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Abstract

Large Language Models (LLMs) exhibit strong
conversational abilities but often generate false-
hoods. Prior work suggests that the truthful-
ness of simple propositions can be represented
as a single linear direction in a model’s inter-
nal activations, but this may not fully capture
its underlying geometry. In this work, we ex-
tend the concept cone framework, recently in-
troduced for modeling refusal, to the domain of
truth. We identify multi-dimensional cones that
causally mediate truth-related behavior across
multiple LLM families. Our results are sup-
ported by three lines of evidence: (i) causal
interventions reliably flip model responses to
factual statements; (ii) learned cones generalize
across model architectures; and (iii) cone-based
interventions preserve unrelated model behav-
ior. These findings reveal the richer, multidi-
rectional structure governing simple true/false
propositions in LLMs and highlight concept
cones as a promising tool for probing abstract
behaviors.

1 Introduction

In recent years, Large Language Models (LLMs)
have demonstrated remarkable capabilities across
a wide range of natural language processing tasks,
including machine translation, question answering,
summarization, code generation, and dialogue sys-
tems (Brown et al., 2020; Raffel et al., 2020; Zhang
et al., 2020; OpenAl, 2023). Despite their suc-
cesses, these models remain largely “black boxes”
with billions of parameters interacting in complex
ways that evade straightforward analysis (Casper
et al., 2024). This presents challenges for ensuring
alignment with human values and addressing vul-
nerabilities to adversarial attacks (Hendrycks et al.,
2023; Ngo et al., 2022; Hendrycks and Mazeika,
2022). As these models are widely deployed in
real-world applications, concerns about reliabil-
ity and safety have driven a growing interest in
model transparency (OpenAl, 2022; Olah et al.,

Figure 1: Theoretical visualization of a 2D concept cone.
All directions in cone should causally mediate truthful
behavior. Given a true propositional input (e.g., "Paris is
the capital of France"), ablating along any basis vector
of this cone disrupts the model’s ability to generate a
truthful response. For example, the model will respond
with "No, Lyon is the capital” instead.

2020; Nanda et al., 2023). Specifically, identifying
how and why specific linguistic or behavioral fea-
tures are encoded within these models is one of the
central questions for mechanistic interpretability
research (Bereska and Gavves, 2024).

To analyze the internal representations of LLMs,
causal methods such as activation steering and di-
rectional ablation (Turner et al., 2024) are used to
verify whether modifying specific internal direc-
tions leads to corresponding changes in model be-
havior (Panickssery et al., 2023; Chen et al., 2024).
Together, probing and causal interventions have
provided insight into how abstract features mani-
fest in model representations.

Previous interpretability studies (Park et al.,
2024b,a) have revealed that many high-level fea-



tures in LLMs correspond to linear directions in
the representation space, such as time (Gurnee and
Tegmark, 2024), truth (Marks and Tegmark, 2024;
Azaria and Mitchell, 2023), space (Gurnee and
Tegmark, 2024), political perspective (Kim et al.,
2025), and instruction-following (Heo et al., 2025).
Other features such as sentiment (Tigges et al.,
2023) and refusal (Arditi et al., 2024) have also
been shown to exist linearly, although through a dif-
ferent interpretability method known as difference-
in-means (DIM). However, the underlying repre-
sentations may be non-linear, and linear methods
may only provide an approximation of some more
complex structures (Biirger et al., 2024; Hilde-
brandt et al., 2025; Engels et al., 2024). Recent
work has developed more sophisticated non-linear
frameworks and found multiple latent dimensions
that capture the fundamental high-level concepts,
for refusal in particular (Hildebrandt et al., 2025;
Wollschléger et al., 2025).

With sparse autoencoders and concept cones,
researchers have characterized multi-dimensional
representations of abstract features (Cunningham
et al., 2023; Liu et al., 2023; Sharkey et al., 2023).
Concept cones, in particular, are a gradient-based
search algorithm that, given an initial set of candi-
date vectors, learn a specific behavior. Each vector
is validated to causally influence the target concept
through steering or ablation. This nonlinear method
extends the interpretability toolkit beyond linear as-
sumptions by enabling both analysis and controlled
intervention (Liu et al., 2023; Wollschléger et al.,
2025).

In this paper, we extend the concept cone frame-
work to the domain of propositional fact, a subcat-
egory of truthfulness, exploring how this property
is internally represented by large language mod-
els. Specifically, by applying this framework, we
identified a possible multi-dimensional subspace
whose basis vectors each contribute to the model’s
ability to distinguish propositional true and false
statements, revealing a structured internal represen-
tation of this kind of truth in language models.

