead of (¢, s) gives us

)\20.2 1— e—2As )\20.2
< —_— | <
Elexp(AX (s))] < exp ( 5 54 ) < exp ( i )

Plugging this in the previous equation upon taking expectation over F, we obtain
efA(tfs) _ 1)2 N )\20.2(1 _ €2A(ts)))

20.2
Elexp(A(X () — X (s)))] < exp <)\ ( 4A 4A
< exp <)\22;712 (1— e_zA(t—S))>

where we substituted and used the fact that
(e—A(t—s) _ 1)2 <1-— 6—2A(t—s)

O

Lemma 19 (Chaining tail inequality (van Handel, [2016)). Let { X;}+cT be a separable subgaussian
process on the metric space (T, d). Then for all ty € T and x > 0,

%) %2
Pr [sup{Xt - X} > C/ V1og N(T,d,e)de + x} < Ce Cdiam(1)?
teT 0

where C' < oo is a universal constant.

Corollary 3. In the setting of Lemmall8| there exists an absolute constant C < oo such that for any
0 >0,

<9

sup | X;| > C x

p 1 —|— AT
T
t<T \/>

Proof. Define

o2
d(s,t) := Z(l — e 2A(t—9))
Then, X; — X is d(s, t)-subgaussian from the Lemma When we invert this distance, we obtain

2AT

N(©.T).d ) S =y

Note that for e < o/ /A, this can be upper bounded by 1 + QT;’ and the diameter is upper bounded
by o/ V/A. Applying the chaining tail inequality in Lemma , we have:

12
Pr |:sup 1X,| > C x -2 \/log(1 + AT) + x:| < ek
t<T

VA

where we used the fact that:
& R
log N([0,T),d, e)de S —=+/log(1 + AT)
/0 VA

Rearranging gives the desired result. O
Lemma 20. Let X (0) = 0 and suppose X satisfies the following SDE.
dX = [-AX 4 b(X)]dt + XY2(X)dW,
and that uniformly for all X,
X <G, tru(X) < BlX]*

Then, there exists an absolute constant C' > 0 such that for any 6, T > 0, if L :== 1V log # and
A > CBL, then with probability at least 1 — §:
CG

sup [| X (t)|| < —.
sup X (1) <

23
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Proof. We begin by decomposing X (t) = X (t) + X2(t) where X, X follow:
dXy = [AXy + b(X)]dt, dX, = —AXodt + XV2(X)dW,
and X1 (0) = X»(0) = 0. Define R := §. Observe that for all ¢,

X.(t) = /OteA(tS)b(X(s))ds — | X1(t)] < G/OteA(ts)ds < % =R.
For X5, note that:
d)| X2 = [-2A] Xa|? + tr B(X)]dt + X SV2(X)dW,
We now decompose || X2||? = Y7 + Y> so that:
dYy = [24Y] + tr 2(X)]dt, dYs = —2AYadt + X, 2V (X)dW,.
Define the stopping time 7 := inf{t > 0 : || X2(¢)|| > R}. Then

G2
tr (X (EAT)) < B|X(EAT)| < QB[A2 + 32} = 4BR?.

Therefore Y (t A 7) < 2BR?/A. Next, the noise term in the SDE for Y5 can be bounded by:
XotAT)TS(X(EAT)Xo(EAT) < | Xo(EAT)Ptr S(X(EAT)) < ABR*.

Now, let C' be a sufficiently large constant. Substituting into Corollary[3] we have that with probability
atleast 1 — 6,

BR4 2(1+ AT
Sup||Y2(t/\T)|§C'\/ p 1og(( : >>.
t<T

Under this event, we have that
E . E ) 2(1+ AT)
AT\ a8 5 '

Now since A > C'B(1 V log(1 + AT)) where C’ is a sufficiently large constant then the right
hand side is strictly less than R, which implies that with probability at least 1 — §, 7 < T and
sup,<r | X()|| S R. O

sup | X5 (t A 7)||> < CR?
t<T

F TENSOR PCA

Let T = (6*)®* 4+ n=1/2Z where every coordinate of Z is N(0,1). We consider the negative
log-likehood:

L(0) = — (6%, T).
The spherical gradient is given by:
b(0) = kP, T[0%F 1.

k—1

Lemma 21. E, zb(z) = c0* where c=0(d™ "= ).

