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Abstract001

Large Language Models (LLMs) exhibit strong002
conversational abilities but often generate false-003
hoods. Prior work suggests that the truthful-004
ness of simple propositions can be represented005
as a single linear direction in a model’s inter-006
nal activations, but this may not fully capture007
its underlying geometry. In this work, we ex-008
tend the concept cone framework, recently in-009
troduced for modeling refusal, to the domain of010
truth. We identify multi-dimensional cones that011
causally mediate truth-related behavior across012
multiple LLM families. Our results are sup-013
ported by three lines of evidence: (i) causal014
interventions reliably flip model responses to015
factual statements; (ii) learned cones generalize016
across model architectures; and (iii) cone-based017
interventions preserve unrelated model behav-018
ior. These findings reveal the richer, multidi-019
rectional structure governing simple true/false020
propositions in LLMs and highlight concept021
cones as a promising tool for probing abstract022
behaviors.023

1 Introduction024

In recent years, Large Language Models (LLMs)025

have demonstrated remarkable capabilities across026

a wide range of natural language processing tasks,027

including machine translation, question answering,028

summarization, code generation, and dialogue sys-029

tems (Brown et al., 2020; Raffel et al., 2020; Zhang030

et al., 2020; OpenAI, 2023). Despite their suc-031

cesses, these models remain largely “black boxes”032

with billions of parameters interacting in complex033

ways that evade straightforward analysis (Casper034

et al., 2024). This presents challenges for ensuring035

alignment with human values and addressing vul-036

nerabilities to adversarial attacks (Hendrycks et al.,037

2023; Ngo et al., 2022; Hendrycks and Mazeika,038

2022). As these models are widely deployed in039

real-world applications, concerns about reliabil-040

ity and safety have driven a growing interest in041

model transparency (OpenAI, 2022; Olah et al.,042

Figure 1: Theoretical visualization of a 2D concept cone.
All directions in cone should causally mediate truthful
behavior. Given a true propositional input (e.g., "Paris is
the capital of France"), ablating along any basis vector
of this cone disrupts the model’s ability to generate a
truthful response. For example, the model will respond
with "No, Lyon is the capital" instead.

2020; Nanda et al., 2023). Specifically, identifying 043

how and why specific linguistic or behavioral fea- 044

tures are encoded within these models is one of the 045

central questions for mechanistic interpretability 046

research (Bereska and Gavves, 2024). 047

To analyze the internal representations of LLMs, 048

causal methods such as activation steering and di- 049

rectional ablation (Turner et al., 2024) are used to 050

verify whether modifying specific internal direc- 051

tions leads to corresponding changes in model be- 052

havior (Panickssery et al., 2023; Chen et al., 2024). 053

Together, probing and causal interventions have 054

provided insight into how abstract features mani- 055

fest in model representations. 056

Previous interpretability studies (Park et al., 057

2024b,a) have revealed that many high-level fea- 058
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tures in LLMs correspond to linear directions in059

