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Abstract—We give estimates for the approximation error
of the continuous short-time Fourier transform (STFT) by
the discrete short-time Fourier transform from a finite
number of samples of a signal 𝑓 .

Index Terms—STFT, FFT, approximation, interpolation,
Wiener amalgam space

I. Introduction
The short-time Fourier transform of a function or

signal 𝑓 with respect to a window 𝑔 is defined for all
(𝑥, 𝜔) ∈ R2 as

V𝑔 𝑓 (𝑥, 𝜔) =
∫
R
𝑓 (𝑢)𝑔(𝑢 − 𝑥)𝑒−2𝜋i𝑢𝜔d𝑢

and is an important method in processing time series
such as audio signals. The phase-locked short-time
Fourier transform used almost exclusively in signal
processing applications is

W𝑔 𝑓 (𝑥, 𝜔) =
∫
R
𝑓 (𝑢 + 𝑥)𝑔(𝑢)𝑒−2𝜋i𝑢𝜔d𝑢

= 𝑒2𝜋i𝑥𝜔V𝑔 𝑓 (𝑥, 𝜔) .

The present contribution answers the question, how well
V𝑔 𝑓 (𝑥, 𝜔) and W𝑔 𝑓 (𝑥, 𝜔) (we focus on the latter from
now on) can be approximated from finitely many samples
of 𝑓 .

As W𝑔 𝑓 (𝑥, ·) is the Fourier transform of 𝑓 translated
by −𝑥 and multiplied with 𝑔 we can apply our previous
results on the approximation of the Fourier transform by
the discrete Fourier transform, as obtained in our earlier
paper [2].

Using the notation [𝑛] := { 𝑗 ∈ Z : −𝑛
2 < 𝑗 ≤ 𝑛

2 },
the discrete Fourier transform (DFT) F : C𝑛 → C𝑛 of
𝑦 = (𝑦 𝑗) 𝑗∈[𝑛] ∈ C𝑛 is

F 𝑦 =

(
1
√
𝑛

∑︁
𝑗∈[𝑛]

𝑦 𝑗𝑒
−2𝜋i 𝑘 𝑗

𝑛

)
𝑘∈[𝑛]

.

The translate of the function 𝑓 by 𝑥 ∈ R is 𝑇𝑥 𝑓 (𝑢) =

𝑓 (𝑢 − 𝑥).
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The scaled sampling of a function 𝑓 with step size ℎ

and length 𝑛 is defined as

𝑓ℎ,𝑛 :=
(√

ℎ 𝑓 (ℎ 𝑗)
)
𝑗∈[𝑛]

∈ C𝑛 .

Throughout the text we use the relation 𝑝 = ℎ𝑛 between
the interval length 𝑝, the step size ℎ and the number of
samples 𝑛 of the discrete Fourier transform used for the
discrete STFT.

The discrete version of the short-time Fourier
transform that we work with is

Wℎ,𝑛
𝑔 𝑓 (𝑥, 𝑘) =F (𝑇−𝑥 𝑓 · 𝑔)ℎ,𝑛 (𝑘)

=

√︂
ℎ

𝑛

∑︁
𝑗∈[𝑛]

𝑓 (ℎ 𝑗 − 𝑥)𝑔(ℎ 𝑗)𝑒−2𝜋𝑖 𝑘 𝑗

𝑛

for 𝑥 ∈ R and 𝑘 ∈ [𝑛]. In implementations the time
parameter 𝑥 is often discretized: 𝑥 ∈ 𝑀ℎZ. Here ℎ is the
step size as above and 𝑀 ∈ N is a subsampling factor.

Basically we want to approximate the STFT by its
discrete version at a point 𝑥 and the Fourier frequencies
𝑘/𝑝 for 𝑘 ∈ [𝑛] and samples of 𝑓 at ℎ 𝑗 − 𝑥, 𝑗 ∈ [𝑛]
such that

W𝑔 𝑓 (𝑥,
𝑘

𝑝
) ≈ Wℎ,𝑛

𝑔 𝑓 (𝑥, 𝑘) . (1)

In signal processing applications one often wishes
to impose only weak assumptions on the decay and
regularity of the function (class) under analysis, while
being able to impose strong conditions on the decay and
smoothness of the window. The latter is usually desired
to be well-localized in both time and frequency.

We will estimate the error of (1) in terms of the decay
of 𝑓 and the regularity of 𝑓 , i.e. the decay of 𝑓 , and in
terms of the decay and regularity of 𝑔. Therefore we
introduce weights and appropriate spaces.

