
Position: Graph Matching Systems Deserve Better Benchmarks

Indradyumna Roy 1 Saswat Meher 1 Eeshaan Jain 2 Soumen Chakrabarti 1 Abir De 1

Abstract

Data sets used in recent work on graph similarity
scoring and matching tasks suffer from significant
limitations. Using Graph Edit Distance (GED) as
a showcase, we highlight pervasive issues such as
train-test leakage and poor generalization, which
have misguided the community’s understanding
and assessment of the capabilities of a method
or model. These limitations arise, in part, be-
cause preparing labeled data is computationally
expensive for combinatorial graph problems. We
establish some key properties of GED that enable
scalable data augmentation for training, and adver-
sarial test set generation. Together, our analysis,
experiments and insights establish new, sound
guidelines for designing and evaluating future
neural networks, and suggest open challenges for
future research.

1. Introduction
Graph matching systems are critical for aligning structured
objects and relationships, underpinning applications such
as scene graph analysis (Chen et al., 2020; van Engelen-
burg et al., 2023), molecular compound comparison (Garcia-
Hernandez et al., 2019; Rica et al., 2021), knowledge graphs
(Tang et al., 2020; Fang et al., 2023), social network anal-
ysis (Donnat & Holmes, 2018) and fraud detection in e-
commerce (Nguyen et al., 2023; Yang & Cogill, 2013; Cal-
abuig et al., 2023). Accurate graph similarity assessment
is key to deriving actionable insights across these domains.
The Graph Edit Distance (GED) framework unifies diverse
similarity notions, both symmetric and asymmetric, through
its variable cost setup. GED calculates the minimum-cost
sequence of edit operations—including node and edge addi-
tions, deletions, and substitutions—to transform one graph
into another. This variable-cost formulation allows GED

1IIT Bombay, Mumbai, India 2EPFL, Lausanne, Switzer-
land. Correspondence to: Indradyumna Roy <in-
draroy15@cse.iitb.ac.in>, Abir De <abir@cse.iitb.ac.in>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

to act as a generalized framework for graph matching, sub-
suming various classic problems such as subgraph isomor-
phism (Messmer & Bunke, 1994; 1998), maximum com-
mon subgraph (MCS) (Bunke, 1997; Brun et al., 2012), and
equal-cost GED as special cases.

One major obstacle to adopting combinatorial GED-based
graph matching is its computational cost, stemming from the
NP-hardness of GED, which becomes infeasible for graphs
with more than a few dozen nodes (Blumenthal & Gam-
per, 2020). Neural approaches are envisioned as promising
alternatives, ideally offering two key advantages: (A) In
retrieval setups, where a query graph is matched against a
large corpus, neural networks can provide fast, approximate
solutions to the quadratic assignment problem (QAP) by
leveraging hardware accelerators, provided they generalize
to unseen graphs drawn from the same distribution as the
training data. (B) For larger graphs, neural networks trained
on smaller graphs must generalize to approximate GED ef-
fectively during inference. Both use cases depend on the
neural models’ ability to generalize beyond the training dis-
tribution, ensuring scalability and robust performance for
real-world applications.

Recent neural approaches for GED estimation typically
learn from datasets of graph pairs annotated with ground
truth GED values. These methods broadly fall into two
categories: (A) coarse graph-level fixed-size representations
that approximate GED using embedding space similarity,
prioritizing scalability over accuracy, and (B) fine-grained
interaction models that represent graphs as sets of embed-
dings, enabling richer interaction modeling but at higher
computational cost.

Despite their promise, these approaches suffer from three
critical issues. First, most studies (Bai et al., 2019a; Piao
et al., 2023; Ranjan et al., 2022; Qin et al., 2021; Zhuo
& Tan, 2022) rely on a small collection of datasets reused
over the past five years. These datasets suffer from crit-
ical train-test leakage, undermining evaluations of model
generalization and effectiveness. This has led to recent
skepticism regarding the utility of embedding-based meth-
ods for GED estimation, with some studies favoring un-
supervised approaches (Gao et al., 2021). However, we
argue that such conclusions are premature, as leakage issues
confound evaluations and can lead to incorrect judgments

1

Position: Graph Matching Systems Deserve Better Benchmarks

about model performance. Second, simple models based
on comparing fixed-size whole-graph representations have
occasionally been observed to outperform more complex
interaction-based models (Ranjan et al., 2022), going against
conventional wisdom regarding trade-offs between repre-
sentational granularity and expressive power. In view of
train-test leakage, it becomes critical to carefully check if
the discrepancy should be attributed to leakage or some other
phenomenon. Third, most neural models fail to align with
principles underlying traditional GED computation, such as
incorporating variable edit costs, which are crucial to GED’s
universality and adaptability. Algorithmically aligned neu-
ral architectures are known to generalize better (Xu et al.,
2019b); thus, methods that capture the full generality of
GED are likely to be more effective. The lack of robust
benchmarks makes it challenging to pinpoint specific limi-
tations of current models and determine whether reported
performance gains reflect genuine advances or artifacts of
flawed evaluation protocols.

In this paper, we establish the severity of issues in the cur-
rent development of graph matching systems, which stem
primarily from the lack of reliable benchmarks. Our contri-
butions are as follows:

Data Leakage Analysis. We identify pervasive train-test
leakage that has gone unnoticed for years. Specifically, we
show that test graph pairs being isomorphic to training graph
pairs constitutes leakage, as most models rely on node-order
invariant graph neural networks. We quantify the extent of
this leakage and identify prior architectures likely impacted
by it.

Deeper Understanding of Variable Cost GED. We inves-
tigate the principles governing optimal edit paths and edit
costs in variable cost GED. Under certain assumptions, we
propose methods to efficiently generate high-quality training
data at scale.

Adversarial Test Set Design. Leveraging our understand-
ing of GED, we propose methods to design adversarial test
sets that rigorously evaluate whether models can identify
the correct ground truth permutations, thereby addressing
gaps in current evaluation protocols.

Our work aims to provide actionable insights for improving
the design, training, and evaluation of neural models for
graph matching.

2. Preliminaries
The inputs to GED are the source graph G = (V,E) and
the target graph G′ = (V ′, E′), where V, V ′ are node sets
and E ⊆ V × V,E′ ⊆ V ′ × V ′ are edge sets. Nodes
may optionally have labels from a label set L, defined by
a label function ℓV : V ∪ V ′ → L. Unless otherwise

mentioned, both graphs are padded with artificial nodes such
that |V | = |V ′| = N , with adjacency matrices A,A′ ∈
{0, 1}N×N , where A[i, j] = 1 if (i, j) ∈ E and A′[i, j] =
1 if (i, j) ∈ E′. To distinguish actual nodes from artificial
nodes, we maintain indicator vectors IG, IG′ ∈ {0, 1}N ,
where IG[i] = 1 if i is an actual node in G and IG[i] = 0
otherwise; the same applies for G′.

The space of permutation matrices is ΠN = {P ∈
{0, 1}N×N | P1 = 1, P⊤1 = 1}, where 1 is the all-
ones vector. Each P ∈ ΠN defines a node alignment map,
aligning i ∈ V to j ∈ V ′ if Pij = 1, and induces a graph
edit path—a sequence of edit operations—from G to G′,
explicitly constructed using Algorithm 1. Each edit opera-
tion is associated with a potentially different cost (described
next with cost in brackets), allowing flexibility in modeling
application-specific requirements:

(1) Node insertion (cNA): Pij = 1, IG[i] = 0, and
IG′ [j] = 1; (2) Node deletion (cND): Pij = 1, IG[i] = 1,
and IG′ [j] = 0; (3) Node substitution (cNS): Pij = 1,
IG[i] = 1, IG′ [j] = 1, and ℓV (i) ̸= ℓV (j); (4) Edge inser-
tion (cEA): Pij = 1, Pkl = 1, A[i, k] = 0, and A′[j, l] = 1;
(5) Edge deletion (cED): Pij = 1, Pkl = 1, A[i, k] = 1,
and A′[j, l] = 0.

All edit operation costs are assumed to be non-negative
(cNA, cND, cNS, cEA, cED ≥ 0). This general formulation,
which assigns distinct costs to different edit operations,
defines what we refer to as variable-cost GED. Given
P ∈ ΠN , the total cost of the corresponding edit path is the
sum of all edit operation costs. The Graph Edit Distance
(GED) is the minimum total cost over all permutations:

GED(G,G′) = min
P∈ΠN

∑
o∈O(P)

c(o),

where O(P) is the set of edit operations induced by P ,
and c(o) is the cost of an operation o. This optimization
over permutation matrices, subject to edge consistency con-
straints, formulates GED as a classical Quadratic Assign-
ment Problem (QAP). There may be multiple optimal edit
paths achieving the minimum transformation cost. We de-
note the set of all such optimal edit paths as E∗(G,G′). The
set E∗(G,G′) contains graph edit paths corresponding to
all node alignment maps P ∗ ∈ ΠN that minimize the total
cost, defining the optimal transformations from G to G′.

A special case is the widely used equal-cost GED setting,
where all edit operations are assigned the same cost (typi-
cally 1). In contrast, the more general variable-cost GED al-
lows different costs for each operation type, offering greater
expressiveness in modeling nuanced graph similarity, in-
cluding asymmetric relevance.

2

Position: Graph Matching Systems Deserve Better Benchmarks

3. Related Work
Our paper is related to (1) combinatorial solvers for GED,
(2) neural approaches for GED estimation and (3) optimal
transport. In the following, we briefly review them.

3.1. Exact and Approximate solvers for GED.

Since its introduction (Sanfeliu & Fu, 1983), GED has been
extensively studied due to its versatility and wide applica-
bility (Bunke & Allermann, 1983; Bunke, 1997). Classi-
cal approaches for exact GED computation, such as the
A* algorithm (Hart et al., 1968; Riesen et al., 2013), rely
on exhaustive enumeration of node mappings with heuris-
tics to prune the search space. However, the NP-hard na-
ture of GED (Zeng et al., 2009) renders these methods
computationally infeasible for large graphs (Abu-Aisheh
et al., 2017), despite improvements through depth-first
heuristics (Abu-Aisheh et al., 2015) and parallel computa-
tion (Abu-Aisheh et al., 2018). GED has also been reformu-
lated as a Quadratic Assignment Problem (QAP) (Bougleux
et al., 2017) , and subsequently, various relaxations and
heuristics (Neuhaus et al., 2006; Riesen & Bunke, 2009b;
Fankhauser et al., 2011) have been leveraged to enable ap-
proximate solutions. Combinatorial algorithms such as Bi-
partite Matching (Riesen & Bunke, 2009a), which solves
a linear assignment problem on node neighborhoods, and
Branch/Branch Tight (Blumenthal & Gamper, 2018), which
decompose graphs into branches, provide scalable alterna-
tives. Further, Anchor-Aware GED (Chang et al., 2017)
refines lower bounds using anchor-based techniques, while
IPFP (Bougleux et al., 2017) jointly optimizes node and
edge assignments through QAP. Finally, F2 (Lerouge et al.,
2017), based on binary linear programming, provides high-
quality lower bounds and is often used for generating ground
truth GED values. These methods strike a balance between
computational efficiency and accuracy, making them practi-
cal for large graphs.

We explored two libraries, GEDLIB (Blumenthal et al.,
2019) and NetworkX (Hagberg & Conway, 2020), for
GED calculation using combinatorial approaches. GEDLIB
allows variable edit cost settings as input and computes
both the GED value and the node mapping between two
graphs using various combinatorial methods. This node
mapping can be utilized to construct graph edit paths. How-
ever, GEDLIB provides only a single GED node mapping,
whereas NetworkX can generate all possible node mappings
corresponding to the GED value while accepting variable
edit costs.

3.2. Neural Approaches for GED Estimation.

Recent advancements in GED approximation have transi-
tioned from combinatorial heuristics to neural models that

exploit distributional characteristics for faster inference with
lower amortized costs. Neural models built on Graph Neu-
ral Network (GNN) backbones tackle the problem at graph-
or node-level granularities. Graph-level methods, such as
GMN-Embed (Li et al., 2019), GREED (Ranjan et al., 2022),
and GMN-Match (Li et al., 2019), map entire graphs to
embeddings, differing in their use of early or late inter-
actions. Node-level approaches, including SimGNN (Bai
et al., 2019a), GraphSim (Bai et al., 2020), GOTSim (Doan
et al., 2021), and GRAPHEDX (Jain et al., 2024), focus on
learning alignments from node-local graph structures.