the representation space, such as time (Gurnee and060

Tegmark, 2024), truth (Marks and Tegmark, 2024;061

Azaria and Mitchell, 2023), space (Gurnee and062

Tegmark, 2024), political perspective (Kim et al.,063

2025), and instruction-following (Heo et al., 2025).064

Other features such as sentiment (Tigges et al.,065

2023) and refusal (Arditi et al., 2024) have also066

been shown to exist linearly, although through a dif-067

ferent interpretability method known as difference-068

in-means (DIM). However, the underlying repre-069

sentations may be non-linear, and linear methods070

may only provide an approximation of some more071

complex structures (Bürger et al., 2024; Hilde-072

brandt et al., 2025; Engels et al., 2024). Recent073

work has developed more sophisticated non-linear074

frameworks and found multiple latent dimensions075

that capture the fundamental high-level concepts,076

for refusal in particular (Hildebrandt et al., 2025;077

Wollschläger et al., 2025).078

With sparse autoencoders and concept cones,079

researchers have characterized multi-dimensional080

representations of abstract features (Cunningham081

et al., 2023; Liu et al., 2023; Sharkey et al., 2023).082

Concept cones, in particular, are a gradient-based083

search algorithm that, given an initial set of candi-084

date vectors, learn a specific behavior. Each vector085

is validated to causally influence the target concept086

through steering or ablation. This nonlinear method087

extends the interpretability toolkit beyond linear as-088

sumptions by enabling both analysis and controlled089

intervention (Liu et al., 2023; Wollschläger et al.,090

2025).091

In this paper, we extend the concept cone frame-092

work to the domain of propositional fact, a subcat-093

egory of truthfulness, exploring how this property094

is internally represented by large language mod-095

els. Specifically, by applying this framework, we096

identified a possible multi-dimensional subspace097

whose basis vectors each contribute to the model’s098

ability to distinguish propositional true and false099

statements, revealing a structured internal represen-100

tation of this kind of truth in language models.101

2 Background102

2.1 Transformers103

Decoder-only transformers (Liu et al., 2018) map104

input tokens t = (t1, t2, . . . , tn) ∈ Vn to output105

probability distributions y = (y1,y2, . . . ,yn) ∈106

Rn×|V|. Let x(l)
i (t) ∈ Rdmodel denote the residual107

stream activation of the token at position i at the108

start of layer l.1 Each token’s residual stream is 109

initialized to its embedding x
(1)
i = Embed(ti), and 110

then undergoes a series of transformations across 111

L layers. Each layer’s transformation includes con- 112

tributions from attention and MLP components: 113

x̃
(l)
i = x

(l)
i + Attn(l)(x

(l)
1:i) (1) 114

x
(l+1)
i = x̃

(l)
i + MLP(l)(x̃

(l)
i ). (1) 115

The final logits logitsi = Unembed(x
(L+1)
i ) ∈ 116

R|V| are then transformed into probabilities over 117

output tokens yi = softmax(logitsi) ∈ R|V|.2 118

2.2 Internal Representations of Truth 119

Recent work suggests that LLMs can encode fac- 120

tuality internally, even if their outputs does not 121

always reflect it (Azaria and Mitchell, 2023). Meth- 122

ods like linear probing and DIM have been used 123

to identify directions in the activation space, often 124

in the residual stream, that correlate with whether 125

a statement is true or false (Marks and Tegmark, 126

2024; Bürger et al., 2024). We draw inspiration 127

from these works by using labeled data sets of true 128

and false English statements to investigate how 129

the truth is geometrically embedded in the hidden 130

states of the model. Similar to Marks and Tegmark 131

(2024) and Bürger et al. (2024), we define truth as 132

a specific operationalization: simple, unambiguous 133

propositional statements that can be labeled as true 134

or false. 135

Following Wollschläger et al. (2025), who define 136

refusal properties for vectors, we define analogous 137

truth properties for vectors. 138

Definition of Truth Property 139

• Monotonic Scaling: when using the direction 140

for activation addition/ablation 141

x̂
(l)
i = x̂

(l)
i + α · r, the model’s probability of 142

being more truthful should scale monotoni- 143

cally with α. So, the percentage by which the 144

model flips to the opposite answer (e.g. from 145

no to yes) should scale monotonically with α. 146

• Surgical Ablation Ablating the truth direction 147

through projection 148

x̃
(l)
i ← x

(l)
i − r̂r̂⊺x

(l)
i . (2) 149

should cause the model to shift the answer 150

from an initially true output to a false output. 151

1We shorten x
(l)
i (t) to x

(l)
i when the input t is clear from

context or unimportant.
2This high-level description omits details such as posi-

tional embeddings and layer normalization.

2



2.3 Model Interventions152

2.3.1 Activation Addition153

Given a linear direction vector that represents a154

concept r(l) ∈ Rdmodel extracted from layer l, we155

can use linear interventions such as addition and156

subtraction, scaled by some coefficient α ∈ R, to157

modulate the strength of the corresponding feature158

in the activation space. For example, adding a159

learned truth vector to the activations shifts the rep-160

resentation toward regions of the activation space161

associated with truthful outputs.162

x(l)′ ← x(l) + α · r(l). (3)163

Note that for activation addition, we intervene only164

at layer l, and across all token positions.165

2.3.2 Directional Ablation166

To investigate the role of a direction r̂ ∈ Rdmodel in167

the model’s computation, we can erase it from the168

model’s representations using directional ablation169

(Arditi et al., 2024).170

Directional ablation subtracts the component171

along r̂ for every residual stream activation x ∈172

Rdmodel :173

x′ ← x− r̂r̂⊺x. (4)174

We perform this operation at every activation x
(l)
i175

and x̃
(l)
i , across all layers l and all token positions176

i. This effectively prevents the model from ever177

representing this direction in its residual stream.178

2.4 Gradient-Based Methods179

Gradient-based methods are a class of interpretabil-180

ity techniques that use gradients of model outputs181

with respect to internal activations to identify in-182

fluential features or directions by revealing how183

small changes influence predictions. More recently,184

Wollschläger et al. (2025) have used gradients to185

steer model behavior: specific objectives, such as186

refusing unsafe inputs, can be encoded directly as187

loss functions. By optimizing a single vector that is188

added to or ablated from activations at specific lay-189

ers, models can be guided toward target behaviors190

(e.g., safe refusals) while minimizing side effects191

on unrelated outputs. When applied to truthfulness,192

this framework enables precise, interpretable inter-193

ventions and allows models to express truth-aligned194

responses without requiring full fine-tuning.195

2.5 Concept Cones 196

As described in Wollschläger et al. (2025), given a
set of orthonormal vectors V = [v1, v2, . . . , vk] ∈
Rdmodel×k a matrix whose columns are vectors
each exhibit truth properties. The cone is the set of
all nonnegative linear combinations of