2 Background

2.1 Transformers

Decoder-only transformers (Liu et al., 2018) map
input tokens t = (¢1,t2,...,t,) € V" to output
probability distributions y = (y1,y2,...,¥n) €
R™*IVI, Let xgl)(t) € Rémose denote the residual
stream activation of the token at position ¢ at the

start of layer I.! Each token’s residual stream is
initialized to its embedding xgl) = Embed(t;), and
then undergoes a series of transformations across
L layers. Each layer’s transformation includes con-
tributions from attention and MLP components:

% = xP 4+ aten®(x{) (1)
x = 20 4 wep® (z 1), M

The final logits logits, = Unembed(x§L+1)) c
R!VI are then transformed into probabilities over

output tokens y; = softmax(logits,) € RV 2

2.2 Internal Representations of Truth

Recent work suggests that LLMs can encode fac-
tuality internally, even if their outputs does not
always reflect it (Azaria and Mitchell, 2023). Meth-
ods like linear probing and DIM have been used
to identify directions in the activation space, often
in the residual stream, that correlate with whether
a statement is true or false (Marks and Tegmark,
2024; Biirger et al., 2024). We draw inspiration
from these works by using labeled data sets of true
and false English statements to investigate how
the truth is geometrically embedded in the hidden
states of the model. Similar to Marks and Tegmark
(2024) and Biirger et al. (2024), we define truth as
a specific operationalization: simple, unambiguous
propositional statements that can be labeled as true
or false.

Following Wollschlédger et al. (2025), who define
refusal properties for vectors, we define analogous
truth properties for vectors.

Definition of Truth Property

* Monotonic Scaling: when using the direction
for activation addition/ablation
1 =% 1 & . r, the model’s probability of
being more truthful should scale monotoni-
cally with a.. So, the percentage by which the
model flips to the opposite answer (e.g. from

no to yes) should scale monotonically with c.

* Surgical Ablation Ablating the truth direction
through projection

1 x e D), )

should cause the model to shift the answer
from an initially true output to a false output.

'We shorten xgl) (t) to xgl) when the input t is clear from

context or unimportant.
This high-level description omits details such as posi-
tional embeddings and layer normalization.



2.3 Model Interventions
2.3.1 Activation Addition

Given a linear direction vector that represents a
concept rl) € R%mowl extracted from layer [, we
can use linear interventions such as addition and
subtraction, scaled by some coefficient o € R, to
modulate the strength of the corresponding feature
in the activation space. For example, adding a
learned truth vector to the activations shifts the rep-
resentation toward regions of the activation space
associated with truthful outputs.

x0" e xO 4 o 1O, 3)

Note that for activation addition, we intervene only
at layer [, and across all token positions.

2.3.2 Directional Ablation

To investigate the role of a direction t € R%modl in
the model’s computation, we can erase it from the
model’s representations using directional ablation
(Arditi et al., 2024).

Directional ablation subtracts the component

along r for every residual stream activation x €
Rdmodel:

x — x — 1Tx. 4)

@

7

We perform this operation at every activation x
and igl), across all layers [ and all token positions
. This effectively prevents the model from ever

representing this direction in its residual stream.

2.4 Gradient-Based Methods

Gradient-based methods are a class of interpretabil-
ity techniques that use gradients of model outputs
with respect to internal activations to identify in-
fluential features or directions by revealing how
small changes influence predictions. More recently,
Wollschlédger et al. (2025) have used gradients to
steer model behavior: specific objectives, such as
refusing unsafe inputs, can be encoded directly as
loss functions. By optimizing a single vector that is
added to or ablated from activations at specific lay-
ers, models can be guided toward target behaviors
(e.g., safe refusals) while minimizing side effects
on unrelated outputs. When applied to truthfulness,
this framework enables precise, interpretable inter-
ventions and allows models to express truth-aligned
responses without requiring full fine-tuning.

2.5 Concept Cones

As described in Wollschlédger et al. (2025), given a
set of orthonormal vectors V' = [vy, v, ..., v;] €
R¥modet Xk 3 matrix whose columns are vectors
each exhibit truth properties. The cone is the set of
all nonnegative linear combinations of

k
Ry ={D_Awi| A > 0}\ {0}
i=1

All directions used in the cone correspond to the
same truth concept. The constraint {\; > 0} en-
sures that all directions within the cone consistently
strengthen truth behavior.

3 Methodology

To investigate the existence and structure of di-
rections representing the notion of truthfulness
in language models, we start with a linear-probe
paradigm introduced by Marks and Tegmark
(2024), we locate a linear direction in the residual
stream by feeding the model raw factual statements
and regressing on their ground-truth labels. We re-
tain their definition of using factual statements that
are simple, unambiguous and have topical diversity.