Several pairwise interaction modules have also been in-
troduced to improve GED estimation. SimGNN (Bai
et al., 2019a) proposed a Neural Tensor Network mod-
ule for computing whole-graph embeddings, which has
since been adapted in ERIC (Zhuo & Tan, 2022) and
EGSC (Qin et al., 2021). ISONET (Roy et al., 2022)
leverages Gumbel-Sinkhorn-based edge alignment, while
GRAPHEDX (Jain et al., 2024) integrates node and edge
alignments derived from the Kronecker product of node
alignments. ERIC (Zhuo & Tan, 2022) combines Siamese
architectures with a regularizer to eliminate the need for ex-
plicit alignments. H2MN (Zhang et al., 2021) models higher-
order node interactions using hypergraph convolutions, and
EGSC (Qin et al., 2021) refines graph embeddings through
embedding fusion networks. Collectively, these neural ap-
proaches leverage end-to-end learning pipelines, offering
significant advancements in GED approximation. However,
they face challenges such as dependence on uniform-cost
GED datasets, limited scalability to large graphs, and an
inability to directly infer interpretable edit paths essential
for practical use.

While comparing existing neural models, GRAPHEDX
stands out as the only model inherently designed to ac-
commodate variable edit costs. For other models, variable
costs can be integrated by encoding them as node features.
With respect to graph edit path generation, GRAPHEDX,
ISONET, and GEDGNN can produce graph edit paths. How-
ever, GEDGNN requires fine-grained supervision during
training, whereas GRAPHEDX and ISONET do not.

3.3. Optimal Transport

Optimal Transport (OT) has emerged as a cornerstone in
machine learning for aligning both discrete and continuous
distributions, primarily due to the entropic regularization
framework (Cuturi, 2013), which leverages the differen-
tiable Sinkhorn network for scalable computation on mod-
ern hardware. Similar to combinatorial heuristics that re-
formulate the QAP as a Linear Sum Assignment Problem
(LSAP) on richer subgraph structures (Serratosa & Cortés,
2015; Gaüzère et al., 2014; Carletti et al., 2015), neural
GED models utilize GNNs to learn sets of local structural

3

Position: Graph Matching Systems Deserve Better Benchmarks

Algorithm 1 Construct Edit Path from Permutation Matrix
Require: Source graph G = (V,E, ℓV), target graph G′ =

(V ′, E′, ℓV), permutation matrix P ∈ ΠN , dummy
indicators IG, IG′ .

Ensure: Edit path O(P) from G to G′.
1: Initialize O(P)← ∅
2: Compute Â′ ← PA′P⊤

3: ▷ Process edge deletions.
4: for all (i, k) ∈ [N]× [N] do
5: if A[i, k] = 1 and Â′[i, k] = 0 then
6: Add Edge Deletion (i, k) to O(P)
7: ▷ Process node edit operations.
8: for i = 1 to N do
9: Let j satisfy Pij = 1.

10: if IG[i] = 1 and IG′ [j] = 0 then
11: Add Node Deletion (i) to O(P)
12: if IG[i] = 0 and IG′ [j] = 1 then
13: Add Node Insertion (i) to O(P)
14: if IG[i] = 1 and IG′ [j] = 1 and ℓV (i) ̸= ℓV (j) then
15: Add Node Substitution (i→ j) to O(P)
16: ▷ Process edge insertions.
17: for all (i, k) ∈ [N]× [N] do
18: if A[i, k] = 0 and Â′[i, k] = 1 then
19: Add Edge Insertion (i, k) to O(P)
20: return O(P)

embeddings for each graph and apply OT between these
embedding sets to approximate GED as the Wasserstein
distance. This approach involves aligning two discrete dis-
tributions with uniform mass, and for variable-sized graphs,
it extends naturally to unbalanced OT (Pham et al., 2020;
Chizat et al., 2018). Some recent methods, such as GOT-
Sim (Doan et al., 2021), use combinatorial OT solvers for
node mapping, while others like ISONET (Roy et al., 2022)
and GRAPHEDX (Jain et al., 2024) leverage Sinkhorn-based
differentiable permutation surrogates for efficient approxi-
mations. Advancements in OT have expanded its application
to aligning distributions across metric spaces through the
Gromov-Wasserstein (GW) distance (Mémoli, 2011; Peyré
et al., 2016; Xu et al., 2019a), which compares intra-domain
dissimilarity matrices and provides a direct parallel to QAP
in graph matching under pairwise edge constraints. Fused
GW (Vayer et al., 2020; Brogat-Motte et al., 2022) integrates
Wasserstein and Gromov-Wasserstein distances, enabling
the simultaneous optimization of graph topology and node
label alignment for richer and more flexible graph matching
frameworks.

4. Analysis of variable cost GED
We now examine variable-cost Graph Edit Distance (GED)
and the role of node permutations in constructing valid graph

transformations. We show that, under certain conditions,
the optimal edit path remains invariant across a broad range
of cost settings. This invariance enables scalable data aug-
mentation from a single alignment and sets the stage for
adversarial evaluation protocols introduced in Section 5.

4.1. Edit Path Ordering: Edge Deletions→ Node
{Insertions/Deletions/Substitutions}→ Edge
Insertions

Algorithm 1 generates an interpretable edit path from the
permutation matrix P , ensuring a valid sequence of opera-
tions. The algorithm first performs edge deletions, as nodes
can only be safely deleted if all incident edges have been
removed—deleting a node with existing edges would result
in an invalid intermediate state. Next, it processes node
operations, including deletions, insertions, and substitu-
tions, based on the alignment P . Finally, it handles edge
insertions, since edges involving a newly added node can
only be added after the node itself exists. This structured
sequence ensures that all intermediate graphs during the
transformation remain valid and interpretable, guaranteeing
a logical progression from G to G′.

This underscores the tight coupling between a permutation
matrix P and the induced edit path: once P is fixed, Algo-
rithm 1 deterministically yields a unique, valid sequence of
edit operations based solely on the input graphs. At the same
time, it reveals a crucial decoupling: the final GED value is
determined not by the path itself, but by the cost vector C ap-
plied to this sequence. This separation allows us to formally
study how cost configurations influence optimal alignments.
In particular, we leverage this distinction in the propositions
that follow to characterize when and how the edit path—and
consequently, the optimal alignment—remains invariant un-
der different choices of C, opening up key implications for
learning and evaluation.

Proposition 4.1. If the substitution cost cNS satisfies cNS <
cNA + cND, then no optimal edit path includes both a node
addition and a node deletion.

Proof. The GED between G and G′ can be computed recur-
sively by minimizing over node pairs (u, v), u ∈ V, v ∈ V ′:
GED(G,G′) = min

(u,v)∈V×V ′
GED(G\{u}, G′\{v})+c(u, v),

where c(u, v) includes the cost of transforming u→ v and
modifying their incident edges.

For any node pair (u, v) with degrees du and dv, the trans-
formation can proceed in either of the two ways:

(I) Node deletion and addition: Delete u and its incident
edges (cost: cND +ducED), then add v and its incident edges
(cost: cNA + dvcEA), yielding:

CAdd+Del = (cND + cNA) + ducED + dvcEA.

4

Position: Graph Matching Systems Deserve Better Benchmarks

(II) Node substitution: Substitute u → v (cost cNS) and
adjust edge differences:

CSub = cNS +max(du− dv, 0)cED +max(dv − du, 0)cEA.

Since cNS < cNA+cND, we have CSub < CAdd+Del. Thus, any
edit path containing both a node addition and deletion can
be replaced with a lower-cost substitution. This contradicts
the optimality of such a path. Therefore, no optimal edit
path includes both operations.

Theorem 4.2. For any given pair of graphs G = (V,E)
and G′ = (V ′, E′), the set of optimal edit paths E∗(G,G′)
is identical for all cost settings satisfying cNS = 0 and
cNA, cND, cEA, cED > 0

Proof. Assume unpadded graphs and |V | < |V ′|. By
Proposition 4.1, under the condition that cNS = 0, no op-
timal edit path includes both node additions and deletions.
Consequently, to equalize the number of nodes from G to
G′, only node additions are required, with cost Cnodes =
cNA(|V ′| − |V |). Similarly, if |V | > |V ′|, only node dele-
tions occur, yielding a cost of Cnodes = cND(|V | − |V ′|).

To minimize the number of edge additions (#Eadd) and dele-
tions (#Edel), we solve the quadratic assignment problem:

min
P∈ΠN

cED ·#Edel + cEA ·#Eadd,

where: #Edel = ∥[A − PA′P⊤]+∥1,1 and #Eadd =
∥[PA′P⊤ −A]+∥1,1.

Since cEA, cED > 0, minimizing #Eadd +#Edel ensures the
total cost is minimized, regardless of the specific values of
cEA and cED. The resulting #E∗

add and #E∗
del depend only

on the structure of G and G′, not the relative costs. Thus,
the set of optimal edit paths E∗(G,G′) remains the same
across all valid cost settings satisfying cNS < cNA + cND and
cNA, cND, cNS, cEA, cED > 0.

4.2. Implications

Theorem 4.2 establishes that the set of optimal edit paths
E∗(G,G′), or equivalently the optimal node alignment
maps P ∗ ∈ ΠN , depends only on the graph structures
G and G′ and remains invariant across a broad range of
edit cost settings. While the GED value varies with the
costs cNA, cND, cNS, cEA, cED, the corresponding optimal edit
paths remain unchanged. This enables us to (1) generate
datasets of graph pairs (G,G′) with ground truth GED val-
ues efficiently computed across varying cost settings, and
(2) construct adversarial tests to evaluate whether neural
models correctly learn P ∗, ensuring alignment with inter-
pretable edit paths.

5. Dataset Challenges and Train-Test Leakage

In this section, we examine the evolution of GED datasets
(Section 5.1), the prevalence of structural redundancies (Sec-
tion 5.2), and the impact of resulting train-test leakage
on model evaluation (Section 5.3). Sections 5.4 and 5.5
build on the invariance result from Section 4, realizing
its two key implications—scalable augmentation and ad-
versarial testing—as targeted responses. All code and
datasets used in this work have been made publicly avail-
able at https://anonymous.4open.science/r/
better-graph-matching-7146/.

5.1. Evolution of GED Datasets and Their Limitations

The high computational expense of exact GED computation
has significantly shaped the design of datasets used in neural
GED research. Early models, such as SimGNN (Bai et al.,
2019a), relied on small graph datasets like AIDS, LINUX,
and IMDB, where most graphs contained at most 10 nodes.
Exact GED values for these datasets were computed using
the A∗ (Hart et al., 1968; Riesen et al., 2013) algorithm,
which, while effective for small graphs, is not scalable to
larger graphs. Subsequent models, including GraphSim (Bai
et al., 2020), GEDGNN (Piao et al., 2023), EGSC (Qin
et al., 2021), GENN-A∗ (Wang et al., 2021), GREED (Ran-
jan et al., 2022), and ERIC (Zhuo & Tan, 2022), continued
to rely on these datasets. These datasets were later made
available via PyTorch Geometric’s GEDDataset class1.
Although some of the later works extended to additional
datasets, such as ALKANE (Bougleux et al., 2015), WIL-
LOW (Cho et al., 2013), and NCI109 (Bai et al., 2019b),
these too were largely composed of small-scale graphs with
at most 10 nodes. As a result, the progress of neural GED
research has been constrained by the limited size and scope
of these datasets.

To address this, some papers, such as GMN (Li et al., 2019),
explored synthetic datasets with graphs containing up to
50 nodes. These datasets were generated by applying con-
trolled perturbations, such as edge additions and deletions,
to source graphs, providing noisy estimates of graph dis-
tances. While this approach demonstrated scalability, it fell
short of offering diverse, real-world graph structures. Simi-
larly, the ICPR 2016 Graph Distance Contest2 introduced
larger graphs by using approximate GED solvers, such as
BEAM (Neuhaus et al., 2006), HUNGARIAN (Riesen &
Bunke, 2009b), and VJ (Fankhauser et al., 2011). The mini-
mum cost from these solvers was used as an upper bound
for exact GED. Although this enabled approximate GED
computation for larger graphs, it sacrificed the precision
needed for rigorous training and evaluation of neural GED

1https://pytorch-geometric.readthedocs.
io/en/2.5.3/generated/torch_geometric.
datasets.GEDDataset.html

2https://gdc2016.greyc.fr/

5

https://anonymous.4open.science/r/better-graph-matching-7146/
https://anonymous.4open.science/r/better-graph-matching-7146/
https://pytorch-geometric.readthedocs.io/en/2.5.3/generated/torch_geometric.datasets.GEDDataset.html
https://pytorch-geometric.readthedocs.io/en/2.5.3/generated/torch_geometric.datasets.GEDDataset.html
https://pytorch-geometric.readthedocs.io/en/2.5.3/generated/torch_geometric.datasets.GEDDataset.html
https://gdc2016.greyc.fr/

Position: Graph Matching Systems Deserve Better Benchmarks

Table 1. Statistics of popular GED datasets and leakage analysis
in standard train-test splits. Shown are the % Reduction (↓ %) in
the number of graphs after removing duplicates, as well as leakage
rates for Intra-test-pairs (test pairs within Dtest) and Cross-train-
test-pairs (test graphs paired with training graphs).

