
Pearls from Pebbles: Improved Confidence Functions
for Auto-labeling

Anonymous Author(s)
Affiliation
Address
email

Abstract
Auto-labeling techniques produce labeled data with minimal manual annotations1

using the representations from self-supervised models and confidence scores. A2

popular technique, threshold-based auto-labeling (TBAL) trains model using these3

representations and manual annotations, and assigns model’s prediction as label4

to the points where model’s confidence score is greater than certain threshold.5

However, the model’s scores can be overconfident and lead to poor performance.6

We show that, calibration, a common remedy for the overconfidence problem, falls7

short in tackling this problem for TBAL. Thus, instead of using existing calibration8

methods, we introduce a framework for optimal confidence functions for TBAL9

and develop Colander, a method designed to maximize auto-labeling performance.10

We perform an extensive empirical evaluation of Colander and other confidence11

functions, using representations from CLIP and text embedding models for image12

and text data respectively. We find Colander achieves up to 60% improvement13

on coverage (the proportion of points labeled by model) over the baselines while14

maintaining error level below 5% and using the same amount of labeled data.15

1 Introduction16

The demand for labeled data in machine learning (ML) is perpetual. Threshold-based auto-labeling17

(TBAL) is a promising solution to obtain high-quality labeled data at low cost [41, 37, 49] using18

model’s confidence scores and self-supervision. It powers industry products like Amazon SageMaker19

Ground Truth [41]. The confidence function is critical to the TBAL workflow. Existing TBAL systems20

rely on common choices like softmax outputs from neural networks [37, 49]. These functions are21

not well aligned with the objective of the auto-labeling system. Using them results in substantially22

suboptimal coverage (Figure 1(a)). For this reason, we ask:23

What are the right choices of confidence functions for TBAL and how can we obtain them?
24

An ideal confidence function for auto-labeling will achieve the maximum coverage at a given auto-25

labeling error tolerance and thus will bring down the labeling cost significantly. Finding such an ideal26

function, however, is difficult because of the inherent tension between accuracy and coverage.27

Overconfidence further stymies hopes of balancing accuracy and coverage. While overconfidence28

is a challenge in general, it is exacerbated in TBAL: since models are trained on a small amount of29

labeled data, making the problem of designing confidence functions even more challenging. Figure30

1(a) shows that softmax scores are overconfident, resulting in poor auto-labeling performance.31

Several methods have been introduced to address overconfidence [10]. Applying these miss out on32

significant performance (Figure 1(b)), since the calibration goal differs from auto-labeling. From33

the auto-labeling standpoint, we seek minimum overlap between the correct and incorrect model34

prediction scores.35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

(a) Softmax (b) Temp. Scaling (c) Colander (Ours) (d) Coverage (e) Auto-labeling Err.

Figure 1: Scores distributions (Kernel Density Estimates) of a CNN model trained on CIFAR-10 data. (a)
softmax scores of the vanilla training procedure (SGD) (b) scores after post-hoc calibration using temperature
scaling and (c) scores from our Colander procedure applied on the same model. For training the CNN model
we use 4000 points drawn randomly and 1000 validation points (of which 500 are used for Temp. Scaling and
Colander). The test accuracy of the model is 55%. Figures (d) and (e) show the coverage and auto-labeling
error of these methods. The dotted-red line corresponds to a 5% error threshold.

We tackle these challenges by proposing a framework to learn suitable confidence functions for36

TBAL. We summarize our contributions as follows,37

1. We propose a principled framework to study the choices of confidence functions suitable for auto-38

labeling and provide a practical method (Colander) to learn confidence functions for efficient39

and reliable auto-labeling.40

2. We systematically study commonly used choices of scoring functions and calibration methods41

and demonstrate that they lead to poor auto-labeling performance.42

3. Through extensive empirical evaluation on real-world datasets, we show that using the confidence43

scores obtained using our procedure boosts auto-labeling performance significantly in comparison44

to common choices of confidence functions and calibration methods.45

2 Background and Motivation46

Notation. Let [m] := {1, 2, . . . ,m} for any natural number m. Let Xu be a set of unlabeled points47

drawn from some instance (feature) space X. This could either be the space of raw features or the48

representation space from some self-supervised model. Let Y = {1, . . . , k} be the label space. There49

is an unknown ground truth labeling function f∗ : X → Y. Let O be a noiseless oracle that provides50

the true label for any point x ∈X. Denote the model (hypothesis) class by H, where each h ∈ H is51

a function h : X → Y. Each classifier h also has an associated confidence function g : X → ∆k52

that quantifies the confidence of the prediction by model h ∈ H on any data point x ∈ X. Here,53

∆k is a (k − 1)-dimensional probability simplex. Let v[i] denote the ith component for any vector54

v ∈ Rd. For any point x ∈X the prediction is ŷ := h(x) and the associated confidence is g(x)[ŷ].55

The vector t denotes scores over k-classes, and t[y] denotes its yth entry, i.e., score for class y. Table56

2 contains a summary of the notation.57

Threshold-based Auto-labeling. Threshold-based auto-labeling (TBAL) seeks to obtain labeled58

datasets while reducing the labeling burden on humans. The input is a pool of unlabeled data Xu.59

It outputs, for each x ∈ Xu, a label ỹ ∈ Y. The output label could be either y, from the oracle60

(representing a human-obtained label), or ŷ, from the model. Let Nu be the number of unlabeled61

points, A ⊆ [Nu] the set of indices of auto-labeled points, and Xu(A) be these points. Let Na denote62

the size of the auto-labeled set A. The auto-labeling error, denoted by Ê(Xu(A)), and the coverage,63

denoted by P̂(Xu(A)), are defined as follows:64

Ê(Xu(A)) :=
1

Na

∑
i∈A

1(ỹi ̸= f∗(xi)), and P̂(Xu(A)) := |A|/Nu = Na/Nu. (1)

The goal of an auto-labeling algorithm is to label the dataset so that Ê(Xu(A)) ≤ ϵa while maximizing65

coverage P̂(Xu(A)) for any given ϵa ∈ [0, 1]. The TBAL algorithm proceeds iteratively. In each66

iteration, it queries labels for a subset of unlabeled points from the oracle. It trains a classifier from67

the model class H on the oracle-labeled data acquired till that iteration. It then uses the model’s68

confidence scores on the validation data to identify the region in the instance space, where the current69

classifier is confidently accurate and automatically labels the points in this region.70

2

Threshold-based Auto-labeling System + Colander

Unlabeled Data

Labeled Data

Train Model
Get Human-
labeled Data

Auto-label points with confidence

Learn confidence function for auto-labeling

Colander

Estimate Thresholds

Estimate errors on superlevel sets of the confidence scores

Figure 2: Threshold-based Auto-labeling with Colander: takes unlabeled data as input, selects a small subset
of data points, and obtains human labels for them to create D(i)

train and D
(i)
val for the ith iteration. Trains model ĥi

on D
(i)
train. In contrast to the standard TBAL procedure, here we randomly split D(i)

val into two parts, D(i)
cal and

D
(i)
th . Colander kicks in, takes ĥi and D

(i)
cal as input and learns a coverage maximizing confidence function ĝi

for ĥi. Using D
(i)
th and ĝi auto-labeling thresholds t̂i are determined to ensure the auto-labeled data has error at

most ϵa. After obtaining the thresholds the rest of the steps are the same as standard TBAL. The whole workflow
runs until all the data is labeled or another stopping criterion is met.