RN = {
k∑

i=1

λivi | λi ≥ 0} \ {0}

All directions used in the cone correspond to the 197

same truth concept. The constraint {λi ≥ 0} en- 198

sures that all directions within the cone consistently 199

strengthen truth behavior. 200

3 Methodology 201

To investigate the existence and structure of di- 202

rections representing the notion of truthfulness 203

in language models, we start with a linear-probe 204

paradigm introduced by Marks and Tegmark 205

(2024), we locate a linear direction in the residual 206

stream by feeding the model raw factual statements 207

and regressing on their ground-truth labels. We re- 208

tain their definition of using factual statements that 209

are simple, unambiguous and have topical diversity. 210

We modify the following: instead of attaching 211

a label offline, we ask the model to answer each 212

statement with a binary “Yes” or “No” and use 213

that forced choice as the supervision signal. This 214

lets us treat the model’s own response distribution 215

as a self-labeled probe target, enabling activation 216

addition and ablation tests on the same forward 217

pass and providing targets for our gradient descent 218

approach. 219

3.1 Setup for Truth Representation Discovery 220

Each experiment involves prompting the LLM with 221

a short factual statement and requesting a binary 222

“Yes” or “No” response. We format the prompt 223

using a system instruction to make it clear that 224

the model should answer truthfully and concisely 225

(See Appendix C for all system prompts used). For 226

example: 227

System: Respond to the following 228

statements with either “Yes” or 229

“No” based on their factual 230

accuracy. 231

User: The Eiffel Tower is in 232

Paris. 233

Model: Yes ... 234

3



We assume that for sufficiently capable base235

models, correct classification is achieved under nor-236

mal conditions. Our goal is to test whether internal237

directions in activation space causally mediate this238

truthful behavior.239

3.2 Causal Interventions: Addition and240

Ablation241

Let r(l) ∈ Rdmodel be a candidate direction vector242

associated with the concept of truth at layer l. We243

apply addition and ablation as follows:244

• Directional Addition: Given a false state-245

ment (where the base model typically outputs246

“No”), we apply r(l) additively to shift the247

model’s behavior toward “Yes”.248

• Directional Ablation: Given a true state-249

ment, we remove the component along r(l)250

from the residual stream. If r(l) encodes truth,251

the model’s output should flip from “Yes” to252

“No”.253

3.3 Loss-Guided Concept Cone Discovery254

To discover a set of orthonormal basis vectors that255

span a cone encoding the concept of truth, we opti-256

mize a composite loss that encourages each vector257

to:258

1. Induce truth behavior when added to false259

prompts.260

2. Inhibit truth behavior when ablated from true261

prompts.262

3. Preserve unrelated model behavior (i.e., main-263

tain fidelity to non-targeted inputs).264

Objective. Following Wollschläger et al. (2025),265

our optimisation target is a three–term loss266

Ltotal = λ1Ladd + λ2Lablate + λ3Lretain,267

but with two implementation tweaks that adapt it268

to binary truth–judgement:269

1. Binary generation. At generation time we270

zero out every logit except the two tokens Yes271

and No and sample one token (t=1), which272

converts the addition/ablation terms into stan-273

dard binary cross-entropy losses.274

2. Wide-scope retention. To guard against col-275

lateral drift, Lretain is measured on 30-token276

continuations of Alpaca instructions, provid-277

ing a broad behavioural footprint.278

Formally the three components are: 279

Ladd = − 1

|Dfalse|
∑

x∈Dfalse

log ŷadd(x+ v)

(Add, target y=1)

280

Lablate = − 1

|Dtrue|
∑

x∈Dtrue

log
[
1− ŷablate(x− vv⊤x)

]
(Ablate, target y=0)

281

Lretain =
1

|Dalpaca|
∑

x∈Dalpaca

DKL

(
p0(y1:30 | x)

∥∥ pv(y1:30 | x)
)

(Retain, KL)

282

Here ŷadd and ŷablate are the post-softmax probabil- 283

ities of outputting Yes after, respectively, adding 284

or ablating the truth vector v at the chosen layer; 285

p0 and pv denote the unmodified and perturbed 30- 286

token distributions for Alpaca prompts. The scalars 287

λ1:3 balance steering power (Ladd,Lablate) against 288

fidelity (Lretain). 289

4 Experiments 290

4.1 Experiment 1: Localizing Truth Behavior 291

in Layers and Token Positions 292

Goal. We investigate which layers and token po- 293

sitions are most effective for capturing truth-related 294

behavior. Since a linear direction is simply a 295

one-dimensional concept cone, we first evaluate 296

whether truth can be causally mediated at each 297

layer using a single direction. If a model fails to en- 298

code truth behavior in a linear subspace at a given 299

layer, it is unlikely that a higher-dimensional cone 300

would succeed there either. 301

Procedure. To do this, we train a one- 302

dimensional cone (i.e., a linear direction) at each 303

layer and across the last five token positions, and 304

evaluate its Answer Switching Rate (ASR). Specifi- 305

cally, we measure the success of activation-based 306

interventions across multiple datasets and model 307

families by computing the ASR – the proportion 308

of inputs which affect model outputs after an inter- 309

vention. 310

Formally, we define the Answer Switching Rate 311

(ASR) as: 312

Definition of ASR 313

ASR =

# of prompts whose output
becomes untruthful after ablation

baseline # of prompts that the model
answers truthfully

314

In practice, the baseline is almost always the 315

same as the total number of prompts as the models 316
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Figure 2: The Answer Switching Rate (ASR) of one dimensional cones across layers for Qwen and Gemma models.
The layer numbers have been normalized across larger and smaller models. The effectiveness spikes rapidly in all
models in the 0.60-0.75 range of normalized layer numbers.