LINUX IMDB AIDS AIDS
(w label) (w/o label)

Overall Dataset
Number of graphs (|D|) 1000 1500 700 700
Unique graphs (|Dunq|) 89 619 673 449
% Reduction (↓ %) 91.1 58.7 3.8 35.8

Intra-test-pairs
Test pairs 20100 45150 9870 9870
Leaked pairs 18350 26463 24 4268
% Leakage 91.3 34.1 0.24 21.1

Cross-train-test-pairs
Test pairs 120000 270000 58800 58800
Leaked pairs 113716 148107 1721 23958
% Leakage 94.8 54.8 2.92 40.7

models.

A further limitation of these datasets stems from the uni-
form cost setting used for GED computation, where cNA =
cND = cEA = cED = 1. This uniformity undermines the
flexibility of the GED framework, which is capable of mod-
eling both symmetric and asymmetric distances. Indeed, the
ability of GED to stand as surrogate for other useful notions,
such as subgraph isomorphism, is based on exploiting its
general nature. Lastly, many studies do not release their gen-
erated datasets, resulting in repeated reliance on the original
datasets introduced by SimGNN.

5.2. Assessing Train-Test Leakage

The three widely used GED datasets—LINUX, IMDB, and
AIDS—consist of undirected, connected graphs, most with
up to 10 nodes. LINUX and IMDB are unlabelled, while
AIDS includes node labels. These datasets are divided into
standardized training (Dtrain) and test (Dtest) sets. Training
supervision is achieved by pairing graphs in Dtrain and com-
puting ground truth GED values using combinatorial solvers.
For testing, two common schemes employed in prior works
are: (1) Intra-test-pairs, which pairs all combinations of
graphs within Dtest (O(|Dtest|2) pairs) to evaluate general-
ization to unseen graph pairs from the same distribution;
and (2) Cross-train-test-pairs, which pairs each graph in
Dtest with all graphs in Dtrain to assess GED computation
for new queries against a fixed corpus, which is particularly
useful for retrieval setups.

Our analysis of these datasets reveals a significant number of
structurally isomorphic graphs. Modern GNN-based neural
GED models, being permutation-invariant, produce identi-
cal embeddings for graphs within the same isomorphism
class, provided they share identical initializations.. Con-

sequently, the number of unique graphs (Dunq) is reduced
to a small fraction of the original dataset size, as shown
in Table 1. This structural redundancy results in substan-
tial train-test leakage, manifesting differently across testing
schemes: in Intra-test-pairs, isomorphic graphs split be-
tween Dtrain and Dtest lead to graph pairs within Dtest which
are already seen during training, causing leakage as high as
91.3%, as shown in Table 1; in Cross-train-test-pairs, test
graphs already encountered during training are paired with
training graphs, resulting in memorized pairs and leakage
rates as high as 94.8%, as shown in Table 1.

5.3. Implications

In Table 2, we quantify the impact of train-test leakage on
baseline models using Intra-test-pairs and Cross-train-test-
pairs. We evaluate these models on the default dataset test
splits, which include leakage, and report the Mean Squared
Error (MSE) and Kendall Tau Correlation (Ktau) between
predicted and ground truth GED values under both Intra-
test-pairs and Cross-train-test-pairs. Furthermore, to address
the issue of train-test leakage, we apply a rigorous graph
pair generation strategy (Algorithm 3, GENERATEPAIRS).
Given the benchmark dataset D, we perform an explicit iso-
morphism check for all graph pairs, filtering out isomorphic
graphs to obtain a set of unique graphs S . This unique set is
split into Strain,Sval, and Stest in a 60:20:20 ratio. For each
split, graph pairs P• are generated by considering all combi-
nations (including self-pairs), yielding |S•| × (|S•|+ 1)/2
pairs for Intra-test-pairs. For Cross-train-test-pairs, all test
graphs are paired with all training graphs. The ground truth
GED values Y• for these pairs are computed using the MIP-
F2 solver (Lerouge et al., 2017). By ensuring that all graphs
within and across splits are unique, this pipeline effectively
eliminates isomorphic leakage. A schematic of this process
is shown in Figure 1.

Observations: (1) Models perform significantly better with
leakage, particularly on LINUX, benefiting from memoriza-
tion rather than generalization. Removing leakage increases
MSE and lowers Ktau across all datasets, exposing inflated
performance. (2) ISONET, GraphSim, and GEDGNN show
the largest decline; ISONET’s MSE on LINUX rises from
0.323 to 5.146, with Ktau dropping from 0.903 to 0.646.
Originally designed for subgraph matching, ISONET ben-
efits disproportionately from leakage. (3) The removal of
redundancy makes generalization differences more apparent,
as seen in the widened Ktau gaps for LINUX. (4) Lower
redundancy in this dataset results in minimal impact from
leakage removal, suggesting less overfitting to memorized
graph structures. (5) While there are no major ranking rever-
sals among models, the considerable drop in performance
across all architectures indicates that existing neural models
still struggle with generalization. We present further discus-
sion based on Cross-train-test-pairs results in Appendix A.

6

Position: Graph Matching Systems Deserve Better Benchmarks

Table 2. Mean Squared Error (MSE) and Kendall’s Tau (Ktau) correlation for GED prediction models on standard datasets before and
after train-test leakage removal. We report results across Intra-test-pairs and Cross-train-test-pairs. For each setting, models are evaluated
under two conditions: (i) With Leakage—where dataset leakage exists due to isomorphic graphs in both train and test splits, and (ii)
Without Leakage—where leakage is removed via dataset preprocessing.

MSE (Lower is Better) Ktau (Higher is Better)

With Leakage Without Leakage With Leakage Without Leakage

LINUX AIDS AIDS LINUX AIDS AIDS LINUX AIDS AIDS LINUX AIDS AIDS
(w label) (w/o label) (w label) (w/o label) (w label) (w/o label) (w label) (w/o label)

Intra-test-pairs
GMN-Match 0.062 0.811 0.558 0.823 0.825 0.635 0.937 0.785 0.798 0.793 0.775 0.736
GMN-Embed 0.219 1.525 0.578 1.238 1.575 0.669 0.917 0.718 0.800 0.745 0.701 0.729
SimGNN 0.277 1.180 0.879 2.350 1.406 0.899 0.903 0.744 0.752 0.642 0.720 0.688
GraphSim 0.165 1.494 1.115 2.511 1.345 1.371 0.921 0.700 0.703 0.599 0.708 0.599
GREED 0.203 1.409 0.614 1.415 1.748 0.754 0.921 0.721 0.788 0.755 0.677 0.710
GEDGNN 7.463 9.069 7.832 6.018 8.551 4.778 0.296 0.039 0.022 0.066 0.046 -0.052
ISONET 0.323 0.995 0.837 5.146 1.032 0.978 0.903 0.765 0.746 0.646 0.749 0.669
H2MN 0.244 1.350 0.785 2.470 1.487 1.021 0.909 0.729 0.761 0.571 0.703 0.673
EGSC 0.071 0.993 0.438 3.297 1.135 0.562 0.937 0.761 0.829 0.707 0.743 0.761
ERIC 0.049 1.255 0.437 1.013 1.369 0.533 0.940 0.739 0.832 0.796 0.718 0.767
GRAPHEDX 0.052 1.647 0.801 0.827 1.931 0.872 0.940 0.694 0.771 0.844 0.682 0.714

Cross-train-test-pairs
GMN-Match 0.047 0.743 0.510 0.689 0.757 0.582 0.934 0.806 0.815 0.802 0.799 0.767
GMN-Embed 0.202 1.265 0.531 0.925 1.225 0.599 0.913 0.752 0.814 0.766 0.748 0.766
SimGNN 0.282 1.051 0.851 1.593 1.127 0.870 0.892 0.765 0.758 0.629 0.746 0.708
GraphSim 0.121 1.296 1.055 1.618 1.218 1.264 0.921 0.730 0.721 0.626 0.739 0.630
GREED 0.197 1.169 0.571 1.326 1.442 0.696 0.916 0.758 0.803 0.703 0.725 0.743
GEDGNN 6.721 7.453 7.337 5.247 7.595 5.663 0.324 0.091 0.051 0.095 0.055 -0.048
ISONET 0.286 0.905 0.707 4.427 0.937 0.854 0.900 0.781 0.775 0.656 0.770 0.708
H2MN 0.247 1.159 0.755 1.712 1.405 0.928 0.900 0.755 0.769 0.593 0.718 0.692
EGSC 0.059 0.865 0.375 3.305 0.934 0.516 0.933 0.790 0.847 0.713 0.778 0.788
ERIC 0.040 1.007 0.381 0.939 1.065 0.468 0.935 0.777 0.848 0.758 0.765 0.800
GRAPHEDX 0.046 1.293 0.700 0.624 1.498 0.769 0.935 0.739 0.792 0.833 0.726 0.749

5.4. Efficient Training Data Augmentation

Given two graphs G and G′, suppose a combinatorial solver
provides an optimal node alignment matrix P ∈ ΠN . As
shown in Theorem 4.2, P remains the same across all cost
settings C = {cNS, cNA, cND, cEA, cED} satisfying cNS = 0
and cNS, cNA, cND, cEA, cED > 0, with

GEDC(G,G′) = cND ·#Ndel + cNA ·#Nadd+

cNS ·#Nsub + cED ·#Edel + cEA ·#Eadd, where

#Ndel = ∥[IG − P IG′]+∥1,
#Nadd = ∥[P IG′ − IG]+∥1,
#Edel =

1
2∥[A− PA′P⊤]+∥1,1,

#Eadd = 1
2∥[PA′P⊤ −A]+∥1,1, and (1)

#Nsub =

|V |∑
i=1

|V ′|∑
j=1

IG[i] · (P IG′)[j] · I[ℓV (i) ̸= ℓV (j)].

We exploit this, proposing a structured pipeline (Algo-
rithm 2) that eliminates leakage, optimizes computation,
and generates multiple cost-specific datasets efficiently.
First, Algorithm 3 (GENERATEPAIRS) removes isomor-
phic duplicates and partitions the dataset into disjoint splits,
constructing leakage-free graph pairs. Next, Algorithm 4
(COMPUTEOPTIMALPATHS) computes the optimal node
alignment P ∗ for all graph pairs using a fixed cost setting C0.

Algorithm 2 Dataset Processing with Cost Variants
Require: D {Input dataset}
Ensure: {∆k,train,∆k,val,∆k,Intra-test,∆k,Cross-train-test}Kk=1

1: Ptrain,Pval,PIntra-test,PCross-train-test ←
GENERATEPAIRS(D)

2: for each P• ∈ {Ptrain,Pval,PIntra-test,PCross-train-test} do
3: Q• ← COMPUTEOPTIMALPATHS(P•)
4: Let {Ck}Kk=1 be the set of compatible costs (Thm. 4.2)
5: for each k ∈ [K] do
6: for eachQ• ∈ {Qtrain,Qval,QIntra-test,QCross-train-test}

do
7: ∆k,• ← GENERATECOSTVARIANTS(Q•, Ck)
8: return {∆k,train,∆k,val,∆k,Intra-test,∆k,Cross-train-test}Kk=1

Finally, Algorithm 5 (GENERATECOSTVARIANTS) reuses
P ∗ to compute GED via Eq. (1) across varying compatible
cost settings {Ck}Kk=1, producing multiple datasets with-
out redundant alignment computations, ensuring scalable
dataset generation while maintaining train-test separation.

5.5. Evaluation via Cost-Invariant Edit Paths

Existing neural GED models largely overlook
variable cost settings. The only exception,
GRAPHEDX, explores only two cases: equal cost

7

Position: Graph Matching Systems Deserve Better Benchmarks

Optimal Edit
Path Generator

Cost Setting

Cost

Cost

Figure 1. Left: The raw dataset D undergoes isomorphism filtering (Algorithm 3) to yield the unique set S, which is then split into
training (Strain), validation (Sval), and test (Stest) sets. Graph pairs are constructed within training and validation splits, while test pairs
follow two schemes: PT-INTRA(Intra-test-pairs) and PT-CROSS (Cross-train-test-pairs). Right: For each graph pair (Gi, Gj), Algorithm 4
applies a combinatorial solver under a fixed cost setting C0 to compute the optimal node alignment P ∗. Algorithm 5 then leverages
Theorem 4.2 to efficiently compute GED across multiple cost settings {Ck}Kk=1, exploiting the invariance of P ∗.

