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ABSTRACT

Significant recent work has studied the ability of gradient descent to recover
a hidden planted direction θ⋆ ∈ Sd−1 in different high-dimensional settings,
including tensor PCA and single-index models. The key quantity that governs
the ability of gradient descent to traverse these landscapes is the information
exponent k⋆ (Ben Arous et al., 2021), which corresponds to the order of the saddle
at initialization in the population landscape. Ben Arous et al. (2021) showed
that n ≳ dmax(1,k⋆−1) samples were necessary and sufficient for online SGD
to recover θ⋆, and Ben Arous et al. (2020) proved a similar lower bound for
Langevin dynamics. More recently, Damian et al. (2023) showed it was possible
to circumvent these lower bounds by running gradient descent on a smoothed
landscape, and that this algorithm succeeds with n ≳ dmax(1,k⋆/2) samples, which
is optimal in the worst case. This raises the question of whether it is possible
to achieve the same rate without explicit smoothing. In this paper, we show that
Langevin dynamics can succeed with n ≳ dk

⋆/2 samples if one considers the
average iterate, rather than the last iterate. The key idea is that the combination
of noise-injection and iterate averaging is able to emulate the effect of landscape
smoothing. We apply this result to both the tensor PCA and single-index model
settings. Finally, we conjecture that minibatch SGD can also achieve the same rate
without adding any additional noise.

1 INTRODUCTION

In many learning settings, gradient descent is the default algorithm, and recent years have seen
significant progress in understanding its theoretical properties and learnability guarantees in different
feature learning settings (Damian et al., 2022; Mei et al., 2022). While the optimization process is
non-convex in general, there are many settings in which we can nonetheless tractably give learning
guarantees. Single index models, or functions of the form σ(θ⋆ · x), provide one such sandbox; here,
the goal is to recover this planted direction θ⋆ ∈ Sd−1 through which the target depends on the input.
In the statistics literature, single index models have been studied for decades (Hristache et al., 2001;
Hïrdle et al., 2004), and are also known as generalized linear models. In the special case where
the link function σ is monotonic, the information-theoretic sample complexity of n ≍ d to learn
θ⋆ is achieved via perceptron-like algorithms (Kalai and Sastry, 2009; Kakade et al., 2011). For
non-monotonic link functions, one classic example is the phase-retrieval problem where σ(t) = |t|,
which has been well-studied (Chen et al., 2019; Maillard et al., 2020).

For the case of Gaussian input data, the information exponent k⋆ of the link function σ
tells us the sample complexity needed to learn θ⋆ with “correlational learners” (Ben Arous et al.,
2021). This can be extended to allow for label preprocessing (Mondelli and Montanari, 2018;
Maillard et al., 2020; Chen et al., 2025; Dandi et al., 2024; Troiani et al., 2024; Lee et al., 2024;
Arnaboldi et al., 2024) and the resulting exponent becomes the “generative exponent” (Damian et al.,
2024). Ben Arous et al. (2021) shows that using n ≳ dk

⋆−1 samples is necessary and sufficient for a
certain class of online stochastic gradient descent (SGD) algorithms. Damian et al. (2023) improves
this to n ≳ dmax(1,k⋆/2) samples by running online SGD on a smoothed loss, and they provide a
matching correlational statistical query (CSQ) lower bound. Key to their analysis is the fact that the
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smoothed loss boosts the signal-to-noise ratio in the region near initialization (i.e. when the current
iterate lies in the equatorial region with respect to θ⋆).

Overall, the information exponent has been shown to determine the sample complexity in
many settings (Ben Arous et al., 2021; Damian et al., 2023; Bietti et al., 2022; Abbe et al., 2023;
Dandi et al., 2023). A recent work of Joshi et al. (2025) analyzes the spherical symmetric distribution
case, which slightly relaxes the Gaussian data assumption. In particular, the work by Abbe et al.
(2023) provides a generalization of the information exponent to the multi index setting, in which the
target depends on a low dimensional subspace of the input instead of just a single direction (Ren and
Lee, 2024; Damian et al., 2025). We would also like to note the connection of learning information
exponent k single index models to the order k tensor PCA problem (Montanari and Richard, 2014).
In both problems, it turns out that the partial trace estimator returns the direction of the planted
spike with optimal sample complexity of dk/2 in the CSQ framework, and similar smoothing-based
approaches there (Anandkumar et al., 2017; Biroli et al., 2020) have been proposed to return this
estimator.

Notably, along this line of work, Ben Arous et al. (2020) conjectures that Langevin dynamics in the
tensor PCA setting does not work due to the divergence of the computational-statistical gap in this
setting. In our work, we surprisingly show that Langevin dynamics can still be used to recover the
planted direction of the single index model. To achieve this, we run Langevin dynamics, but we take
the time average of all the iterates. Our analysis reveals that with n ≳ d⌈k

⋆/2⌉ samples, we are able to
recover the direction of the partial trace estimator and hence θ⋆. The key insight is that this Langevin
dynamics process closely tracks the Brownian motion on the sphere, and averaging out the iterates
roughly corresponds to an ergodicity concentration argument on the sphere. Our main theorem is the
following.
Theorem 1 (Main theorem (informal)). Consider a link function σ with information exponent k⋆.
Then, with n ≳ d⌈k

⋆/2⌉ samples drawn i.i.d. from the standard d-dimensional Gaussian, running
Algorithm 1 recovers the ground truth direction θ⋆.

We can also shave off a factor of
√
d to improve the sample complexity to n ≳ dk

⋆/2 by running
Algorithm 1 and running online SGD on the returned time averaged estimator. This corresponds to
the warm start in Damian et al. (2023) for the odd case.

2 SETUP AND MAIN CONTRIBUTIONS

2.1 NOTATION

We use ∥ · ∥p to denote the vector ℓp-norm; furthermore, when p = 2, we often drop the subscript and
write ∥ · ∥. Given a probability measure γ over Rd, we denote L2(Rd, γ) the space of γ-measurable
and square-integral functions; we shorthand this to L2(γ) when the domain is clear. For f ∈ L2(γ),
we denote ∥f∥2L2(γ) = Ez∼γ [f(z)

2]. We also denote µ to be the uniform measure on Sd−1.

2.2 SETTING

We consider in this paper tensor PCA (Montanari and Richard, 2014) and single-index models.

2.2.1 TENSOR PCA

For tensor PCA, we will assume there is a planted direction θ⋆ ∈ Sd−1 and we observe the k-tensor
T defined by:

T = θ⋆⊗k + n−1/2Z where Zi1,...,ik
i.i.d.∼ N(0, 1)

We consider optimizing the negative log-likelihood:

L(θ) = −
〈
T, θ⊗k

〉
Information theoretically, θ⋆ is possible to recover whenever n ≳ d. However, common techniques
like approximate message passing (AMP), tensor power method, and online SGD require n ≳ dk−1
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to recover θ⋆ (Montanari and Richard, 2014; Ben Arous et al., 2021). Nevertheless, it is possible
to recover θ⋆ with n ≳ dk/2 samples using tensor unfolding (Montanari and Richard, 2014), the
partial-trace estimator (Hopkins et al., 2016), and landscape smoothing (Anandkumar et al., 2017;
Biroli et al., 2020; Damian et al., 2023). In our paper, we show Langevin dynamics combined with
iterate averaging can recover θ⋆ with n ≳ d⌈

k
2 ⌉ without explicit unfolding or smoothing.

2.2.2 SINGLE-INDEX MODELS

We mostly follow the setting of Damian et al. (2023). Let {(xi, yi) ∈ Rd × R}i∈[n] be the set of
training data. The input data xi are drawn i.i.d. from a standard d-dimensional Gaussian N (0, Id),
and the labels yi are generated through a target or teacher function f⋆. In particular, we consider
the setting where f⋆ is a single index model, in which the label only depends on the input through a
planted direction θ⋆ ∈ Sd−1. Formally, we have for each i:

yi = f⋆(xi) + ξi = σ(θ⋆ · xi) + ξi, xi
i.i.d.∼ N (0, Id), ξi

i.i.d.∼ N (0, 1)

where σ is a known link function. We will consider the setting where our learner is f(θ, x) := σ(θ ·x),
where θ ∈ Sd−1 is the learnable parameter.
Assumption 1. We will assume the following regarding the link function σ.

• Ex∼N (0,1)[σ(x)
2] = 1 (Normalization)

• |σ(k)(z)| ≤ C for k = 0, 1, 2 and for all z. (Lipschitzness)

We note the assumption on the boundedness of σ(k) can be relaxed to it having polynomial tails
Damian et al. (2023), but at the cost of increasing the complexity of the proof.

We consider training via the correlation loss; the loss on a specific sample (x, y) is:

L(θ;x, y) = 1− f(θ, x)y

The empirical loss on our training set is therefore:

Ln(θ) =
1

n

∑
i∈[n]

L(θ;xi, yi)

We also denote the population loss over (x, y) from the data distribution to be L(θ) :=
E(x,y)[L(θ;x, y)].

In this setting, Ben Arous et al. (2021) showed that the sample complexity for learning depends on
a quantity called the information exponent k⋆ of the link function σ. To motivate this definition,
consider first the probabilist’s Hermite polynomials.
Definition 1 (Probabilist’s Hermite polynomials). For k ≥ 0, the kth normalized probabilist Hermite
polynomial hk : R→ R is:

hk(x) =
(−1)k√

k!
γ(x)−1 dk

dxk
γ(x)

where γ(x) := e−x2/2
√
2π

is the probability density function of a standard univariate Gaussian.

Of importance is that the Hermite polynomials form an orthogonal basis in L2(γ) (i.e. the space of
square-integrable functions with respect to the standard Gaussian measure). Henceforth, for link
function σ ∈ L2(γ), let {ck}k≥0 denote the Hermite coefficients of σ:
Definition 2 (Hermite coefficients). Let the Hermite coefficients of σ ∈ L2(γ) be {ck}k≥0. In other
words,

σ(x) =

∞∑
k=0

ckhk(x), ck = Ez∼N (0,1)[σ(z)hk(z)]

This leads us to the key quantity, the information exponent.