nearly always achieve full accuracy when answer-317

ing our simple propositions.318

Results. Across both model families and sizes,319

we find that truth-related directions reliably emerge320

in the middle to later layers (specifically, between321

60–75 percent of the normalized layer depth). As322

shown in Figure 2, ASR increases sharply in this323

range before decreasing sharply again in the very324

last layers. Additionally, we find that the final to-325

ken position consistently yields the strongest inter-326

ventions, consistent with prior work showing that327

high-level decisions often accumulate at the end328

of the sequence (Arditi et al., 2024; Bürger et al.,329

2024).330

Based on these findings, we restrict our concept331

cone search to this high-performing region of the332

network. This choice is motivated both by empiri-333

cal signal strength and by computational efficiency.334

4.2 Experiment 2: Truthfulness Steering335

Across Models and Dimensions with336

Cones337

Goal. The aim of this experiment is to assess the338

effect of increasing dimensionality on the ability339

causally mediate truthful behavior. While previous340

results show that a single direction can causally341

influence truthfulness, we seek to determine how342

many additional, orthogonal directions can also343

support this behavior before unrelated features be- 344

gin to dilute the effect. We do this across multiple 345

models from the Qwen-2.5 and Gemma-2 families, 346

spanning a range of parameter sizes. 347

Procedure. For each model, we construct con- 348

cept cones with dimensionalities ranging from 1 to 349

5. Each cone is generated using the optimization 350

procedure described in Section 3, which ensures the 351

basis vectors satisfy both causal and retention con- 352

straints. To evaluate generalization across the cone 353

space, we perform Monte Carlo sampling within 354

each cone by drawing random nonnegative combi- 355

nations of the basis vectors. We then measure the 356

effectiveness of each sampled direction using ASR 357

defined previously. 358

Results Table 1 presents the Answer Switching 359

Rate (ASR) across five language models (Qwen2.5- 360

3B, Qwen2.5-7B, Qwen2.5-14B, Gemma-2-2B, 361

and Gemma-2-9B) as a function of the dimensional- 362

ity of the concept cone used for intervention. Each 363

ASR value reflects the average success rate across 364

Monte Carlo samples drawn from the cone of that 365

dimension. 366

Interpretation. The results in Table 1 suggest 367

that increasing the dimensionality of the concept 368

cone generally improves the model’s ability to in- 369

ternalize and respond to truth-aligned interventions. 370
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Figure 3: The Answer Switching Rate (ASR) of cones from dimensions 1 to 5 across Qwen2.5 and Gemma2 models
with boxplots showing the Monte Carlo sampling.

3

Table 1: Answer Switching Rate after intervention
across models and cone dimensions.

Model 1(DIM) 2 3 4 5
Qwen 14B 100 100 98.6 91.2 100
Qwen 7B 100 100 100 100 100
Qwen 3B 98.6 45.1 67.2 78.9 65.3
Gemma 9B 100 100 100 98.6 97.3
Gemma 2B 100 100 53.7 43.1 27.1

Larger models, such as Qwen-2.5-7B and Gemma-371

2-9B, maintain high ASR even as dimensionality372

increases, meaning that higher dimension cones ex-373

ist within their activation space. This is consistent374

with findings from Wollschläger et al. (2025) in the375

domain of refusal behavior.376

However, the trend is not monotonic: beyond377

a certain point, ASR begins to decline, indicating378

that additional directions may start to capture un-379

related features and dilute the effectiveness of the380

intervention. This effect is especially evident in381

smaller models, where cone dimensions above 2 or382

3 yield diminishing or negative returns. Nonethe-383

less, the models still show multiple dimensions384

that independently support truth-aligned behavior.385

For example, both Qwen-7B and Gemma-9B main-386

tain near-100% ASR across all tested dimensions,387

showing that there is at least a 5-dimensional cone388

that causally mediates truth. 389

4.3 Experiment 3: Retention of General 390

Capabilities via KL Divergence 391

Goal. While the purpose of truth-direction inter- 392

ventions is to modify the model’s factual response 393

behavior, we must ensure they do not interfere with 394

unrelated capabilities. This experiment evaluates 395

how much the intervention alters model output on 396

a general instruction-following benchmark, using 397

KL divergence as a metric of deviation. This oper- 398

ationalizes the Lretain loss term defined in Section 399

3 400

Dataset. We use the ALPACA (Taori et al., 2023) 401

dataset, a popular instruction-following benchmark 402

designed to elicit helpful, safe, and general-purpose 403

completions. We randomly select 200 prompts that 404

are unlikely to invoke factual disputes (e.g., sum- 405

marization, rewriting, math, or basic instructions). 406

Procedure. We use the ALPACA (Taori et al., 407

2023) test set, a popular instruction-following 408

benchmark designed to elicit helpful, safe, and 409

general-purpose completions. We randomly se- 410

lect 200 prompts that are unlikely to invoke factual 411

disputes (e.g., summarization, rewriting, math, or 412

basic instructions). 413

6



For each cone that we generate, we compare the414

original model’s outputs to those produced after415

applying directional ablation using the discovered416

truth directions. The intervention is applied glob-417

ally (all tokens, all layers) as described in Equa-418

tion 4. As a threshold, we don’t consider cones419

with basis vectors with a KL Divergence above 0.1,420

as Following the precedent of papers like (Arditi421

et al., 2024), we use 0.1 as a threshold value for the422

KL consideration of .423

Results. We report the mean KL divergence424

across 200 Alpaca prompts in Table 2. We find that425

the truth-direction ablation leads to only minimal426

divergence from the original output distribution,427

suggesting that the intervention does not signifi-428

cantly affect unrelated capabilities.429

Table 2: Mean KL divergence on Alpaca prompts (lower
is better).