3 Proposed Method (Colander)71

3.1 Auto-labeling optimization framework72

In any iteration of TBAL, we have a model h trained on a subset of data labeled by the oracle. This73

model may not be highly accurate. However, it could be accurate in some regions of the instance74

space, and with the help of a confidence function g, we want to identify the points where the model is75

correct and auto-label them. As we saw earlier, arbitrary choices of g perform poorly on this task.76

Instead, we propose a framework to find the right function from a sufficiently rich family.77

Optimization problem. Let σ(α, z) := 1/(1 + exp(−αz)) denote the sigmoid function on R78

with scale parameter α ∈ R. It is easy to see that, for any g, y and t, g(x)[y] ≥ t[y] ⇐⇒79

σ(α, g(x)[y]− t[y]) ≥ 1/2. Using this fact, we define the following surrogates of the auto-labeling80

error and coverage:81

P̃(g, t|h, Dcal) :=
1

|Dcal|
∑

(x,y)∈Dcal

σ
(
α, g(x)[ŷ]− t[ŷ]

)
, (2)

Ẽ(g, t | h, Dcal) :=

∑
(x,y)∈Dcal

1
(
y ̸= ŷ

)
σ
(
α, g(x)[ŷ]− t[ŷ]

)∑
(x,y)∈Dcal

σ
(
α, g(x)[ŷ]− t[ŷ]

) , (3)

and the surrogate optimization problem as follows,82

argmin
g∈G,t∈Tk

−P̃(g, t | h, Dcal) + λ Ẽ(g, t | h, Dcal) (P1)

83

Here, λ ∈ R+ is the penalty term controlling the relative importance of the auto-labeling error and84

coverage. We tune it with the procedure discussed in Appendix B.4. The gap between the surrogate85

and actual coverage diminishes as α → ∞. We discuss this in the Appendix. Our framework is86

flexible with respect to the choice of G. We use 2-layer neural nets for G and use representations87

from the last two layers of ĥ as input for g. See Appendix for further details.88

Solving the surrogate optimization. The optimization problem (P1) is non-convex. Nevertheless,89

it is differentiable and we can apply gradient-based methods. We solve for g and t simultaneously90

using Adam [19]. Appendix B.4 lists the detailed procedure of our method in a TBAL system.91

4 Empirical Evaluation92

We conduct extensive empirical evaluation with variety of train-time and post-hoc calibration methods,93

and feature choices. We use Vanilla training with SGD [1, 3, 10]. Squentropy [16], Correctness94

3

Train-time Post-hoc MNIST CIFAR-10 20 Newsgroups Tiny-ImageNet
Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑)

Vanilla

Softmax 4.1±0.7 85.0±2.5 4.8±0.2 14.0±2.1 6.0±0.6 48.2±1.6 11.1±0.3 32.6±0.5

TS 7.8±0.6 94.2±0.5 7.3±0.3 23.2±0.7 9.7±0.6 60.7±2.3 16.3±0.5 37.4±1.5

Dirichlet 7.9±0.7 93.2±2.2 7.7±0.5 22.4±1.2 9.4±0.9 59.4±1.8 17.1±0.4 33.3±2.0

SB 6.7±0.5 92.6±1.5 6.1±0.4 18.6±1.1 8.1±0.6 58.1±1.8 15.7±0.6 35.4±1.2

Top-HB 7.4±1.4 93.1±3.6 6.0±0.7 15.6±1.9 9.2±1.0 59.0±2.0 16.6±0.5 37.6±2.2

Ours 4.2±1.5 95.6±1.4 3.0±0.2 78.5±0.2 2.5±1.1 80.6±0.7 1.4±2.1 59.2±0.8

CRL

Softmax 4.7±0.4 86.0±4.5 5.2±0.3 15.9±0.8 5.8±0.5 48.3±0.3 10.4±0.4 32.5±0.6

TS 8.0±0.8 94.8±0.8 6.8±0.8 20.3±1.1 9.5±1.0 61.7±1.6 15.8±0.6 37.4±1.7

Dirichlet 8.6±0.6 93.1±1.6 7.7±0.2 20.9±1.1 8.7±0.9 58.0±1.4 16.3±0.4 33.1±1.9

SB 7.4±0.8 93.1±2.7 5.9±0.9 17.9±1.5 8.9±1.1 57.9±3.9 15.0±0.4 35.5±1.2

Top-HB 7.7±0.8 94.1±1.5 4.4±0.5 12.3±0.4 8.8±1.0 58.8±2.7 16.5±0.5 38.9±1.6

Ours 4.5±1.4 95.6±1.3 2.2±0.6 77.9±0.2 1.8±1.2 81.3±0.5 2.8±2.1 61.2±1.4

FMFP

Softmax 4.8±0.8 84.2±4.1 4.9±0.4 15.6±1.7 5.4±0.7 45.4±1.9 10.5±0.3 32.4±1.4

TS 8.0±0.6 95.3±1.6 6.5±0.3 21.0±1.5 9.5±0.5 57.7±2.2 16.2±1.1 37.7±1.8

Dirichlet 8.2±1.3 94.0±2.2 6.9±0.4 21.7±1.2 8.9±1.0 56.6±2.4 17.4±0.8 33.0±1.8

SB 7.2±1.1 93.1±2.3 6.1±0.5 19.5±1.0 8.6±0.4 55.8±1.3 15.5±0.6 36.1±0.5

Top-HB 7.1±0.6 93.3±4.9 5.2±0.5 14.2±2.4 9.0±0.7 57.9±2.4 16.2±0.4 37.4±1.1

Ours 4.6±0.8 95.7±0.2 3.0±0.4 77.4±0.2 2.5±0.9 80.8±0.6 1.8±2.0 60.8±1.4

Squentropy

Softmax 3.7±1.0 88.2±3.9 5.2±0.5 21.2±1.8 4.6±0.4 52.0±1.2 7.8±0.3 36.2±0.8

TS 6.2±1.1 95.6±0.9 6.9±0.6 28.2±2.5 8.3±0.6 66.6±1.4 13.3±0.1 44.9±1.0

Dirichlet 6.5±1.2 95.9±0.8 7.3±0.3 29.4±1.1 7.8±0.6 64.0±1.3 14.1±0.3 42.5±0.7

SB 6.0±0.8 95.3±1.2 6.2±0.4 23.8±1.9 7.8±0.7 63.0±2.9 13.0±0.5 45.2±2.0

Top-HB 5.3±0.4 96.4±0.9 4.3±0.5 15.8±1.4 8.2±0.8 66.5±2.2 13.7±0.1 45.9±1.4

Ours 4.1±0.8 97.2±0.5 2.3±0.5 79.0±0.3 3.3±0.8 82.9±0.4 0.6±0.2 66.5±0.7

Table 1: In every round the error was enforced to be below 5%; ‘TS’ stands for Temperature Scaling,
‘SB’ stands for Scaling Binning, ‘Top-HB’ stands for Top-Label Histogram Binning. The column
Err stands for auto-labeling error and Cov stands for the coverage. Each cell value is mean ± std.
deviation observed on 5 repeated runs with different random seeds.

Ranking Loss (CRL) [30] and FMFP [53] as train-time methods. We pipe these with Colander95

and other post-hoc methods Temperature scaling [10], Top-Label Histogram-Binning [12], Scaling-96

Binning [24] and Dirichlet Calibration [22]. We use raw features for MNIST [26] and CIFAR-1097

[20], CLIP [38] embeddings for Tiny-ImageNet and FlagEmbedding [50] for 20 Newsgroups [29]98

The results are reported in Table 1.99

TBAL with Colander consistently achieves significantly higher coverage compared to vanilla100

training and softmax scores, especially on more complex datasets like Tiny-ImageNet, outperforming101

baseline models across all data settings. Post-hoc calibration techniques slightly improve coverage but102

at the cost of higher error, as their goal of mitigating overconfidence is not aligned with TBAL’s needs.103

Importantly, Colander is compatible with different train-time methods and amplifies performance104

gains, particularly when paired with Squentropy, where coverage increases by 6-7% and error105

decreases, outperforming other train-time approaches. In contrast, methods focused on ordinal106

ranking objectives, such as CRL and FMFP, perform poorly in the TBAL setting due to challenges107

like limited training data and reduced effectiveness in differentiating between correct and incorrect108

predictions when training error reaches zero after a few rounds.109

5 Conclusion110

We studied confidence scoring functions used in threshold-based auto-labeling (TBAL) and showed111

that the commonly used choices and calibration methods can often be a bottleneck, leading to poor112

performance. We proposed Colander to learn confidence functions that are aligned with the TBAL113

objective. We evaluated Colander extensively against common baselines on several real-world114

datasets and found that it improves the performance of TBAL significantly. A limitation of Colander115

is that, similar to other post-hoc methods it also requires validation data to learn the scores. Reducing116

(or eliminating) this dependence could be an interesting future work.117

4

References118

[1] S.-i. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):119

185–196, 1993.120

[2] Y. Bai, S. Mei, H. Wang, and C. Xiong. Don’t just blame over-parametrization for over-121

confidence: Theoretical analysis of calibration in binary classification. In M. Meila and122

T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,123

volume 139 of Proceedings of Machine Learning Research, pages 566–576. PMLR, 18–24 Jul124