3
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Definition 3 (Information exponent). We define the information exponent to be:

k⋆ = min{k ≥ 1 : ck ̸= 0}

In other words, this is the first Hermite coefficient with positive index that is nonzero. Some examples
of information exponents are below:

Example 1. (Link functions and their information exponents)

• σ(t) = t and σ(t) = ReLU(t) have information exponent 1.

• σ(t) = |t| and σ(t) = t2 have information exponent 2.

• σ(t) = t2e−t2 has information exponent 4.

• σ(t) = hk(t) has information exponent k.

Ben Arous et al. (2021) showed that n ≳ dmax(1,k⋆−1) samples were necessary and sufficient for
online SGD to recover θ⋆, mirroring the tensor PCA setting. Damian et al. (2023) showed that
this rate could be improved to n ≳ dmax(1,k⋆/2) by running online SGD on a smoothed landscape.
A number of papers have managed to circumvent the information exponent by applying a label
transformation before running SGD Mondelli and Montanari (2018); Maillard et al. (2020); Chen
et al. (2025); Dandi et al. (2024); Troiani et al. (2024); Damian et al. (2024); Lee et al. (2024). These
results apply a transformation T to the labels {yi}ni=1 to derive samples from the single index model
defined by T ◦ σ. This link function can have smaller information exponent than σ, and the smallest
exponent such a transformation can achieve is called the “generative exponent” Damian et al. (2024).
For the purposes of this paper, we can assume that such a label transformation has already been
applied so that the information exponent and the generative exponent coincide.

2.3 THE LEARNING ALGORITHM

Definition 4 (Spherical gradient operator). For θ ∈ Sd−1 and function g : Rd → R, define the
spherical gradient operator to be∇θg(θ) = P⊥

z ∇g(z)|z=θ, where P⊥
θ := I− θθ⊤

∥θ∥2 is the orthogonal
projection operator with respect to θ and∇ is the standard Euclidean gradient.

We now formally define our learning algorithm; here, {Wt}t≥0 is the standard Wiener process in Rd.

Algorithm 1 Learning algorithm

Input: Inverse temperature parameter ϵ, number of time steps T , data points {(xi, yi)}ni=1

Initialize θ0 ∼ µ (e.g. uniform over Sd−1)
Run the following SDE up to time T :

dθ =

(
−d− 1

2
θ + ϵb(θ)

)
dt+ P⊥

θ dWt, b(θ) := −∇θLn(θ) (1)

θ̂ := 1
T

∫ T

0
θtdt

M̂ := 1
T

∫ T

0
θtθ

⊤
t dt

If k⋆ is odd, return θ̂/∥θ̂∥
Otherwise if k⋆ is even, return the top eigenvector v1 of M̂

It can be shown that when θt follows the SDE in Equation (1), it remains on the sphere for all time t.
Thus, this SDE is the natural analogue of the standard Langevin dynamics on the sphere. A discussion
regarding this is deferred to the appendix.

2.4 MAIN CONTRIBUTIONS

We now highlight our main contributions in this work.
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• We show that by combining Langevin dynamics with weight averaging, we can recover θ⋆

in both the tensor PCA and single-index model settings with n ≳ d⌈k
⋆/2⌉ samples, which

nearly matches the optimal computational-statistical tradeoff for these problems (Damian
et al., 2024; Hopkins et al., 2015).

• In contrast with previous work (Damian et al., 2023; Biroli et al., 2020; Anandkumar
et al., 2017), which attain the sample complexity guarantee via smoothing the existing
loss landscape to create a high signal-to-noise ratio regime, we utilize the other end of
the spectrum - a low signal-to-noise ratio setting. Our method of uniform averaging takes
advantage of the noise, and allows us to learn the estimator that one would obtain by running
landscape smoothing.

• One other feature of our algorithm is that it does not see the data in an online manner, unlike
previous works (Damian et al., 2023; Ben Arous et al., 2021). We use the empirical risk
minimization (ERM) loss to obtain our results.

• (Ben Arous et al., 2020) shows that Langevin dynamics struggles to escape the “equator”
{θ : |θ · θ⋆| ≲ d−1/2} without n ≳ dk

⋆−1 samples. Surprisingly, we show that it is not
necessary to escape the equator to get a good estimate of θ⋆ – our process θ(t) indeed lies
on the equator throughout the training process so that its correlation with θ⋆ remains small,
but the time-averaged iterate can still converge to θ⋆.

3 MAIN RESULTS

Our high level framework is to show ergodic concentration to an estimator that recovers the planted
direction with enough samples. We will state our results for both the odd and even algorithm.

Theorem 2 (Odd k⋆). Let ϵ = o
(
d−(k⋆−3)/2

)
and T ≳ dk

⋆

/ϵ2. Then, Algorithm 1 succeeds in
estimating 2ϵ

d−1Ez∼µ[b(z)] up to O(ϵ) relative error. Moreover, for δ,∆ > 0, if n ≳ d⌈k
⋆/2⌉/(δ∆2),

we recover the ground truth θ⋆ up to error ∆ with probability at least 1− 2d−1 − δ.

Consider first the setting where ϵ → 0; this corresponds to a convergence to the pure Brownian
motion on Sd−1, which has Itô SDE

dβ =

(
−d− 1

2
β

)
dt+ P⊥

β dWt

In the regime of ϵ in Theorem 2, it turns out that at time t, we can write θt = βt + Et where Et is
an error term of order ϵ, and we couple the processes θ and β with the same noise process Wt. We
set θ0 = β0, and E0 = 0, with the former being drawn from the uniform distribution on the sphere.
Then, time averaging allows us to obtain:

1

T

∫ T

0

θtdt =
1

T

∫ T

0

βtdt+
1

T

∫ T

0

Etdt

By ergodicity of Brownian motion, we can prove that the first term concentrates to zero. For the
second term Et, we show that the time average of it converges to the direction of Ez∼µ[∇Ln(z)].
In both the tensor PCA and single-index model settings, this estimator can be shown to recover the
planted direction θ⋆ with n ≳ d⌈k

⋆/2⌉ samples. Moreover, it is possible to use this estimator as a
warm start before running online SGD. This idea was also used by Hopkins et al. (2016); Anandkumar
et al. (2017); Damian et al. (2023) to boost this estimator, and allow it to recover θ⋆ with n ≳ dk

⋆/2

samples:

Corollary 1. Using the same ϵ and T in the setting of Theorem 2 and n = Ω(dk
⋆/2), we can

run Algorithm 1, followed by online SGD with Ω(dk
⋆/2) samples to recover the ground truth θ⋆ to

arbitrary accuracy.

The idea here is with n = Ω(dk
⋆/2) samples (which is a multiple of

√
d less than in Theorem 2), the

averaging estimator gives us a warm start that obtains correlation Θ(d−1/4) with θ⋆. From here, we
can run online SGD using the result from Ben Arous et al. (2021) to recover the ground truth. We
now proceed to state our result for the even case.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3 (Even k⋆). Let ϵ = o(d−(k⋆−2)/2), and let T ≳ dk
⋆+1/ϵ2. Then, Algorithm 1 succeeds

in estimating Ez∼µ[zz
⊤] + ϵ

dEz∼µ[zb(z)
⊤ + b(z)z⊤] up to O(ϵ) relative error with probability at

least 1− 2d−1.

Intuitively, the algorithm for the odd case does not work here because of the first order terms vanish
upon taking time average, due to the symmetry of the uniform distribution/Brownian motion. More
specifically, Ez∼µ[∇Ln(z)] ≈ 0 and does not have any meaningful correlation with θ⋆. On the other
hand, when we consider the time average of the second order information given by θθ⊤, we can
precisely recover the planted direction θ⋆ by taking the top eigendirection of our estimator. More
formally, time averaging gives us:

1

T

∫ T

0

θtθ
⊤
t dt =

1

T

∫ T

0

βtβtdt+
1

T

∫ T

0

(βtE
⊤
t + Etβ

⊤
t )dt+

1

T

∫ T

0

EtE
⊤
t

We prove concentration of each of these terms to the stationary average via the ergodicity of the spheri-
cal Brownian motion, which leads to a final quantity of approximately Ez∼µ[zz

⊤]+ ϵ
dEz∼µ[zb(z)

⊤+

b(z)z⊤]. The first term converges to I/d, and the final term is a negligible error term. When
n ≳ dk

⋆/2, the middle term converges to a matrix with a rank-one spike θ⋆θ⋆⊤, which follows from
Lemma F.9 of Damian et al. (2024) and the proof of which we omit for purpose of exposition.

4 OVERVIEW OF PROOF IDEAS

4.1 ERGODIC CONCENTRATION

In showing a general ergodic concentration result, we first give some preliminaries on Markov
processes on compact Riemannian manifolds.
Definition 5 (Markov semigroup). Let (Xt)t≥0 be a time-homogeneous Markov process. Then, its
associated Markov semigroup (Pt)t≥0 is the family of operators acting on bounded measurable
functions f through:

Ptf(x) := E[f(Xt)|X0 = x]

At this point, it is useful to define the infinitesimal generator of a Markov process.
Definition 6 (Infinitesimal generator). Let (Pt)t≥0 be the associated Markov semigroup for a Markov
process. Then, the infinitesimal generator L associated with this semigroup is defined as:

Lf := lim
t→0

Ptf − f

t

for all functions f for which this limit exists.

Having these definitions introduced, consider the Brownian motion on Sd−1 that we defined earlier:

dβ =

(
−d− 1

2
β

)
dt+ P⊥

β dWt

Note that by rotational invariance, the stationary distribution is µ. Moreover, by classic results
(Saloff-Coste, 1994), we know that the infinitesimal generator of this process is L = 1

2∆Sd−1 , where
∆Sd−1 is the Laplace-Beltrami operator on Sd−1. We now give a general lemma for ergodic averages
of functions of a Brownian motion over the sphere.
Lemma 1. Let f : Rd → R such that f ∈ L2(µ), where µ is the stationary uniform measure over
the sphere for the Brownian motion, and

∫
Sd−1 fdµ = 0. Then, we have:

1

T

∫ T

0

f(βt)dt =
ϕ(β0)− ϕ(βT )

T
+

MT

T

where

ϕ(β) =

∫ ∞

0

Ptf(β)dt

and MT :=
∫ T

0
∇ϕ(βt)

⊤P⊥
βt
dWt is a martingale.