We modify the following: instead of attaching
a label offline, we ask the model to answer each
statement with a binary “Yes” or “No” and use
that forced choice as the supervision signal. This
lets us treat the model’s own response distribution
as a self-labeled probe target, enabling activation
addition and ablation tests on the same forward
pass and providing targets for our gradient descent
approach.

3.1 Setup for Truth Representation Discovery

Each experiment involves prompting the LLM with
a short factual statement and requesting a binary
“Yes” or “No” response. We format the prompt
using a system instruction to make it clear that
the model should answer truthfully and concisely
(See Appendix C for all system prompts used). For
example:

System: Respond to the following

statements with either “Yes” or
“No” based on their factual
accuracy.

User: The Eiffel Tower is in
Paris.

Model: Yes ...



We assume that for sufficiently capable base
models, correct classification is achieved under nor-
mal conditions. Our goal is to test whether internal
directions in activation space causally mediate this
truthful behavior.

3.2 Causal Interventions: Addition and
Ablation

Let rl) € Rl be a candidate direction vector
associated with the concept of truth at layer [. We
apply addition and ablation as follows:

* Directional Addition: Given a false state-
ment (where the base model typically outputs
“No™), we apply r(") additively to shift the
model’s behavior toward “Yes”.

* Directional Ablation: Given a true state-
ment, we remove the component along r()
from the residual stream. If r(") encodes truth,
the model’s output should flip from “Yes” to
“No”.

3.3 Loss-Guided Concept Cone Discovery

To discover a set of orthonormal basis vectors that
span a cone encoding the concept of truth, we opti-
mize a composite loss that encourages each vector
to:

1. Induce truth behavior when added to false
prompts.

2. Inhibit truth behavior when ablated from true
prompts.

3. Preserve unrelated model behavior (i.e., main-
tain fidelity to non-targeted inputs).

Objective. Following Wollschléger et al. (2025),
our optimisation target is a three—term loss

£total = >\1£add + )\2£ablate + >\3£retain7

but with two implementation tweaks that adapt it
to binary truth—judgement:

1. Binary generation. At generation time we
zero out every logit except the two tokens Yes
and No and sample one token (t=1), which
converts the addition/ablation terms into stan-
dard binary cross-entropy losses.

2. Wide-scope retention. To guard against col-
lateral drift, L etain 1S measured on 30-token
continuations of Alpaca instructions, provid-
ing a broad behavioural footprint.

Formally the three components are:

1

Lotd = —
wd ‘Dfalsel

Z log Gaaa(z + V)
€ Dpyise
(Add, target y=1)

1 N
£ablalc = _m Z IOg [1 - yablatc(aj - VVTQZ)]

€ Dirue
(Ablate, target y=0)

1

Lretiin = 75—
retain ‘ Dalpaca ‘

Z Dxw (po(y1:30 | @) || pv(yr:s0 | 2))
-TE’Dalpaca

(Retain, KL)

Here §agq4 and Yapiate are the post-softmax probabil-
ities of outputting Yes after, respectively, adding
or ablating the truth vector v at the chosen layer;
po and p, denote the unmodified and perturbed 30-
token distributions for Alpaca prompts. The scalars
A1.3 balance steering power (Ladd, Lablate) against
fidelity (Lretain)-

4 Experiments

4.1 Experiment 1: Localizing Truth Behavior
in Layers and Token Positions

Goal. We investigate which layers and token po-
sitions are most effective for capturing truth-related
behavior. Since a linear direction is simply a
one-dimensional concept cone, we first evaluate
whether truth can be causally mediated at each
layer using a single direction. If a model fails to en-
code truth behavior in a linear subspace at a given
layer, it is unlikely that a higher-dimensional cone
would succeed there either.

Procedure. To do this, we train a one-
dimensional cone (i.e., a linear direction) at each
layer and across the last five token positions, and
evaluate its Answer Switching Rate (ASR). Specifi-
cally, we measure the success of activation-based
interventions across multiple datasets and model
families by computing the ASR — the proportion
of inputs which affect model outputs after an inter-
vention.

Formally, we define the Answer Switching Rate

(ASR) as:
Definition of ASR
# of prompts whose output
becomes untruthful after ablation
ASR =

baseline # of prompts that the model
answers truthfully

In practice, the baseline is almost always the
same as the total number of prompts as the models
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Figure 2: The Answer Switching Rate (ASR) of one dimensional cones across layers for Qwen and Gemma models.
The layer numbers have been normalized across larger and smaller models. The effectiveness spikes rapidly in all
models in the 0.60-0.75 range of normalized layer numbers.

nearly always achieve full accuracy when answer-
ing our simple propositions.