Proof. A direct calculation shows:
E. zb(z) = kO*E.[(6* - 2)F 1 — (6% - 2)F 1.
Note that 8* - z is equal in distribution to z; so
ci=E.[(0" - 2)FL (g~ z)k+1]

1

is of order @(d_% ). O
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Next, we will control the variance of the smoothing estimator.

Lemma 22. Varz[E.b(2)] S d~"7 /n.

Proof.
Varz[E.b(z)] = n 'K, .0 7 (P Z[2% 1), Py Z[(2)¥F]) = n B [(2 - )1 (PF, PO
Next, note that this product simplifies as:
(I-2" 12"y =d—2+(2-2)%

Therefore this variance is @(d*% /n). O

Finally, by Chebyshev’s inequality we have with probability at least 1 — 4,

A5
E.b(z) — cf*|| S ||
[E.b(2) — c0]| < s

k+1
so we can recover 0* whenn 2> d =z /4.

It remains to show that b is bounded and Lipschitz. First with probability at least 1 — e =,

sup [0(0)]| S 1+n""2sup Z[9 ] < 14+ 0 2)|Z)|,, S 1+ Vd/n
0 [%

where the operator norm bound on Z follows from a standard covering argument. Similarly,
16(6) = b(@")]| < k|| PATIO%F ) — PAT((0)®+ |
< k|[(Pg- — Py )T[0%" ] + Py (T0°M1 — (0)®* 1)
S (L++d/n)|6 o'

where the inequality for the second term follows from the fact that if ' = 0 + E':

k—1 k—1
. B k-1 o ‘
1710 + B)=*-1 — 92| =Z( ) )T[E@J@em =3 < 17l ST IEN S 171,
j=1 j=1

G SINGLE INDEX MODELS

We will assume throughout this section that the activation satisfies sup, o®)(2) = O(1) for k =
0,1, 2. Define b;(0) to be the negative spherical gradient on the ith datapoint:

We will use E; to denote the expectation with respect to the data. We will also let z ~ Unif(S9~1).

E*—1

Lemma 23. E; .b;(z) = c0* wherec=0(d~ "z ).

Proof. First note that by Hermite expanding y and o we have that:
Eiyio(z - x;) =E[o(0* - z)o(z-x)] = Z (0 - 6%k,
E>k*
Taking a spherical gradient with respect to 6 gives:
Eibi(2) = Y ki (PH0*)(z-6%)F ",
k>k*

We can now average over the sphere. First by (Damian et al.| 2023, Lemma 26),
E. Y k(-0 )1 <d T
k>k*
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.. . . .. k— . .
In addition by isolating the & = k* term, it is at least order d="=" . Next we handle the projection
term:

E, Z ciz(z-0%)F =0 Z ci(z- 0!

k>k* k>k*

and this is upper bounded by d~ ** which completes the proof. O

Finally, it suffices to control the variance of the estimator. We will use the following general purpose
lemma:

Lemma 24. Let g =), cihi, where hy, is the k-th normalized Hermite polynomial and let { be the
index of the first nonzero even coefficient. Then,

E[(]Ezg(z : 37))2] S Ez~N(o71)[9(l’)2]d4/2~
Proof. Note that we can rearrange this as:

]Ez,z’,f[g(z : m)g('zl : :L')] = Z CiEZ,z’[(z : Z/)k} = Z Cngz,z/[('z ’ Z/)Qk]'
k k

We can now upper bound this by:

EJNN(O,I)[g(x)2]Ez,z’ Z (z- Z,)zk = ExNN(O,l)[g(z)z]E[
k>0/2

The result now follows from (Damian et al.| 2023, Lemma 26). O

k*—1

Lemma 25. Let b(z) := L 3°"  b;(2). Then there exists c = ©(d~ "= ) such that

T n

k*—3
2

a-

E|E.[b(2)] — c6*[|* Sk

Proof. We can decompose:
E.bi(2) = yiwiB.0' (2 - @) + yiBa[2(2 - 3)0" (2 - 2)].
For the first term:
ElllyiziEs0’ (2 - 21)]|]
= E[lyizil,, covq®eo (2 2)l?] + E[lpizil, soyaeo’ (2 2i)|
S dE[(B20' (2 - :))°] + dP(|lzil| = CVd]

k*—3

<4

Similarly for the second term, we have by symmetry that
LQIEZ [(z- z;)%0’(z - z;)]
[l