Table 3. Performance comparison in terms of MSE and Ktau evaluated on Code2 dataset for the models trained with C0 cost setting.
Evaluation is done for different test cost configurations C0–C4 for Intra-test-pairs test scheme.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C0 C1 C2 C3 C4

GMN-Match 1.68 79.86 1002.01 10102.82 28743.35 0.88 0.75 0.52 0.77 0.84
GMN-Embed 1.36 80.79 1003.41 10128.47 28782.49 0.89 0.77 0.53 0.78 0.86
SimGNN 2.67 74.70 973.74 10063.38 28646.82 0.86 0.75 0.55 0.72 0.84
GraphSim 3.14 77.85 991.73 10043.54 28638.96 0.84 0.71 0.51 0.74 0.81
GREED 1.87 77.52 991.55 10092.37 28715.97 0.88 0.77 0.53 0.77 0.84
GEDGNN 31.12 161.77 1181.59 10722.40 29789.05 -0.03 -0.13 -0.25 0.07 -0.06
ISONET 0.88 75.49 999.90 10103.25 28738.95 0.92 0.79 0.54 0.79 0.89
H2MN 6.20 83.92 983.70 10123.29 28773.79 0.75 0.67 0.52 0.60 0.73
EGSC 4.16 94.54 1058.17 10190.29 28937.83 0.81 0.70 0.46 0.76 0.77
ERIC 1.36 84.53 1015.90 10156.43 28836.03 0.89 0.75 0.53 0.78 0.86
GRAPHEDX 0.76 76.90 2434.89 2102.35 688.71 0.92 0.78 0.52 0.74 0.89

Algorithm 3 GENERATEPAIRS

Require: D {Input dataset}
Ensure: Ptrain,Pval,PIntra-test-pairs,PCross-train-test-pairs

1: S ← Remove Isomorphic Duplicates from D
2: Strain,Sval,Stest ← Split(S)
3: Ptrain ← {(Gi, Gj) | Gi, Gj ∈ Strain}
4: Pval ← {(Gi, Gj) | Gi, Gj ∈ Sval}
5: PIntra-test-pairs ← {(Gi, Gj) | Gi, Gj ∈ Stest}
6: PCross-train-test-pairs ← {(Gi, Gj) | Gi ∈ Stest, Gj ∈
Strain}

7: return Ptrain,Pval,PIntra-test-pairs,PCross-train-test-pairs

(C0: {cNA, cND, cNS, cEA, cED} = (1, 1, 0, 1, 1)) and unequal
cost (C1: {cNA, cND, cNS, cEA, cED} = (1, 3, 0, 1, 2)), train-
ing separate models for each without generalizing further.
Moreover, whether its predicted alignments approximate a
ground-truth edit path remains unclear.

Building on Theorem 4.2, we create an adversarial test
set to assess whether models recover optimal node align-
ments (P ∗) or overfit to dataset-specific patterns. Using four
leakage-free datasets (Mutag, Code2, Molhiv, Molpcba)
from GRAPHEDX, we generate test sets across five ad-
ditional cost settings (C2–C6) (Table 5, Appendix A). As

Algorithm 4 COMPUTEOPTIMALPATHS

Require: P {Set of graph pairs (Gi, Gj)}
Ensure: Q = {(Gi, Gj ,P

∗) | (Gi, Gj) ∈ P•}
1: Q ← ∅
2: C0 = {cNS = 0, cNA = 1, cND = 1, cEA = 1, cED = 1}
3: for each (Gi, Gj) ∈ P do
4: P ∗ ← Obtain optimal node alignment with C
5: Q ← Q∪ {(Gi, Gj ,P

∗)}
6: return Q

Algorithm 5 GENERATECOSTVARIANTS

Require: Q {Set of graph pairs with P ∗}
Ensure: {∆k}Kk=1 – multiple datasets under varying Ck

1: for each k ∈ [K] do
2: ∆k ← ∅
3: for each (Gi, Gj ,P

∗) ∈ Q do
4: Compute GEDCk

(Gi, Gj) using Eq. (1)
5: ∆k ← ∆k ∪ {(Gi, Gj ,GEDCk

)}
6: return {∆k}Kk=1

before, we evaluate MSE and Ktau under Intra-test-pairs
(C0–C4) here, with full results in Appendix A.

We compare model performance under a fixed cost setting

8

Position: Graph Matching Systems Deserve Better Benchmarks

using MSE, noting that MSE values across different cost
settings are not directly comparable due to varying cost mag-
nitudes. However, Ktau effectively captures the variance in
model rankings across cost settings. We observe: (1) Most
models exhibit significant Ktau variation, with drops of up
to 0.4, highlighting their limited generalization to unseen
cost settings. While GRAPHEDXperforms best on C0, other
baselines achieve comparable performance across higher-
cost settings. Ground truth rankings can shift significantly
with cost variations, but models trained on fixed-cost set-
tings fail to adapt, producing unchanged predictions that
misalign with the new rank order. (2) Most models, which
focus solely on node alignment, achieve lower MSE on C2
compared to C3 or C4, both of which involve high edge edit
costs (Table 5). The exception is GRAPHEDX, which explic-
itly aligns both nodes and edges, resulting in significantly
lower MSE on C3 and C4.

6. Alternative Views
In real-world applications, structurally similar graphs may
naturally recur between training and inference phases. This
raises the question of whether such repetition constitutes a
flaw or simply reflects the nature of practical data distribu-
tions.

In practical applications, a graph matching system may
be tasked with two distinct kinds of inference: rote re-
call, where the test-time input is structurally identical (or
nearly so) to data seen during training, and generalization,
where the system must handle unseen or structurally differ-
ent graph instances. While rote recall can often be addressed
through simple caching or lookup tables, generalization re-
quires true learning. As such, it is critical that benchmark
evaluations clearly distinguish between these two modes of
inference.

However, due to the lack of fine-grained control over test
fold construction in existing datasets, these cases are fre-
quently conflated in reported performance. This has led
to inflated results that obscure a model’s actual generaliza-
tion capabilities. We argue that this conflation undermines
the primary goal of learning-based graph matching: robust
generalization across structurally diverse inputs.

Our position is that train-test leakage—such as isomorphic
or near-isomorphic graphs appearing across splits—is not
merely a benign artifact of real-world repetition, but a fun-
damental flaw in benchmarking design when left unchecked.
In practice, structural overlap between training and test data
can artificially inflate evaluation metrics, masking poor gen-
eralization and discouraging model innovations.

This perspective is consistent with recent work in graph
learning that emphasizes structural diversity during both
training and evaluation (Mahdavi et al., 2022; Velikonivtsev

et al., 2024). These works highlight how graph-level gen-
eralization is sensitive to structure-induced biases in data
generation. Our proposed benchmark framework—centered
on variable-cost GED, alignment-sensitive evaluation, and
isomorphism-free test construction—provides a principled
path forward. By decoupling rote recall from genuine gener-
alization, we aim to foster more faithful, reproducible, and
actionable evaluation protocols for neural graph matching
systems.

7. Conclusion
We rigorously analyze the limitations of existing neural
GED benchmarks, identifying significant train-test leak-
age and proposing a robust dataset construction pipeline to
mitigate it. Even if stopping leakage does not completely
overthrow broad comparisons between methods, leakage
prevention is critical to understand how learning takes place
and what to expect in the face of domain shifts. Leveraging
Theorem 4.2, we introduce a principled approach for gener-
ating large-scale training datasets and designing adversarial
test sets to evaluate whether models recover meaningful edit
paths. Our empirical analysis under varying cost settings
reveals that current neural models struggle with generaliza-
tion, emphasizing the need for more robust architectures.
These insights pave the way for future research in designing
cost-aware, interpretable, and generalizable GED models.

Impact Statement
This work contributes to the advancement of GED estima-
tion by addressing limitations in current benchmark datasets
and evaluation protocols. Our findings highlight the chal-
lenges of generalization under varying cost settings and pro-
pose improved methodologies for assessing model robust-
ness. While this research primarily focuses on methodologi-
cal improvements within machine learning, it has broader
implications for applications in bioinformatics, cheminfor-
matics, and network analysis, where accurate GED estima-
tion is crucial.

We do not foresee direct ethical concerns arising from this
work. However, as GED-based methods are used in domains
such as fraud detection and security analysis, it is important
to ensure that models trained on biased or incomplete data
do not lead to unintended consequences.

References
Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., and Martineau,

P. An exact graph edit distance algorithm for solving
pattern recognition problems. In 4th International Con-
ference on Pattern Recognition Applications and Methods
2015, 2015.

9

Position: Graph Matching Systems Deserve Better Benchmarks

Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.-Y.,
Brun, L., Raveaux, R., Héroux, P., and Adam, S. Graph
edit distance contest: Results and future challenges. Pat-
tern Recognition Letters, 100:96–103, 2017.

Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., and Martineau,
P. A parallel graph edit distance algorithm. Expert Sys-
tems with Applications, 94:41–57, 2018.

Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., and Wang,
W. Simgnn: A neural network approach to fast graph
similarity computation. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pp. 384–392, 2019a.

Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen,
T., Sun, Y., and Wang, W. Unsupervised inductive graph-
level representation learning via graph-graph proximity.
arXiv preprint arXiv:1904.01098, 2019b.

Bai, Y., Ding, H., Gu, K., Sun, Y., and Wang, W. Learning-
based efficient graph similarity computation via multi-
scale convolutional set matching. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 3219–3226, 2020.

Blumenthal, D. B. and Gamper, J. Improved lower
bounds for graph edit distance. IEEE Transactions
on Knowledge and Data Engineering, 30:503–516,
2018. URL https://api.semanticscholar.
org/CorpusID:3438059.

Blumenthal, D. B. and Gamper, J. On the exact computation
of the graph edit distance. Pattern Recognition Letters,
134:46–57, 2020.

Blumenthal, D. B., Bougleux, S., Gamper, J., and Brun, L.
Gedlib: A c++ library for graph edit distance computation.
In International Workshop on Graph-Based Representa-
tions in Pattern Recognition, pp. 14–24. Springer, 2019.

Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzere, B.,
and Vento, M. A quadratic assignment formulation of
the graph edit distance. arXiv preprint arXiv:1512.07494,
2015.

Bougleux, S., Brun, L., Carletti, V., Foggia, P.,
Gaüzère, B., and Vento, M. Graph edit distance
as a quadratic assignment problem. Pattern Recog-
nition Letters, 87:38–46, 2017. ISSN 0167-8655.
doi: https://doi.org/10.1016/j.patrec.2016.10.001.
URL https://www.sciencedirect.com/
science/article/pii/S0167865516302665.
Advances in Graph-based Pattern Recognition.

Brogat-Motte, L., Flamary, R., Brouard, C., Rousu, J., and
d’Alché Buc, F. Learning to predict graphs with fused

gromov-wasserstein barycenters. In International Con-
ference on Machine Learning, pp. 2321–2335. PMLR,
2022.

Brun, L., Gaüzère, B., and Fourey, S. Relationships between
graph edit distance and maximal common unlabeled sub-
graph. 2012.

Bunke, H. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Let-
ters, 18(8):689–694, 1997.

Bunke, H. and Allermann, G. Inexact graph matching for
structural pattern recognition. Pattern Recognition Let-
ters, 1(4):245–253, 1983.

Calabuig, J., Falciani, H., Sapena, A. F., Raffi, L. G., and
Pérez, E. S. Graph distances for determining entities
relationships: a topological approach to fraud detection.
International Journal of Information Technology & Deci-
sion Making, 22(04):1403–1438, 2023.

Carletti, V., Gaüzere, B., Brun, L., and Vento, M. Approxi-
mate graph edit distance computation combining bipartite
matching and exact neighborhood substructure distance.
In Graph-Based Representations in Pattern Recognition:
10th IAPR-TC-15 International Workshop, GbRPR 2015,
Beijing, China, May 13-15, 2015. Proceedings 10, pp.
188–197. Springer, 2015.

Chang, L., Feng, X., Lin, X., Qin, L., and Zhang, W. Ef-
ficient graph edit distance computation and verification
via anchor-aware lower bound estimation. arXiv preprint
arXiv:1709.06810, 2017.

Chen, L., Lin, G., Wang, S., and Wu, Q. Graph edit distance
reward: Learning to edit scene graph. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XIX 16, pp. 539–
554. Springer, 2020.

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X.
Unbalanced optimal transport: Dynamic and kantorovich
formulations. Journal of Functional Analysis, 274(11):
3090–3123, 2018.

Cho, M., Alahari, K., and Ponce, J. Learning graphs to
match. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 25–32, 2013.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26:2292–2300, 2013.

Doan, K. D., Manchanda, S., Mahapatra, S., and Reddy,
C. K. Interpretable graph similarity computation via
differentiable optimal alignment of node embeddings.
In Proceedings of the 44th International ACM SIGIR

10

https://api.semanticscholar.org/CorpusID:3438059
https://api.semanticscholar.org/CorpusID:3438059
https://www.sciencedirect.com/science/article/pii/S0167865516302665
https://www.sciencedirect.com/science/article/pii/S0167865516302665

Position: Graph Matching Systems Deserve Better Benchmarks

Conference on Research and Development in Information
Retrieval, pp. 665–674, 2021.

Donnat, C. and Holmes, S. Tracking network dynamics:
A survey using graph distances. The Annals of Applied
Statistics, 12(2):971–1012, 2018.

Fang, Y., Li, X., Ye, R., Tan, X., Zhao, P., and Wang,
M. Relation-aware graph convolutional networks for
multi-relational network alignment. ACM Trans. Intell.
Syst. Technol., 14(2), February 2023. ISSN 2157-6904.
doi: 10.1145/3579827. URL https://doi.org/10.
1145/3579827.

Fankhauser, S., Riesen, K., and Bunke, H. Speeding up
graph edit distance computation through fast bipartite
matching. In Graph-Based Representations in Pattern
Recognition: 8th IAPR-TC-15 International Workshop,
GbRPR 2011, Münster, Germany, May 18-20, 2011. Pro-
ceedings 8, pp. 102–111. Springer, 2011.