Results. Across both model families and sizes,
we find that truth-related directions reliably emerge
in the middle to later layers (specifically, between
60-75 percent of the normalized layer depth). As
shown in Figure 2, ASR increases sharply in this
range before decreasing sharply again in the very
last layers. Additionally, we find that the final to-
ken position consistently yields the strongest inter-
ventions, consistent with prior work showing that
high-level decisions often accumulate at the end
of the sequence (Arditi et al., 2024; Biirger et al.,
2024).

Based on these findings, we restrict our concept
cone search to this high-performing region of the
network. This choice is motivated both by empiri-
cal signal strength and by computational efficiency.

4.2 Experiment 2: Truthfulness Steering
Across Models and Dimensions with
Cones

Goal. The aim of this experiment is to assess the
effect of increasing dimensionality on the ability
causally mediate truthful behavior. While previous
results show that a single direction can causally
influence truthfulness, we seek to determine how
many additional, orthogonal directions can also

support this behavior before unrelated features be-
gin to dilute the effect. We do this across multiple
models from the Qwen-2.5 and Gemma-2 families,
spanning a range of parameter sizes.

Procedure. For each model, we construct con-
cept cones with dimensionalities ranging from 1 to
5. Each cone is generated using the optimization
procedure described in Section 3, which ensures the
basis vectors satisfy both causal and retention con-
straints. To evaluate generalization across the cone
space, we perform Monte Carlo sampling within
each cone by drawing random nonnegative combi-
nations of the basis vectors. We then measure the
effectiveness of each sampled direction using ASR
defined previously.

Results Table 1 presents the Answer Switching
Rate (ASR) across five language models (Qwen2.5-
3B, Qwen2.5-7B, Qwen2.5-14B, Gemma-2-2B,
and Gemma-2-9B) as a function of the dimensional-
ity of the concept cone used for intervention. Each
ASR value reflects the average success rate across
Monte Carlo samples drawn from the cone of that
dimension.

Interpretation. The results in Table 1 suggest
that increasing the dimensionality of the concept
cone generally improves the model’s ability to in-
ternalize and respond to truth-aligned interventions.
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Figure 3: The Answer Switching Rate (ASR) of cones from dimensions 1 to 5 across Qwen2.5 and Gemma2 models

with boxplots showing the Monte Carlo sampling.

Table 1: Answer Switching Rate after intervention
across models and cone dimensions.

Model 1(DIM) 2 3 4 5

Qwen 14B 100 100 98.6 912 100
Qwen 7B 100 100 100 100 100
Qwen 3B 98.6 45.1 672 789 653
Gemma 9B 100 100 100 98.6 973
Gemma 2B 100 100 537 43.1 27.1

Larger models, such as Qwen-2.5-7B and Gemma-
2-9B, maintain high ASR even as dimensionality
increases, meaning that higher dimension cones ex-
ist within their activation space. This is consistent
with findings from Wollschlédger et al. (2025) in the
domain of refusal behavior.

However, the trend is not monotonic: beyond
a certain point, ASR begins to decline, indicating
that additional directions may start to capture un-
related features and dilute the effectiveness of the
intervention. This effect is especially evident in
smaller models, where cone dimensions above 2 or
3 yield diminishing or negative returns. Nonethe-
less, the models still show multiple dimensions
that independently support truth-aligned behavior.
For example, both Qwen-7B and Gemma-9B main-
tain near-100% ASR across all tested dimensions,
showing that there is at least a 5-dimensional cone

3

that causally mediates truth.

4.3 Experiment 3: Retention of General
Capabilities via KL Divergence

Goal. While the purpose of truth-direction inter-
ventions is to modify the model’s factual response
behavior, we must ensure they do not interfere with
unrelated capabilities. This experiment evaluates
how much the intervention alters model output on
a general instruction-following benchmark, using
KL divergence as a metric of deviation. This oper-
ationalizes the L eiin loss term defined in Section
3

Dataset. We use the ALPACA (Taori et al., 2023)
dataset, a popular instruction-following benchmark
designed to elicit helpful, safe, and general-purpose
completions. We randomly select 200 prompts that
are unlikely to invoke factual disputes (e.g., sum-
marization, rewriting, math, or basic instructions).

Procedure. We use the ALPACA (Taori et al.,
2023) test set, a popular instruction-following
benchmark designed to elicit helpful, safe, and
general-purpose completions. We randomly se-
lect 200 prompts that are unlikely to invoke factual
disputes (e.g., summarization, rewriting, math, or
basic instructions).