2021.125

[3] L. Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg,126

2012. ISBN 978-3-642-35289-8.127

[4] Y. Chen, R. K. Vinayak, and B. Hassibi. Crowdsourced clustering via active querying: Practical128

algorithm with theoretical guarantees. In Proceedings of the AAAI Conference on Human129

Computation and Crowdsourcing, volume 11, pages 27–37, 2023.130

[5] C. Corbière, N. THOME, A. Bar-Hen, M. Cord, and P. Pérez. Addressing failure prediction by131

learning model confidence. In Advances in Neural Information Processing Systems 32, pages132

2902–2913. 2019.133

[6] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently134

improving generalization. In International Conference on Learning Representations, 2021.135

[7] D. Y. Fu, M. F. Chen, F. Sala, S. M. Hooper, K. Fatahalian, and C. Ré. Fast and three-rious:136

Speeding up weak supervision with triplet methods. In Proceedings of the 37th International137

Conference on Machine Learning (ICML 2020), 2020.138

[8] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,139

P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural networks. arXiv preprint140

arXiv:2107.03342, 2021.141

[9] R. G. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In Advances in Neural142

Information Processing Systems 24, pages 558–566. 2011.143

[10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In144

International conference on machine learning, pages 1321–1330. PMLR, 2017.145

[11] C. Gupta and A. Ramdas. Distribution-free calibration guarantees for histogram binning without146

sample splitting. In International Conference on Machine Learning, pages 3942–3952. PMLR,147

2021.148

[12] C. Gupta and A. Ramdas. Top-label calibration and multiclass-to-binary reductions. In149

International Conference on Learning Representations, 2022.150

[13] S. Hanson and L. Pratt. Comparing biases for minimal network construction with back-151

propagation. In D. Touretzky, editor, Advances in Neural Information Processing Systems,152

volume 1. Morgan-Kaufmann, 1988.153

[14] M. Hein, M. Andriushchenko, and J. Bitterwolf. Why relu networks yield high-confidence154

predictions far away from the training data and how to mitigate the problem. 2018.155

[15] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution156

examples in neural networks. In International Conference on Learning Representations, 2017.157

[16] L. Hui, M. Belkin, and S. Wright. Cut your losses with squentropy. In Proceedings of the 40th158

International Conference on Machine Learning, pages 14114–14131, 2023.159

[17] S. Hussain. Cifar 10- cnn using pytorch, Jul 2021. URL https://www.kaggle.com/code/160

shadabhussain/cifar-10-cnn-using-pytorch.161

[18] D. R. Karger, S. Oh, and D. Shah. Budget-optimal crowdsourcing using low-rank matrix162

approximations. In 2011 49th Annual Allerton Conference on Communication, Control, and163

Computing (Allerton), pages 284–291. IEEE, 2011.164

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint165

arXiv:1412.6980, 2014.166

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.167

5

https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch
https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch
https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch

[21] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In Proceedings168

of the 4th International Conference on Neural Information Processing Systems, NIPS’91,169

page 950–957, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN170

1558602224.171

[22] M. Kull, M. Perello Nieto, M. Kängsepp, T. Silva Filho, H. Song, and P. Flach. Beyond temper-172

ature scaling: Obtaining well-calibrated multi-class probabilities with dirichlet calibration. In173

Advances in Neural Information Processing Systems, volume 32, 2019.174

[23] A. Kumar, S. Sarawagi, and U. Jain. Trainable calibration measures for neural networks from175

kernel mean embeddings. In Proceedings of the 35th International Conference on Machine176

Learning, volume 80 of Proceedings of Machine Learning Research, pages 2805–2814. PMLR,177

10–15 Jul 2018.178

[24] A. Kumar, P. S. Liang, and T. Ma. Verified uncertainty calibration. Advances in Neural179

Information Processing Systems, 32, 2019.180

[25] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.181

[26] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.182

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document183

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.184

[28] A. Mazumdar and B. Saha. Clustering with noisy queries. In Advances in Neural Information185

Processing Systems, volume 30, 2017.186

[29] T. Mitchell. Twenty Newsgroups. UCI Machine Learning Repository, 1999.187

[30] J. Moon, J. Kim, Y. Shin, and S. Hwang. Confidence-aware learning for deep neural networks.188

In Proceedings of the 37th International Conference on Machine Learning, volume 119, pages189

7034–7044, 2020.190

[31] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania. Calibrating deep191

neural networks using focal loss. Advances in Neural Information Processing Systems, 33:192

15288–15299, 2020.193

[32] R. Müller, S. Kornblith, and G. E. Hinton. When does label smoothing help? Advances in194

neural information processing systems, 32, 2019.195

[33] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence196

predictions for unrecognizable images. In Proceedings of the IEEE conference on computer197

vision and pattern recognition, pages 427–436, 2015.198

[34] A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning.199

In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, page200

625–632, 2005. ISBN 1595931805.201

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,202

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,203

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine204

Learning Research, 12:2825–2830, 2011.205

[36] J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized206

likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.207

[37] H. Qiu, K. Chintalapudi, and R. Govindan. MCAL: Minimum cost human-machine active208

labeling. In The Eleventh International Conference on Learning Representations, 2023.209

[38] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,210

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.211

In International conference on machine learning, pages 8748–8763. PMLR, 2021.212

[39] A. J. Ratner, C. M. D. Sa, S. Wu, D. Selsam, and C. Ré. Data programming: Creating large213

training sets, quickly. In Proceedings of the 29th Conference on Neural Information Processing214

Systems (NIPS 2016), Barcelona, Spain, 2016.215

[40] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy. Learning216

from crowds. Journal of Machine Learning Research, 11(43):1297–1322, 2010.217

[41] SGT. Aws sagemaker ground truth. https://aws.amazon.com/sagemaker/218

data-labeling/, 2022. Accessed: 2024-05-22.219

6

https://aws.amazon.com/sagemaker/data-labeling/
https://aws.amazon.com/sagemaker/data-labeling/
https://aws.amazon.com/sagemaker/data-labeling/

[42] C. Shin, W. Li, H. Vishwakarma, N. C. Roberts, and F. Sala. Universalizing weak supervision.220

In International Conference on Learning Representations, 2022.221

[43] A. Sorokin and D. Forsyth. Utility data annotation with amazon mechanical turk. In 2008 IEEE222

Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages223

1–8, 2008. doi: 10.1109/CVPRW.2008.4562953.224

[44] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intrigu-225

ing properties of neural networks. In International Conference on Learning Representations,226

2014.227

[45] R. K. Vinayak and B. Hassibi. Crowdsourced clustering: Querying edges vs triangles. In228

Proceedings of the 30th International Conference on Neural Information Processing Systems,229

NIPS’16, 2016.230

[46] R. K. Vinayak, S. Oymak, and B. Hassibi. Graph clustering with missing data: Convex231

algorithms and analysis. Advances in Neural Information Processing Systems, 27, 2014.232

[47] R. K. Vinayak, T. Zrnic, and B. Hassibi. Tensor-based crowdsourced clustering via triangle233

queries. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing234

(ICASSP), pages 2322–2326. IEEE, 2017.235

[48] H. Vishwakarma and F. Sala. Lifting weak supervision to structured prediction. In Advances in236

Neural Information Processing Systems, 2022.237

[49] H. Vishwakarma, H. Lin, F. Sala, and R. K. Vinayak. Promises and pitfalls of threshold-based238

auto-labeling. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.239

[50] S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff. C-pack: Packaged resources to advance general240

chinese embedding, 2023.241

[51] B. Zadrozny and C. Elkan. Learning and making decisions when costs and probabilities are both242

unknown. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge243

discovery and data mining, pages 204–213, 2001.244

[52] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability245

estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge246

discovery and data mining, pages 694–699, 2002.247

[53] F. Zhu, Z. Cheng, X.-Y. Zhang, and C.-L. Liu. Rethinking confidence calibration for failure248

prediction. In European Conference on Computer Vision, pages 518–536. Springer, 2022.249

7

Supplementary Material Organization250

The supplementary material is organized as follows. We provide deferred details of background and251

motivation section in Appendix A of the method in Appendix B. Then, in Appendix C, we provide252

additional experimental results and details of the experiment protocol and hyperparameters used for253

the experiments. Our code with instructions to run, is uploaded along with the paper.254