II. Weights and spaces
Basically we measure decay of a function 𝑓 by

considering the weighted 𝐿𝑞 norm ∥ 𝑓 · 𝑣∥𝐿𝑞 for a weight
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Fig. 1. Sampling pattern for the discrete approximation of the STFT

𝑣. As we need to consider function (spaces) where stable
sampling of functions is possible we have to replace
𝐿𝑞 by spaces that are somewhat smaller, the Wiener
amalgam spaces defined below.

In order to avoid technicalities we restrict the weights
under consideration to standard weights, i.e., polynomial
weights 𝑣𝛼 (𝑥) = (1+ |𝑥 |)𝛼 for 𝛼 > 1

2 , and subexponential
weights 𝑣𝑟 ,𝛼 (𝑥) = 𝑒𝑟 |𝑥 |

𝛼 , for 0 < 𝛼 ≤ 1 and 𝑟 > 0.
More general classes of weights can be considered, in
particular, all weights that are equivalent to the weights
above (in the sense 𝑣 ∼ 𝑤 if 𝑣/𝑤 ≍ 1) will work as well.

We say 𝑐 = (𝑐𝑙)𝑙∈Z is in the weighted sequence
space ℓ

𝑞
𝑣 for 1 ≤ 𝑞 < ∞ if the norm ∥𝑐∥ℓ𝑞𝑣 =

(∑𝑙∈Z |𝑐𝑙 |𝑞 |𝑣(𝑙) |𝑞)1/𝑞 is finite (standard modification for
𝑞 = ∞).

We next define a class of Wiener amalgam spaces.
Standard references on Wiener amalgams include [1, Sec
2.4], [3], [4].

The Wiener amalgam space 𝑊 (C, ℓ𝑞𝑣 ) consists of all
continuous functions 𝑓 such that

∥ 𝑓 ∥𝑊 (C,ℓ𝑞𝑣 ) :=
(∑︁
𝑙∈Z

sup
𝑥∈[0,1]

| 𝑓 (𝑥 + 𝑙) |𝑞 |𝑣(𝑙) |𝑞
)1/𝑞

< ∞ .

Note that the embedding ℓ2
𝑣 ⊂ ℓ1 is satisfied for all

subexponential weights and for the polynomial weights
𝑣𝛼 with 𝛼 > 1/2, and it implies the continuous
embeddings 𝑊 (C, ℓ2

𝑣) ⊂ 𝑊 (C, ℓ1) ⊂ 𝐿1(R). Observe
that 𝑊 (C, ℓ∞) = C𝑏, the space of bounded continuous
functions.

If we want to analyze signals that are sinusoidal, e.g.,
of the form 𝑓 (𝑥) = exp(i𝜔𝑥), then we have to deal with
Fourier transforms that are measures: Let M be the space
of finite Borel measures on R. The Wiener amalgam
space 𝑊 (M, ℓ𝑟𝑣) consists of all Borel measures 𝜇 such

that

∥𝜇∥𝑊 (M,ℓ𝑟𝑣 ) =
(𝜇𝜒[𝑘,𝑘+1]


M

)
𝑘∈Z


ℓ𝑟𝑣

< ∞ ,

where 𝜒[𝑘,𝑘+1] denotes the indicator function of the
interval [𝑘, 𝑘 + 1] and ∥𝜇∥M = |𝜇 | (R).

III. Results
We use results from [2] about the approximation of

the Fourier transform of a function 𝑓 ,

𝑓 (𝜉) =
∫ ∞

−∞
𝑓 (𝑥)𝑒−2𝜋i𝑥 𝜉d𝑥 ,

by the DFT to obtain similar results for the
approximation of the STFT. The approximation error of
the DFT is defined as

𝐸
[𝑛]
ℎ

( 𝑓 ) =
(

1
𝑝

∑︁
𝑘∈[𝑛]

��� 𝑓 ( 𝑘𝑝 ) − ℎ
∑︁
𝑗∈[𝑛]

𝑓 (ℎ 𝑗)𝑒−2𝜋i 𝑘 𝑗

𝑛

���2) 1
2

.

Accordingly we define the approximation error of the
STFT at the point 𝑥 ∈ R as

E𝑔,{𝑥} ( 𝑓 ) = 𝐸
[𝑛]
ℎ

(𝑇−𝑥 𝑓 · �̄�)

=

(W𝑔 𝑓 (𝑥,
𝑘

𝑝
) −Wℎ,𝑛

𝑔 𝑓 (𝑥, 𝑘)
)
𝑘∈[𝑛]

 .