For each cone that we generate, we compare the
original model’s outputs to those produced after
applying directional ablation using the discovered
truth directions. The intervention is applied glob-
ally (all tokens, all layers) as described in Equa-
tion 4. As a threshold, we don’t consider cones
with basis vectors with a KL Divergence above 0.1,
as Following the precedent of papers like (Arditi
etal., 2024), we use 0.1 as a threshold value for the
KL consideration of .

Results. We report the mean KL divergence
across 200 Alpaca prompts in Table 2. We find that
the truth-direction ablation leads to only minimal
divergence from the original output distribution,
suggesting that the intervention does not signifi-
cantly affect unrelated capabilities.

Table 2: Mean KL divergence on Alpaca prompts (lower
is better).

Model Mean KL Divergence

Qwen2.5-14B 0.038

Gemma-2-2B 0.045

Qwen2-7B 0.026

Gemma-2-9B 0.031
Interpretation. All models show low average

KL divergence, especially the larger variants. This
suggests that the discovered truth directions are
highly specific and do not interfere with general
instruction-following behavior. The effectiveness
of Lretain @s a regularization objective is empirically
supported by this result.

4.4 Experiment 4: DIM vs. Cone Alignment

We measure how closely the classic Difference-in-
Means (DIM) truth vector aligns with the orthonor-
mal directions discovered by our Concept Cone.
Cosine similarity is reported in Table 3; values near
1 indicate strong overlap.

Table 3: Cosine similarities between the DIM direction
and cone basis vectors in Gemma-2-9B, transposed for
dimensions 2-5.

Dim 2 Dim 3 Dim 4 Dim 5
vy 1.23x 1077 1.45x10°T 2.00x 10°T  2.26 x 10~ L
vy —3.72x107° 1.74x107°% 3.03x107% —6.98 x 1071°
v3 — 1.16 x 1072 —2.33 x 1072 —4.19 x 10~°
V4 — — 2.33x1071%  8.38 x 107°
vs — — — 3.03 x 1077

Results. Only the first cone axis has any align-
ment with DIM, confirming that DIM captures just

one facet of the multi-dimensional truth subspace;
the remaining axes encode additional, orthogonal
structure.

5 Discussion

Our findings reveal that while a single direction
derived from the DIM method already captures
a strong causal representation of truth in LLMs,
it does not fully exhaust the structure underlying
truth-related behavior. Through our concept cone
approach, we identified additional orthogonal direc-
tions with low cosine similarity to the DIM vector
that also reliably steer model outputs on proposi-
tional truth tasks. This suggests that truthful behav-
ior may not be confined to a single axis—multiple
directions and can be independently influenced.
These directions likely correspond to distinct or se-
mantically adjacent components of factual reason-
ing, such as modality, certainty, or domain-specific
features.

The success of both DIM and cone-based inter-
ventions suggests that truth may be linearly separa-
ble in the model’s representation space. While the
directions that independently modulate truthful be-
havior can imply that this structure may be richer
than a single linear axis, it does not necessarily
prove that the underlying representation of truth
is nonlinear. It does, however, open up important
questions in the context of model deception, robust-
ness, and interpretability. If multiple, semantically
adjacent directions can influence truthfulness, mod-
els may be more vulnerable to manipulations that
subtly shift their outputs without obvious signs of
tampering within the first truth direction. Under-
standing the geometry of these truth-related sub-
spaces is essential for building models that are not
only aligned, but resilient to adversarial or unin-
tended shifts in behavior.

6 Conclusion and Future Directions

In this work, we showed that multi-dimensional
concept cones can reliably steer the behavior of
LLMs on True/False propositions across multiple
architectures and sizes, while minimally impacting
unrelated behaviors. Our results reveal that, be-
yond a single “truth direction,” there exists a robust
subspace of activation vectors whose positive com-
binations consistently modulate factuality. These
findings show increasing promise for concept cones
as an interpretability toolkit and underscore new
avenues and risks for alignment, calibration, and



adversarial manipulation of model truthfulness.

Several promising avenues remain. Concept-
cone search reliably uncovers a subspace, but we
still are yet to find semantically meaningful labels
for the basis vectors. Future work could pair cones
with automated clustering or sparse coding so that
each basis vector corresponds to an interpretable
facet of truth (e.g., temporal facts, geographic
facts, commonsense). Extending the method to
larger, instruction-tuned models and to multimodal
settings would also test its robustness and reveal
whether these semantic dimensions persist across
scale and modality.

7 Limitations

7.1 Model Scale

All experiments were conducted on relatively small
open-source models (1.5B—7B parameters). While
we observe clear directional structure in the resid-
ual stream of mid-sized models, these findings may
not generalize to larger frontier models or architec-
tures with substantially different alignment proto-
cols. Notably, smaller models exhibit lower ASR,
with PCA visualizations revealing weaker separa-
tion of truth-related directions, especially in later
layers. This suggests that representational abstrac-
tion of truth may emerge more clearly with scale.