6
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The proof is deferred to the appendix, and it now remains to bound these terms, which depends on
our choice of f . Recall that we need to make this ergodicity argument for βt and b(βt) (defined in
Section 4.2). For both of these functions, we will look at this coordinate-wise. First, we give the
following version of the Poincaré inequality.
Lemma 2 (Poincaré inequality). Let (Pt)t≥0 be a reversible ergodic Markov semigroup that has
stationary measure µ, and let f be a mean-zero (with respect to µ) function in L2(µ). Denote λ to be
the spectral gap of the infinitesimal generator L. Then, it holds that:

∥Ptf∥L2(µ) ≤ e−λt∥f∥L2(µ)

Poincaré’s inequality allows us to prove the following result towards concentrating ϕ. Of particular
notice is that since ∆Sd−1 has eigenvalues −ℓ(ℓ+ d− 2) for ℓ ≥ 0, we have that its spectral gap is
(d− 1) (Saloff-Coste, 1994). Therefore, the spectral gap of L is d−1

2 . From here, the following are
can be shown to hold, with full proofs in the appendix.
Lemma 3. In the setting of Lemma 1, we have that for β0 ∼ µ, both the first and second moments of
ϕ(β0) are finite. That is, E[ϕ(β0)],E[ϕ(β0)

2] <∞, and they are upper bounded as follows:

E[ϕ(β0)] = E[ϕ(βT )] ≤
2

d− 1
∥f∥L2(µ)

E[ϕ(β0)
2] = E[ϕ(βT )

2] ≤ 4

(d− 1)2
∥f∥2L2(µ)

E

[(
MT

T

)2
]
=

4∥f∥2L2(µ)

T (d− 1)

We now sketch the remainder of the ergodicity arguments in the main result. The previous lemmas
tell us that the concentration happens at time T that depends on the function f .

4.2 ANALYZING THE ERROR COMPONENT E

Recall in the previous section that the time average consists of a Brownian component that is
averaged out to zero, and an error component 1

T

∫ T

0
Etdt. First, let us recall our definition b(θ) :=

−∇θLn(θ) =
1
nP

⊥
θ

∑
i∈[n] yiσ

′(θ · xi)xi. By decomposing the time average of Et even further, it
turns out we can write the above as roughly:

1

T

∫ T

0

Etdt ≈
ϵ

d

1

T

∫ T

0

b(θt)dt

From here, we derive the following:

1

T

∫ T

0

b(θt)dt =
1

T

∫ T

0

b(βt)dt+
1

T

∫ T

0

(b(θt)− b(βt))dt

The first term concentrates to b̄ := Ez∼µ[b(z)] using the ergodicity arguments from the previous
section, and the second term can be controlled via upper bound on ∥Et∥ = ∥θt − βt∥ due to
Lipschitzness. Indeed, in the regime of ϵ that we work in, we can further argue that with high
probability, ∥θ − β∥ remains order O(ϵ) over all time, which we outline below. Recall the SDE’s for
the coupled processes θ, β:

dθ =

(
−d− 1

2
θ + ϵb(θ)

)
dt+ P⊥

θ dWt

dβ = −d− 1

2
βdt+ P⊥

β dWt

This tells us that:

dE =

(
−d− 1

2
E + ϵb(θ)

)
dt+

(
P⊥
θ − P⊥

β

)
dWt

The key observation here is that the noise matrix Σ1/2 := P⊥
θ − P⊥

β satisfies the property that
tr Σ ≤ 2∥E∥2. Intuitively, this means that the size of the noise scales with the norm of E, and
this allows us to get a high probability uniform bound on ∥E∥ over all time. The following lemma
formalizes this, and the proof is deferred to the appendix.
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Figure 1: We run with d = 100 with n = 10d⌈k
⋆/2⌉ samples, using various learning rates. Here, the

dark curves correspond to the correlation of the time average as a function of iteration, in which it
indeed converges to the direction of θ⋆. The light curves correspond to the actual iterate as a function
of time, which can be seen to stay near the equator over the entire training process.

Lemma 4 (High probability uniform bound of sup ∥E∥). With probability at least 1− dTe−d, there
exists an absolute constant C ′ such that:

sup
t≤T
∥E(t)∥ ≤ C ′

[
ϵ sup ∥b∥

d

]

The fact that ∥E∥ = O(ϵ) throughout training is key to both the proofs of odd and even k⋆, since
it heuristically reduces our process to a Brownian component plus an ϵ signal component that can
leverage the randomness in the Brownian component.1

4.3 RECOVERY OF θ⋆

Let Õ(·) hide non-ϵ terms. In the odd case, our estimator converges to the direction of b̄ = Ez∼µ[b(z)]

with a magnitude of Õ(ϵ). We prove in Appendix F that for the tensor PCA setting, this recovers θ⋆

with n ≳ d⌈k
⋆/2⌉, and we prove in Appendix G that for the single-index model setting, it recovers

θ⋆ with n ≳ d⌈k
⋆/2⌉ as well. For the even case, we also leverage the uniform bound on sup ∥E∥ to

prove convergence of our estimator M̂ to approximately I
d plus Õ(ϵ) spike in θ⋆θ⋆⊤. From here, we

can perform PCA or a similar algorithm to recover θ⋆.

5 DISCUSSION

5.1 EXPERIMENTS

We sanity check our findings experimentally via different choices of link functions which correspond
to different k⋆. For k⋆ = 3, 4, 5, we let σ(t) = hk⋆(t), as defined in Definition 1. Specifically, we run
the minibatch update defined in Section 5.2 with batch size 1. Our findings are included in Figure 1
and Figure 2 for the odd and even cases, respectively. For k⋆ = 3, 5, our first-order estimator indeed
recovers θ⋆, even though the iterates stay near the equator throughout training. For k⋆ = 4, this same
estimator does not recover θ⋆, but the second-order estimator’s top eigendirection does, with the
iterates once again staying near the equator. Our experiments are run with different learning rates, and
we observe that smaller learning rates behave more and more like gradient flow, whereas larger ones
behave more like Brownian motion and stay near the equator, as we would predict with Langevin
dynamics. However, there are some more nuances to this, as we describe in the next section.

1As an aside, our technique is one way to prove convergence to the stationary Gibbs distribution µϵ ∝
exp(−2ϵLn), and we believe this can be a useful way to approach the our minibatch conjecture in Section 5.2.
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(a) For various learning rate choices, we track the time
average (e.g. the first order estimator) as a function of
iteration, which can be seen to not have any meaningful
correlation with θ⋆. This is due to the σ′ being an odd
function, causing the first order estimator to vanish.

(b) The solid curves correspond to the correlation of
θ⋆ with the top eigenvector of the time average of θθ⊤,
and the dotted lines are for the correlation between the
actual iterate θ and θ⋆. Indeed, the actual iterate itself
remains near the equator over all time.

Figure 2: Simulations for k⋆ = 4, run with d = 100 with n = 10d2 samples.

5.2 EXTENSION TO MINI-BATCH SGD

Our experimental results suggest that pure mini-batch SGD should have theoretically guarantees too.
Consider mini-batch SGD with learning rate η and batch size 1:

θt+1 =
θt − ηgt
∥θt − ηgt∥

, gt := ∇θL(θt;xit , yit), it ∼ U([n])

gt is approximately a standard Gaussian, since ∇L(θ;x, y) = −yσ′(θ · x)x and θ · x is O(1) for the
most part, and hence ∥gt∥ ≈ O(

√
d). For η ≪ d−1/2, we have the following approximation:

θt+1 =
θt − ηgt
∥θt − ηgt∥

=
θt − ηgt√
1 + η2∥gt∥2

≈ (θt − ηgt)(1−
1

2
η2(d− 1))

Let zt := gt + b(θt) be the mini-batch noise2. Because we are in a noise-dominated regime, zt is
approximately isotropic so if we approximate this process by an SDE, we would heuristically get:

θt+1 ≈ θt − ηgt −
1

2
η2(d− 1)θt

= θt −
√
η · √ηzt − η · 1

2
η(d− 1)θ + ηb(θt)

=⇒ dθ ≈
(
−d− 1

2
ηθ + b(θ)

)
dt+

√
ηP⊥

θ dWt

=⇒ dθ ≈
(
−d− 1

2
θ +

1

η
b(θ)

)
dt+ P⊥

θ dWt

which roughly recovers our Langevin setting with ϵ := 1
η . We therefore conjecture that there

exists a learning rate regime for which this SGD argument holds even without the noise boosting
that is present in Langevin dynamics. The main technical challenge in extending our results in
this direction is not just controlling the discretization error, but also the dependencies that arise
between the noise covariance and the smoothing estimator. In particular, the stationary distribution
for the pure-noise process will no longer be isotropic over the sphere and will have a data-dependent
stationary distribution, which introduces additional complications. However, extending our results
and techniques to the minibatch SGD setting is a promising direction for future work.

2By choosing batch size B = 1, which is the best we can do to maximize the scale of the noise without
explicit noise boosting.
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A ERGODIC CONCENTRATION

Proposition 1. The Itô stochastic differential equations for β and θ remain on Sd−1 for all time.

Proof. This follows by Itô’s lemma on f(X) = 1
2∥X∥

2. More concretely,

d

(
1

2
∥θ∥2

)
=

(
−d− 1

2
(θ · θ) + P⊥

θ · ϵb(θ)θ +
1

2
trP⊥

θ

)
dt+ θ⊤P⊥

θ dWt = 0

The derivation for β proceeds similarly.

Lemma 5 (Lemma 1, restated). Let f : Rd → R such that f ∈ L2(µ), where µ is the stationary
uniform measure over the sphere for the Brownian motion, and

∫
Sd−1 fdµ = 0. Then, we have:

1

T

∫ T

0

f(βt)dt =
ϕ(β0)− ϕ(βT )

T
+

MT

T

where

ϕ(β) =

∫ ∞

0

Ptf(β)dt

and MT :=
∫ T

0
∇ϕ(βt)

⊤P⊥
βt
dWt is a martingale.