Gao, J., Huang, X., and Li, J. Unsupervised graph alignment
with wasserstein distance discriminator. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 426–435, 2021.

Garcia-Hernandez, C., Fernandez, A., and Serratosa, F.
Ligand-based virtual screening using graph edit distance
as molecular similarity measure. Journal of chemical
information and modeling, 59(4):1410–1421, 2019.

Gaüzère, B., Bougleux, S., Riesen, K., and Brun, L. Approx-
imate graph edit distance guided by bipartite matching
of bags of walks. In Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshop,
S+ SSPR 2014, Joensuu, Finland, August 20-22, 2014.
Proceedings, pp. 73–82. Springer, 2014.

Hagberg, A. and Conway, D. Networkx: Network analysis
with python. URL: https://networkx. github. io, 2020.

Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis
for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

Jain, E., Roy, I., Meher, S., Chakrabarti, S., and De, A.
Graph edit distance with general costs using neural set
divergence. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P.,
and Adam, S. New binary linear programming for-
mulation to compute the graph edit distance. Pat-
tern Recognition, 72:254–265, 2017. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2017.07.
029. URL https://www.sciencedirect.com/
science/article/pii/S003132031730300X.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In International conference on ma-
chine learning, pp. 3835–3845. PMLR, 2019.

Mahdavi, S., Swersky, K., Kipf, T., Hashemi, M., Thram-
poulidis, C., and Liao, R. Towards better out-of-
distribution generalization of neural algorithmic reason-
ing tasks. arXiv preprint arXiv:2211.00692, 2022.

Mémoli, F. Gromov–wasserstein distances and the metric
approach to object matching. Foundations of computa-
tional mathematics, 11:417–487, 2011.

Messmer, B. T. and Bunke, H. Efficient error-tolerant sub-
graph isomorphism detection. In Shape, structure and
pattern recognition, pp. 231–240. World Scientific, 1994.

Messmer, B. T. and Bunke, H. A new algorithm for error-
tolerant subgraph isomorphism detection. IEEE transac-
tions on pattern analysis and machine intelligence, 20(5):
493–504, 1998.

Neuhaus, M., Riesen, K., and Bunke, H. Fast suboptimal
algorithms for the computation of graph edit distance.
In Structural, Syntactic, and Statistical Pattern Recogni-
tion: Joint IAPR International Workshops, SSPR 2006
and SPR 2006, Hong Kong, China, August 17-19, 2006.
Proceedings, pp. 163–172. Springer, 2006.

Nguyen, T. T., Phan, T. C., Pham, H. T., Nguyen, T. T., Jo,
J., and Nguyen, Q. V. H. Example-based explanations
for streaming fraud detection on graphs. Information
Sciences, 621:319–340, 2023.

Peyré, G., Cuturi, M., and Solomon, J. Gromov-wasserstein
averaging of kernel and distance matrices. In Interna-
tional conference on machine learning, pp. 2664–2672.
PMLR, 2016.

Pham, K., Le, K., Ho, N., Pham, T., and Bui, H. On unbal-
anced optimal transport: An analysis of sinkhorn algo-
rithm. In International Conference on Machine Learning,
pp. 7673–7682. PMLR, 2020.

Piao, C., Xu, T., Sun, X., Rong, Y., Zhao, K., and
Cheng, H. Computing graph edit distance via neural
graph matching. Proc. VLDB Endow., 16(8):1817–1829,
apr 2023. ISSN 2150-8097. doi: 10.14778/3594512.
3594514. URL https://doi.org/10.14778/
3594512.3594514.

Qin, C., Zhao, H., Wang, L., Wang, H., Zhang, Y., and Fu, Y.
Slow learning and fast inference: Efficient graph similar-
ity computation via knowledge distillation. In Thirty-Fifth
Conference on Neural Information Processing Systems,
2021.

11

https://doi.org/10.1145/3579827
https://doi.org/10.1145/3579827
https://www.sciencedirect.com/science/article/pii/S003132031730300X
https://www.sciencedirect.com/science/article/pii/S003132031730300X
https://doi.org/10.14778/3594512.3594514
https://doi.org/10.14778/3594512.3594514

Position: Graph Matching Systems Deserve Better Benchmarks

Ranjan, R., Grover, S., Medya, S., Chakaravarthy, V., Sab-
harwal, Y., and Ranu, S. Greed: A neural framework for
learning graph distance functions. Advances in Neural
Information Processing Systems, 35:22518–22530, 2022.

Rica, E., Álvarez, S., and Serratosa, F. Ligand-based virtual
screening based on the graph edit distance. International
Journal of Molecular Sciences, 22(23):12751, 2021.

Riesen, K. and Bunke, H. Approximate graph
edit distance computation by means of bipartite
graph matching. Image and Vision Comput-
ing, 27(7):950–959, 2009a. ISSN 0262-8856.
doi: https://doi.org/10.1016/j.imavis.2008.04.004.
URL https://www.sciencedirect.com/
science/article/pii/S026288560800084X.
7th IAPR-TC15 Workshop on Graph-based Representa-
tions (GbR 2007).

Riesen, K. and Bunke, H. Approximate graph edit distance
computation by means of bipartite graph matching. Image
and Vision computing, 27(7):950–959, 2009b.

Riesen, K., Emmenegger, S., and Bunke, H. A novel soft-
ware toolkit for graph edit distance computation. In
Graph-Based Representations in Pattern Recognition:
9th IAPR-TC-15 International Workshop, GbRPR 2013,
Vienna, Austria, May 15-17, 2013. Proceedings 9, pp.
142–151. Springer, 2013.

Roy, I., Velugoti, V. S., Chakrabarti, S., and De, A. Inter-
pretable Neural Subgraph Matching for Graph Retrieval.
AAAI, 2022.

Sanfeliu, A. and Fu, K.-S. A distance measure between
attributed relational graphs for pattern recognition. IEEE
transactions on systems, man, and cybernetics, pp. 353–
362, 1983.

Serratosa, F. and Cortés, X. Graph edit distance: Moving
from global to local structure to solve the graph-matching
problem. Pattern recognition letters, 65:204–210, 2015.

Tang, X., Zhang, J., Chen, B., and Li, C. BERT-INT:
A BERT-based interaction model for knowledge graph
alignment. In IJCAI, 2020. URL https://www.
ijcai.org/proceedings/2020/0439.pdf.

van Engelenburg, C. C., Khademi, S., and van Gemert, J. C.
Ssig: A visually-guided graph edit distance for floor plan
similarity. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1573–1582, 2023.

Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty,
N. Fused gromov-wasserstein distance for structured
objects. Algorithms, 13(9):212, 2020.

Velikonivtsev, F., Mironov, M., and Prokhorenkova, L. Chal-
lenges of generating structurally diverse graphs. arXiv
preprint arXiv:2409.18859, 2024.

Wang, R., Zhang, T., Yu, T., Yan, J., and Yang, X. Com-
binatorial learning of graph edit distance via dynamic
embedding. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
5241–5250, 2021.

Xu, H., Luo, D., Zha, H., and Duke, L. C. Gromov-
wasserstein learning for graph matching and node embed-
ding. In International conference on machine learning,
pp. 6932–6941. PMLR, 2019a.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019b.

Yang, S. and Cogill, R. Balance sheet outlier detection using
a graph similarity algorithm. In 2013 IEEE Conference
on Computational Intelligence for Financial Engineering
& Economics (CIFEr), pp. 135–142. IEEE, 2013.

Zeng, Z., Tung, A. K., Wang, J., Feng, J., and Zhou, L.
Comparing stars: On approximating graph edit distance.
Proceedings of the VLDB Endowment, 2(1):25–36, 2009.

Zhang, Z., Bu, J., Ester, M., Li, Z., Yao, C., Yu, Z.,
and Wang, C. H2mn: Graph similarity learning with
hierarchical hypergraph matching networks. In Pro-
ceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21, pp.
2274–2284, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383325. doi: 10.
1145/3447548.3467328. URL https://doi.org/
10.1145/3447548.3467328.

Zhuo, W. and Tan, G. Efficient graph similarity computa-
tion with alignment regularization. Advances in Neural
Information Processing Systems, 35:30181–30193, 2022.

12

https://www.sciencedirect.com/science/article/pii/S026288560800084X
https://www.sciencedirect.com/science/article/pii/S026288560800084X
https://www.ijcai.org/proceedings/2020/0439.pdf
https://www.ijcai.org/proceedings/2020/0439.pdf
https://doi.org/10.1145/3447548.3467328
https://doi.org/10.1145/3447548.3467328

Position: Graph Matching Systems Deserve Better Benchmarks

A. Additional Experiments
We provide additional evaluation results beyond those presented in the main paper.

A.1. Additional evaluation of impact of leakage as per Cross-train-test-pairs

In Table 2 of main paper, we presented results for Intra-test-pairs ans Cross-train-test-pairs. Here, we provide additional
observations based on results for Cross-train-test-pairs, where each test graph is paired with all training graphs. This setup
evaluates the generalization of models when comparing unseen test graphs against a fixed reference set. Table 4 reports the
Mean Squared Error (MSE) and Kendall’s Tau (Ktau) correlation for models under Cross-train-test-pairs, both before and
after leakage removal.

Table 4. Mean Squared Error (MSE) and Kendall’s Tau (Ktau) correlation for GED prediction models on standard datasets before and
after train-test leakage removal. We report results across Intra-test-pairs (intra-test pairs) and Cross-train-test-pairs (cross-train-test pairs).
For each setting, models are evaluated under two conditions: (i) With Leakage—where dataset leakage exists due to isomorphic graphs
in both train and test splits, and (ii) Without Leakage—where leakage is removed via dataset preprocessing.

MSE (Lower is Better) Ktau (Higher is Better)

With Leakage Without Leakage With Leakage Without Leakage

LINUX AIDS AIDS LINUX AIDS AIDS LINUX AIDS AIDS LINUX AIDS AIDS
(w label) (w/o label) (w label) (w/o label) (w label) (w/o label) (w label) (w/o label)

Intra-test-pairs
GMN-Match 0.062 0.811 0.558 0.823 0.825 0.635 0.937 0.785 0.798 0.793 0.775 0.736
GMN-Embed 0.219 1.525 0.578 1.238 1.575 0.669 0.917 0.718 0.800 0.745 0.701 0.729
SimGNN 0.277 1.180 0.879 2.350 1.406 0.899 0.903 0.744 0.752 0.642 0.720 0.688
GraphSim 0.165 1.494 1.115 2.511 1.345 1.371 0.921 0.700 0.703 0.599 0.708 0.599
GREED 0.203 1.409 0.614 1.415 1.748 0.754 0.921 0.721 0.788 0.755 0.677 0.710
GEDGNN 7.463 9.069 7.832 6.018 8.551 4.778 0.296 0.039 0.022 0.066 0.046 -0.052
ISONET 0.323 0.995 0.837 5.146 1.032 0.978 0.903 0.765 0.746 0.646 0.749 0.669
H2MN 0.244 1.350 0.785 2.470 1.487 1.021 0.909 0.729 0.761 0.571 0.703 0.673
EGSC 0.071 0.993 0.438 3.297 1.135 0.562 0.937 0.761 0.829 0.707 0.743 0.761
ERIC 0.049 1.255 0.437 1.013 1.369 0.533 0.940 0.739 0.832 0.796 0.718 0.767
GRAPHEDX 0.052 1.647 0.801 0.827 1.931 0.872 0.940 0.694 0.771 0.844 0.682 0.714

Cross-train-test-pairs
GMN-Match 0.047 0.743 0.510 0.689 0.757 0.582 0.934 0.806 0.815 0.802 0.799 0.767
GMN-Embed 0.202 1.265 0.531 0.925 1.225 0.599 0.913 0.752 0.814 0.766 0.748 0.766
SimGNN 0.282 1.051 0.851 1.593 1.127 0.870 0.892 0.765 0.758 0.629 0.746 0.708
GraphSim 0.121 1.296 1.055 1.618 1.218 1.264 0.921 0.730 0.721 0.626 0.739 0.630
GREED 0.197 1.169 0.571 1.326 1.442 0.696 0.916 0.758 0.803 0.703 0.725 0.743
GEDGNN 6.721 7.453 7.337 5.247 7.595 5.663 0.324 0.091 0.051 0.095 0.055 -0.048
ISONET 0.286 0.905 0.707 4.427 0.937 0.854 0.900 0.781 0.775 0.656 0.770 0.708
H2MN 0.247 1.159 0.755 1.712 1.405 0.928 0.900 0.755 0.769 0.593 0.718 0.692
EGSC 0.059 0.865 0.375 3.305 0.934 0.516 0.933 0.790 0.847 0.713 0.778 0.788
ERIC 0.040 1.007 0.381 0.939 1.065 0.468 0.935 0.777 0.848 0.758 0.765 0.800
GRAPHEDX 0.046 1.293 0.700 0.624 1.498 0.769 0.935 0.739 0.792 0.833 0.726 0.749

The trends observed in Intra-test-pairs extend to Cross-train-test-pairs, reinforcing key insights:

(1) Effect of Train-Test Leakage: Models perform significantly better with leakage, particularly on LINUX, which has the
highest redundancy. This indicates that models rely on memorization rather than generalization. After leakage removal,
MSE increases and Ktau declines across all datasets, demonstrating that previously inflated performance was largely an
artifact of structural duplication in the test set.