Contents255

1 Introduction 1256

2 Background and Motivation 2257

3 Proposed Method (Colander) 3258

3.1 Auto-labeling optimization framework . 3259

4 Empirical Evaluation 3260

5 Conclusion 4261

A Appendix to Section 2 9262

A.1 Detailed Comparison with Active Learning and Self Training 9263

A.2 Details of the motivating experiment in Section 2 9264

B Appendix on Our Method 10265

B.1 Detailed Algorithms . 10266

B.2 Tightness of surrogates. 10267

B.3 Active Querying Strategy. 10268

B.4 TBAL procedure with Colander . 10269

B.5 Glossary . 12270

C Additional Experiments and Details 15271

C.1 Experiments on Nt, Nv and ν . 15272

C.2 Experiments on Colander input . 16273

C.3 Experiments on ϵa . 17274

C.4 Experiments on multiple rounds . 17275

C.5 Experiments on different architectures . 19276

C.6 Hyperparameters . 19277

C.7 Train-time and post-hoc methods . 19278

C.7.1 Train-time methods . 19279

C.7.2 Post-hoc methods . 20280

C.8 Compute resources . 20281

C.9 Detailed dataset and model . 21282

C.10 Detailed experiments protocol . 21283

8

D Broader Impact 22284

E Related Work 22285

F NeurIPS Paper Checklist 22286

A Appendix to Section 2287

A.1 Detailed Comparison with Active Learning and Self Training288

To illustrate the differences between TBAL and the combination of Active Learning (AL) and Self-289

Training for the task of data labeling, we run an experiment on the 2 concentric circles data setting as290

used in [49]. The details are as follows:291

Data setting. We generate two concentric circles with points in the outer circle belonging to one292

class and the inner circle belonging to the other class. The total number of points generated is 10,000293

of which we use 2000 for validation.294

200 400 600 800 1000
Max Training Points (Nt)

0

20

40

60

80

100

Co
ve

ra
ge

 (%
)

Au
to

-L
ab

el
in

g
Er

ro
r (

%
)

10
30
50

200 400 600 800 1000
Max Training Points (Nt)

0

2

AL + Self-Training AL + Self-Training + SC TBAL a

Figure 3: Results of experiment on 2-concentric circles to show
the differences between TBAL, AL and ST.

Methods. We run TBAL, AL+Self-295

Training, and AL+Self-Training+SC,296

using logistic regression. The com-297

bination of AL+Self-Training means,298

in each iteration, the algorithm299

queries human-labeled data points and300

pseudo-labels the points in the un-301

labeled data using self-training and302

adds both the human-labeled and303

pseudo-labeled points in the training304

pool. With this procedure, AL+Self-305

Training first learns the best classifier306

(ĥal−st) with the given budget of max-307

imum training points (Nt) that can be308

queried from humans. Then it auto-labels all the remaining unlabeled points with this classifier’s pre-309

dictions. For AL+Self-Training+SC, we do selective auto-labeling using ĥal−st, i.e., only auto-label310

the points where the classifier will have an error at most ϵa. We use ϵa =1% here.311

Results and Discussion. The Figure 3 shows auto-labeling error and coverage achieved by these312

methods when run with different choices of human-labeled data budget for training. First, we can see313

that even with linear classifiers TBAL is able to auto-label a huge chunk of the data (high coverage)314

while maintaining auto-labeling error below the tolerance level of 1% On the other hand, methods315

like AL+Self-Training (+SC) that try to first learn the optimal classifier in the given function class316

either have high auto-labeling error or very low coverage. These results are also consistent with317

the observations in [49] on the comparison between TBAL and AL, AL+SC. While such findings318

confirm the notion that there are differences—and, at least in some settings, advantages—for the319

TBAL approach compared to other techniques, we reiterate that our goal is to understand and improve320

the role of the confidence function within TBAL, rather than comparing TBAL to other techniques.321

A.2 Details of the motivating experiment in Section 2322

We run TBAL for a single round on the CIFAR-10 dataset with a SimpleCNN classification model323

with around 5.8M parameters [17]. We randomly sampled 4,000 points for training the classifier and324

randomly sampled 1,000 points as validation data. We train the model to zero training error using325

minibatch SGD with learning rate 1e-3, weight decay 1e-3 [13, 21], momentum 0.9, and batch size326

32. The trained model has validation accuracy around 55%, implying we could hope to get coverage327

around 55%. We run the auto-labeling procedure with an error tolerance of 5%.328

9

B Appendix on Our Method329

B.1 Detailed Algorithms330

See Algorithms 1 and 2.331

B.2 Tightness of surrogates.332

The surrogate auto-labeling error and coverage introduced to relax the optimization problem (??) is333

indeed a good approximation of the actual auto-labeling error and coverage. To see this, we use a334

toy data setting of x ∼ Uniform(0, 1) with 1−dimensional threshold classifier hθ(x) = 1(x ≥ θ).335

For any x, let true labels y = h0.5(x) and consider the confidence function gw(x) = |w − x|. Let336

ŷ = h0.25(x) and consider the points on the side where ŷ = 1. We plot actual and surrogate errors in337

Figure 4(a) and the surrogate and actual coverage in Figure 4(a).338

0.0 0.5 1.0
w (parameter of g))

0.0

0.2

0.4
A

ut
o

La
be

lin
g

Er
ro

r

t = 0.125, α = 1.0

Surrogate Err.
Actual Err.

0.0 0.5 1.0
w (parameter of g))

0.0

0.2

0.4

t = 0.125, α = 10.0

Surrogate Err.
Actual Err.

0.0 0.5 1.0
w (parameter of g))

0.0

0.2

0.4

t = 0.125, α = 50.0

Surrogate Err.
Actual Err.

(a) Auto-labeling error and surrogate error at various α.

0.0 0.5 1.0
w (parameter of g)

0.4

0.6

0.8

A
ut

o
La

be
lin

g
C

ov
er

ag
e t = 0.125, α = 1.0

Surrogate Cov.
Actual Cov.

0.0 0.5 1.0
w (parameter of g)

0.4

0.6

0.8

t = 0.125, α = 10.0
Surrogate Cov.
Actual Cov.

0.0 0.5 1.0
w (parameter of g)

0.4

0.6

0.8

t = 0.125, α = 50.0
Surrogate Cov.
Actual Cov.

(b) Auto-labeling coverage and surrogate coverage at various α.

Figure 4: Illustration of the tightness of surrogate error and
coverage functions based on the choice of α.

for three choices of α. As expected,339

the gap between the surrogates and340

the actual functions diminishes as we341

increase the α.342

B.3 Active Querying Strategy.343

We employ the margin-random query344

approach to select the next batch of345

training data. This method involves346

sorting points based on their margin347

(uncertainty) scores and selecting the348

top Cnb points, from which nb points349

are randomly chosen. This strategy350

provides a straightforward and com-351

putationally efficient way to balance352

the exploration-exploitation trade-off.353

It’s important to acknowledge the ex-354

istence of alternative active-querying355

strategies; however, we adopt the356

margin-random approach as our stan-357

dard to maintain a focus on evalu-358

ating various choices of confidence359

functions for auto-labeling. Note360

that while we use the new confidence361

scores computed using post-hoc methods for auto-labeling, we do not use these scores in active362

querying. Instead, we use the softmax scores from the model for this. We do this to avoid conflating363

the study with the study of active querying strategies. We use C = 2 for all experiments.364

B.4 TBAL procedure with Colander365

We take the workflow of TBAL and plugin our method Colander to learn the new confidence366

function and threshold. We discuss the updated workflow below and place the detailed Algorithms 1367

and 2 in the Appendix B due to space constraints.368

1. Initialization. First select ns points randomly from Xu and obtain human labels for them to369

create initial training data D
(1)
train. This is written as RANDOMQUERY(Xu, ns) in Algorithm 1. The370

procedure RANDOMQUERY(Xu, ns) selects ns points randomly from Xu and obtains human labels371

for them to create D
(1)
train.372

2. Train classification model. After obtaining human-labeled training data D
(i)
train for the current373

round i, the procedure TRAINMODEL(H, D
(i)
train) trains a model from model class H on the training374

data D(i)
train. Any training procedure can be used here. We use methods listed in Section ?? for model375

training. This step outputs a model ĥi trained on D
(i)
train.376

10

3. Learn new confidence function using Colander . The model ĥi obtained in the previous step also377

produces softmax scores that can be used to for auto-labeling. However, as we saw earlier in Section378

