
Proceedings of Machine Learning Research – Under Review:1–10, 2022 Full Paper – MIDL 2022 submission

Ultrasound-inspired Adaptations for Multi-class Contrastive
Segmentation

Rohit Singla rsingla@ece.ubc.ca

Cailin Ringstrom ceringstrom@ece.ubc.ca

Victoria Lessoway
Janice Reid
Robert Rohling rohling@ece.ubc.ca
1 Electrical and Computer Engineering, 2332 Main Mall, Vancouver, Canada, V6T 1Z4

Christopher Nguan chris.nguan@ubcurology.com
2 Urologic Sciences, 2775 Laurel St, Vancouver, Canada, V5Z 1M9

Editors: Under Review for MIDL 2022

Abstract

Creating ground truth segmentations for medical imaging is a time-consuming and labour-
intensive process. Contrastive learning techniques applied to modalities like computed to-
mography have showed promise in reducing these constraints. This study investigates the
possible benefits of employing ultrasound-inspired adaptations to the contrastive learning
paradigm. We begin by comparing the label efficiency of fully supervised and contrastive
algorithms in a direct comparison. Then we use temporal similarity, which assumes that
temporally close frames in an ultrasound video clip share structural similarities, to gener-
ate positive and negative pairs and evaluate the effects on accuracy. Finally, we study a
loss function based on the Nakagami probability distribution to offer a speckle-based con-
straint on the learned embeddings. Our preliminary findings in kidney ultrasound suggest
that both techniques have mixed results on segmentation accuracy. Future research will
investigate optimal approaches to incorporate these contributions.
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1. Introduction

In medical image analysis, semantic segmentation is a fundamental task.(Litjens et al., 2017)
It entails densely assigning a category to each pixel inside the image, providing structured
spatial information. Although supervised learning techniques yield great segmentation ac-
curacy, they require a large number of fine-grained annotations to train.(Ronneberger et al.,
2015) In medical imaging, these labels are difficult to acquire. They require considerable
work to annotate manually, are time demanding to generate, and require clinical expertise
from healthcare professionals. Even then, inter-rater heterogeneity in image interpreta-
tion, and thus the ground truths, is considerable.(Nir et al., 2018; Ridge et al., 2016; Sahli
et al., 2019). Alternatives to manually labeling large data sets have focused on novel learn-
ing algorithms, such as self-supervised learning and generative adversarial networks, as
well as learned or physics-inspired data augmentations.(Pesteie et al., 2019) As a result,
achieving high label efficiency-that is, maintaining high accuracy with a small number of
labels-remains a major goal. Contrastive learning, a sort of self-supervised learning, is one
strategy that appears to be promising in this regard.
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In general, a contrastive learning network aims to learn a lower-embedding space in which
embeddings of similar (positive) pairs are close together and dissimilar (negative) pairs are
farther apart. To determine pairs, a sampling strategy is required. A common contrastive
learning approach has three primary steps. The first is training a large task-agnostic feature
extractor with unlabelled pairs. The second is fine-tuning the feature extractor with the
available labelled data. Finally, knowledge distillation to a smaller network is performed.
To generate pairs, augmentations of the original data may be used to create similar images.
Augmentations commonly include colour enhancement, rotation, translation, warping and
more. Modality-specific augmentations are an active area of interest within medical imaging
such as in ultrasound, computed tomography, and magnetic resonance imaging.(Lee et al.,
2021; Frid-Adar et al., 2018; Hao et al., 2020)
Recent years have seen a surge in interest in the application of contrastive learning to
semantic segmentation (”contrastive segmentation”). For pre-training (Zhao et al., 2021)
used a pixel-wise, label-based contrastive loss, (Alonso et al., 2021) used a memory bank
and contrastive learning module, and (Xie et al., 2021) used a pixel-wise contrastive loss
with the addition of a propagation consistency scheme. For medical imaging, (Pandey
et al., 2021) used a consistency regularisation scheme to aid in contrastive segmentation,
and (Chaitanya et al., 2020) demonstrated contrastive learning at both the global and local
scales for volumetric medical images.
Ultrasonography is a relatively unexplored modality for contrastive learning at the moment.
However, because it is non-invasive and does not employ ionising radiation, it is the imaging
technique of choice for organs such as the kidney. Contrastive learning is used in ultrasound
for a variety of purposes, including measuring the severity of COVID-19 (Xue et al., 2021),
labelling in the prenatal setting (He et al., 2021) and classifying views in echocardiography
(Chartsias et al., 2021). Ultrasound is unique in its ability to acquire video as a standard
ultrasound scan is a two-dimensional (2D) video sequence. Sonographers benefit from dif-
ferences between consecutive frames when interpreting scans. This is due to the fact that
consecutive frames are similar. They share comparable but not identical structural infor-
mation. Another characteristic of ultrasonography is speckle. Speckle is generated by tissue
inhomogeneities as well as the transducer itself. Speckle is a predictable and non-random
phenomena induced by the multiple directions in which an ultrasonic pulse scatters.
The purpose of this paper is to demonstrate the utility of ultrasound-inspired adaptations
in the context of multi-class contrastive segmentation. We begin by comparing contrastive
learning’s labelling efficiency to that of a fully supervised network. Then, we focus two
significant contributions: temporal similarity for positive-negative pair generation and an
ultrasound speckle loss term that acts as an anatomical constraint. We utilize temporal
similarity for sampling strategies in a contrastive architecture and systematically evaluate
its effects. Finally, we introduce a speckle loss function to impose additional constraints on
the learned embeddings. By incorporating these ultrasound-inspired adaptations, we want
to create embeddings that are otherwise unaware of the intrinsic features of ultrasound.
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2. Methods