This can be generalized to arbitrary finite sets 𝑋 ⊂ R
and more general norms as

E𝑔,𝑋 ( 𝑓 ) = (2)

1

|𝑋 |
1
𝑞

(W𝑔 𝑓 (𝑥,
𝑘

𝑝
) −Wℎ,𝑛

𝑔 𝑓 (𝑥, 𝑘)
)
(𝑥,𝑘 ) ∈𝑋×[𝑛]


ℓ𝑞,2

.

For a given standard weight 𝑣 we need the auxiliary
quantity

Φ𝑣 (𝑝) :=
(
2

∞∑︁
𝑚=0

|𝑣(𝑝𝑚 + 𝑝

2 ) |
−2
) 1

2

.

In [2, Lemma 3.4, Lemma 3.7] the following asymptotic
bounds on Φ𝑣 are obtained:

Φ𝑣𝛼 (𝑝) ≲ 𝑝−𝛼, 𝛼 >
1
2
,

Φ𝑣𝑟,𝛼 (𝑝) ≲ 𝑒−𝑟 (
𝑝

2 )𝛼 , 0 < 𝛼 ≤ 1, 𝑟 > 0 .

The main technical lemma of [2] can be summarized as
follows.

Lemma 1. Let 𝑓 ∈ 𝑊 (C, ℓ2
𝑣) and 𝑓 ∈ 𝑊 (C, ℓ2

𝑤). If 𝑣, 𝑤
are standard weights then, for ℎ small and 𝑝 large,

𝐸
[𝑛]
ℎ

( 𝑓 ) ≲ Φ𝑣 (𝑝)∥ 𝑓 ∥𝑊 (C,ℓ2
𝑣 ) +Φ𝑤 (ℎ−1)∥ 𝑓 ∥𝑊 (C,ℓ2

𝑤 ) .



Applied to the STFT we obtain the error estimate

E𝑔,{𝑥} ( 𝑓 ) ≲ Φ𝑣 (𝑝)∥𝑇−𝑥 𝑓 · �̄�∥𝑊 (C,ℓ2
𝑣 ) (3)

+Φ𝑤 (ℎ−1)∥ �𝑇−𝑥 𝑓 · �̄�∥𝑊 (C,ℓ2
𝑤 ) .

The norms ∥𝑇−𝑥 𝑓 · �̄�∥𝑊 (C,ℓ2
𝑣 ) and ∥ �𝑇−𝑥 𝑓 · �̄�∥𝑊 (C,ℓ2

𝑤 )
can be estimated further by an application of Hölder’s
and Young’s inequalities for Wiener amalgam spaces.
We specialize to a case important in applications. As
mentioned above, the interest is often in weak conditions
on the smoothness and decay of the signal 𝑓 , whereas
the conditions on the analysis window 𝑔 can be stronger.

So let us assume that 𝑓 satisfies

𝑓 ∈ C𝑏 = 𝑊 (C, ℓ∞) and 𝑓 ∈ 𝑊 (M, ℓ2
𝑤)

for a standard weight 𝑤 (actually the Hausdorff-Young
inequality [4]) yields that the assumption 𝑓 ∈ 𝑊 (M, ℓ2

𝑤)
already implies 𝑓 ∈ C𝑏). The following result estimates
the error of approximating the STFT of these functions
at one point 𝑥 for windows of subexponential decay in
time and frequency.

Theorem 2. Let the function 𝑓 be bounded
and continuous, 𝑓 ∈ C𝑏, and assume that the
window function 𝑔 and its Fourier transform are of
subexponential decay,

𝑔 ∈ 𝑊 (C, ℓ2
𝑣𝑟,𝛼

), �̂� ∈ 𝑊 (C, ℓ1
𝑣𝑠,𝛽

) .

(I) If 𝑓 ∈ 𝑊 (M, ℓ2
𝑣𝑡,𝛾

) for 𝛾 < 𝛽 then

E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑟 (
𝑝

2 )𝛼 + 𝑒−𝑡 (2ℎ)
−𝛾

.

Given ℎ, the asymptotically best choice for 𝑝 is obtained
by balancing both summands. This leads to

𝑝opt = 2
( 𝑡
𝑟

) 1
𝛼 (2ℎ)−

𝛾

𝛼 ,

and E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑡 (2ℎ)
−𝛾 .