2, using these scores may lead to poor auto-labeling performance. Thus, we plug in our procedure379

Colander to learn new scores that are designed to maximize the auto-labeling performance. We first380

randomly splits the validation data D(i)
val into D

(i)
cal and D

(i)
th using procedure RANDOMSPLIT(D

(i)
val, ν).381

The part D(i)
cal has a fraction ν of the points from D

(i)
val. Then we consider problem P1 with ĥi and382

D
(i)
cal. We solve it to obtain the post-hoc confidence function ĝi.383

4. Threshold estimation. The scores from the new confidence function ĝi on D
(i)
th are used to384

estimate auto-labeling thresholds in Algorithm 2. This procedure finds thresholds for each class385

separately. It first splits the points in D
(i)
th according to the ground truth class into subsets D(i,y)

th .386

Then, for each class y, it finds the auto-labeling threshold t̂[y] by selecting the minimum threshold t387

such that the estimate of auto-labeling error plus a confidence interval, estimated on points in D
(i,y)
th388

having scores above t, is at most the given error tolerance ϵa. While we get thresholds as output389

from Colander, it is important to estimate them again from the held-out data D
(i)
th to ensure the390

auto-labeling error constraint is not violated.391

5. Auto-labeling. This is a simple step. We computes the scores on the remaining unlabeled data392

X
(i)
u using the function ĝi and any point x ∈ X

(i)
u having score above t̂[ŷ] is assigned auto-label393

ŷ = ĥi(x), and the points that did not meet this criterion remain unlabeled.394

6. Remove auto-labeled points. The points that got auto-labeled in the previous steps are removed395

from the unlabeled pool. To make the validation data consistent with this unlabeled pool for the next396

round, the points in the validation data that fall into the auto-labeling region are also removed.397

7. Get more human-labeled data. Lastly, it calls the procedure ACTIVEQUERY(ĥi, X
(i)
u , nb) to398

select nb points from the remaining unlabeled pool using an active learning strategy. This newly399

acquired human-labeled data is added into the training data D
(i)
train. The details of the querying400

strategy are in Appendix B. The procedure then moves to step 2 and runs the loop until there are no401

more unlabeled points left or it has queried the stipulated number of human-labels Nt.402

11

B.5 Glossary403

The notation is summarized in Table 2 below.

Symbol Definition

1(E) indicator function of event E. It is 1 if E happens and 0 otherwise.
X feature space.
Y label space i.e. 1, 2, . . . k.
H hypothesis space (model class for the classifiers).
G class of confidence functions.
k number of classes.
x, y x is an element in X and y is its true label.
h a hypothesis (model) in H.
g confidence function g : X → ∆k.
Xu given pool of unlabeled data points.
X

(i)
u unlabeled data left at the beginning of ith round.

ĥ(i) ERM solution and auto-labeling thresholds respectively in ith round.
D

(i)
query labeled data queried from oracle (human) in the ith round.

D
(i)
train training data to learn ĥ(i) in the ith round.

D
(i)
val validation data in the ith round.

D
(i)
cal calibration data in the ith round to learn a post-hoc g.

D
(i)
th part of validation data in the ith round to estimate threshold t.

D
(i)
auto part of X(i)

u that got auto-labeled in the ith round.
Dout Output labeled data, including auto-labeled and human labeled data.
t k dimensional vector of thresholds.
t[y] yth entry of t i.e. the threshold for class y.
g(x)[y] the confidence score for class y output by confidence function g on data point x.
ŷ predicted class for data point x.
f∗ unknown groundtruth labeling function.
Nu number of unlabeled points, i.e. size of Xu.
Nt number of manually labeled points that can be used for training h.
Na Total auto-labeled points in Dout.
ν fraction of Dval that can be used for training post-hoc calibrator.
A indices of points that are auto-labeled.
Xu(A) subset of points in Xu with indices in A, i.e. the set of auto-labeled points.
ỹi label assigned to the ith point by the algorithm. It could be either yi or ŷi.
yi groundtruth label for the ith point.
ŷi predicted label for the ith point by classifier.
ϵa auto-labeling error tolerance.
E(g, t | h) population level auto-labeling error, see eq. (??).
P(g, t | h) population level auto-labeling coverage, see eq. (??).
Ê(g, t | h, D) estimated auto-labeling error, see eq. (??).
P̂(g, t | h, D) estimated auto-labeling coverage, see eq. (??).
Ẽ(g, t | h, D) surrogate estimated auto-labeling error, see eq. (3).
P̃(g, t | h, D) surrogate estimated auto-labeling coverage, see eq. (2).

Table 2: Glossary of variables and symbols used in this paper.

404

12

Algorithm 1 Threshold-based Auto-Labeling (TBAL)

Input: Unlabeled data Xu, labeled validation data Dval, auto labeling error tolerance ϵa, Nt training
data query budget, seed data size ns, batch size for active query nb, calibration data fraction ν, set of
confidence thresholds T , coverage lower bound ρ0, label space Y.

Output: Auto-labeled dataset Dout

1: procedure TBAL(Xu, Dval, ϵa, Nt, ns, nb, ν, ρ0, T,Y)
2: ▷ /*** Initialization. ***/
3: D

(1)
query ← RANDOMQUERY(Xu, ns) ▷ Randomly select ns points and get manual labels

for them.
4: X

(1)
u ← Xu \ {x : (x, y) ∈ D

(1)
query} ▷Remove the manually labeled points from the

unlabeled pool.

5: D
(1)
val ← Dval;D

(0)
train ← ∅ ▷Validation data for the first round is full Dval.

6: Dout ← D
(1)
query;n

(1)
t ← ns; i← 1 ▷Include the manually labeled data in Step 2. in the

output data Dout.

7: ▷ /*** Run the auto-labeling loop ***/
8: ▷ /* Until no more unlabeled points are left or the budget for manually labeled training data

is exhausted. */
9: while X

(i)
u ̸= ∅ and n

(i)
t ≤ Nt do

10: D
(i)
train ← D

(i−1)
train ∪D

(i)
query ▷Include the manually labeled points in the training data.

11: ĥi ← TRAINMODEL(H, D
(i)
train) ▷Train a classification model.

12: D
(i)
cal, D

(i)
th ← RANDOMSPLIT(D

(i)
val, ν) ▷Randomly split the current validation data

into two parts.

13: ▷ /*** Colander block, to learn the new confidence function ĝi***/

14: ĝi, t̂
′
i ← argming∈G,t∈Tk −P̃(g, t | ĥi, D

(i)
cal) + λ Ẽ(g, t | ĥi, D

(i)
cal) ▷ Colander

procedure.

15: ▷ /*** Estimate auto-labeling thresholds using ĝi and D
(i)
th . See Algorithm 2. ***/

16: t̂i ← ESTTHRESHOLD(ĝi, ĥi, D
(i)
th , ϵa, ρ0, T,Y)

17: ▷ /*** Auto-label the points having scores above the thresholds. ***/

18: D̃
(i)
u ← {(x, ĥi(x)) : x ∈ X

(i)
u }

19: D
(i)
auto ← {(x, ŷ) ∈ D̃

(i)
u : ĝi(x)[ŷ] ≥ t̂i[ŷ] }

20: X
(i)
u ← X

(i)
u \ {x : (x, ŷ) ∈ D

(i)
auto} ▷Remove auto-labeled points from the unlabeled

pool.

21: D̃
(i)
val ← {(x, ĥi(x)) : (x, y) ∈ D

(i)
val}

22: D
(i+1)
val ← {(x, ŷ) ∈ D̃

(i)
val : ĝi(x)[ŷ] < t̂i[ŷ]} ▷Remove validation points in the

auto-labeling region.
23: ▷ /*** Get the next batch of manually labeled data using an active querying strategy. ***/

24: D
(i+1)
query ← ACTIVEQUERY(ĥi, X

(i)
u , nb)

25: X
(i+1)
u ← X

(i)
u \ {x : (x, y) ∈ D

(i+1)
query} ▷Remove manually labeled data from the

unlabeled pool.

26: Dout ← Dout ∪D
(i)
auto ∪D

(i+1)
query ▷Add the auto-labeled and manually labeled points in

the output data.