Model Mean KL Divergence
Qwen2.5-14B 0.038
Gemma-2-2B 0.045
Qwen2-7B 0.026
Gemma-2-9B 0.031

Interpretation. All models show low average430

KL divergence, especially the larger variants. This431

suggests that the discovered truth directions are432

highly specific and do not interfere with general433

instruction-following behavior. The effectiveness434

of Lretain as a regularization objective is empirically435

supported by this result.436

4.4 Experiment 4: DIM vs. Cone Alignment437

We measure how closely the classic Difference-in-438

Means (DIM) truth vector aligns with the orthonor-439

mal directions discovered by our Concept Cone.440

Cosine similarity is reported in Table 3; values near441

1 indicate strong overlap.442

Table 3: Cosine similarities between the DIM direction
and cone basis vectors in Gemma-2-9B, transposed for
dimensions 2–5.

Dim 2 Dim 3 Dim 4 Dim 5
v1 1.23 × 10−1 1.45 × 10−1 2.00 × 10−1 2.26 × 10−1

v2 −3.72 × 10−9 1.74 × 10−9 3.03 × 10−9 −6.98 × 10−10

v3 — 1.16 × 10−9 −2.33 × 10−9 −4.19 × 10−9

v4 — — 2.33 × 10−10 8.38 × 10−9

v5 — — — 3.03 × 10−9

Results. Only the first cone axis has any align-443

ment with DIM, confirming that DIM captures just444

one facet of the multi-dimensional truth subspace; 445

the remaining axes encode additional, orthogonal 446

structure. 447

5 Discussion 448

Our findings reveal that while a single direction 449

derived from the DIM method already captures 450

a strong causal representation of truth in LLMs, 451

it does not fully exhaust the structure underlying 452

truth-related behavior. Through our concept cone 453

approach, we identified additional orthogonal direc- 454

tions with low cosine similarity to the DIM vector 455

that also reliably steer model outputs on proposi- 456

tional truth tasks. This suggests that truthful behav- 457

ior may not be confined to a single axis—multiple 458

directions and can be independently influenced. 459

These directions likely correspond to distinct or se- 460

mantically adjacent components of factual reason- 461

ing, such as modality, certainty, or domain-specific 462

features. 463

The success of both DIM and cone-based inter- 464

ventions suggests that truth may be linearly separa- 465

ble in the model’s representation space. While the 466

directions that independently modulate truthful be- 467

havior can imply that this structure may be richer 468

than a single linear axis, it does not necessarily 469

prove that the underlying representation of truth 470

is nonlinear. It does, however, open up important 471

questions in the context of model deception, robust- 472

ness, and interpretability. If multiple, semantically 473

adjacent directions can influence truthfulness, mod- 474

els may be more vulnerable to manipulations that 475

subtly shift their outputs without obvious signs of 476

tampering within the first truth direction. Under- 477

standing the geometry of these truth-related sub- 478

spaces is essential for building models that are not 479

only aligned, but resilient to adversarial or unin- 480

tended shifts in behavior. 481

6 Conclusion and Future Directions 482

In this work, we showed that multi-dimensional 483

concept cones can reliably steer the behavior of 484

LLMs on True/False propositions across multiple 485

architectures and sizes, while minimally impacting 486

unrelated behaviors. Our results reveal that, be- 487

yond a single “truth direction,” there exists a robust 488

subspace of activation vectors whose positive com- 489

binations consistently modulate factuality. These 490

findings show increasing promise for concept cones 491

as an interpretability toolkit and underscore new 492

avenues and risks for alignment, calibration, and 493
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adversarial manipulation of model truthfulness.494