(2) Performance Drop Post-Leakage Removal: The decline is most severe for ISONET, GraphSim, and GEDGNN.
For instance in Cross-train-test-pairs, ISONET’s MSE on LINUX rises from 0.286 to 4.427, while Ktau falls from 0.9 to
0.656. This is expected, as ISONETwas originally designed for subgraph matching. Leakage previously enabled overfitting,
creating an illusion of strong performance.

(3) Increased Disparity Across Models: Without leakage, performance differences between models become more
pronounced as well in Cross-train-test-pairs, particularly in Ktau scores for LINUX. This provides further evidence
that, once deprived of memorization advantages, models reveal their true generalization capabilities, leading to a clearer
performance ranking.

(4) Lower Impact on AIDS (w/ labels): We observe once again in Cross-train-test-pairs that the effect of leakage removal

13

Position: Graph Matching Systems Deserve Better Benchmarks

is milder for AIDS (w/ labels) due to lower structural redundancy. Models trained on datasets with fewer isomorphic graphs
are naturally less susceptible to memorization-driven overfitting.

(5) Consistent Model Ranking but Substantial Performance Drop: While model rankings remain largely unchanged,
the overall performance decline across both Intra-test-pairs and Cross-train-test-pairs highlights the fundamental difficulty
of learning GED. These findings emphasize the need for more rigorous evaluation benchmarks and improved model
architectures.

A.2. Adversarial Evaluation via Cost-Invariant Edit Paths under Varying Cost Settings

A.2.1. COST CONFIGURATIONS FOR GED EVALUATION

Table 5 lists the different cost settings Ck used for GED computation. The first two, C0 (equal cost) and C1 (unequal cost),
were introduced in GRAPHEDX. These settings assume a fixed penalty for node and edge modifications but do not explore
broader variations in cost configurations.

Leveraging Theorem 4.2, we extend this analysis by introducing additional cost settings (C2–C6), covering a diverse range
of node and edge operation costs. Our theorem guarantees that, as long as cNS < cNA + cND, the optimal edit path
(and corresponding node alignment P ∗) remains invariant across these cost settings. This property allows us to generate
adversarial test cases that assess whether neural models recover meaningful edit paths rather than simply memorizing
dataset-specific patterns.

By evaluating models under varying cost configurations, we test their robustness in predicting GED and their ability to
generalize beyond the specific cost assumptions made during training.

Table 5. Cost settings Ck used for GED computation.

Ck cNA cND cNS cEA cED

C0 1 1 0 1 1
C1 1 3 0 1 2
C2 10 15 0 1 1
C3 1 1 0 11 12
C4 18 23 0 19 12
C5 21 14 0 20 26
C6 2 29 0 26 3

14

Position: Graph Matching Systems Deserve Better Benchmarks

A.2.2. EXTENDED OBSERVATIONS ON VARYING COST TEST SETS

In Table 3, we analyzed model performance under a fixed cost setting using MSE and Ktau, highlighting that MSE values
are not directly comparable across cost settings due to varying cost magnitudes. However, Ktau effectively captures shifts in
model rankings across different test configurations. Here in Table 6, we extend these observations by incorporating results
across all seven cost settings (C0–C6) and including evaluations under Cross-train-test-pairs.

Table 6. Performance comparison in terms of MSE and Ktau evaluated on Code2 dataset for the models trained with C0 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 1.68 79.86 1002.01 10102.82 28743.35 55339.54 23766.56 0.88 0.75 0.52 0.77 0.84 0.84 0.84
GMN-Embed 1.36 80.79 1003.41 10128.47 28782.49 55396.70 23802.01 0.89 0.77 0.53 0.78 0.86 0.85 0.86
SimGNN 2.67 74.70 973.74 10063.38 28646.82 55220.71 23681.08 0.86 0.75 0.55 0.72 0.84 0.80 0.82
GraphSim 3.14 77.85 991.73 10043.54 28638.96 55195.11 23674.50 0.84 0.71 0.51 0.74 0.81 0.80 0.79
GREED 1.87 77.52 991.55 10092.37 28715.97 55306.64 23741.21 0.88 0.77 0.53 0.77 0.84 0.84 0.84
GEDGNN 31.12 161.77 1181.59 10722.40 29789.05 56774.75 24727.93 -0.03 -0.13 -0.25 0.07 -0.06 0.00 -0.06
ISONET 0.88 75.49 999.90 10103.25 28738.95 55336.78 23764.77 0.92 0.79 0.54 0.79 0.89 0.87 0.87
H2MN 6.20 83.92 983.70 10123.29 28773.79 55375.59 23782.46 0.75 0.67 0.52 0.60 0.73 0.69 0.70
EGSC 4.16 94.54 1058.17 10190.29 28937.83 55582.93 23941.03 0.81 0.70 0.46 0.76 0.77 0.79 0.77
ERIC 1.36 84.53 1015.90 10156.43 28836.03 55467.78 23851.80 0.89 0.75 0.53 0.78 0.86 0.85 0.84
GRAPHEDX 0.76 76.90 2434.89 2102.35 688.71 884.77 676.29 0.92 0.78 0.52 0.74 0.89 0.87 0.83

Cross-train-test-pairs
GMN-Match 1.65 64.74 826.78 10905.94 31729.34 60466.93 25485.93 0.87 0.74 0.48 0.76 0.83 0.83 0.83
GMN-Embed 1.70 65.99 830.61 10913.60 31743.89 60486.25 25499.79 0.88 0.74 0.47 0.77 0.83 0.84 0.83
SimGNN 2.33 64.49 818.69 10896.46 31699.60 60432.36 25462.12 0.82 0.69 0.51 0.68 0.80 0.76 0.78
GraphSim 2.53 63.70 819.95 10879.82 31679.72 60399.93 25442.55 0.84 0.70 0.49 0.72 0.81 0.78 0.79
GREED 2.30 66.16 826.86 10910.05 31730.69 60471.36 25489.28 0.85 0.72 0.47 0.74 0.80 0.81 0.81
GEDGNN 27.64 135.62 1000.20 11566.66 32873.11 62026.84 26511.14 0.06 0.10 -0.11 0.12 0.04 0.08 0.07
ISONET 1.13 62.02 824.30 10893.56 31708.36 60438.07 25467.50 0.90 0.76 0.51 0.77 0.87 0.85 0.85
H2MN 5.05 69.55 823.61 10957.71 31799.76 60546.70 25544.55 0.72 0.62 0.54 0.58 0.73 0.65 0.68
EGSC 3.20 69.84 856.47 10946.45 31835.95 60593.43 25574.35 0.80 0.69 0.44 0.72 0.75 0.77 0.77
ERIC 1.59 68.33 839.59 10964.08 31832.56 60608.17 25577.33 0.89 0.75 0.49 0.77 0.84 0.84 0.85
GRAPHEDX 1.16 62.20 2685.40 2346.98 860.40 1252.56 961.71 0.91 0.75 0.48 0.72 0.87 0.84 0.81

(1) Ktau variation remains high, confirming limited generalization. Most models continue to exhibit significant Ktau
fluctuations (up to 0.4), particularly under Cross-train-test-pairs, where performance rankings shift more drastically. This
reinforces the observation that models struggle to generalize to unseen cost settings.

(2) Node-centric models degrade with increasing edge edit costs. As seen in the main results, models focused solely
on node alignment achieve lower MSE on C2 but deteriorate on C3 and beyond. This trend extends to C5 and C6, with
Cross-train-test-pairs further amplifying performance drops.

(3) GRAPHEDX maintains its edge-aware advantage. GRAPHEDX continues to achieve the lowest MSE on high edge-cost
settings (C3–C6), demonstrating its robustness. Its relative advantage is even more pronounced in Cross-train-test-pairs,
where other models struggle with increased structural complexity.

15

Position: Graph Matching Systems Deserve Better Benchmarks

Further Evaluation on Mutag(Table 7), Molpcba (Table 8) and Molhiv (Table 9):

Table 7. Performance comparison in terms of MSE and Ktau evaluated on Mutag dataset for the models trained with C0 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 1.09 147.23 3552.41 7355.44 44433.55 65746.84 32110.52 0.90 0.64 0.73 0.75 0.87 0.87 0.84
GMN-Match 1.09 147.23 3552.41 7355.44 44433.55 65746.84 32110.52 0.90 0.64 0.73 0.75 0.87 0.87 0.84
GMN-Embed 1.33 150.41 3566.08 7386.11 44497.02 65828.88 32166.08 0.88 0.63 0.73 0.73 0.86 0.85 0.83
SimGNN 1.74 149.10 3553.96 7371.02 44454.13 65778.70 32129.74 0.87 0.63 0.76 0.70 0.86 0.83 0.82
GraphSim 2.29 151.74 3573.19 7411.50 44548.73 65894.68 32209.94 0.84 0.62 0.75 0.68 0.83 0.81 0.80
GREED 1.70 151.43 3574.01 7389.28 44514.65 65846.64 32179.42 0.87 0.62 0.71 0.74 0.84 0.84 0.82
GEDGNN 33.43 242.82 4029.43 7795.59 45756.35 67255.40 33206.38 0.07 -0.07 -0.03 0.09 0.07 0.08 0.07
ISONET 1.47 147.04 3531.05 7318.54 44348.23 65639.56 32037.63 0.88 0.65 0.72 0.74 0.86 0.85 0.83
H2MN 1.52 148.69 3554.79 7368.89 44454.05 65776.56 32129.28 0.88 0.63 0.76 0.70 0.86 0.84 0.83
EGSC 1.06 147.83 3552.22 7357.84 44433.77 65750.16 32110.74 0.90 0.63 0.75 0.73 0.89 0.86 0.85
ERIC 1.01 144.92 3536.23 7340.26 44385.89 65692.41 32071.09 0.91 0.64 0.75 0.74 0.89 0.87 0.85
GRAPHEDX 1.89 136.90 405.35 530.75 524.15 1079.13 768.20 0.89 0.62 0.79 0.72 0.88 0.85 0.83

Cross-train-test-pairs
GMN-Match 0.96 120.37 3150.64 7158.31 42866.10 63434.40 30592.84 0.89 0.61 0.72 0.73 0.86 0.86 0.83
GMN-Embed 1.15 122.82 3159.48 7178.06 42905.04 63486.11 30626.90 0.88 0.61 0.71 0.72 0.86 0.85 0.82
SimGNN 1.42 121.68 3149.79 7169.85 42877.27 63455.12 30603.27 0.86 0.60 0.75 0.67 0.85 0.82 0.82
GraphSim 1.68 121.96 3162.34 7201.92 42955.05 63548.77 30667.53 0.85 0.61 0.75 0.67 0.83 0.81 0.80
GREED 1.47 124.39 3171.05 7190.65 42943.41 63528.51 30660.77 0.87 0.60 0.70 0.72 0.84 0.84 0.81
GEDGNN 27.27 187.86 3540.19 7512.78 43990.73 64692.51 31512.27 0.21 0.12 0.17 0.19 0.21 0.20 0.20
ISONET 1.15 120.75 3141.20 7139.34 42818.36 63376.75 30553.59 0.88 0.62 0.71 0.71 0.86 0.85 0.82
H2MN 1.30 121.38 3150.67 7169.99 42880.75 63457.65 30606.50 0.87 0.61 0.75 0.68 0.85 0.83 0.82
EGSC 0.89 121.92 3154.03 7166.44 42878.27 63453.89 30602.86 0.90 0.61 0.74 0.71 0.88 0.86 0.84
ERIC 0.86 119.94 3141.35 7149.23 42833.42 63399.50 30565.89 0.90 0.61 0.74 0.72 0.88 0.86 0.84
GRAPHEDX 1.94 111.23 378.81 517.51 542.76 1101.64 668.83 0.87 0.59 0.77 0.70 0.86 0.83 0.82