27: n
(i+1)
t ← n

(i)
t + nb

28: i ← i+ 1
29: end while
30: return Dout

31: end procedure

13

Algorithm 2 Estimate Auto-Labeling Threshold

Input: Confidence function ĝi, classifier ĥi, Part of validation data D
(i)
th for threshold estimation,

auto labeling error tolerance ϵa, set of confidence thresholds T , coverage lower bound ρ0, label space
Y.
Output: Auto-labeling thresholds t̂i, where t̂i[y] is the threshold for class y.

1: procedure ESTTHRESHOLD(ĝi, ĥi, D
(i)
th , ϵa, ρ0, T,Y)

2: ▷ /*** Estimate thresholds for each class. ***/
3: for y ∈ Y do
4: D

(i,y)
th ← {(x′, y′) ∈ D

(i)
th : y′ = y} ▷Group points class-wise.

5: ▷ /*** Only evaluate thresholds with est. coverage at least ρ0. ***/
6: T ′

y ← {t ∈ T : P̂
(
ĝi, t | ĥi, D

(i,y)
th

)
≥ ρ0} ∪ {∞}

7: ▷ /*** Estimate auto-labeling error at each threshold. Pick the smallest threshold with the
sum of estimated error and C1 times the standard deviation is below ϵa. C1 is set to 0.25 here.
***/

8: t̂i[y] ← min{t ∈ T ′
y : Êa(ĝi, t|ĥi, D

(i,y)
th) + C1σ̂(ĥi, t,D

(i,y)
th) ≤ ϵa}

9: end for
10: return t̂i
11: end procedure

14

C Additional Experiments and Details405

Choice of G. Our framework is flexible with respect to the choice of function class G. In this work,406

we use neural networks with at least two layers on model class H. We use representations from the last407

two layers of as input for the functions in G. Let z(1)(x; h) ∈ Rk and z(2)(x;h) ∈ Rd2 be the outputs408

of the last and the second-last layer of the net h for input x and let z(x;h) := [z(1)(x; h), z(2)(x; h)]409

denote the concatenation. This input is passed to network Gnn2
: Rk+d2 7→ ∆k; it outputs confidence410

scores for the k classes. Specifically g is defined as g(x) := softmax
(
W2tanh(W1z(x; h))

)
. Here411

W1 ∈ R(k+d2)×2(k+d2) and R2(k+d2)×k are the learnable weight matrices. As usual, for v ∈ Rd,412

softmax(v)[i] := exp(v[i])/(
∑

j exp(v[j])) and tanh(v)[i] := (exp(2v[i])−1)/(exp(2v[i])+1).413

C.1 Experiments on Nt, Nv and ν414

Figure 5: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various Nt

Figure 6: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various
Nv

Figure 7: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various ν

We need to understand the effect of training data query budget i.e. Nt, the total validation data Nv,415

and the data that can be used for calibrating the model i.e. the calibration data fraction ν on the416

15

auto-labeling objective. As varying these hyperparameters on each train-time method is expensive,417

we experimented with only Squentropy as it was the best-performing method across settings for418

various datasets.419

When we vary the budget for training data Nt, we observe from Figure 5 that our method does not420

require a lot of data to train the base model, i.e. achieving low auto-labeling error and high coverage421

with a low budget. While other methods benefit from having more training data for auto-labeling422

objectives, it comes at the expense of reducing the available data for validation.423

From figure 6, we observe that, while the coverage of our method remains the same across different424

Nv , it reduces for other methods. The cause of this phenomenon can be attributed to the fact that we425

are borrowing the data from the training budget as it limits the performance of the base model, which426

in turn limits the auto-labeling objective.427

As we increase the percentage of data that can be used to calibrate the model, i.e., ν, we note428

from figure 7 that other methods improve the coverage, which can be understood from the fact that429

when more data is available for calibrating the model, the model becomes better in terms of the430

auto-labeling objective. But it’s interesting to note that even with a low calibration fraction, our431

method achieves superior coverage compared to other methods. It is also important to note that the432

auto-labeling error increases as we increase ν. This is because when ν increases, the number of data433

points used to estimate the threshold decreases, leading to a less granular and precise threshold.434

Feature Model Error Coverage
Pre-logits Two Layer 4.6 ± 0.3 82.8 ± 0.5
Logits Two Layer 3.2 ± 1.3 82.8 ± 0.3
Concat Two Layer 3.3 ± 0.8 82.9 ± 0.4

Table 3: Auto-labeling error and coverage for the 3 feature representations we could use for 20
Newsgroup. As we can see, the feature representation does not lead to a significant difference in
auto-labeling error and coverage.

Feature Model Error Coverage
Pre-logits Two Layer 2.1 ± 0.5 79.0 ± 0.2
Logits Two Layer 3.1 ± 0.4 76.5 ± 0.9
Concat Two Layer 2.3 ± 0.5 79.0 ± 0.3

Table 4: Auto-labeling error and coverage for the 3 feature representations we could use for CIFAR10
SimpleCNN. As we can see, the feature representation does not lead to a significant difference in
auto-labeling error and coverage.

C.2 Experiments on Colander input435

Figure 14: Our choice of g function.

Figure 14 illustrates that we could use logits (last layer’s436

representations), pre-logits (second last layer’s representa-437

tions), or the concatenation of these two as the input to g.438

To help us decide which one we should use, we conduct a439

hyperparameter search for input features on the CIFAR-10440

and 20 Newsgroup dataset using the Squentropy train-time441

method. Table 3 and 4 present the auto-labeling error and442

coverage of using the 3 types of feature representations.443

As we can see, all feature representation leads to a simi-444

lar auto-labeling error and coverage, and in some cases,445

it is better to include pre-logits as well. Therefore, we446

use concatenated representation (Concat), allowing more447

flexibility.448

16

Figure 8: Auto-labeling error and coverage for different post-hoc methods on CIFAR-10 while we
vary Nt. Nu = 40, 000 is the size of the given unlabeled pool.

Figure 9: Auto-labeling error and coverage for different post-hoc methods on Tiny-ImageNet while
we vary Nt. Nu = 90, 000 is the size of the given unlabeled pool.

Figure 10: Auto-labeling error and coverage for different post-hoc methods on 20 Newsgroups while
we vary Nt. Nu = 9, 052 is the size of the given unlabeled pool.

C.3 Experiments on ϵa449

We run TBAL with five values of ϵa ∈ {0.01, 0.025, 0.05, 0.075, 0.1} and report the results in Table450

5. As expected the auto-labeling error is high with larger values of and smaller with small ϵa.451

C.4 Experiments on multiple rounds452

We further demonstrate that the performance gains are due to the use of Colander, even if methods453

use multiple rounds. To do so, we show the evolution of coverage and error over multiple rounds454

in Figure 15. The effects of using Colander are visible from the first round itself, and the following455

rounds improve performance further. We also run a single round (passive) variant of TBAL where456

we sample all the human-labeled points for training (Nt) randomly at once, train a classifier, do457

auto-labeling, and then stop. This setting avoids confounding due to multiple rounds. We observe458

that using Colander yields significantly higher coverage in comparison to the baselines (see Table 6).459

17

Figure 11: Auto-labeling error and coverage for different post-hoc methods on CIFAR-10 while we
vary Nv . Nvmax

= 8, 000 is the maximum number of points available for validation.

Figure 12: Auto-labeling error and coverage for different post-hoc methods on Tiny-ImageNet while
we vary Nv . Nvmax

= 18, 000 is the maximum number of points available for validation.

Figure 13: Auto-labeling error and coverage for different post-hoc methods on 20 Newsgroups while
we vary Nv . Nvmax

= 1, 600 is the maximum number of points available for validation.