2.1. Temporal Similarity

Given an input image i, an augmentation T may be applied.(Chaitanya et al., 2020)
This generates the augmented ĩ where ĩ = T (i) which could be a considered a positive
pair.(Chaitanya et al., 2020). T can be any number of augmentations, such as colour en-
hancement or geometric transformations. As ultrasound is a video sequence, rather than a
single frame, an augmentation in the time domain can be considered. For an input image
in at frame n, a transformed version of this frame could be at in+d where n + d is some
arbitrary index in the entire video sequence. Here, d is an augmentation parameter that
describes the distance from in in the video sequence. We treat in+d as an augmented form of
in, i.e. in+d = T (in). Using this, new positive pairs and negative pairs can be determined.

The simplest approach is one where any frames within the range (in−d, in+d) (a total of
2d frames) are considered positive pairs. Any frames outside of this are considered negative
pairs. We term this sampling strategy ”temporal similarity” where the augmentation is
using frames similar in time to one another. For our experiments, we arbitrarily set d = 5
frames as to be approximately 5% of the average video sequence length. This sampling
approach can be used for several losses, such as the pairwise contrastive loss from (Chopra
et al., 2005) or the InfoNCE loss in (Chaitanya et al., 2020).

Figure 1: A: Illustrative figure of the different classes. In blue, the kidney capsule outlines
the entirety of the organ. Within that class lie the cortex at the top (orange),
followed by the medulla (red). In green lies the central echogenic complex (CEC)
which is a combination of parts which cannot be delineated in ultrasound. B: An
example of the temporal similarity sampling strategy for pair generation. Given
an image in, any frames within a distance d can be selected as a positive pair. In
the example images, the two frames are not the same. Images that are d+1 and
beyond can be sampled as negative pairs.

As an illustrative example, consider the common pairwise contrastive loss in Equation (1)
from (Chopra et al., 2005) which receives as input a pair of images (i1, i2). Given a feature
extractor f(x) (i.e. a neural network), we can measure a similarity metric D between
the representations of a given pair such as Euclidean distance or cosine similarity. With
temporal similarity, if i2 is within the m frames from the i1, it is considered positive and
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the indicator y is set to 0. Otherwise, y is set to 1. For negative pairs, their representations
should be farther than some threshold distance v.