Several promising avenues remain. Concept-495

cone search reliably uncovers a subspace, but we496

still are yet to find semantically meaningful labels497

for the basis vectors. Future work could pair cones498

with automated clustering or sparse coding so that499

each basis vector corresponds to an interpretable500

facet of truth (e.g., temporal facts, geographic501

facts, commonsense). Extending the method to502

larger, instruction-tuned models and to multimodal503

settings would also test its robustness and reveal504

whether these semantic dimensions persist across505

scale and modality.506

7 Limitations507

7.1 Model Scale508

All experiments were conducted on relatively small509

open-source models (1.5B–7B parameters). While510

we observe clear directional structure in the resid-511

ual stream of mid-sized models, these findings may512

not generalize to larger frontier models or architec-513

tures with substantially different alignment proto-514

cols. Notably, smaller models exhibit lower ASR,515

with PCA visualizations revealing weaker separa-516

tion of truth-related directions, especially in later517

layers. This suggests that representational abstrac-518

tion of truth may emerge more clearly with scale.519

7.2 Scope520

Our operationalization of truth/factfulness is de-521

liberately narrow, limited to simple unambiguous522

propositional facts that have a clear true or false523

answer. While this allowed for clean experimental524

design, it does not capture more complex notions525

of truth that may be more widely applicable, such526

as context-dependent claims or statements that in-527

volve some kind of subjectivity. As a result, the528

discovered directions or cones may not generalize529

to broader or more nuanced conceptions of truth.530

Future work should explore whether similar ge-531

ometric structures exist for more complex truth532

representations, and whether the cone framework533

can be extended to handle contextual, graded, or534

higher-order reasoning tasks.535

We also restrict model outputs to binary536

"Yes"/"No" responses via logit masking. While537

ensuring clarity in supervision and evaluation, it538

artificially simplifies generation task and limit ap-539

plicability to more open-ended settings. In a more540

realistic setting, models express uncertainty and nu-541

anced responses that binary outputs do not capture.542

Our experiments span only two model families 543

(Gemma and Qwen). It remains an open ques- 544

tion whether the discovered directions are robust 545

to architectural variation or fine-tuning differences. 546

Evaluating cross-family generalization, especially 547

to models trained with stronger alignment (e.g., 548

RLHF or human preference tuning), is an impor- 549

tant direction for future work. 550

7.3 Subspace Understanding 551

Although we demonstrate that a low-dimensional 552

subspace (or “cone”) can causally mediate truth be- 553

havior, our method does not guarantee the discov- 554

ery of a maximally informative or interpretable sub- 555

space. We leave for future work the development 556

of principled methods for example using sparsity 557

constraints, disentanglement metrics, or unsuper- 558

vised clustering—to assign semantic meaning to 559

individual cone axes. 560

References 561

Sotiris Anagnostidis and Jannis Bulian. 2024. How 562
susceptible are llms to influence in prompts? arXiv 563
preprint arXiv:2408.11865. 564

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, 565
Nina Panickssery, Wes Gurnee, and Neel Nanda. 566
2024. Refusal in language models is mediated by 567
a single direction. In Advances in Neural Informa- 568
tion Processing Systems, volume 37, pages 136037– 569
136083. 570

Amos Azaria and Tom M. Mitchell. 2023. The inter- 571
nal state of an llm knows when it’s lying. Preprint, 572
arXiv:2304.13734. 573

Leonard Bereska and Efstratios Gavves. 2024. Mecha- 574
nistic interpretability for ai safety – a review. arXiv 575
preprint arXiv:2404.14082. 576

Tom Brown, Benjamin Mann, Nick Ryder, and 1 others. 577
2020. Language models are few-shot learners. In 578
Advances in Neural Information Processing Systems 579
(NeurIPS). 580

Lennart Bürger, Fred A. Hamprecht, and Boaz Nadler. 581
2024. Truth is universal: Robust detection of lies in 582
llms. arXiv preprint arXiv:2407.12831. 583

Stephen Casper, Carson Ezell, Charlotte Siegmann, 584
Noam Kolt, Taylor Lynn Curtis, Benjamin Bucknall, 585
Andreas Haupt, Kevin Wei, Jérémy Scheurer, Marius 586
Hobbhahn, Lee Sharkey, Satyapriya Krishna, Mar- 587
vin Von Hagen, Silas Alberti, Alan Chan, Qinyi Sun, 588
Michael Gerovitch, David Bau, Max Tegmark, and 589
2 others. 2024. Black-box access is insufficient for 590
rigorous ai audits. In Proceedings of the 2024 ACM 591
Conference on Fairness, Accountability, and Trans- 592
parency (FAccT ’24), pages 2254–2272. ACM. 593

8

https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2407.12831
https://arxiv.org/abs/2407.12831
https://arxiv.org/abs/2407.12831
https://doi.org/10.1145/3630106.3659037
https://doi.org/10.1145/3630106.3659037
https://doi.org/10.1145/3630106.3659037


Wei Chen, Zhen Huang, Liang Xie, Binbin Lin,594
Houqiang Li, Le Lu, Xinmei Tian, Deng Cai, Yong-595
gang Zhang, Wenxiao Wang, Xu Shen, and Jieping596
Ye. 2024. From yes-men to truth-tellers: Addressing597
sycophancy in large language models with pinpoint598
tuning. arXiv preprint arXiv:2409.01658.599

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert600
Huben, and Lee Sharkey. 2023. Sparse autoencoders601
find highly interpretable features in language models.602
arXiv preprint arXiv:2309.08600.603

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee,604
and Max Tegmark. 2024. Not all language model605
features are linear. arXiv preprint arXiv:2405.14860.606

Wes Gurnee and Max Tegmark. 2024. Language models607
represent space and time. In the Twelfth International608
Conference on Learning Representations.609

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,610
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.611
Toxigen: A large-scale machine-generated dataset for612
adversarial and implicit hate speech detection. arXiv613
preprint arXiv:2203.09509.614

Dan Hendrycks and Mantas Mazeika. 2022. X-risk615
analysis for ai research. CoRR, abs/2206.05862.616

Dan Hendrycks, Mantas Mazeika, and Thomas Wood-617
side. 2023. An overview of catastrophic ai risks.618
arXiv preprint arXiv:2306.12001.619

Jaewoo Heo, Christoph Heinze-Deml, Omar Elachqar,620
Shuning Ren, Udaya Nallasamy, Andrew Miller,621
Ka Ho Roy Chan, and Janarthanan Narain. 2025.622
Do llms "know" internally when they follow instruc-623
tions? In Proceedings of the International Confer-624
ence on Learning Representations (ICLR).625