This reinforces the fact that the gains in the multi-round TBAL are directly due to Colander, while460

multiple rounds of data selection, training, and auto-labeling are superior to doing everything in a461

single round.462

18

Post-hoc Method ϵa = 0.01 ϵa = 0.025 ϵa = 0.05 ϵa = 0.075 ϵa = 0.1

Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑)

Softmax 5.86 ± 0.38 12.73 ± 1.61 5.86 ± 0.38 12.73 ± 1.61 4.78 ± 0.21 14.01 ± 2.08 6.80 ± 0.47 16.73 ± 1.19 9.03 ± 0.17 21.28 ± 0.82

TS 8.19 ± 0.88 19.44 ± 1.16 8.19 ± 0.88 19.44 ± 1.16 7.26 ± 0.29 23.15 ± 0.7 9.24 ± 0.78 22.49 ± 0.74 11.63 ± 0.51 25.79 ± 1.97

Dirichlet 8.22 ± 0.4 16.94 ± 1.2 8.22 ± 0.4 16.94 ± 1.2 7.6 ± 0.48 22.36 ± 1.18 9.68 ± 0.82 18.65 ± 0.97 11.26 ± 1.16 24.91 ± 2.09

SB 6.15 ± 0.52 11.74 ± 0.57 6.15 ± 0.52 11.74 ± 0.57 6.09 ± 0.35 18.58 ± 1.13 7.81 ± 0.65 17.37 ± 1.3 9.13 ± 1.08 20.52 ± 1.11

Top-HB 5.76 ± 0.42 9.89 ± 0.55 5.76 ± 0.42 9.89 ± 0.55 5.95 ± 0.7 15.58 ± 1.92 7.45 ± 0.8 13.84 ± 0.78 8.71 ± 1.37 17.9 ± 0.56

Ours 1.2 ± 0.18 78.33 ± 0.76 1.32 ± 0.21 78.75 ± 0.4 2.96 ± 0.2 78.48 ± 0.17 4.3 ± 0.23 78.94 ± 0.42 6.29 ± 0.5 78.97 ± 0.46

Table 5: ϵa variation. Dataset: CIFAR-10, Train-time method: Vanilla.

Figure 15: Clarification on multiple rounds. Per-
epoch metrics for all post-hoc methods for CI-
FAR10. (left) Auto-labeling accuracy (right) Cov-
erage. Train time method is vanilla and model is
medium net.

Post-hoc method Err (↓) Coverage (↑)

Softmax 2.7 ± 0.54 11.06 ± 1.46

TS 3.04 ± 0.49 12.03 ± 1.98

Dirichlet 2.98 ± 0.32 11.22 ± 2.1

SB 2.72 ± 0.34 9.75 ± 1.33

Top-HB 1.83 ± 0.61 5.50 ± 1.08

Ours 2.02 ± 0.28 49.62 ± 0.69

Table 6: Results with single round
of auto-labeling. Dataset and
model: CIFAR-10 setting in the pa-
per.

463

C.5 Experiments on different architectures464

In TBAL it is not a priori clear what model the practitioner should use. The overall system is flexible465

enough to work with any chosen model class. Our focus is on evaluating the effect of various training466

time and post-hoc methods designed to improve the confidence functions for any given model. To467

answer the query, we ran experiments with Resnet18 and ViT models in the CIFAR-10 setting (see468

Table 7). As we expected there are variations in the results in the baselines due to model choices but469

our method maintains high performance irrespective of the classification model used. This is due to470

its ability to learn confidence scores tailored for TBAL.471

Post-hoc Method Err (↓) Coverage (↑)

Softmax 14.02 ± 1.83 2.03 ± 0.31

TS 19.32 ± 2.51 2.54 ± 0.33

Dirichlet 17.27 ± 3.26 2.87 ± 0.55

SB 9.22 ± 10.91 0.46 ± 0.51

Top-HB 0.00 ± 0.00 0.00 ± 0.00

Ours 2.62 ± 0.32 75.56 ± 0.15

Post-hoc Method Err (↓) Coverage (↑)

Softmax 4.48± 0.23 33.24± 1.14

TS 6.38± 0.47 39.14± 1.96

Dirichlet 6.30± 0.41 37.99± 1.47

SB 5.16± 0.23 35.32± 1.36

Top-HB 4.46± 0.40 29.66± 0.74

Ours 2.85 ± 0.25 78.56 ± 0.54

Table 7: Model variation. CIFAR-10 dataset with ViT (Left) and ResNet18 (Right), Train-time
method Vanilla.

C.6 Hyperparameters472

The hyperparameters and their values we swept over are listed in Table 8 and 9 for train-time and473

post-hoc methods, respectively.474

C.7 Train-time and post-hoc methods475

C.7.1 Train-time methods476

1. Vanilla: Neural networks are commonly trained by minimizing the cross entropy loss using477

stochastic gradient descent (SGD) with momentum [1, 3]. We refer to this as the Vanilla training478

method. We also include weight decay to mitigate the overconfidence issue associated with this479

method [10].480

19

Method Hyperparameter Values

Common

optimizer SGD
learning rate 0.001, 0.01, 0.1
batch size 32, 256
max epoch 50, 100
weight decay 0.001, 0.01, 0.1
momentum 0.9

CRL rank target softmax
rank weight 0.7, 0.8, 0.9

FMFP optimizer SAM

Table 8: Hyperparameters swept over for train-time methods. Those listed next to Common are the
hyperparameters for the four train-time methods: Vanilla, CRL, FMFP, and Squentropy. Therefore,
we do not list those again for each method. Note that for FMFP, we used SAM optimizer instead of
SGD. For each method, we swept through all possible combinations of the possible values for each
hyperparameter. Underlined values are only used on TinyImageNet since it is a complicated dataset
containing 200 classes.

2. Squentropy [16]: This method adds the average square loss over the incorrect classes to the481

cross-entropy loss. This simple modification to the Vanilla method leads to the end model with482

better test accuracy and calibration.483

3. Correctness Ranking Loss (CRL) [30]: This method includes a term in the loss function of the484

vanilla training method so that the confidence scores of the model are aligned with the ordinal485

rankings criterion [15, 5]. The confidence functions satisfying this criterion produce high486

scores on points where the probability of correctness is high and low scores on points with low487

probabilities of being correct.488

4. FMFP [53] aims to align confidence scores with the ordinal rankings criterion. It uses Sharpness489

Aware Minimizer (SAM) [6] to train the model, with the expectation that the flat minima would490

benefit the ordinal rankings objective of the confidence function.491

C.7.2 Post-hoc methods492

1. Temperature scaling [10]: This is a variant of Platt scaling [10], a classic and one of the easiest493

parametric methods for post-hoc calibration. It rescales the logits by a learnable scalar parameter494

and has been shown to work well for neural networks.495

2. Top-Label Histogram-Binning [12]: Since TBAL assigns the top labels (predicted labels)496

to the selected unlabeled points, it is appealing to only calibrate the scores of the predicted497

label. Building upon a rich line of histogram-binning methods (non-parametric) for post-hoc498

calibration [52], this method focuses on calibrating the scores of predicted labels.499

3. Scaling-Binning [24]: This method combines parametric and non-parametric methods. It first500

applies temperature scaling and then bins the confidence function values to ensure calibration.501

4. Dirichlet Calibration [22]: This method models the distribution of predicted probability vectors502

separately on instances of each class and assumes the class conditional distributions are Dirichlet503

distributions with different parameters. It uses linear parameterization for the distributions,504

which allows easy implementation in neural networks as additional layers and softmax output.505

Note: For binning methods, uniform mass binning [52] has been a better choice over uniform width506

binning. Hence, we use uniform mass binning as well.507

C.8 Compute resources508

Our experiments were conducted on machines equipped with the NVIDIA RTX A6000 and NVIDIA509

GeForce RTX 4090 GPUs.510

20

C.9 Detailed dataset and model511

1. The MNIST dataset [26] consists of 28× 28 grayscale images of hand-written digits across 10512

classes. It was used alongside the LeNet5 [27], a convolutional neural network, for auto-labeling.513

2. The CIFAR-10 dataset [20] contains 3× 32× 32 color images across 10 classes. We utilized514

its raw pixel matrix in conjunction with SimpleCNN [17], a convolutional neural network with515

approximately 5.8M parameters, for auto-labeling.516

3. Tiny-ImageNet [25] is a color image dataset that consists of 100K images across 200 classes.517

Instead of using the 3× 64× 64 raw pixel matrices as input, we utilized CLIP [38] to derive518

embeddings within the R512 vector space. We used a 3-layer perceptron (1,000-500-300) as the519

auto-labeling model.520

4. 20 Newsgroups [29, 35] is a natural language dataset comprising around 18,000 news posts521

across 20 topics. We used the FlagEmbedding [50] to map the textual data into R1024 embed-522

dings. We used a 3-layer perceptron (1,000-500-30) as the auto-labeling model.523