Table 8. Performance comparison in terms of MSE and Ktau evaluated on Molpcba dataset for the models trained with C0 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 1.66 83.44 1416.16 5621.57 23515.56 39605.57 17963.42 0.79 0.61 0.73 0.62 0.77 0.74 0.73
GMN-Embed 2.55 84.61 1415.23 5639.15 23538.27 39639.93 17984.97 0.72 0.55 0.66 0.57 0.70 0.67 0.67
SimGNN 2.05 83.72 1409.27 5628.22 23511.03 39608.05 17961.36 0.77 0.60 0.80 0.56 0.77 0.70 0.72
GraphSim 2.25 84.55 1410.90 5627.74 23510.05 39606.89 17961.06 0.75 0.57 0.77 0.54 0.75 0.68 0.70
GREED 2.14 83.78 1413.23 5623.89 23512.41 39604.84 17961.52 0.75 0.58 0.69 0.60 0.73 0.70 0.70
GEDGNN 12.89 122.90 1577.33 5709.73 23829.84 39952.34 18227.77 -0.03 -0.19 -0.12 -0.03 -0.03 -0.02 -0.07
ISONET 1.68 81.63 1408.43 5602.93 23476.72 39555.18 17930.12 0.79 0.63 0.74 0.61 0.77 0.73 0.73
H2MN 1.99 83.77 1409.03 5624.40 23503.96 39598.76 17955.36 0.78 0.59 0.80 0.56 0.78 0.70 0.72
EGSC 1.54 84.08 1415.75 5619.42 23507.63 39597.77 17957.19 0.80 0.61 0.77 0.60 0.80 0.74 0.75
ERIC 1.45 82.35 1409.59 5609.41 23486.78 39570.44 17938.73 0.81 0.62 0.78 0.62 0.80 0.75 0.76
GRAPHEDX 1.92 77.73 497.85 572.06 576.58 1111.81 720.45 0.78 0.60 0.67 0.57 0.78 0.72 0.69

Cross-train-test-pairs
GMN-Match 1.56 87.43 1663.68 5928.01 26752.43 43588.98 20256.75 0.81 0.60 0.73 0.64 0.79 0.76 0.75
GMN-Embed 2.21 87.83 1658.95 5936.10 26754.88 43598.13 20260.26 0.75 0.56 0.68 0.61 0.73 0.71 0.70
SimGNN 1.75 87.73 1658.74 5936.42 26754.40 43598.49 20260.33 0.79 0.59 0.80 0.58 0.79 0.71 0.74
GraphSim 1.80 87.77 1657.28 5932.05 26744.05 43586.07 20251.41 0.78 0.58 0.78 0.58 0.78 0.71 0.73
GREED 1.95 88.77 1664.97 5936.04 26762.37 43604.85 20266.61 0.78 0.57 0.70 0.62 0.76 0.73 0.72
GEDGNN 15.55 137.59 1891.14 6104.81 27304.82 44214.08 20723.63 0.07 -0.12 -0.01 0.05 0.08 0.08 0.04
ISONET 1.55 86.30 1658.77 5915.67 26728.29 43556.65 20236.07 0.80 0.62 0.74 0.63 0.79 0.75 0.75
H2MN 1.71 87.92 1658.82 5932.64 26747.47 43589.35 20254.64 0.79 0.59 0.80 0.58 0.79 0.72 0.74
EGSC 1.43 88.73 1666.68 5931.62 26757.85 43597.68 20262.41 0.82 0.60 0.77 0.63 0.82 0.76 0.77
ERIC 1.35 86.71 1659.38 5918.62 26731.26 43562.45 20239.29 0.83 0.61 0.77 0.64 0.82 0.77 0.77
GRAPHEDX 1.87 81.45 564.21 618.57 555.84 1117.07 754.80 0.80 0.59 0.68 0.59 0.80 0.74 0.71

16

Position: Graph Matching Systems Deserve Better Benchmarks

Table 9. Performance comparison in terms of MSE and Ktau evaluated on Molhiv dataset for the models trained with C0 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Lower is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 1.50 160.84 3840.29 8416.02 50617.65 75265.57 36275.56 0.89 0.64 0.77 0.76 0.86 0.85 0.83
GMN-Embed 2.04 161.71 3843.86 8440.53 50661.64 75324.68 36313.30 0.85 0.62 0.76 0.74 0.83 0.82 0.80
SimGNN 1.80 164.77 3862.70 8456.25 50711.51 75381.95 36355.53 0.87 0.63 0.81 0.72 0.87 0.83 0.82
GraphSim 2.77 161.91 3857.40 8440.31 50691.16 75346.55 36336.37 0.85 0.62 0.80 0.71 0.84 0.82 0.79
GREED 1.90 161.79 3845.39 8436.04 50656.95 75316.74 36309.05 0.86 0.62 0.76 0.75 0.84 0.83 0.80
GEDGNN 39.26 276.78 4435.89 9007.02 52349.85 77248.83 37724.57 0.07 -0.07 -0.02 0.08 0.07 0.08 0.04
ISONET 1.54 159.22 3836.35 8413.44 50620.60 75264.45 36274.04 0.88 0.65 0.78 0.75 0.86 0.84 0.82
H2MN 1.71 161.87 3851.87 8443.64 50682.22 75344.95 36329.14 0.88 0.63 0.81 0.73 0.87 0.84 0.82
EGSC 1.33 159.67 3854.00 8435.24 50683.26 75337.21 36326.62 0.89 0.64 0.80 0.76 0.87 0.86 0.83
ERIC 1.36 161.19 3856.33 8433.69 50678.25 75332.26 36323.79 0.89 0.64 0.80 0.76 0.88 0.86 0.83
GRAPHEDX 2.33 143.36 677.17 683.42 679.07 1427.10 2162.89 0.87 0.63 0.73 0.72 0.86 0.82 0.72

Cross-train-test-pairs
GMN-Match 1.34 157.79 3667.22 8169.69 48121.14 71728.90 35230.53 0.89 0.64 0.77 0.76 0.86 0.85 0.82
GMN-Embed 1.75 160.00 3672.83 8185.82 48148.96 71767.77 35255.29 0.86 0.62 0.75 0.74 0.84 0.83 0.81
SimGNN 1.60 160.42 3680.07 8202.22 48188.64 71815.73 35289.07 0.87 0.63 0.81 0.72 0.86 0.83 0.81
GraphSim 1.97 158.31 3674.35 8187.67 48164.33 71780.28 35266.87 0.86 0.63 0.80 0.71 0.85 0.82 0.80
GREED 1.78 157.94 3666.98 8179.48 48136.45 71750.80 35242.79 0.86 0.63 0.75 0.74 0.83 0.83 0.80
GEDGNN 32.07 251.79 4161.82 8649.22 49551.41 73357.95 36424.41 0.17 0.05 0.09 0.18 0.17 0.18 0.15
ISONET 1.40 156.78 3667.87 8169.73 48127.16 71733.99 35232.98 0.88 0.65 0.78 0.74 0.86 0.84 0.82
H2MN 1.55 159.11 3674.29 8194.25 48169.90 71792.08 35273.12 0.87 0.64 0.81 0.72 0.86 0.83 0.81
EGSC 1.16 156.27 3672.59 8177.78 48152.66 71762.20 35253.66 0.90 0.65 0.80 0.76 0.88 0.86 0.83
ERIC 1.17 155.84 3666.94 8167.79 48126.55 71731.35 35231.75 0.90 0.65 0.80 0.75 0.88 0.86 0.83
GRAPHEDX 2.62 141.65 620.38 646.53 748.36 1547.26 2123.42 0.86 0.61 0.72 0.71 0.85 0.82 0.70

Further Evaluation on Mutag(Table 7), Molpcba (Table 8) and Molhiv (Table 9):

We observe (1) Most models continue to exhibit considerable Ktau fluctuations across cost settings, confirming their
sensitivity to changes in edit cost magnitudes. (2) We keep observing the gap between node-centric models and edge-aware
models. Notably, under Cross-train-test-pairs, these models experience even larger MSE increases as edge costs rise,
suggesting that their reliance on node-level correspondences is insufficient for robust performance under varied cost settings.
(3) The distinct advantage of GRAPHEDX in explicitly aligning both nodes and edges is further reinforced in the new
datasets. (4) ERIC emerges as a strong performer in terms of ranking stability.

Overall, these extended results reinforce the conclusions drawn in the main paper, while providing additional evidence that
models designed to explicitly align both nodes and edges concurrently, such as GRAPHEDX, consistently outperform purely
node-centric models under diverse and unseen cost configurations. The added evaluation under Cross-train-test-pairs further
underscores the limitations of existing approaches in generalizing beyond fixed-cost training conditions.

17

Position: Graph Matching Systems Deserve Better Benchmarks

A.2.3. NOTE ON UNEQUAL COST COMPATIBILITY OF NEURAL GED BASELINES

GRAPHEDX provides baseline implementation heuristics to support variable edit costs by encoding them as node features.
Following this approach, we evaluate additional baselines trained under the **unequal cost setting** C1, where each node’s
feature vector is represented as [cNA, cND, cEA, cED]. We extend our evaluation to four datasets—Mutag, Code2, Molhiv, and
Molpcba—to assess how well these modified baselines adapt to variable cost configurations.

Table 10. Performance comparison in terms of MSE and Ktau evaluated on Code2 dataset for the models trained with C1 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 17.80 13.47 859.04 9874.35 26404.78 52663.12 21566.95 0.68 0.78 0.43 0.49 0.61 0.70 0.63
GMN-Embed 27.14 13.42 911.53 10815.33 29589.43 53640.33 24616.71 0.69 0.79 0.71 0.37 0.55 0.68 0.44
SimGNN 79.96 5.21 756.14 9047.13 26420.19 51943.14 21828.66 0.16 0.87 0.16 0.07 -0.26 -0.14 0.05
GraphSim 54.06 7.40 4862.97 6119.92 39720.85 116362.43 88244.02 0.77 0.84 0.15 0.54 0.35 0.62 0.14
GREED 34.89 11.10 12339.77 4633.00 3456.97 10647.98 6819.41 0.79 0.81 0.59 0.56 0.75 0.74 0.72
GEDGNN 55.07 107.62 986.25 9568.23 28112.90 54433.86 23205.05 0.11 0.06 -0.10 0.14 0.08 0.13 0.10
ISONET 157.62 3.02 1067.57 5806.26 16525.08 18782.09 8600.44 0.80 0.91 0.22 0.56 0.55 0.08 0.05
H2MN 56.63 9.00 2399.54 6989.53 30622.63 37601.68 30523.50 0.34 0.82 0.62 -0.02 0.42 -0.19 0.16
EGSC 98.87 3.96 1361.69 10726.06 32592.27 59011.18 27276.95 0.41 0.89 -0.02 0.12 nan 0.26 0.16
ERIC 150.71 12.77 774.45 4369.22 33678.68 62664.45 19363.80 0.44 0.80 -0.14 0.43 0.35 0.35 -0.10
GRAPHEDX 1.87 2.25 1215.88 2025.81 267.99 2042.30 1003.76 0.90 0.92 0.72 0.79 0.90 0.84 0.83

Cross-train-test-pairs
GMN-Match 23.11 25.25 620.69 10486.17 28974.37 58187.02 23011.78 0.63 0.69 0.40 0.44 0.56 0.62 0.62
GMN-Embed 23.88 23.90 806.60 11731.68 32603.78 58737.56 26425.22 0.64 0.69 0.63 0.31 0.50 0.63 0.36
SimGNN 86.50 4.85 742.40 9750.34 29199.74 56823.73 23365.93 0.14 0.83 -0.08 0.07 -0.21 -0.17 0.02
GraphSim 61.96 5.35 3172.15 5867.42 25800.75 124570.66 52916.74 0.74 0.83 0.30 0.54 0.47 0.62 0.22
GREED 38.67 24.66 11234.89 5445.47 4208.88 13337.61 8015.79 0.76 0.71 0.54 0.50 0.69 0.68 0.63
GEDGNN 46.09 83.29 834.90 10302.09 31086.48 59508.24 24897.12 0.05 0.09 -0.16 0.09 0.01 0.08 0.06
ISONET 123.47 2.73 861.57 6539.55 18220.10 17869.69 7082.28 0.74 0.88 0.25 0.53 0.50 0.14 0.11
H2MN 54.01 7.00 2271.98 7504.45 34223.73 39818.31 32748.36 0.25 0.77 0.65 -0.00 0.34 -0.03 0.18
EGSC 102.32 3.33 1172.57 12154.61 35912.03 63975.67 27899.37 0.47 0.87 -0.01 0.10 0.19 0.19 0.17
ERIC 147.83 6.66 667.13 4905.47 37093.44 68434.06 20866.48 0.17 0.82 -0.29 0.34 0.27 0.20 -0.27
GRAPHEDX 2.66 2.64 1263.23 2342.56 348.81 2774.08 962.25 0.88 0.89 0.65 0.76 0.88 0.81 0.81