Likewise, if 𝛾 > 𝛽 then

E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑟 (
𝑝

2 )𝛼 + 𝑒−𝑠 (2ℎ)
−𝛽
,

𝑝opt = 2
( 𝑠
𝑟

) 1
𝛼 (2ℎ)−

𝛽

𝛼 .

and E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑠 (2ℎ)
−𝛽 .

If 𝛽 = 𝛾 then

E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑟 (
𝑝

2 )𝛼 + 𝑒− min(𝑠,𝑡 ) (2ℎ)−𝛽 ,

𝑝opt = 2
(
min(𝑠, 𝑡)

𝑟

) 1
𝛼

(2ℎ)−
𝛽

𝛼 ,

and E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒− min(𝑠,𝑡 ) (2ℎ)−𝛽 .

(II) If 𝑓 ∈ 𝑊 (M, ℓ2
𝑣𝛾
) then

E𝑔,{𝑥} ( 𝑓 ) ≲ 𝑒−𝑟 (
𝑝

2 )𝛼 + ℎ𝛾 .

Given ℎ, the asymptotically best choice for 𝑝 is

𝑝opt = 2(𝛾 log
1
ℎ
− log𝐶)1/𝛼

for a constant 𝐶 that depends on the norms of 𝑓 , 𝑓 , 𝑔
and �̂�. The approximation error can be estimated as

E𝑔,{𝑥} ( 𝑓 ) ≲ ℎ𝛾 .

Remark 3. The heuristics is as follows: The
approximation error depends on the decay rate of
the window and on the minimum of the regularity of
the function and the window (the decay of its Fourier
transform)
Remark 4. The asymptotic results of the theorem are
satisfied for the more general error measure E𝑞

𝑔,𝑋
( 𝑓 ) (cf.

Equation (2)) for all 1 ≤ 𝑞 ≤ ∞, and all fixed finite
sets 𝑋 . Moreover, they still hold for sets 𝑋 of the form
𝑋 = 𝑋𝐿,𝑀,ℎ = [−𝐿 (𝑝), 𝐿(𝑝)] ∩𝑀ℎZ, where 𝐿 (𝑝) ∼ 𝛾𝑝

for 0 < 𝛾 ≤ 1.
Remark 5 (The case of a compactly supported window).
If supp 𝑔 ⊂ [− 𝑝

2 ,
𝑝

2 ] then the results of [2][(3.6) together
with Theorem 3.3] imply that

E𝑔,{𝑥} ( 𝑓 ) ≲ Φ𝑤 (ℎ−1) ,
i.e., the estimate (3) is independent of 𝑝. The
approximation error depends only on the step size ℎ

and on the regularity of 𝑓 and 𝑔. In particular the 𝑝

dependent estimates for E𝑔,{𝑥} ( 𝑓 ) in Theorem 2 (i.e. the
first summands) vanish.

This aligns well with common practice in the signal
processing community, where the window length 𝑝 = 𝑛ℎ

is typically chosen to match the support length of 𝑔.

IV. Outlook
In a next step, one can interpolate the values

Wℎ,𝑛
𝑔 𝑓 (𝑥𝑙, 𝑘), for 𝑘 ∈ [𝑛], 𝑥𝑙 ∈ 𝑋 , and obtain an

approximation of the full short-time Fourier transform
W𝑔 𝑓 (𝑥, 𝜔). Let Φ be a cardinal interpolation function,
i.e., Φ(𝑥𝑙′ − 𝑥𝑙,

𝑘′−𝑘
𝑝

) = 𝛿𝑘,𝑘′𝛿𝑙,𝑙′ . Then we consider the
interpolation

W̃𝑔 𝑓 (𝑥, 𝜔) =
∑︁
𝑥𝑙∈𝑋
𝑘∈[𝑛]

Wℎ,𝑛
𝑔 𝑓 (𝑥𝑙, 𝑘)Φ(𝑥−𝑥𝑙, 𝜔− 𝑘

𝑝
)𝑒−2𝜋𝑖𝑥𝑙𝜔

for (𝑥, 𝜔) ∈ R2. This function yields an approximation
of the short-time Fourier transform W𝑔 𝑓 near the points
(𝑥𝑙, 𝑘/𝑝). To obtain an error estimate for W𝑔 𝑓 − W̃𝑔 𝑓 ,
one applies known estimates from approximation theory.
This task will be carried out in future work.
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