7.2 Scope

Our operationalization of truth/factfulness is de-
liberately narrow, limited to simple unambiguous
propositional facts that have a clear true or false
answer. While this allowed for clean experimental
design, it does not capture more complex notions
of truth that may be more widely applicable, such
as context-dependent claims or statements that in-
volve some kind of subjectivity. As a result, the
discovered directions or cones may not generalize
to broader or more nuanced conceptions of truth.
Future work should explore whether similar ge-
ometric structures exist for more complex truth
representations, and whether the cone framework
can be extended to handle contextual, graded, or
higher-order reasoning tasks.

We also restrict model outputs to binary
"Yes"/"No" responses via logit masking. While
ensuring clarity in supervision and evaluation, it
artificially simplifies generation task and limit ap-
plicability to more open-ended settings. In a more
realistic setting, models express uncertainty and nu-
anced responses that binary outputs do not capture.

Our experiments span only two model families
(Gemma and Qwen). It remains an open ques-
tion whether the discovered directions are robust
to architectural variation or fine-tuning differences.
Evaluating cross-family generalization, especially
to models trained with stronger alignment (e.g.,
RLHF or human preference tuning), is an impor-
tant direction for future work.

7.3 Subspace Understanding

Although we demonstrate that a low-dimensional
subspace (or “cone”) can causally mediate truth be-
havior, our method does not guarantee the discov-
ery of a maximally informative or interpretable sub-
space. We leave for future work the development
of principled methods for example using sparsity
constraints, disentanglement metrics, or unsuper-
vised clustering—to assign semantic meaning to
individual cone axes.

References

Sotiris Anagnostidis and Jannis Bulian. 2024. How
susceptible are llms to influence in prompts? arXiv
preprint arXiv:2408.11865.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka,
Nina Panickssery, Wes Gurnee, and Neel Nanda.
2024. Refusal in language models is mediated by
a single direction. In Advances in Neural Informa-
tion Processing Systems, volume 37, pages 136037—
136083.

Amos Azaria and Tom M. Mitchell. 2023. The inter-
nal state of an 1lm knows when it’s lying. Preprint,
arXiv:2304.13734.

Leonard Bereska and Efstratios Gavves. 2024. Mecha-
nistic interpretability for ai safety — a review. arXiv
preprint arXiv:2404.14082.

Tom Brown, Benjamin Mann, Nick Ryder, and 1 others.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
(NeurlPS).

Lennart Biirger, Fred A. Hamprecht, and Boaz Nadler.
2024. Truth is universal: Robust detection of lies in
Ilms. arXiv preprint arXiv:2407.12831.

Stephen Casper, Carson Ezell, Charlotte Siegmann,
Noam Kolt, Taylor Lynn Curtis, Benjamin Bucknall,
Andreas Haupt, Kevin Wei, Jérémy Scheurer, Marius
Hobbhahn, Lee Sharkey, Satyapriya Krishna, Mar-
vin Von Hagen, Silas Alberti, Alan Chan, Qinyi Sun,
Michael Gerovitch, David Bau, Max Tegmark, and
2 others. 2024. Black-box access is insufficient for
rigorous ai audits. In Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Trans-
parency (FAccT '24), pages 2254-2272. ACM.


https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2304.13734
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2404.14082
https://arxiv.org/abs/2407.12831
https://arxiv.org/abs/2407.12831
https://arxiv.org/abs/2407.12831
https://doi.org/10.1145/3630106.3659037
https://doi.org/10.1145/3630106.3659037
https://doi.org/10.1145/3630106.3659037

Wei Chen, Zhen Huang, Liang Xie, Binbin Lin,
Hougqiang Li, Le Lu, Xinmei Tian, Deng Cai, Yong-
gang Zhang, Wenxiao Wang, Xu Shen, and Jieping
Ye. 2024. From yes-men to truth-tellers: Addressing
sycophancy in large language models with pinpoint
tuning. arXiv preprint arXiv:2409.01658.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
arXiv preprint arXiv:2309.08600.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee,
and Max Tegmark. 2024. Not all language model
features are linear. arXiv preprint arXiv:2405.14860.

Wes Gurnee and Max Tegmark. 2024. Language models
represent space and time. In the Twelfth International
Conference on Learning Representations.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
Toxigen: A large-scale machine-generated dataset for
adversarial and implicit hate speech detection. arXiv
preprint arXiv:2203.09509.

Dan Hendrycks and Mantas Mazeika. 2022. X-risk
analysis for ai research. CoRR, abs/2206.05862.