Proof. To begin, observe that ϕ satisfies −Lϕ = f . To see why, note that:

Lϕ(x) =
∫ ∞

0

L(Ptf)(x)dt = [(Ptf)(x)]
∞
0 = −f(x)

where in the second equality we used Kolmogorov’s backward equation:

d

dt
Ptf = PtLf = LPtf, P0f = f

Applying Itô’s to ϕ(βt), we obtain:

dϕ(β) = ∇ϕ(β) · dβ + Lϕ(β)dt
= ∇ϕ(β)⊤P⊥

β dβ + Lϕ(β)dt
= ∇ϕ(β)⊤P⊥

β dWt + Lϕ(β)dt

where the second line follows from that fact that β⊤(dβ) = 0 (i.e. Brownian motion stays on the
sphere). Therefore, it holds that by integrating from 0 to T ,

ϕ(βT )− ϕ(β0) =

∫ T

0

∇ϕ(βt)
⊤P⊥

βt
dWt +

∫ T

0

Lϕ(βt)dt

= MT −
∫ T

0

f(βt)dt

Rearranging gives the desired result.

Lemma 6. In the setting of Lemma 1, we have that for β0 ∼ µ, both the first and second moments of
ϕ(β0) are finite. That is, E[ϕ(β0)],E[ϕ(β0)

2] <∞, and they are upper bounded as follows:

E[ϕ(β0)] ≤
2

d− 1
∥f∥L2(µ)

E[ϕ(β0)
2] ≤ 4

(d− 1)2
∥f∥2L2(µ)

The same holds for βT , since we initialize at the stationary distribution.
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Proof. We begin with the following:

∥ϕ∥L2(µ) =

∥∥∥∥∫ ∞

0

Ptfdt

∥∥∥∥
L2(µ)

≤
∫ ∞

0

∥Ptf∥L2(µ)dt ≤ ∥f∥L2(µ)

∫ ∞

0

e−
d−1
2 tdt =

2

d− 1
∥f∥L2(µ)

where the first inequality follows from Minkowski’s integral inequality, and the second inequality
from the contraction in Poincaré. In addition, recall that β0 ∼ µ. From here, we obtain:

E[ϕ(β0)
2] = ∥ϕ∥2L2(µ) ≤

4

(d− 1)2
∥f∥2L2(µ) <∞

Due to Jensen’s, we also have that E[ϕ(β0)] ≤ ∥ϕ∥L2(µ) <∞, as desired.

An adaptation of the above lemma for different f yields concentration of ϕ(β0)−ϕ(βT )
T . To concentrate

the martingale MT , we consider the quadratic variation.
Lemma 7. In the setting of Lemma 1, we have that for β0 ∼ µ, the variance of MT /T is the
following:

E

[(
MT

T

)2
]
=

4∥f∥2L2(µ)

T (d− 1)

Proof. Consider the quadratic variation ⟨M⟩T .

⟨M⟩T =

∫ T

0

∥∇ϕ(βt)
⊤P⊥

βt
∥2dt ≤

∫ T

0

∥∇ϕ(βt)∥2dt

To bound the expected quadratic variation, we again make use of that fact that since β0 ∼ µ, it holds
that βt ∼ µ for all t ≥ 0. Then by Fubini’s, we have:

E[⟨M⟩T ] ≤
∫ T

0

E
[
∥∇ϕ(βt)∥2

]
dt = T∥∇ϕ∥2L2(µ)

Before bounding this, first observe that

div(ϕ(∇ϕ)) = (∇ϕ) · (∇ϕ) + ϕdiv(∇ϕ) = ∥∇ϕ∥2 + ϕ∆Sd−1ϕ

By the divergence theorem, we have:

0 =

∫
Sd−1

div(ϕ(∇ϕ))dµ =⇒
∫
Sd−1

∥∇ϕ∥2dµ = −
∫
Sd−1

ϕ∆Sd−1ϕdµ

Note that the right hand side is equivalent to 2
∫
Sd−1 fϕdµ and the left hand side is equivalent to

∥∇ϕ∥2L2(µ). Thus, we obtain:

∥∇ϕ∥2L2(µ) = 2⟨f, ϕ⟩L2(µ) ≤ 2∥f∥L2(µ)∥ϕ∥L2(µ) ≤
4

d− 1
∥f∥2L2(µ)

where the first inequality comes from Cauchy-Schwarz, and the second inequality uses the bound
from the proof of Lemma 6. Finally, this allows us to conclude that

E
[
M2

T

T 2

]
=

1

T 2
E[⟨M⟩T ] =

1

T 2
·
4T∥f∥2L2(µ)

d− 1
=

4∥f∥2L2(µ)

T (d− 1)

which vanishes with increasing T .

B PROOF OF THE ODD k⋆ CASE

Definition 7. Let ι = Cι log(d) for a sufficiently large constant Cι. We define high probability events
to be events that happen with probability at least 1− poly(d)e−ι where poly(d) does not depend on
Cι.
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Note that high probability events are closed under polynomial number of union bounds.

We begin by applying Lemma 20 that gives high probability control of E over all time.

Lemma 8 (High probability uniform bound of sup ∥E∥). With probability at least 1− dTe−d, there
exists an absolute constant C ′ such that:

sup
t≤T
∥E(t)∥ ≤ C ′

[
ϵ sup ∥b∥

d

]

Proof. Recall the SDE for E(t):

dE =

(
−d− 1

2
E + ϵb(θ)

)
dt+

(
P⊥
θ − P⊥

β

)
dWt

By Lemma 20, we can apply the result with C = d−1
2 ≍ d, G ≍ ϵ sup ∥b∥, and B = 2.

We now show that after sufficiently long running time, the time average of θ roughly approximates
the time average of the Brownian motion, which in expectation over the stationary measure µ should
converge to the partial trace estimator for k⋆ odd (i.e. Ez∼µ[b(z)]).

Proposition 2 (Decomposition of E). At time t ≥ 0, it holds that:

E(t) =

∫ t

0

e−
d−1
2 (t−s)ϵb(θs)ds+

∫ t

0

e−
d−1
2 (t−s)(P⊥

θ − P⊥
β )dWs

Proof. Recall the SDE’s for the coupled processes θ and β.

dθ =

(
−d− 1

2
θ + ϵb(θ)

)
dt+ P⊥

θ dWt

dβ = −d− 1

2
βdt+ P⊥

β dWt

This implies that:

dE =

(
−d− 1

2
E + ϵb(θ)

)
dt+

(
P⊥
θ − P⊥

β

)
dWt

Integrating this gives the desired expression.

We now give the ergodic concentration results for the relevant functions.

Lemma 9 (Ergodic concentration of b). With probability at least 1− d−1, we have:∥∥∥∥∥ 1T
∫ T

0

b(βs)ds− b̄

∥∥∥∥∥ ≲
sup ∥b∥√

Td
(2)

Proof. First, define the function f = b − b̄, which can be noted to satsify ∥f∥∞ = O(sup ∥b∥).
By Corollary 2, we can apply Lemma 6. This implies that E[∥ϕ(β)∥2] = O(sup ∥b∥2/d2), and by
Chebyshev’s inequality it holds with probability 1− d−1 that ∥ϕ(β)∥ ≲ sup ∥b∥d−1/2. Therefore, at
time T , it holds with this probability 1− d−1 that∥∥∥∥ϕ(β0)− ϕ(βT )

T

∥∥∥∥ = O(sup ∥b∥/T
√
d)

For the martingale term of the ergodic average, we have by Lemma 7 that the quadratic variation is
4∥f∥2

L2(µ)

T (d−1) . Therefore, with high probability (via union bounding), it holds that the martingale term

has magnitude sup ∥b∥√
Td

.
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Combining the above results, we have that norm of the difference between the time average and the
stationary mean is O

(
sup ∥b∥
T
√
d

+ sup ∥b∥√
Td

)
. Therefore, with probability 1− d−1,∥∥∥∥∥ 1T

∫ T

0

b(βs)ds− b̄

∥∥∥∥∥ ≲
sup ∥b∥
T
√
d

+
sup ∥b∥√

Td
≲

sup ∥b∥√
Td

Lemma 10 (Ergodic concentration of β). With probability at least 1− d−1, it holds that:∥∥∥∥∥ 1T
∫ T

0

βsds

∥∥∥∥∥ ≲
1√
Td

Proof. First, define f to be the identity function. In this setting, we have that ∥f∥L2(µ) = 1, since
the Brownian motion is always on the sphere. Then, using Lemma 6, we have that by Chebyshev’s
inequality with probability 1 − d−1, it holds that ∥ϕ(β)∥ ≲ 1/

√
d. Therefore, at time T , it holds

with this probability that: ∥∥∥∥ϕ(β0)− ϕ(βT )

T

∥∥∥∥ = O(1/
√
dT )

For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is
4∥f∥2

L2(µ)

T (d−1) . Therefore, with high probability, it holds that the martingale term has magnitude O( 1√
Td

).

Combining the above results, we have probability 1− d−1, the time average is bounded as:∥∥∥∥∥ 1T
∫ T

0

βsds

∥∥∥∥∥ ≲
1√
dT

+
1√
Td

≲
1√
Td

We now prove the main theorem.

Theorem 4 (Theorem 2, restated). Let ϵ = o
(
d−(k⋆−3)/2

)
and T ≳ dk

⋆

/ϵ2. Then for δ,∆ > 0,
if n ≳ d⌈k

⋆/2⌉/(δ∆2), Algorithm 1 succeeds in recovering the ground truth θ⋆ up to error ∆ with
probability at least 1− 2d−1 − δ.