The expression inside the expectation has information exponent at most £* — 3 so by the same
argument as above, the variance of this term is bounded by

E.[2(z z;)0' (2 - x;)] =

O 1d"7) < a7,
Now we can conclude by:
E|E.b; (=) _ d—"="
E[|E.[b(2)] — sy, [b(2)]]|* < H an(z)” S n2
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Therefore by Chebyshev, with probability at least 1 — § we have that

d_k*—s
E.b(z) — ™| <
IE-b(z) — o] < )
_k*=3 *4q
so we can recover 6* withn > 47— = e(d"= /8) samples.

Lemma 26. With probability at least 1 — e~?,

d
sup [b(6)]] < 1+\f
0 n

Proof. Let X € R™*4 e the stacked matrix with all the data points. Then,

1 < 1
[6@)] = |15 D" 0P 210’0 @) < LX)
i=1
O
Lemma 27. In the same setting as Lemmal|26|
sup [[6(0) = b(@)| < (1 + vd/n)||6 — &'
Proof. We have
||b(0) H < Zyz i) _PQJ/_O'/(G/'QL‘,')]JJZ'.

Now we have that:

P’ (0 - x;) — Pyro' (0 - x;)

=Pi[o'(0-x;) — o' (0 - )] + o' (0" - x;) [Py~ — Pyr).
For the first term, the same argument as above proves that the sum is bounded by:

R / /
Ol —==|0-196 < (1 d 0—0].
(Beto-o1) < 0+ Vamlo - |
For the second term, it is bounded by:
IX1lo | P5- — Por
0] 21 <@ d 0—0
( Jn S (L +vd/n) |

which completes the proof. O

Lemma 28. E; . [20(2) "] = c0*0* T + gPj: where c = ©(d~*"/?) and g = O(d~*"+2)/2),

Proof. We will fix z first and then take average over the sphere of z. First,
Ei[zx] 0(0* - 23)0' (2 - 1) P = 2Bi[x] o(60% - x3)0" (2 - )] — 2Es[x] o (0% - 2)0” (2 - 23)] 22"
Let ¢; be the Hermite coefficients for o. For the first term, we have by Stein’s lemma that:
2Ei[z] (0 - 2)0 (2 - 23)] = 2Bi[0’ (0% - )0’ (2 - 2)]0* T + Ei[o(0* - 23)0” (2 - x3)] 22"
=z Z 0% - k0T + Z k4 2)(k+ 1)cpcppa(0* - 2)Fz2T
E>k*—1 k>k*
We now proceed to handle the projection term:

2Ei[x) o(0* - 2)0’ (2 - 23)]22T =2 Z 0% )k T 22T + Z k4 2)(k+ 1)cpcppa(0* - 2)F

k>k*—1 k>k*

ZZTZZT

=2z Z 0% - 2)k 1T 4 Z (k4 2)(k + 1)cpepsa (0 - 2)F22"

E>k*—1 E>k*
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Therefore, after combining and before taking expectation over z, our expression is:

z Z a0 - )k — 2 Z (0% - 2T

k>k*—1 k>k*—1
We now take expectation of z over the sphere. For the first term, we have that
E, |z Z Ci(@* . z)k 0* = Z@(d_(k*+2j)/2>9*9*T — @(d_k*/z)e*e*T
k>k*—1 §>0
For the second term, we have that
E, Z Ci(g* . Z)k'+1ZZT _ @(d—(k*+2)/2)9*9*T + @(d—(k*+2)/2)P0J;
kE>k*—1

where the two O hide different absolute constants. Nonetheless, the main part of our desired
expression is ©(d—*"/2)0*9* T, and this gives the desired result. O
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