L(i1, i2) = (1− Y )
1

2
D(i1, i2)

2 + (Y )
1

2
max(0, v −D(i1, i2))

2 (1)

2.2. Speckle Loss

Speckle is tissue-specific. We hypothesize that this property can aid in differentiating similar
appearing structures, such as layers of tissue. The kidney for example has separate regions
of interest such as the cortex and medulla which are subtly different visually. Incorporating
speckle into machine learning may support learning improved delineations. To incorporate
speckle, we first characterize it. The Nakagami distribution is a frequently used probabil-
ity distribution for speckle in ultrasonography. Previously, it was demonstrated that the
Nakagami distribution may be used characterize different regions in ultrasound.(Hu et al.,
2019). In internal tests (using data separate from these experiments), the Nakagami dis-
tribution significantly differed between cortex and medulla regions with excellent goodness
of fit. While different distributions can be used to simulate speckle, the Nakagami distri-
bution has demonstrated greater versatility and offers efficient parameter estimators. The
Nakagami distribution is defined by two parameters: the shape m and the scale Ω. A Nak-
agami continuous random variable x follows a probability distribution function as defined
in Equation (2) where Γ(∗) is the Gamma function.

N(x) =
2mm

Γ(m)Ωm
x2m−1e

−m
Ω

x2
(2)

For an image I, we may then estimate the Nakagami parameters for this image I and ΩI

using expectation E and variance V ar as described Equation (3) and Equation (4).(Kolar
et al., 2004)

m =
E[I2]2

V ar[I2]
(3)

Ω = E[I2] (4)

Using these parameters, we may obtain the new loss function Ls as in Equation (5), our
second contribution. For I, a segmentation network produces predictions Ī for each class
c ∈ C. The Nakagami parameters are computed for both Ic and Īc using the estimators.
Finally, the Euclidean distance between the parameters is summed over all classes. If the
predicted region and the ground truth region in a given class are identical, the differences
in parameters should be close to zero. This loss term is added to existing loss functions,
and each term is normalized for equal weighting.

Ls =
∑
c∈C

(
√
(mIc −mĪc) + (ΩIc − ΩĪc) (5)
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2.3. Data Set and Experiments

Three experiments on multi-class segmentation in kidney ultrasound are presented. Over a
five-year period, images are acquired and anonymised from our local institution following
our institution’s Research Ethics Board approval. The kidney capsule, cortex, medulla
and central echogenic complex are annotated with fine-grained polygons in 514 images.
Two sonographers, each with over 20 years of expertise, manually generate annotations.
For experiments using unlabelled data, we use 7000 ultrasound video sequences with an
average of 200 frames. The typical 80/20 ratio between training and testing is adopted.
The computations are carried out on a single GPU (NVIDIA Tesla V100 32GB)

As our baseline contrastive model, we use the network from (Chaitanya et al., 2020)
for volumetric medical segmentation. This network involves two feature extraction steps at
global and local scales using an encoder and a decoder respectively. Both use InfoNCE loss
followed by a fine-tuning step with no knowledge distillation. As (Chaitanya et al., 2020)
designed their network for volumes, we use time as the third dimension for ultrasound video
clips. For our baseline fully supervised model, we use a nnU-net model from (Isensee et al.,
2021) to represent the current state-of-the-art.

Experiment 1 - Baselines. We compare the Chaitanya’s model with the nnU-net.
The average Dice-Sørensen Coefficient (DSC) across all classes is presented. Both networks
were trained with labels ranging from 1% to 100% of total labels in increments of 10%.

Experiment 2 - Temporal Similarity. We evaluate temporal similarity as a sampling
strategy for both InfoNCE and pairwise contrastive loss. In a step-wise manner, we applied
this strategy to first the encoder only, then decoder only, and finally both the encoder and
decoder. We subsequently evaluated temporal similarity when including the negative pairs
for training. All models were evaluated using 10%, 50%, and 100% of labels.