Proof. The time average of the E up to time T is the sum of the time averages of the two terms in
Proposition 2. For the second term, which is the noise term, we have the following:

MT :=
1

T

∫ T

0

∫ t

0

e−
d−1
2 (t−s)(P⊥

θ − P⊥
β )dWsdt

=
1

T

∫ T

0

(P⊥
θ − P⊥

β )

∫ T−s

0

e−
d−1
2 tdtdWs

=
1

T

∫ T

0

(P⊥
θ − P⊥

β ) · 2

d− 1

(
1− e−

d−1
2 (T−s)

)
dWs

Note that the quadratic variation of MT is:

E

∥∥∥∥∥ 1T
∫ T

0

(P⊥
θ − P⊥

β ) · 2

d− 1

(
1− e−

d−1
2 (T−s)

)
dWs

∥∥∥∥∥
2


=
1

T 2
E

[∫ T

0

(
2

d− 1

(
1− e−

d−1
2 (T−s)

))2

∥P⊥
θ − P⊥

β ∥2F

]
ds

≲
1

d2T
sup
t≤T
∥Et∥2 ≲

ϵ2

d4T
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By Gaussian concentration, we have that with high probability:

∥MT ∥ ≲
ϵ

d2
√
T

For the first term in Proposition 2, we have

1

T

∫ T

0

∫ t

0

e−
d−1
2 (t−s)ϵb(θs)dsdt =

1

T

∫ T

0

ϵb(θs)

∫ T−s

0

e−
d−1
2 tdtds

=
1

T

∫ T

0

ϵb(θs) ·
2

d− 1

(
1− e−

d−1
2 (T−s)

)
ds

=
1

T

∫ T

0

ϵb(θs) ·
2

d− 1
ds− 1

T

∫ T

0

ϵb(θs) ·
2

d− 1
e−

d−1
2 (T−s)ds

We analyze these two terms separately. For the second term, note that:∥∥∥∥∥ 1T
∫ T

0

ϵb(θs) ·
2

d− 1
e−

d−1
2 (T−s)ds

∥∥∥∥∥ ≲
ϵ sup ∥b(θ)∥

Td

∫ T

0

e−
d−1
2 (T−s)ds ≲

ϵ sup ∥b(θ)∥
Td

For the first term, we decompose it as follows to isolate the Brownian motion:

1

T

∫ T

0

ϵb(θs) ·
2

d− 1
ds =

2

T (d− 1)

∫ T

0

ϵb(βs)ds+
2

T (d− 1)

∫ T

0

ϵ(b(θs)− b(βs))ds

Once again, the second term can be bounded by the Lipschitz constant of b:∥∥∥∥∥ 2

T (d− 1)

∫ T

0

ϵ(b(θs)− b(βs))ds

∥∥∥∥∥ ≤ 2ϵ sup ∥∇b∥2
T (d− 1)

∫ T

0

∥θs − βs∥ds

≲
2ϵ sup ∥∇b∥2

(d− 1)

[
ϵ sup ∥b∥

d

]
The remaining term is the main term 2ϵ

d−1
1
T

∫ T

0
b(βs)ds, which we proved concentration around the

stationary average for in Lemma 9. Therefore, the time average of E satisfies via triangle inequality:∥∥∥∥∥ 1T
∫ T

0

Esds−
2ϵ

d− 1
b̄

∥∥∥∥∥
≲

∥∥∥∥∥ 1T
∫ T

0

2ϵ

d− 1
(b(β)− b̄)ds

∥∥∥∥∥+ ϵ

d2
√
T

+
ϵ sup ∥b∥

Td
+

2ϵ2 sup ∥∇b∥2 sup ∥b∥
d2

≲
2ϵ

d− 1

sup ∥b∥√
Td

+
ϵ

d2
√
T

+
ϵ sup ∥b∥

Td
+

2ϵ2 sup ∥∇b∥2 sup ∥b∥
d2

≲
ϵ√
Td3

+
ϵ2

d2

Combining our results with Lemma 10 using triangle inequality, we obtain with probability at least
1− 2d−1: ∥∥∥∥∥ 1T

∫ T

0

θsds−
2ϵ

d− 1
b̄

∥∥∥∥∥ =

∥∥∥∥∥ 1T
∫ T

0

(βs + Es)ds−
2ϵ

d− 1
b̄

∥∥∥∥∥
≤

∥∥∥∥∥ 1T
∫ T

0

βsds

∥∥∥∥∥+
∥∥∥∥∥ 1T

∫ T

0

Esds−
2ϵ

d− 1
b̄

∥∥∥∥∥
≲

1√
Td

+
ϵ√
Td3

+
ϵ2

d2
≲

1√
Td

+
ϵ2

d2

Let u := 2ϵ
d−1 b̄ and v := 1

T

∫ T

0
θtdt. Then, in our regime of T and ϵ, the total error is bounded as:

∥u− v∥ ≲ 1√
Td

+
ϵ2

d2
≪ 2ϵ

d− 1
· d−(k⋆−1)/2
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By Lemma 25 and Chebyshev’s, it holds with probability at least 1− δ that

∥b̄− cθ⋆∥ ≤
√

d−(k⋆−3)/2

δn

where c = Θ
(
d−(k⋆−1)/2

)
is the absolute constant in that lemma, and denote w := cθ⋆. For

∆ > 0, when n = Θ(d(k
⋆+1)/2/∆2δ), we have that ∥b̄ − cθ⋆∥ ≲ ∆∥w∥. Combining this with

∥b̄− d−1
2ϵ v∥ ≪ d−(k⋆−1)/2 ≍ ∥w∥, we have that by triangle inequality:

∥v̂ − w∥ ≲ ∆∥w∥, v̂ :=
d− 1

2ϵ
v

Therefore, it holds that:

∥v̂∥ = ∥w + (v̂ − w)∥ ≤
√
2
√
∥w∥2 + ∥v̂ − w∥2 ≲ ∥w∥

√
1 + ∆2

Therefore by law of cosines, we have:

1− cos∠(v̂, w) =
∥v̂ − w∥2 − (∥v̂∥ − ∥w∥)2

2∥v̂∥∥w∥
≤ ∥v̂ − w∥2

2∥v̂∥∥w∥
≲

∆2∥w∥2

∥w∥2
= ∆2

By union bounding, the claim holds with probability at least 1− 2d−1 − δ, as desired.

C PROOF OF THE EVEN k⋆ CASE

Lemma 11. With probability at least 1− d−1, it holds that:∥∥∥∥∥ 1T
∫ T

0

βsβ
⊤
s ds− I

d

∥∥∥∥∥
F

≲
1√
Td

Proof. We wish to analyze 1
T

∫ T

0
βsβ

⊤
s ds. First, note that Ez∼µ[zz

⊤] = 1
dI . In the setting of

Lemma 1, let us define f(β) = ββ⊤ − Ez∼µ[zz
⊤]. Note that the maximum Frobenius norm of f

is bounded by O(1). In the setting of Lemma 6, we have that E[∥ϕ(β)∥2F ] ≲ 1
d2 . Therefore, by

Chebyshev’s, it holds with probability at least 1− d−1 that:∥∥∥∥ϕ(β0)− ϕ(βT )

T

∥∥∥∥
F

≲
1

T
√
d

For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is
O(1/Td). Combining the above results, it holds that with probability 1− d−1,∥∥∥∥∥ 1T

∫ T

0

βsβ
⊤
s ds− I

d

∥∥∥∥∥
F

≲
1

T
√
d
+

1√
Td

≲
1√
Td

Lemma 12. With probability at least 1− d−1, we have that:∥∥∥∥∥ 1T
∫ T

0

(βsb(βs)
⊤ + b(βs)β

⊤
s )ds− Ez∼µ[zb(z)

⊤ + b(z)z⊤]

∥∥∥∥∥
F

≲
1√
Td

Proof. We wish to analyze 1
T

∫ T

0
(βsb(βs)

⊤ + b(βs)β
⊤
s )ds. In the setting of Lemma 1, let us define

f(β) = (βb(β)⊤ + b(β)β⊤)−Ez∼µ[zb(z)
⊤ + b(z)z⊤]. Note that the maximum Frobenius norm of

f is bounded by O(1). In the setting of Lemma 6, we have that E[∥ϕ(β)∥2F ] ≲ 1
d2 . Therefore, by

Chebyshev’s, it holds with probability at least 1− d−1 that:∥∥∥∥ϕ(β0)− ϕ(βT )

T

∥∥∥∥
F

≲
1

T
√
d
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For the martingale term of the ergodic average, we have by Lemma 7, the quadratic variation is
O(1/Td). Combining the above results, it holds that with probability 1− d−1,∥∥∥∥∥ 1T

∫ T

0

f(βs)ds

∥∥∥∥∥
F

≲
1

T
√
d
+

1√
Td

≲
1√
Td

Lemma 13. With probability 1− d−1, it holds that:∥∥∥∥∥ 1T
∫ T

0

(Esb(θs)
⊤ + b(θs)E

⊤
s )ds− ϵ

d
Ez∼µ

[
zb(z)⊤ + b(z)z⊤

]∥∥∥∥∥
F

≲
ϵ√
Td3

+
ϵ2

d2

Proof. Recall the SDE’s for E and β:

dβ = −d− 1

2
βdt+ P⊥

β dWt

dE =

(
−d− 1

2
E + ϵb(θ)

)
dt+

(
P⊥
θ − P⊥

β

)
dWt

By Itô’s lemma, we calculate the SDE for Eβ⊤ as:

d(Eβ⊤) =
(
−(d− 1)Eβ⊤ + ϵb(θ)β⊤ + (P⊥

θ − P⊥
β )P⊥

β

)
dt+ (P⊥

θ − P⊥
β )dWtβ

⊤ + EdW⊤
t P⊥

β

The SDE of βE⊤ is just the transpose of the above, so we have:

d(Eβ⊤) =
(
−(d− 1)βE⊤ + ϵβb(θ)⊤ + P⊥

β (P⊥
θ − P⊥

β )
)
dt+ βdW⊤

t (P⊥
θ − P⊥

β ) + P⊥
β dWtE

⊤

Let G := Eβ⊤ + βE⊤. Then the SDE for G is:

d(G) =
(
−(d− 1)G+ ϵ(b(θ)β⊤ + βb(θ)⊤) +

[
(P⊥

θ − P⊥
β )P⊥

β + P⊥
β (P⊥

θ − P⊥
β )
])
dt

+ (P⊥
θ − P⊥

β )dWtβ
⊤ + EdW⊤

t P⊥
β + βdW⊤

t (P⊥
θ − P⊥

β ) + P⊥
β dWtE

⊤

where the first line is the drift term, and the second line is the noise term. Moreover, we can further
simplify the final term in the drift:

(P⊥
θ − P⊥

β )P⊥
β + P⊥

β (P⊥
θ − P⊥

β )

= (−βE⊤ − EE⊤ + (E⊤β)(ββ⊤ + Eβ⊤)) + (−Eβ⊤ − EE⊤ + (E⊤β)(ββ⊤ + βE⊤))

= −(βE⊤ + Eβ⊤) + Ξ

where Ξ is the remainder term satisfying ∥Ξ∥F ≲ ∥E∥2 ≲ ϵ2/d2. The last line follows from
Lemma 14 for simplification. Our SDE for G can therefore be rewritten as:

dG =
(
−dG+ ϵ(b(θ)β⊤ + βb(θ)⊤) + Ξ

)
dt

+ (P⊥
θ − P⊥

β )dWtβ
⊤ + EdW⊤

t P⊥
β + βdW⊤

t (P⊥
θ − P⊥

β ) + P⊥
β dWtE

⊤

This implies that:

G(t) =

∫ t

0

e−d(t−s)
(
ϵ(b(θs)β

⊤
s + βsb(θs)

⊤) + Ξs

)
ds

+

∫ t

0

e−d(t−s)
[
(P⊥

θ − P⊥
β )dWtβ

⊤ + EdW⊤
t P⊥

β + βdW⊤
t (P⊥

θ − P⊥
β ) + P⊥

β dWtE
⊤]
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We first analyze the time average of the second term, which is the noise term. Intuitively, the time
average of it should concentrate around 0 as time increases.