Dan Hendrycks, Mantas Mazeika, and Thomas Wood-
side. 2023. An overview of catastrophic ai risks.
arXiv preprint arXiv:2306.12001.

Jaewoo Heo, Christoph Heinze-Deml, Omar Elachgqar,
Shuning Ren, Udaya Nallasamy, Andrew Miller,
Ka Ho Roy Chan, and Janarthanan Narain. 2025.
Do llms "know" internally when they follow instruc-
tions? In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Fabian Hildebrandt, Andreas Maier, Patrick Krauss, and
Achim Schilling. 2025. Refusal behavior in large
language models: A nonlinear perspective. arXiv
preprint arXiv:2501.08145.

Junsol Kim, James Evans, and Aaron Schein. 2025. Lin-
ear representations of political perspective emerge
in large language models. In Proceedings of the In-
ternational Conference on Learning Representations

(ICLR).

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. 2018. Generating Wikipedia by
summarizing long sequences.  arXiv preprint
arXiv:1801.10198.

Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang,
Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou,
and Yang Cao. 2023. Cones: Concept neurons in
diffusion models for customized generation. arXiv
preprint arXiv:2303.05125.

Samuel Marks and Max Tegmark. 2024. The geometry
of truth: Emergent linear structure in large language
model representations of true/false datasets. In First
Conference on Language Modeling.

Erik Miehling, Michael Desmond, Karthikeyan Nate-
san Ramamurthy, Elizabeth Daly, and Kush R. et al.
Varshney. 2025. Evaluating the prompt steerability
of large language models. In Proceedings of NAACL
2025, pages 7874-7900.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint arXiv:2301.05217.

Richard Ngo, Lawrence Chan, and Soren Mindermann.
2022. The alignment problem from a deep learning
perspective. arXiv preprint arXiv:2209.00626.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill, 5(3):e00024—
001.

OpenAl 2022. Introducing chatgpt. https://openai.
com/blog/chatgpt/. Accessed: 2025-01-26.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg
Tong, Evan Hubinger, and Alexander Matt Turner.
2023. Steering llama 2 via contrastive activation
addition. arXiv preprint arXiv:2312.06681.

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024a.
The linear representation hypothesis and the geom-
etry of large language models. In Proceedings of
the 41st International Conference on Machine Learn-

ing, volume 235 of Proceedings of Machine Learning
Research, pages 39643-39666. PMLR.

Kiho Park, Yo Joong Choe, and Victor Veitch. 2024b.
The Linear Representation Hypothesis and the Ge-
ometry of Large Language Models. In International

Conference on Machine Learning, pages 39643—
39666. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, and 1 oth-
ers. 2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1-67.

Lee Sharkey, Dan Braun, and Beren Millidge. 2023.
Taking features out of superposition with sparse au-
toencoders. Accessed: 2025-04-22.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Rishi Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://


https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2409.01658
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2410.14516
https://arxiv.org/abs/2501.08145
https://arxiv.org/abs/2501.08145
https://arxiv.org/abs/2501.08145
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://openreview.net/forum?id=rwqShzb9li
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2303.05125
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

github.com/tatsu-lab/stanford_alpaca. Ac-
cessed: 2025-05-17.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger,
and Neel Nanda. 2023. Linear Representations of
Sentiment in Large Language Models. arXiv preprint
arXiv:2310.15154.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech,
David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. 2024. Steering language mod-
els with activation engineering. arXiv preprint
arXiv:2308.10248.

Haoran Wang and Kai Shu. 2023. Trojan activation
attack: Red-teaming large language models using ac-

tivation steering for safety-alignment. arXiv preprint
arXiv:2311.09433.

Tom Wollschlidger, Jannes Elstner, Simon Geisler,
Vincent Cohen-Addad, Stephan Gilinnemann, and
Johannes Gasteiger. 2025. The geometry of re-
fusal in large language models: Concept cones
and representational independence. arXiv preprint
arXiv:2502.17420.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning (ICML).

Yuan Zhou, Meng Liu, and Xinyu Li. 2025. Understand-
ing the relationship between prompts and response
uncertainty in large language models. In /CLR 2025
Workshop on Building Trustworthy Al.

10


https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2311.09433
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420
https://arxiv.org/abs/2502.17420

A Setup Details

A.1 Implementation Details

Experiments run on NVIDIA H100-80GB GPUs using PyTorch 2.20 and HF Transformers 4.41. Core
settings are in Table 6.

Table 4: Hardware and hyper-parameters.