Table 11. Performance comparison in terms of MSE and Ktau evaluated on Mutag dataset for the models trained with C1 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 88.56 69.72 1688.50 5276.92 25896.03 40496.25 19455.97 0.83 0.60 0.54 0.43 0.57 0.48 0.53
GMN-Embed 89.73 73.08 3707.93 6151.83 44783.81 60048.02 33096.20 0.81 0.60 0.56 0.58 0.64 0.61 0.39
SimGNN 30.82 5.18 2591.59 5465.69 40103.21 60833.75 30325.59 0.42 0.86 0.67 -0.10 -0.23 -0.12 -0.18
GraphSim 42.43 5.82 20210.07 5378.95 274879.94 694983.25 153201.47 0.55 0.85 0.78 0.53 0.61 0.59 0.62
GREED 8.10 69.24 297.66 1780.65 6527.98 8541.12 4573.95 0.76 0.61 0.75 0.57 0.74 0.71 0.69
GEDGNN 87.87 152.46 3253.90 6491.89 42534.49 63257.59 30456.29 0.48 0.44 0.45 0.45 0.46 0.47 0.46
ISONET 126.40 3.83 2116.40 4114.26 26038.34 33789.64 18345.88 0.65 0.88 0.56 0.40 0.06 0.12 0.04
H2MN 173.99 3.87 1275.88 2033.74 5760.80 8705.74 4497.13 0.58 0.87 0.64 0.45 0.54 0.51 0.52
EGSC 334.60 2.25 3151.06 6411.25 45837.08 67383.50 33178.26 0.48 0.91 0.24 0.35 -0.16 -0.15 -0.12
ERIC 35.63 72.53 3738.90 7405.44 44886.48 66182.52 32528.36 0.64 0.62 0.04 0.32 -0.11 -0.35 -0.03
GRAPHEDX 1.22 2.53 664.83 940.66 439.79 1229.95 2650.44 0.91 0.91 0.92 0.79 0.89 0.85 0.73

Cross-train-test-pairs
GMN-Match 82.96 64.65 1480.63 5120.59 24491.29 38170.34 18127.36 0.82 0.57 0.48 0.40 0.57 0.47 0.52
GMN-Embed 85.82 70.91 3258.56 6016.66 43038.82 58006.16 31318.47 0.79 0.56 0.52 0.53 0.62 0.59 0.38
SimGNN 26.78 4.21 2348.13 5165.00 38347.61 58458.98 28708.43 0.40 0.85 0.62 -0.09 -0.25 -0.15 -0.22
GraphSim 41.94 4.23 18256.14 4577.97 242144.36 617758.94 133718.81 0.52 0.85 0.76 0.51 0.59 0.57 0.61
GREED 8.80 65.24 276.88 2028.84 6333.84 9802.24 4602.12 0.74 0.58 0.73 0.51 0.73 0.66 0.68
GEDGNN 85.37 122.47 2837.45 6235.55 40849.52 60787.81 28847.61 0.46 0.41 0.42 0.43 0.43 0.45 0.43
ISONET 100.43 2.88 1994.19 4062.93 25785.42 32965.49 17438.57 0.61 0.88 0.51 0.33 -0.02 0.04 -0.00
H2MN 148.14 3.80 1219.73 1947.56 5059.34 7298.89 4007.83 0.55 0.86 0.64 0.41 0.53 0.51 0.48
EGSC 313.58 2.07 2835.02 6374.85 44081.77 64827.62 31500.39 0.43 0.90 0.24 0.35 -0.17 -0.14 -0.13
ERIC 32.09 65.77 3280.24 7156.61 43117.18 63487.73 30849.33 0.62 0.59 0.05 0.30 -0.15 -0.36 -0.07
GRAPHEDX 1.13 2.67 641.48 885.68 402.79 1062.02 2348.17 0.90 0.90 0.91 0.78 0.88 0.85 0.71

18

Position: Graph Matching Systems Deserve Better Benchmarks

Table 12. Performance comparison in terms of MSE and Ktau evaluated on Molpcba dataset for the models trained with C1 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 33.35 24.95 1094.62 4338.30 18529.18 24572.72 13495.41 0.68 0.59 0.25 0.14 0.11 0.30 0.09
GMN-Embed 114.43 29.49 1123.06 4499.16 13038.17 26686.06 9212.62 0.69 0.53 0.08 0.18 0.26 0.30 0.29
SimGNN 45.83 4.48 1164.50 1504.99 13823.54 26120.01 9697.23 0.55 0.80 -0.29 -0.11 -0.25 -0.20 -0.23
GraphSim 18.50 4.93 24955.04 4324.32 423399.34 1154531.75 86381.91 0.59 0.78 0.68 0.50 0.53 0.53 0.54
GREED 317.55 27.04 765.63 3097.60 2515.16 9035.11 1888.99 0.57 0.54 0.53 0.35 0.66 0.44 0.57
GEDGNN 49.13 74.51 1256.97 4864.74 22103.42 37670.08 16721.63 0.39 0.35 0.42 0.30 0.38 0.36 0.37
ISONET 69.82 3.75 745.64 3802.85 14000.82 25897.02 12052.43 0.60 0.81 0.55 0.47 0.16 0.15 0.28
H2MN 630.60 4.41 857.49 1030.92 21498.60 37004.68 16198.50 0.38 0.80 0.78 0.50 0.59 0.55 0.61
EGSC 127971.02 3.14 57688.06 17323.34 51966.68 35863.64 58844.41 -0.24 0.83 0.25 0.33 -0.24 -0.19 -0.21
ERIC 56.28 3.07 1998.92 6666.78 25844.59 42596.17 19992.22 0.50 0.84 0.19 0.34 -0.11 -0.11 -0.09
GRAPHEDX 2.23 3.06 748.43 1422.49 491.72 2124.67 2018.55 0.81 0.84 0.91 0.63 0.80 0.73 0.63

Cross-train-test-pairs
GMN-Match 40.75 32.26 1242.33 4557.17 21136.06 27562.35 15166.63 0.69 0.58 0.28 0.15 0.12 0.30 0.11
GMN-Embed 141.12 36.65 1242.18 4691.41 14494.54 29162.00 10283.75 0.71 0.53 0.10 0.21 0.29 0.31 0.30
SimGNN 48.81 3.82 1359.52 1775.02 16854.24 29971.59 11820.60 0.59 0.80 -0.34 -0.16 -0.29 -0.25 -0.27
GraphSim 23.11 3.97 30216.50 6625.60 496550.09 1310088.12 127795.49 0.58 0.79 0.68 0.50 0.53 0.53 0.54
GREED 407.66 36.07 888.94 3386.05 2554.08 8852.97 1901.29 0.59 0.53 0.53 0.38 0.68 0.47 0.59
GEDGNN 47.31 87.41 1545.84 5227.07 25470.30 41820.07 19127.82 0.40 0.35 0.43 0.32 0.39 0.38 0.39
ISONET 74.78 3.34 912.98 4038.52 16425.68 29175.82 13859.29 0.59 0.81 0.54 0.45 0.15 0.14 0.31
H2MN 612.09 3.79 1044.20 968.53 24597.21 40843.65 18367.26 0.32 0.80 0.78 0.50 0.57 0.54 0.60
EGSC 126122.16 2.96 55322.41 15597.97 49923.90 34827.25 56480.20 -0.29 0.83 0.21 0.28 -0.28 -0.24 -0.25
ERIC 67.26 2.82 2292.01 7025.28 29339.78 46860.56 22501.54 0.48 0.84 0.15 0.33 -0.16 -0.15 -0.13
GRAPHEDX 2.13 2.90 794.40 1458.75 496.47 2053.95 2431.26 0.82 0.84 0.91 0.65 0.81 0.75 0.62

Table 13. Performance comparison in terms of MSE and Ktau evaluated on Molhiv dataset for the models trained with C1 cost setting.
Evaluation is done for different test cost configurations C0–C6 across both Intra-test-pairs and Cross-train-test-pairs test schemes.

MSE (Lower is Better) Ktau (Higher is Better)

C0 C1 C2 C3 C4 C5 C6 C0 C1 C2 C3 C4 C5 C6

Intra-test-pairs
GMN-Match 84.22 77.21 4275.91 6678.87 51038.91 74439.42 35349.29 0.82 0.62 0.51 0.63 0.34 0.43 0.39
GMN-Embed 107.67 78.62 2927.40 5536.99 25347.75 44881.81 21171.43 0.79 0.61 0.61 0.57 0.36 0.37 0.55
SimGNN 1275.56 4.43 2996.78 5817.63 44547.96 67305.20 31133.68 -0.03 0.87 -0.24 -0.09 -0.18 -0.15 -0.18
GraphSim 74.41 6.93 47927.28 8157.99 896704.50 2437351.50 352252.34 0.60 0.85 0.78 0.65 0.71 0.64 0.66
GREED 31.87 78.62 400.23 1858.71 8493.46 16178.17 4247.03 0.47 0.60 0.70 0.59 0.78 0.65 0.76
GEDGNN 102.62 163.43 3487.30 7343.57 48346.82 72261.33 34322.52 0.42 0.38 0.45 0.37 0.41 0.40 0.40
ISONET 147.50 3.73 2228.07 3969.70 63199.26 215335.28 11747.15 0.65 0.87 0.50 0.23 -0.07 -0.13 0.23
H2MN 195.87 4.09 2536.28 1167.80 9423.36 10939.88 6988.54 0.58 0.87 0.71 0.56 0.81 0.71 0.78
EGSC 107.62 2.65 54097.84 42222.03 52102.21 77055.54 37587.10 0.76 0.90 -0.24 -0.13 -0.08 -0.05 -0.07
ERIC 112.62 3.67 2891.03 6922.14 48256.91 72547.16 34088.49 0.59 0.89 0.76 0.56 0.47 0.43 0.46
GRAPHEDX 1.67 2.55 1144.66 1723.36 659.43 2116.98 6071.16 0.90 0.90 0.94 0.76 0.86 0.83 0.61

Cross-train-test-pairs
GMN-Match 79.76 70.00 4079.30 6494.20 48387.97 70760.85 34252.86 0.81 0.61 0.51 0.62 0.32 0.42 0.36
GMN-Embed 97.68 77.28 2809.92 5400.62 24487.42 42955.95 20811.11 0.78 0.59 0.58 0.57 0.33 0.35 0.53
SimGNN 1337.13 3.91 2716.70 5514.31 41919.62 63642.57 29892.39 0.04 0.88 -0.17 -0.03 -0.13 -0.10 -0.11
GraphSim 68.33 4.30 47257.94 8083.15 887956.00 2442757.25 341169.41 0.59 0.87 0.79 0.65 0.72 0.65 0.66
GREED 31.38 72.56 453.63 1856.98 8266.98 15416.55 4394.33 0.46 0.60 0.67 0.58 0.78 0.64 0.75
GEDGNN 102.07 145.83 3254.97 7036.75 45692.87 68545.85 33114.59 0.41 0.40 0.45 0.35 0.40 0.39 0.40
ISONET 145.29 3.35 2135.27 3804.58 60669.10 209385.00 11648.02 0.65 0.88 0.53 0.23 -0.08 -0.09 0.19
H2MN 202.61 3.73 2357.89 1086.99 8995.01 10162.74 6971.52 0.58 0.88 0.71 0.56 0.80 0.70 0.77
EGSC 103.66 2.32 52582.15 40584.48 49878.92 73829.79 36611.28 0.76 0.91 -0.17 -0.07 -0.05 -0.02 -0.01
ERIC 90.50 2.61 2715.11 6634.09 46164.62 69539.44 33350.18 0.58 0.90 0.75 0.55 0.43 0.39 0.42
GRAPHEDX 1.59 2.50 1111.27 1645.50 631.74 2022.22 5596.26 0.90 0.91 0.94 0.76 0.86 0.83 0.61

We present the results for Code2(Table 11) Mutag(Table 11), Molpcba (Table 12), Molhiv (Table 9). The key observations
are as follows:

(1) Compared to models trained under equal-cost settings (C0), some models exhibit improved Ktau stability across cost
variations, indicating better adaptation. However, significant Ktau fluctuations persist, with drops of up to 0.4 for certain
models, showing that training with C1 alone is insufficient for full generalization to arbitrary cost configurations.

(2) GRAPHEDX achieves the lowest MSE across most cost settings, particularly in high-cost regimes (C3–C6), confirming
its robustness to structural variations. It also maintains the highest Ktau values, indicating that it preserves correct rank
orderings better than other baselines.

19

Position: Graph Matching Systems Deserve Better Benchmarks

(3) Models such as GMN-Match, GMN-Embed, and SimGNN continue to perform well on low-cost settings (C0–C2) but
degrade significantly as edge edit costs increase. The trend observed in C3–C6 suggests that training with unequal costs does
not fully enable these models to capture edge transformations effectively.

(4) ISONET achieves competitive Ktau scores, particularly in C1, suggesting its predictions remain relatively well-ordered.
However, its MSE remains high on high-cost settings, implying that it does not fully account for large structural changes
despite its ranking stability.

(5) GREED performs well in terms of Ktau, particularly in C3–C6, where it ranks second after GRAPHEDX. However,
GraphSim exhibits high MSE variability, performing poorly on certain cost settings, indicating limited adaptability to cost
variations.

(6) GEDGNN continues to struggle, with near-zero or negative Ktau in multiple settings, reaffirming its lack of generalization
across cost configurations.

Conclusion. Training with unequal cost settings (C1) helps improve generalization to some extent, but most models still
struggle to adapt to high-cost variations, particularly those focused only on node alignment. GRAPHEDX remains the most
robust model across different cost settings, both in terms of MSE and Ktau. Future work should explore more flexible
architectures that explicitly integrate variable cost structures into their learning framework to improve generalization further.

20