1

T

∫ T

0

∫ t

0

e−d(t−s)
[
(P⊥

θ − P⊥
β )dWsβ

⊤
s + EdW⊤

s P⊥
β + βdW⊤

s (P⊥
θ − P⊥

β ) + P⊥
β dWsE

⊤]dt
=

1

T

∫ T

0

(P⊥
θ − P⊥

β )

∫ T−s

0

e−dtdtdWsβ
⊤
s +

1

T

∫ T

0

E

∫ T−s

0

e−dtdtdW⊤
s P⊥

β

+
1

T

∫ T

0

β

∫ T−s

0

e−dtdtdWs(P
⊥
θ − P⊥

β ) +
1

T

∫ T

0

P⊥
β

∫ T−s

0

e−dtdtdWsE
⊤

=
1

T

∫ T

0

(P⊥
θ − P⊥

β )

(
1

d
(1− e−d(T−s))

)
dWsβ

⊤
s +

1

T

∫ T

0

E

(
1

d
(1− e−d(T−s))

)
dW⊤

s P⊥
β

+
1

T

∫ T

0

β

(
1

d
(1− e−d(T−s))

)
dWs(P

⊥
θ − P⊥

β ) +
1

T

∫ T

0

P⊥
β

(
1

d
(1− e−d(T−s))

)
dWsE

⊤

It now suffices to bound the Frobenius norm of the time average of the top two terms of the last
expression (since the latter two terms are just transposes). For the first term, we have that:

E

∥∥∥∥∥ 1T
∫ T

0

(P⊥
θ − P⊥

β )

(
1

d
(1− e−d(T−s))

)
dWsβ

⊤
s

∥∥∥∥∥
2

F


=

1

T 2

∫ T

0

E

[(
1

d
(1− e−d(T−s))

)2

∥P⊥
θ − P⊥

β ∥2F

]
ds

≲
1

d2T
sup
t≤T
∥Et∥2

≲
ϵ2

d4T
where the second to last inequality follows from Lemma 15.

For the second term in the time average of the noise component, we have:

E

∥∥∥∥∥ 1T
∫ T

0

E

(
1

d
(1− e−d(T−s))

)
dW⊤

s P⊥
β

∥∥∥∥∥
2

F


≤ 1

T 2

∫ T

0

E

[(
1

d
(1− e−d(T−s))

)2

∥E∥2F

]

≲
ϵ2

d4T

Combining all four noise terms together using Gaussian concentration and triangle inequality, we
have that with high probability,∥∥∥∥∥ 1T

∫ T

0

∫ t

0

e−d(t−s)
[
(P⊥

θ − P⊥
β )dWsβ

⊤
s + EdW⊤

s P⊥
β + βdW⊤

s (P⊥
θ − P⊥

β ) + P⊥
β dWsE

⊤]dt∥∥∥∥∥
F

≲
ϵ

d2
√
T

We now analyze the drift term of G. First, to isolate the Brownian motion, we once again do another
decomposition:∫ t

0

e−d(t−s)
(
ϵ(b(θs)β

⊤
s + βsb(θs)

⊤) + Ξs

)
ds

=

∫ t

0

e−d(t−s)
(
ϵ((b(βs) + v)β⊤

s + βs(b(βs) + v)⊤) + Ξs

)
ds

=

∫ t

0

e−d(t−s)ϵ(b(βs)β
⊤
s + βsb(βs)

⊤)ds+

∫ t

0

e−d(t−s)
(
ϵ(vβ⊤

s + βsv
⊤) + Ξs

)
ds
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where here we define v := b(θ)− b(β), which by Lipschitzness has norm bounded by O(∥E∥) ≲ ϵ
d .

Hence, for all t ≤ T , this second term satisfies:∥∥∥∥∫ t

0

e−d(t−s)
(
ϵ(vβ⊤

s + βsv
⊤) + Ξs

)
ds

∥∥∥∥
F

≤ 1

d
sup
s≤t
∥ϵ(vβ⊤

s + βsv
⊤) + Ξs∥F

∫ t

0

e−d(t−s)ds ≲ ϵ2/d2

which means the time average over this component also has Frobenius norm O(ϵ2). For the time
average of the first term, we have the following:

1

T

∫ T

0

∫ t

0

e−d(t−s)ϵ(b(βs)β
⊤
s + βsb(βs)

⊤)ds

=
1

T

∫ T

0

(
1

d
(1− e−d(T−s))

)
ϵ(b(βs)β

⊤
s + βsb(βs)

⊤)ds

=
1

T

∫ T

0

1

d
ϵ(b(βs)β

⊤
s + βsb(βs)

⊤)ds− 1

T

∫ T

0

1

d
e−d(T−s)ϵ(b(βs)β

⊤
s + βsb(βs)

⊤)ds

For the second term, we can bound this in Frobenius norm by:∥∥∥∥∥ 1T
∫ T

0

1

d
e−d(T−s)ϵ(b(βs)β

⊤
s + βsb(βs)

⊤)ds

∥∥∥∥∥
F

≤ ϵ

Td
sup ∥b(β)β⊤ + βb(β)⊤∥F ≲

ϵ

Td

Finally, for the first term, we have shown concentration to ϵ
dEz∼Sd−1 [b(z)z⊤ + zb(z)⊤] in the

previous lemma. Combining everything through triangle inequality, we have:∥∥∥∥∥ 1T
∫ T

0

G(s)ds− ϵ

d
Ez∼µ

[
zb(z)⊤ + b(z)z⊤

]∥∥∥∥∥
F

≲
ϵ

d

∥∥∥∥∥ 1T
∫ T

0

βsb(βs) + b(βs)β
⊤
s ds− Ez∼µ

[
zb(z)⊤ + b(z)z⊤

]∥∥∥∥∥
F

+
ϵ

Td
+

ϵ2

d2
+

ϵ

d2
√
T

≲
ϵ√
Td3

+
ϵ

Td
+

ϵ2

d2
+

ϵ

d2
√
T

≲
ϵ√
Td3

+
ϵ2

d2

and the result follows.

Theorem 5 (Theorem 3, restated). Let ϵ = o(d−(k⋆−2)/2), and let T ≳ dk
⋆+1/ϵ2. Then in the

setting of Lemma F.9 in Damian et al. (2024), for ∆ > 0, if n ≳ dk
⋆/2/∆2, the algorithm succeeds

in recovering θ⋆ up to error ∆ with probability at least 1− 2d−1.

Proof. Recall that θθ⊤ = ββ⊤ + Eβ⊤ + βE⊤ + EE⊤. In the previous lemmas, we have
analyzed each of these terms separately, and our goal is to prove ergodic concentration to
1
dI +

ϵ
dEz∼Sd−1 [zb(z)⊤ + b(z)z⊤].∥∥∥∥∥ 1T
∫ T

0

θsθ
⊤
s ds−

(
1

d
I +

ϵ

d
Ez∼Sd−1 [zb(z)⊤ + b(z)z⊤]

)∥∥∥∥∥
F

≤

∥∥∥∥∥ 1T
∫ T

0

βsβ
⊤
s ds− I

d

∥∥∥∥∥
F

+

∥∥∥∥∥ 1T
∫ T

0

(Eβ⊤ + βE⊤)ds− ϵ

d
Ez∼Sd−1 [zb(z)⊤ + b(z)z⊤])

∥∥∥∥∥
F

+

∥∥∥∥∥ 1T
∫ T

0

EE⊤ds

∥∥∥∥∥
F

≲
1√
Td

+
ϵ√
Td3

+
ϵ2

d2
+

ϵ2

d2

≍ 1√
Td

+
ϵ√
Td3

+
ϵ2

d2

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Consider the stationary average of Mn := 1
dI + ϵ

dEz∼Sd−1 [zb(z)⊤ + b(z)z⊤]. By Lemma F.9 in
Damian et al. (2024), with high probability, it holds that:∥∥Ez∼Sd−1 [zb(z)⊤ + b(z)z⊤]− Ez∼Sd−1,x[zb(z)

⊤ + b(z)z⊤]
∥∥
2
≲
√
d−k⋆/2/n

Therefore, we obtain via triangle inequality that:∥∥∥∥∥ 1T
∫ T

0

θsθ
⊤
s ds− Ex[Mn]

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1T
∫ T

0

θsθ
⊤
s ds−Mn

∥∥∥∥∥
2

+ ∥Mn − Ex[Mn]∥2

≲
1√
Td

+
ϵ√
Td3

+
ϵ2

d2
+

ϵ

d

√
d−k⋆/2/n

The eigengap for Ex[Mn] is ϵ
dΘ(d−k⋆/2). Then, when n = Θ(dk

⋆/2/∆2), when applying Davis-
Kahan, we see that the top eigenvector can be recovered up to accuracy:

sin(u1, θ
⋆) ≲

1√
Td

+ ϵ√
Td3

+ ϵ2

d2 + ϵ
d

√
d−k⋆/2/n

ϵ
dΘ(d−k⋆/2)

≲ ∆

where u1 denotes the top eigenvector of our time averaged matrix.