GPUs 1xH100 (probing)

Batch size 4

Number of Samples (during training) 16

Precision bfloat16

Optimizer AdamW

Code base transformer-lens @.9.1

nnsight 0.3.7

A.2 Datasets

Table 5: Full datasets used in experiments

Cities Link
Animals Link
Elements Link

A.3 Models

Table 6: All Models used in Experiments

Qwen2.5-3B-Instruct ~ Link
Qwen2.5-7B-Instruct  Link
Qwen2.5-14B-Instruct  Link
Gemma-2-2B-IT Link
Gemma-2-9B-IT Link

B Additional Experiments

B.1 Sentiment

Previous literature (Tigges et al., 2023) suggests that sentiment has a linear representation, similar to
other concepts such as refusal (Arditi et al., 2024). We tried to extend our methodology to sentiment to
determine whether it has a concept cone representation. In particular, we trained a concept cone on the
Stanford Sentiment Treebank (Socher et al., 2013) which consists of 10,662 one-sentence movie reviews
with fully labeled parse trees. We failed to find a meaningful concept cone for sentiment. Further work
could explore alternative techniques for finding a higher-dimensional representation for sentiment.

B.2 Toxicity

We explored the existence of higher-dimensional representations for toxicity. We trained a concept cone
on the ToxiGen benchmark (Hartvigsen et al., 2022) which consists of 274,000 toxic and benign phrases
about minority groups such as such as Black, Asian, Latino, Jewish, Muslim, LGBTQ+, women, and
individuals with mental or physical disabilities. We first computed a difference-in-means (DIM) direction.
We also computed a direction by taking the difference between the activations of a student model that
generates toxic output (typically an instruction-tuned model) and a teacher model that doesn’t generate
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toxic output (typically an instruction-tuned model) on the dataset, a method described in Wang and Shu
(2023). Testing this direction using ablation failed, as the resulting output was unintelligible. Testing the
DIM direction using ablation did disable strong refusal (the model did not say "I cannot respond" outright)
but would still refuse to generate toxic output. Since we were unable to obtain a valid linear direction for
toxicity, we were unable to generate high-quality targets and as a result, were unable to train a valid cone.
Further work could explore better methods for obtaining a direction for toxicity.

C Full List of System Prompts

System-level instructions exert a strong influence over an LLM’s eventual answer: recent work shows that
even minor wording differences can sway a model toward a different multiple-choice option, particularly
when those differences encode authority or confidence (Anagnostidis and Bulian, 2024); that prompts
which explicitly acknowledge uncertainty often elicit more calibrated responses (Zhou et al., 2025); and
that a model’s overall “steerability” rises or falls with the directness of the request phrasing (Miehling
et al., 2025).

Table 7: Example system prompts that force a binary Yes/No answer.

Prompt wording
Respond to the following statement with a “Yes” or a “No.”

Respond to the following statements with either “Yes” or “No”” based on their factual accuracy.
Answer with exactly one word—''Yes"' if the statement is true, otherwise '""No''".

AW N~ 3

Based on your best estimate of the following statement, respond “Yes” or “No.”

D Token choice to represent True/False

In our experiments, we frame factual statements as binary questions and constrain the model’s output
to the tokens Yes and No. We also tested alternative tokenizations such as yes/no and true/false, but
found that these variations had no significant effect on steering outcomes or ASR. Interestingly, when the
output vocabulary is left unrestricted, models occasionally respond in non-English equivalents of “Yes”
and “No” (e.g., Si, Nein) following truth-direction interventions. This suggests that the underlying truth
representation may generalize across lexical choices, although further investigation is needed to confirm
cross-lingual consistency.

E Cosine Similarities

We see the same trend for cosine similarity across models, where other than the first dimension, all
increasing dimensions have extremely low cosine similarity to the DIM direction.

Table 8: Cosine similarities between the DIM direction and cone basis vectors in Qwen-2.5-9B, transposed for
dimensions 2-5.

Dim 2 Dim 3 Dim 4 Dim 5
vy —157x1071 1.82x 1071 1.34x 10! 1.67 x 1071
vy —4.23%x1072 291 x107? —1.08x1072 —574x10710

U3 — 356 x 1079 —742x 1072  6.13x 1079
V4 — — 287 x 1079 —2.45x 10710
Us — — — 4.39 x 1079

F Code

All code will be open-sourced on Github.
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G PCA Visualizations

As a cursory introduction into understanding literature of linear representations of truth, we recreated
Principal Component Analysis visualizations of all models used in the experiments on the datasets onto
their top two principal components. All components are listed below.
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Figure 4: Projections of Gemma-2-9B, representations of datasets onto their top two PCs, across all layers.
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Figure 5: Projections of Qwen2.5-7B representations of datasets onto their top two PCs, across all layers.
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