Experiment 3 - Speckle Loss. We investigate whether speckle loss can be aid in
the segmentation of three classes in the kidney: the cortex, the medulla, and the central
echogenic complex. We present the DSC results for each class, as well as the differences
in signal-to-noise ratio (∆SNR) between the predicted labels and ground truths. ∆SNR is
added due to the DSC’s sensitivity to alterations in small regions of interest.(Reinke et al.,
2021) Additionally, we discuss the differences between different activation functions. The
contrastive learning network is trained with 10%, 50% and 100% of labels. A nnU-net using
100% of labels is provided for comparison.

3. Results

Experiment 1’s results are presented in Table 1. Across all four classes, the nnU-net achieves
an maximum average DSC of 0.57 across all classes at 60% of labels, with no difference when
incorporating more. When only 20% of labels are used, Chaitanya’s model reaches the same
average DSC as the nnU-net with all labels. This supports the hypothesis that a contrastive
segmentation network can reduce the label burden.

The findings of introducing temporal similarity are summarised in Table 2. When tem-
poral similarity is used to produce only positive pairs, the average DSC increased when
compared to the baseline at 10% of labels. At 50%, no model surpasses the baseline. This
indicates a potential benefit for using nearby frames in the case of few labels, such as 50
in this case.
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Finally, Table 3 summarises the speckle loss function experiments. Across 10%, 50%, or
100% of labels, the contrastive models see no benefit regardless where the loss function is
used. The SNR differences remain similar when only 10% of labels are used, but exceed the
baseline when 50% or 100% of labels are used. In comparison, when speckle loss is included,
the nnU-net produces larger differences in SNR.

Table 1: Mean DSC of all four classes across differing amounts of labelled data utilized be-
tween nnU-net and baseline contrastive learning network. At 20%, the contrastive
learning network approaches the maximum mean DSC from the nnU-net.

Network 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

nnU-net 0.33 0.44 0.52 0.52 0.55 0.54 0.57 0.55 0.57 0.56 0.57
Chaitanya 0.28 0.50 0.56 0.57 0.56 0.58 0.58 0.58 0.57 0.56 0.57

Table 2: Evaluation of temporal similarity sampling strategies using positive pairs only on
mean DSCs. The variations with the highest DSCs are bolded.

Loss Variation Stage 10% 50% 100%

InfoNCE – – 0.44 0.55 0.54

InfoNCE Temporal Positive Pairs Encoder 0.45 0.51 0.53
InfoNCE Temporal Positive Pairs Decoder 0.47 0.53 0.54
InfoNCE Temporal Positive Pairs Both 0.45 0.50 0.53
Contrastive Temporal Positive Pairs Encoder 0.43 0.53 0.55
Contrastive Temporal Positive Pairs Decoder 0.44 0.53 0.54
Contrastive Temporal Positive Pairs Both 0.43 0.53 0.53

Contrastive Temporal Negative Pairs Encoder 0.45 0.52 0.54
Contrastive Temporal Negative Pairs Decoder 0.43 0.52 0.54
Contrastive Temporal Negative Pairs Both 0.46 0.53 0.54

4. Discussion and Conclusion

We studied how two properties, temporal similarity and speckle, may be used to improve
multi-class semantic segmentation. To begin, our preliminary findings support the notion
that contrastive learning might be employed in lieu of fully supervised networks, which
need massive amounts of labelled data. With only 20% of labelled data available for fine-
grained, manually annotated segmentation, the contrastive learning strategy may alleviate
the arduous human annotation burden associated with obtaining comparable results.

Second, utilising temporal similarity in the network from (Chaitanya et al., 2020) has
mixed results in terms of increasing accuracy at a lower label percentage. Contrary to
expectations, we see no improvements when sampling tactics include negative pairs. The
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Table 3: The impact of speckle loss as a function of the percentage of labels used. Metrics
are (DSC, ∆SNR.)