Fabian Hildebrandt, Andreas Maier, Patrick Krauss, and626
Achim Schilling. 2025. Refusal behavior in large627
language models: A nonlinear perspective. arXiv628
preprint arXiv:2501.08145.629

Junsol Kim, James Evans, and Aaron Schein. 2025. Lin-630
ear representations of political perspective emerge631
in large language models. In Proceedings of the In-632
ternational Conference on Learning Representations633
(ICLR).634

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben635
Goodrich, Ryan Sepassi, Lukasz Kaiser, and636
Noam Shazeer. 2018. Generating Wikipedia by637
summarizing long sequences. arXiv preprint638
arXiv:1801.10198.639

Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang,640
Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou,641
and Yang Cao. 2023. Cones: Concept neurons in642
diffusion models for customized generation. arXiv643
preprint arXiv:2303.05125.644

Samuel Marks and Max Tegmark. 2024. The geometry645
of truth: Emergent linear structure in large language646
model representations of true/false datasets. In First647
Conference on Language Modeling.648

Erik Miehling, Michael Desmond, Karthikeyan Nate- 649
san Ramamurthy, Elizabeth Daly, and Kush R. et al. 650
Varshney. 2025. Evaluating the prompt steerability 651
of large language models. In Proceedings of NAACL 652
2025, pages 7874–7900. 653

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess 654
Smith, and Jacob Steinhardt. 2023. Progress mea- 655
sures for grokking via mechanistic interpretability. 656
arXiv preprint arXiv:2301.05217. 657

Richard Ngo, Lawrence Chan, and Soren Mindermann. 658
2022. The alignment problem from a deep learning 659
perspective. arXiv preprint arXiv:2209.00626. 660

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel 661
Goh, Michael Petrov, and Shan Carter. 2020. Zoom 662
in: An introduction to circuits. Distill, 5(3):e00024– 663
001. 664

OpenAI. 2022. Introducing chatgpt. https://openai. 665
com/blog/chatgpt/. Accessed: 2025-01-26. 666

OpenAI. 2023. Gpt-4 technical report. arXiv preprint 667
arXiv:2303.08774. 668

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg 669
Tong, Evan Hubinger, and Alexander Matt Turner. 670
2023. Steering llama 2 via contrastive activation 671
addition. arXiv preprint arXiv:2312.06681. 672

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024a. 673
The linear representation hypothesis and the geom- 674
etry of large language models. In Proceedings of 675
the 41st International Conference on Machine Learn- 676
ing, volume 235 of Proceedings of Machine Learning 677
Research, pages 39643–39666. PMLR. 678

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024b. 679
The Linear Representation Hypothesis and the Ge- 680
ometry of Large Language Models. In International 681
Conference on Machine Learning, pages 39643– 682
39666. PMLR. 683

Colin Raffel, Noam Shazeer, Adam Roberts, and 1 oth- 684
ers. 2020. Exploring the limits of transfer learning 685
with a unified text-to-text transformer. Journal of 686
Machine Learning Research, 21(140):1–67. 687

Lee Sharkey, Dan Braun, and Beren Millidge. 2023. 688
Taking features out of superposition with sparse au- 689
toencoders. Accessed: 2025-04-22. 690

Richard Socher, Alex Perelygin, Jean Wu, Jason 691
Chuang, Christopher D. Manning, Andrew Ng, and 692
Christopher Potts. 2013. Recursive deep models for 693
semantic compositionality over a sentiment treebank. 694
In Proceedings of the 2013 Conference on Empiri- 695
cal Methods in Natural Language Processing, pages 696
1631–1642, Seattle, Washington, USA. Association 697
for Computational Linguistics. 698

Rishi Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 699
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 700
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 701
An instruction-following llama model. https:// 702

9

https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2501.08145
https://arxiv.org/abs/2501.08145
https://arxiv.org/abs/2501.08145
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


github.com/tatsu-lab/stanford_alpaca. Ac-703
cessed: 2025-05-17.704

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger,705
and Neel Nanda. 2023. Linear Representations of706
Sentiment in Large Language Models. arXiv preprint707
arXiv:2310.15154.708

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,709
David Udell, Juan J. Vazquez, Ulisse Mini, and710
Monte MacDiarmid. 2024. Steering language mod-711
els with activation engineering. arXiv preprint712
arXiv:2308.10248.713

Haoran Wang and Kai Shu. 2023. Trojan activation714
attack: Red-teaming large language models using ac-715
tivation steering for safety-alignment. arXiv preprint716
arXiv:2311.09433.717

Tom Wollschläger, Jannes Elstner, Simon Geisler,718
Vincent Cohen-Addad, Stephan Günnemann, and719
Johannes Gasteiger. 2025. The geometry of re-720
fusal in large language models: Concept cones721
and representational independence. arXiv preprint722
arXiv:2502.17420.723

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-724
ter J Liu. 2020. Pegasus: Pre-training with extracted725
gap-sentences for abstractive summarization. In Pro-726
ceedings of the 37th International Conference on727
Machine Learning (ICML).728

Yuan Zhou, Meng Liu, and Xinyu Li. 2025. Understand-729
ing the relationship between prompts and response730
uncertainty in large language models. In ICLR 2025731
Workshop on Building Trustworthy AI.732

10

https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420


A Setup Details 733

A.1 Implementation Details 734

Experiments run on NVIDIA H100-80GB GPUs using PyTorch 2.20 and HF Transformers 4.41. Core 735

settings are in Table 6. 736

Table 4: Hardware and hyper-parameters.