D USEFUL LEMMAS

Corollary 2 (Tensorization of Lemma 1). For any f over any finite-dimensional real vector space
such that f ∈ L2(µ), where µ is the stationary uniform measure over the sphere for the Brownian
motion, and

∫
Sd−1 fdµ = 0. Then, we have:

1

T

∫ T

0

f(βt)dt =
ϕ(β0)− ϕ(βT )

T
+

MT

T

where

ϕ(β) =

∫ ∞

0

Ptf(β)dt

and MT :=
∫ T

0
∇ϕ(βt)

⊤P⊥
βt
dWt is a martingale. In particular, the natural extensions of Lemma 6

and Lemma 7 follow via Frobenius norms in L2(µ).

Lemma 14. Let β, β′ ∈ Sd−1, and let E = β − β′. Then, we have that

E⊤β′ = −1

2
∥E∥2

Proof.

∥β′ + E∥2 = ∥β∥2 =⇒ 2E⊤β′ + ∥E∥2 = 0

since ∥β∥ = ∥β′∥ = 1. Rearranging gives the desired result.

Lemma 15. Let β, β′ ∈ Sd−1. Then, we have that

tr
(
(P⊥

β − P⊥
β′)(P⊥

β − P⊥
β′)⊤

)
= 2∥E∥2 − 1

2
∥E∥4

where E = β − β′.

Proof.

tr
(
(P⊥

β − P⊥
β′)(P⊥

β − P⊥
β′)⊤

)
= tr

(
P⊥
β (β′β′⊤) + Pβ′(ββ⊤)

)
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Note that

P⊥
β′(ββ⊤) = P⊥

β′(β′β′⊤ + β′E⊤ + Eβ′⊤ + EE⊤)

= P⊥
β′(Eβ′⊤ + EE⊤)

= Eβ′⊤ + EE⊤ − β′β′⊤Eβ′⊤ − β′β′⊤EE⊤

and similarly

P⊥
β (β′β′⊤) = −Eβ⊤ + EE⊤ + ββ⊤Eβ⊤ − ββ⊤EE⊤

Summing these, we get the trace to be

2∥E∥2 − 1/2∥E∥4

Lemma 16. Let z ∼ Sd−1. Then, for integers k ≥ 0, it holds that:

Ez

[
z2k1
]
=

(2k − 1)!!∏k−1
j=0 (d+ 2j)

= Θ(d−k)

E MISCELLANEOUS CONCENTRATION INEQUALITIES

Lemma 17 (Concentration of norm). Let Z ∼ N (0, Id). Then, it holds that:

Pr[∥Z∥ − E[∥Z∥] ≥ s] ≤ exp
(
−s2/2

)
Lemma 18. Let X : R→ R satisfy X(0) = 0 and

dX = −AXdt+ σ(X)dWt.

If σ(X) ≤ σ for all X , then for all 0 ≤ s ≤ t, it holds that X(t) − X(s) is σ2

C

(
1− e−2C(t−s)

)
-

subgaussian.

Proof. Let Y (t) := eAtXt. Then,

dY (t) = eAtσ(X(t))dWt

Thus, Y (t) is a martingale. Furthermore, the quadratic variation of Y satisfies

⟨Y ⟩t =
∫ t

0

e2Atσ(X(t))2dt ≤ σ2

∫ t

0

e2Atdt = σ2 · e
2At − 1

2A
<∞

Therefore, Novikov’s condition tells us that

E(λY )t := exp

(
λY (t)− λ2

2
⟨Y ⟩t

)
is a martingale. Hence,

E(λY )s = E[E(λY )t|Fs] = E
[
exp

(
λY (t)− λ2

2
⟨Y ⟩t

)
|Fs

]
Rearranging the above inequality gives us

E[exp(λY (t))|Fs]

≤ E
[
exp

(
λY (s) +

λ2σ2

2

e2At − e2As

2A

)
|Fs

]
Now, converting back to X and replacing λ← λe−At, we obtain

E[exp(λ(X(t)−X(s)))|Fs]

≤ E
[
exp

(
λX(s)(e−A(t−s) − 1) +

λ2σ2

2

1− e−2A(t−s)

2A

)
|Fs

]
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Applying this for (s, 0) instead of (t, s) gives us

E[exp(λX(s))] ≤ exp

(
λ2σ2

2

1− e−2As

2A

)
≤ exp

(
λ2σ2

4A

)
Plugging this in the previous equation upon taking expectation over Fs, we obtain

E[exp(λ(X(t)−X(s)))] ≤ exp

(
λ2σ2(e−A(t−s) − 1)2

4A
+

λ2σ2(1− e−2A(t−s))

4A

)
≤ exp

(
λ2σ2

2A
(1− e−2A(t−s))

)
where we substituted and used the fact that

(e−A(t−s) − 1)2 ≤ 1− e−2A(t−s)

Lemma 19 (Chaining tail inequality (van Handel, 2016)). Let {Xt}t∈T be a separable subgaussian
process on the metric space (T, d). Then for all t0 ∈ T and x ≥ 0,

Pr

[
sup
t∈T
{Xt −Xt0} ≥ C

∫ ∞

0

√
logN(T, d, ϵ)dϵ+ x

]
≤ Ce

− x2

Cdiam(T )2

where C <∞ is a universal constant.
Corollary 3. In the setting of Lemma 18, there exists an absolute constant C <∞ such that for any
δ > 0,

Pr

[
sup
t≤T
|Xt| ≥ C × σ√

A

√
log

1 +AT

δ

]
≤ δ

Proof. Define

d(s, t) :=

√
σ2

A
(1− e−2A(t−s))

Then, Xt −Xs is d(s, t)-subgaussian from the Lemma 18. When we invert this distance, we obtain

N([0, T ], d, ϵ) ≲
2AT

− log
(
1− Aϵ2

σ2

)
Note that for ϵ < σ/

√
A, this can be upper bounded by 1 + 2Tσ2

ϵ2 and the diameter is upper bounded
by σ/

√
A. Applying the chaining tail inequality in Lemma 19, we have:

Pr

[
sup
t≤T
∥Xt∥ ≥ C × σ√

A

√
log(1 +AT ) + x

]
≤ e−

x2A
C′σ2

where we used the fact that:∫ ∞

0

√
logN([0, T ], d, ϵ)dϵ ≲

R√
A

√
log(1 +AT )

Rearranging gives the desired result.

Lemma 20. Let X(0) = 0 and suppose X satisfies the following SDE.

dX = [−AX + b(X)]dt+Σ1/2(X)dWt

and that uniformly for all X ,

∥b(X)∥ ≤ G, tr Σ(X) ≤ B∥X∥2

Then, there exists an absolute constant C > 0 such that for any δ, T > 0, if L := 1 ∨ log 1+AT
δ and

A ≥ CBL, then with probability at least 1− δ:

sup
t≤T
∥X(t)∥ ≤ CG

A
.
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Proof. We begin by decomposing X(t) = X1(t) +X2(t) where X1, X2 follow:

dX1 = [−AX1 + b(X)]dt, dX2 = −AX2dt+Σ1/2(X)dWt

and X1(0) = X2(0) = 0. Define R := G
A . Observe that for all t,

X1(t) =

∫ t

0

e−A(t−s)b(X(s))ds =⇒ ∥X1(t)∥ ≤ G

∫ t

0

e−A(t−s)ds ≤ G

A
= R.

For X2, note that:

d∥X2∥2 = [−2A∥X2∥2 + trΣ(X)]dt+X⊤
2 Σ1/2(X)dWt

We now decompose ∥X2∥2 = Y1 + Y2 so that:

dY1 = [−2AY1 + trΣ(X)]dt, dY2 = −2AY2dt+X⊤
2 Σ1/2(X)dWt.

Define the stopping time τ := inf{t ≥ 0 : ∥X2(t)∥ ≥ R}. Then

tr Σ(X(t ∧ τ)) ≤ B∥X(t ∧ τ)∥2 ≤ 2B

[
G2

A2
+R2

]
= 4BR2.

Therefore Y1(t ∧ τ) ≤ 2BR2/A. Next, the noise term in the SDE for Y2 can be bounded by:

X2(t ∧ τ)TΣ(X(t ∧ τ))X2(t ∧ τ) ≤ ∥X2(t ∧ τ)∥2 tr Σ(X(t ∧ τ)) ≤ 4BR4.

Now, let C be a sufficiently large constant. Substituting into Corollary 3, we have that with probability
at least 1− δ,

sup
t≤T
∥Y2(t ∧ τ)∥ ≤ C

√
BR4

A
log

(
2(1 +AT )

δ

)
.

Under this event, we have that

sup
t≤T
∥X2(t ∧ τ)∥2 ≤ CR2

[
B

A
+

√
B

A
log

(
2(1 +AT )

δ

)]
.

Now since A ≥ C ′B(1 ∨ log(1 +AT )) where C ′ is a sufficiently large constant then the right
hand side is strictly less than R, which implies that with probability at least 1 − δ, τ < T and
supt≤T ∥X(t)∥ ≲ R.

F TENSOR PCA

Let T = (θ⋆)⊗k + n−1/2Z where every coordinate of Z is N(0, 1). We consider the negative
log-likehood:

L(θ) = −
〈
θ⊗k, T

〉
.

The spherical gradient is given by:

b(θ) = kP⊥
θ T [θ⊗k−1].

Lemma 21. Ez,Zb(z) = cθ⋆ where c = Θ(d−
k−1
2 ).

Proof. A direct calculation shows:

Ez,Zb(z) = kθ⋆Ez

[
(θ⋆ · z)k−1 − (θ⋆ · z)k+1

]
.

Note that θ⋆ · z is equal in distribution to z1 so

c := Ez

[
(θ⋆ · z)k−1 − (θ⋆ · z)k+1

]
is of order Θ(d−

k−1
2 ).
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Next, we will control the variance of the smoothing estimator.

Lemma 22. VarZ [Ezb(z)] ≲ d−
k−1
2 /n.

Proof.

VarZ [Ezb(z)] = n−1Ez,z′,Z

〈
P⊥
z Z[z⊗k−1], P⊥

z′Z[(z′)⊗k]
〉
= n−1Ez,z′

[
(z · z′)k−1

〈
P⊥
z , P⊥

z′

〉]
.