Loss Percent Cortex Medulla CEC All Classes

Chaitanya et al. 10% 0.21, 0.34 0.29, 0.28 0.54, 0.13 0.42, 0.25
+Speckle 10% 0.04, 0.29 0.13, 0.22 0.44, 0.15 0.34, 0.22

Chaitanya et al. 50% 0.31, 0.30 0.38, 0.22 0.68, 0.10 0.55, 0.20
+Speckle 50% 0.20, 0.38 0.33, 0.24 0.57, 0.12 0.48, 0.25

Chaitanya et al. 100% 0.30, 0.31 0.38, 0.22 0.67, 0.31 0.54, 0.20
+Speckle 100% 0.19, 0.36 0.23, 0.23 0.55, 0.36 0.45, 0.24

nnU-net 100% 0.43, 0.24 0.46, 0.19 0.75, 0.08 0.57, 0.17
+Speckle 100% 0.37, 0.32 0.28, 0.23 0.29, 0.24 0.39, 0.26

introduction of ”hard negative pairs”, that is, pairs that are distinct but difficult to discrim-
inate, has been shown to boost contrastive learning performance in other works; however,
this is not the case here. Our sampling strategy however was simple; more principled strate-
gies using nearby/far frames in a video sequence and across different video sequences may
yield different results for single image segmentation.

Third, it appears as though using speckle loss improves the SNR of predicted annota-
tions, but not the DSC measure. We acknowledge that this is a difficult data set to evaluate
simply via DSC. Given the small size of the regions of interest, we performed a sensitivity
analysis by adding a 1-pixel and 10-pixel erosion and dilatation of the ground truth mask
and comparing it against the original. We found changes in DSC of around 1-2% at 1-pixel,
and 20-30% at 10-pixels. When we evaluate these networks using the SNR, we see a constant
improvement with the exception of networks examined with 10% of labels. This suggests
that the network is producing regions that, while not accurate in shape, are improving in
signal and less noisy.

Fourth, however, is that the speckle loss does not improve DSC results. This is counter-
intuitive, given that the speckle is property of tissue, and penalizing the network for deviat-
ing from this property should provide better results. Recall that the Nakagami distribution
is fitted onto the ground truth region of interest, and summarized as two parameters for the
entire region. It could be possible that this loses relevant spatial information, and in doing
so does not aid the network. Creating a Nakagami parameter map may be an alternative.
It could also be that the loss term itself needs a different formulation to capture deviations
from the ground truth Nakagami distribution, or that speckle information should be in-
cluded in other form such as augmentation. As presented, the Euclidean distance between
Nakagami parameters does not provide a meaningful benefit in DSC scores. Further work
is needed to investigate how tissue properties like speckle can be effectively incorporated.

The Nakagami model employed in this study is one of several possible probability dis-
tributions for characterising speckle in ultrasound pictures. It is worthwhile to investigate
alternative speckle models and how their performance varies. Other limitations of this ex-
periment include the fact that only one organ, the kidney, was examined. Humans have
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difficulty delineating the regions of interest within the kidney, notably the cortical and
medullary sections. It remains to be seen if classification, regression, and other segmen-
tation tasks such as inter-organ segmentation may benefit from temporal similarity and
speckle. Different organs have more different tissue structures, which can be defined by
their change through time (ex: the heart in different stages of the cardiac cycle) or by their
speckle content (ex: the liver). It remains to be observed how the addition of speckle loss
affects learned representations, intra-class compactness, and inter-class separability.

In summary, we provide a detailed evaluation of temporal similarity and pioneer the use
of speckle removal. We conduct three experiments systemically, totaling 60 models. Other
machine learning techniques may benefit from similar ultrasound-inspired improvements.
Incorporating temporal and speckle characteristics into machine learning techniques applied
to ultrasound may be beneficial in a variety of ways, including data augmentation, data
sampling, and the addition of novel components to networks.
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