GPUs 1×H100 (probing)
Batch size 4
Number of Samples (during training) 16
Precision bfloat16
Optimizer AdamW
Code base transformer-lens 0.9.1

nnsight 0.3.7

A.2 Datasets 737

Table 5: Full datasets used in experiments

Cities Link
Animals Link
Elements Link

A.3 Models 738

Table 6: All Models used in Experiments

Qwen2.5-3B-Instruct Link
Qwen2.5-7B-Instruct Link
Qwen2.5-14B-Instruct Link
Gemma-2-2B-IT Link

Gemma-2-9B-IT Link

B Additional Experiments 739

B.1 Sentiment 740

Previous literature (Tigges et al., 2023) suggests that sentiment has a linear representation, similar to 741

other concepts such as refusal (Arditi et al., 2024). We tried to extend our methodology to sentiment to 742

determine whether it has a concept cone representation. In particular, we trained a concept cone on the 743

Stanford Sentiment Treebank (Socher et al., 2013) which consists of 10,662 one-sentence movie reviews 744

with fully labeled parse trees. We failed to find a meaningful concept cone for sentiment. Further work 745

could explore alternative techniques for finding a higher-dimensional representation for sentiment. 746

B.2 Toxicity 747

We explored the existence of higher-dimensional representations for toxicity. We trained a concept cone 748

on the ToxiGen benchmark (Hartvigsen et al., 2022) which consists of 274,000 toxic and benign phrases 749

about minority groups such as such as Black, Asian, Latino, Jewish, Muslim, LGBTQ+, women, and 750

individuals with mental or physical disabilities. We first computed a difference-in-means (DIM) direction. 751

We also computed a direction by taking the difference between the activations of a student model that 752

generates toxic output (typically an instruction-tuned model) and a teacher model that doesn’t generate 753
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toxic output (typically an instruction-tuned model) on the dataset, a method described in Wang and Shu754

(2023). Testing this direction using ablation failed, as the resulting output was unintelligible. Testing the755

DIM direction using ablation did disable strong refusal (the model did not say "I cannot respond" outright)756

but would still refuse to generate toxic output. Since we were unable to obtain a valid linear direction for757

toxicity, we were unable to generate high-quality targets and as a result, were unable to train a valid cone.758

Further work could explore better methods for obtaining a direction for toxicity.759

C Full List of System Prompts760

System-level instructions exert a strong influence over an LLM’s eventual answer: recent work shows that761

even minor wording differences can sway a model toward a different multiple-choice option, particularly762

when those differences encode authority or confidence (Anagnostidis and Bulian, 2024); that prompts763

which explicitly acknowledge uncertainty often elicit more calibrated responses (Zhou et al., 2025); and764

that a model’s overall “steerability” rises or falls with the directness of the request phrasing (Miehling765

et al., 2025).766

Table 7: Example system prompts that force a binary Yes/No answer.

# Prompt wording
1 Respond to the following statement with a “Yes” or a “No.”
2 Respond to the following statements with either “Yes” or “No” based on their factual accuracy.
3 Answer with exactly one word—"Yes" if the statement is true, otherwise "No".
4 Based on your best estimate of the following statement, respond “Yes” or “No.”

D Token choice to represent True/False767

In our experiments, we frame factual statements as binary questions and constrain the model’s output768

to the tokens Yes and No. We also tested alternative tokenizations such as yes/no and true/false, but769

found that these variations had no significant effect on steering outcomes or ASR. Interestingly, when the770

output vocabulary is left unrestricted, models occasionally respond in non-English equivalents of “Yes”771

and “No” (e.g., Sí, Nein) following truth-direction interventions. This suggests that the underlying truth772

representation may generalize across lexical choices, although further investigation is needed to confirm773

cross-lingual consistency.774

E Cosine Similarities775

We see the same trend for cosine similarity across models, where other than the first dimension, all776

increasing dimensions have extremely low cosine similarity to the DIM direction.777

Table 8: Cosine similarities between the DIM direction and cone basis vectors in Qwen-2.5-9B, transposed for
dimensions 2–5.

Dim 2 Dim 3 Dim 4 Dim 5
v1 −1.57× 10−1 1.82× 10−1 1.34× 10−1 1.67× 10−1

v2 −4.23× 10−9 2.91× 10−9 −1.08× 10−9 −5.74× 10−10

v3 — 3.56× 10−9 −7.42× 10−9 6.13× 10−9

v4 — — 2.87× 10−9 −2.45× 10−10

v5 — — — 4.39× 10−9

F Code778

All code will be open-sourced on Github.779
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G PCA Visualizations 780

As a cursory introduction into understanding literature of linear representations of truth, we recreated 781

Principal Component Analysis visualizations of all models used in the experiments on the datasets onto 782

their top two principal components. All components are listed below. 783

Figure 4: Projections of Gemma-2-9B, representations of datasets onto their top two PCs, across all layers.
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Figure 5: Projections of Qwen2.5-7B representations of datasets onto their top two PCs, across all layers.
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