Next, note that this product simplifies as:〈
I − zzT , I − z′(z′)T

〉
= d− 2 + (z · z′)2.

Therefore this variance is Θ(d−
k−1
2 /n).

Finally, by Chebyshev’s inequality we have with probability at least 1− δ,

∥Ezb(z)− cθ⋆∥ ≲

√
d

k−1
2

nδ

so we can recover θ⋆ when n ≳ d
k+1
2 /δ.

It remains to show that b is bounded and Lipschitz. First with probability at least 1− e−cd,

sup
θ
∥b(θ)∥ ≲ 1 + n−1/2 sup

θ
Z[θ⊗k−1] ≤ 1 + n−1/2∥Z∥op ≲ 1 +

√
d/n

where the operator norm bound on Z follows from a standard covering argument. Similarly,

∥b(θ)− b(θ′)∥ ≤ k
∥∥P⊥

θ T [θ⊗k−1]− P⊥
θ′ T [(θ′)⊗k−1]

∥∥
≤ k

∥∥(P⊥
θ − P⊥

θ′ )T [θ⊗k−1] + P⊥
θ′ (T [θ⊗k−1 − (θ′)⊗k−1])

∥∥
≲ (1 +

√
d/n)∥θ − θ′∥

where the inequality for the second term follows from the fact that if θ′ = θ + E:

∥∥T [(θ + E)⊗k−1 − θ⊗k−1]
∥∥ =

k−1∑
j=1

(
k − 1

j

)
T [E⊗j ⊗ θ⊗k−1−j ] ≤ ∥T∥op

k−1∑
j=1

∥E∥j ≲ ∥T∥op∥E∥.

G SINGLE INDEX MODELS

We will assume throughout this section that the activation satisfies supz σ
(k)(z) = O(1) for k =

0, 1, 2. Define bi(θ) to be the negative spherical gradient on the ith datapoint:

bi(θ) := yiP
⊥
θ xiσ

′(θ · xi).

We will use Ei to denote the expectation with respect to the data. We will also let z ∼ Unif(Sd−1).

Lemma 23. Ei,zbi(z) = cθ⋆ where c = Θ(d−
k⋆−1

2 ).

Proof. First note that by Hermite expanding y and σ we have that:

Eiyiσ(z · xi) = E[σ(θ⋆ · x)σ(z · x)] =
∑
k≥k⋆

c2k(θ · θ⋆)k.

Taking a spherical gradient with respect to θ gives:

Eibi(z) =
∑
k≥k⋆

kc2k(P
⊥
z θ⋆)(z · θ⋆)k−1.

We can now average over the sphere. First by (Damian et al., 2023, Lemma 26),

Ez

∑
k≥k⋆

kc2k(z · θ⋆)k−1 ≲ d−
k⋆−1

2 .
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In addition by isolating the k = k⋆ term, it is at least order d−
k−1
2 . Next we handle the projection

term:

Ez

∑
k≥k⋆

c2kz(z · θ⋆)k = θ⋆
∑
k≥k⋆

c2k(z · θ⋆)k+1

and this is upper bounded by d−
k+1
2 which completes the proof.

Finally, it suffices to control the variance of the estimator. We will use the following general purpose
lemma:

Lemma 24. Let g =
∑

k ckhk where hk is the k-th normalized Hermite polynomial and let ℓ be the
index of the first nonzero even coefficient. Then,

E
[
(Ezg(z · x))2

]
≲ Ex∼N(0,1)[g(x)

2]d−ℓ/2.

Proof. Note that we can rearrange this as:

Ez,z′,x[g(z · x)g(z′ · x)] =
∑
k

c2kEz,z′ [(z · z′)k] =
∑
k

c22kEz,z′ [(z · z′)2k].

We can now upper bound this by:

Ex∼N(0,1)[g(x)
2]Ez,z′

 ∑
k≥ℓ/2

(z · z′)2k
 = Ex∼N(0,1)[g(x)

2]E
[

(z · z′)ℓ

1− (z · z′)2

]
.

The result now follows from (Damian et al., 2023, Lemma 26).

Lemma 25. Let b(z) := 1
n

∑n
i=1 bi(z). Then there exists c = Θ(d−

k⋆−1
2 ) such that

E∥Ez[b(z)]− cθ⋆∥2 ≲k⋆

d−
k⋆−3

2

n
.

Proof. We can decompose:

Ezbi(z) = yixiEzσ
′(z · xi) + yiEz[z(z · xi)σ

′(z · xi)].

For the first term:

E
[
∥yixiEzσ

′(z · xi)∥2
]

= E
[
∥yixi1xi≤C

√
dEzσ

′(z · xi)∥2
]
+ E

[
∥yixi1xi≥C

√
dEzσ

′(z · xi)∥2
]

≲ dEi[(Ezσ
′(z · xi))

2] + dP[∥xi∥ ≥ C
√
d]

≲ d−
k⋆−3

2 .

Similarly for the second term, we have by symmetry that

Ez[z(z · xi)σ
′(z · xi)] =

xi

∥xi∥2
Ez

[
(z · xi)

2σ′(z · xi)
]

The expression inside the expectation has information exponent at most k⋆ − 3 so by the same
argument as above, the variance of this term is bounded by

O(d−1d−
k⋆−3

2 )≪ d−
k⋆−3

2 .

Now we can conclude by:

E
∥∥Ez[b(z)]− E(x,y),z[b(z)]

∥∥2 ≤ E∥Ezbi(z)∥2

n
≲

d−
k⋆−3

2

n
.
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Therefore by Chebyshev, with probability at least 1− δ we have that

∥Ezb(z)− cθ⋆∥ ≤

√
d−

k⋆−3
2

δn
.

so we can recover θ⋆ with n ≳ d− k⋆−3
2

δc2 = Θ(d
k⋆+1

2 /δ) samples.

Lemma 26. With probability at least 1− e−cd,

sup
θ
∥b(θ)∥ ≲ 1 +

√
d

n
.

Proof. Let X ∈ Rn×d be the stacked matrix with all the data points. Then,

∥b(θ)∥ =

∥∥∥∥∥ 1n
n∑

i=1

yiP
⊥
θ xiσ

′(θ · xi)

∥∥∥∥∥ ≤ 1

n
∥X∥2

√√√√ n∑
i=1

y2i σ
′(θ · xi)2 ≲ 1 +

√
d

n
.

Lemma 27. In the same setting as Lemma 26

sup
θ
∥b(θ)− b(θ′)∥ ≤ (1 +

√
d/n)∥θ − θ′∥.

Proof. We have

∥b(θ)− b(θ′)∥ ≤ 1

n

n∑
i=1

yi
[
P⊥
θ σ′(θ · xi)− P⊥

θ′ σ′(θ′ · xi)
]
xi.

Now we have that:

P⊥
θ σ′(θ · xi)− P⊥

θ′ σ′(θ′ · xi)

= P⊥
θ [σ′(θ · xi)− σ′(θ′ · xi)] + σ′(θ′ · xi)[P

⊥
θ − P⊥

θ′ ].

For the first term, the same argument as above proves that the sum is bounded by:

O

(
∥X∥2√

n
∥θ − θ′∥

)
≲ (1 +

√
d/n)∥θ − θ′∥.

For the second term, it is bounded by:

O

(
∥X∥2

∥∥P⊥
θ − P⊥

θ′

∥∥
2√

n

)
≲ (1 +

√
d/n)∥θ − θ′∥

which completes the proof.

Lemma 28. Ei,z[zb(z)
⊤] = cθ⋆θ⋆⊤ + gP⊥

θ⋆ where c = Θ(d−k⋆/2) and g = O(d−(k⋆+2)/2).

Proof. We will fix z first and then take average over the sphere of z. First,

Ei[zx
⊤
i σ(θ

⋆ · xi)σ
′(z · xi)P

⊥
z ] = zEi[x

⊤
i σ(θ

⋆ · xi)σ
′(z · xi)]− zEi[x

⊤
i σ(θ

⋆ · xi)σ
′(z · xi)]zz

⊤

Let ci be the Hermite coefficients for σ. For the first term, we have by Stein’s lemma that:

zEi[x
⊤
i σ(θ

⋆ · xi)σ
′(z · xi)] = zEi[σ

′(θ⋆ · xi)σ
′(z · x)]θ⋆⊤ + Ei[σ(θ

⋆ · xi)σ
′′(z · xi)]zz

⊤

= z
∑

k≥k⋆−1

c2k(θ
⋆ · z)kθ⋆⊤ +

∑
k≥k⋆

(k + 2)(k + 1)ckck+2(θ
⋆ · z)kzz⊤

We now proceed to handle the projection term:

zEi[x
⊤
i σ(θ

⋆ · xi)σ
′(z · xi)]zz

⊤ = z
∑

k≥k⋆−1

c2k(θ
⋆ · z)kθ⋆⊤zz⊤ +

∑
k≥k⋆

(k + 2)(k + 1)ckck+2(θ
⋆ · z)kzz⊤zz⊤

= z
∑

k≥k⋆−1

c2k(θ
⋆ · z)k+1z⊤ +

∑
k≥k⋆

(k + 2)(k + 1)ckck+2(θ
⋆ · z)kzz⊤
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Therefore, after combining and before taking expectation over z, our expression is:

z
∑

k≥k⋆−1

c2k(θ
⋆ · z)kθ⋆⊤ − z

∑
k≥k⋆−1

c2k(θ
⋆ · z)k+1z⊤

We now take expectation of z over the sphere. For the first term, we have that

Ez

z ∑
k≥k⋆−1

c2k(θ
⋆ · z)k

θ⋆ =
∑
j≥0

Θ(d−(k⋆+2j)/2)θ⋆θ⋆⊤ = Θ(d−k⋆/2)θ⋆θ⋆⊤

For the second term, we have that

Ez

 ∑
k≥k⋆−1

c2k(θ
⋆ · z)k+1zz⊤

 = Θ(d−(k⋆+2)/2)θ⋆θ⋆⊤ +Θ(d−(k⋆+2)/2)P⊥
θ⋆

where the two Θ hide different absolute constants. Nonetheless, the main part of our desired
expression is Θ(d−k⋆/2)θ⋆θ⋆⊤, and this gives the desired result.
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