C.10 Detailed experiments protocol524

We predefined TBAL hyperparameters for each dataset-model pair and the hyperparameters we will525

sweep for each train-time and post-hoc method in Table 8 and Table 9 respectively. For a dataset-526

model pair, initially, we perform a hyperparameter search for the train-time method. Subsequently,527

we optimize the hyperparameters for post-hoc methods while keeping the train-time method fixed528

with the previously found optimum hyperparameter for that dataset-model pair.529

We fix the hyperparameters for the train-time method while searching hyperparameters for the post-530

hoc method to alleviate computational budget throttle. We effectively reduce the search space to the531

sum of the cardinalities of unique hyper-parameter combinations across the two methods instead of a532

larger multiplicative product. Furthermore, due to the independent nature of these hyper-parameter533

combinations, TBAL runs can be highly parallelized to expedite the search process.534

Since TBAL operates iteratively to acquire human labels for model training, selecting hyper-535

parameters at each round of TBAL could quickly become intractable and lose its practical significance.536

To better align with its practical usage, we only conducted a hyperparameter search for the initial537

TBAL round. The specific set of hyperparameters used for the search are reported in Table 9.538

After completing the hyperparameter search for train-time and post-hoc methods, the determined539

hyperparameter combinations are subjected to a full evaluation across all iterations of TBAL. At540

the end of each iteration, the auto-labeled points are evaluated against their ground truth labels to541

determine their auto-labeling error. These points are then added to the auto-labeled set, where their542

ratio to the total amount of unlabeled data determines the coverage. This iterative process continues543

until all unlabeled data are exhaustively labeled by either the oracle or through auto-labeling in the544

final iteration. The auto-labeling error and coverage at the final iteration of TBAL are then recorded.545

Since TBAL incorporates randomized components as detailed in Algorithm 1, we ran the algorithm 5546

times, each with a unique random seed while maintaining the same hyperparameter combination. We547

then recorded the results from the final iteration of these runs and calculated the mean and standard548

deviation of both auto-labeling error and coverage. These figures are reported in Table 1.549

A limitation of the grid search approach in hyper-parameter optimization becomes apparent when our550

predefined hyper-parameter choices result in sub-optimal coverage and auto-labeling errors. Using551

these sub-optimal hyper-parameters can adversely affect the multi-round iterative process in TBAL,552

prompting the need for repetitive searches to find more effective hyper-parameters. When encounter-553

ing such scenarios, TBAL users should explore additional hyper-parameter options until satisfactory554

performance is achieved in the initial round. However, we opted for a more straightforward approach555

to hyper-parameter selection, mindful of the computational demands of repeatedly optimizing mul-556

tiple hyper-parameters across different methods. In scenarios expressed conditionally, we retained557

the top-1 hyper-parameter combination for any given method if it achieved the highest coverage558

while adhering to the specified error margin (ϵa). If no hyper-parameter combinations yielded an559

auto-labeling error at most equal to the error margin (ϵa), we then chose the hyper-parameter combi-560

nation with the lowest auto-labeling error, regardless of its coverage. In the case of ties, we resolved561

them through random selection. This process results in obtaining singular values for each choice of562

hyper-parameter after completing each method’s hyper-parameter search.563

21

D Broader Impact564

This paper contributes to the advancement of the practice of creating labeled datasets in machine565

learning. While our work has various possible societal implications, we do not identify any specific566

concerns that require special attention in this context.567

E Related Work568

Data Labeling. We briefly discuss prominent methods for labeling. Crowdsourcing [40, 43]569

uses a crowd of non-experts to complete a set of labeling tasks. Works in this domain focus on570

mitigating noise in the obtained information, modeling label errors, and designing effective labeling571

tasks [9, 18, 28, 46, 45, 47, 4]. Weak supervision (WS), in contrast, emphasizes labeling through572

multiple inexpensive but noisy sources, not necessarily human [39, 7, 42, 48]. Works such as [39, 7]573

concentrate on binary or multi-class labeling, while [42, 48] extend WS to structured prediction tasks.574

Auto-labeling occupies an intermediate position between weak supervision and crowdsourcing in575

terms of human dependency. It aims to minimize costs to obtain human labels while generating576

high-quality labeled data using a specific model. [37] use a TBAL-like algorithm and explore the cost577

of training for auto-labeling with large-scale model classes. Recent work [49] theoretically analyzes578

the sample complexity of validation data required to guarantee the quality of auto-labeled data.579

Overconfidence and calibration. The issue of overconfidence [44, 33, 14, 2] is detrimental in580

several applications, including ours. Many solutions have emerged to mitigate the overconfidence581

and miscalibration problem. Gawlikowski et al. [8] provide a comprehensive survey on uncertainty582

quantification and calibration techniques for neural networks. Guo et al. [10] evaluated a variety of583

solutions ranging from the choice of network architecture, model capacity, weight decay regularization584

[21], histogram-binning and isotonic regression [51, 52] and temperature scaling [36, 34] which585

they found to be the most promising solution. The solutions fall into two broad categories: train-time586

and post-hoc. Train-time solutions modify the loss function, include additional regularization terms,587

or use different training procedures [23, 32, 31, 16]. On the other hand, post-hoc methods such as588

top-label histogram-binning [11], scaling binning [24], Dirichlet calibration [22] calibrate the scores589

directly or learn a model that corrects miscalibrated confidence scores.590

Beyond calibration. While calibration aims to match the confidence scores with a probability591

of correctness, it is not the precise solution to the overconfidence problem in many applications,592

including our setting. The desirable criteria for scores for TBAL are closely related to the ordinal593

ranking criterion [15]. To get such scores, Corbière et al. [5] add a module in the net for failure594

prediction, Zhu et al. [53] switch to sharpness aware minimization [6] to learn the model; CRL [30]595

regularizes the loss.596

F NeurIPS Paper Checklist597

1. Claims598

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s599

contributions and scope?600

Answer: [Yes]601

Justification: Our claims are backed by our novel technique in Section C and thorough empirical602

evaluation in Section 4.603

Guidelines:604

• The answer NA means that the abstract and introduction do not include the claims made in605

the paper.606

• The abstract and/or introduction should clearly state the claims made, including the contri-607

butions made in the paper and important assumptions and limitations. A No or NA answer608

to this question will not be perceived well by the reviewers.609

• The claims made should match theoretical and experimental results, and reflect how much610

the results can be expected to generalize to other settings.611

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are612

not attained by the paper.613

22

2. Limitations614

Question: Does the paper discuss the limitations of the work performed by the authors?615

Answer: [Yes]616

Justification: We discuss them briefly.617

Guidelines:618

• The answer NA means that the paper has no limitation while the answer No means that the619

paper has limitations, but those are not discussed in the paper.620

• The authors are encouraged to create a separate "Limitations" section in their paper.621

• The paper should point out any strong assumptions and how robust the results are to622

violations of these assumptions (e.g., independence assumptions, noiseless settings, model623

well-specification, asymptotic approximations only holding locally). The authors should624

reflect on how these assumptions might be violated in practice and what the implications625

would be.626

• The authors should reflect on the scope of the claims made, e.g., if the approach was only627

tested on a few datasets or with a few runs. In general, empirical results often depend on628

implicit assumptions, which should be articulated.629

• The authors should reflect on the factors that influence the performance of the approach.630

For example, a facial recognition algorithm may perform poorly when image resolution631

is low or images are taken in low lighting. Or a speech-to-text system might not be used632

reliably to provide closed captions for online lectures because it fails to handle technical633

jargon.634

• The authors should discuss the computational efficiency of the proposed algorithms and635

how they scale with dataset size.636

• If applicable, the authors should discuss possible limitations of their approach to address637

problems of privacy and fairness.638

• While the authors might fear that complete honesty about limitations might be used by639

reviewers as grounds for rejection, a worse outcome might be that reviewers discover640

limitations that aren’t acknowledged in the paper. The authors should use their best641

judgment and recognize that individual actions in favor of transparency play an important642

role in developing norms that preserve the integrity of the community. Reviewers will be643

specifically instructed to not penalize honesty concerning limitations.644

3. Theory Assumptions and Proofs645

Question: For each theoretical result, does the paper provide the full set of assumptions and a646

complete (and correct) proof?647

Answer: [NA]648

Justification: It is an empirical paper, it does not have theoretical results.649

Guidelines:650

• The answer NA means that the paper does not include theoretical results.651

• All the theorems, formulas, and proofs in the paper should be numbered and cross-652

referenced.653

• All assumptions should be clearly stated or referenced in the statement of any theorems.654

• The proofs can either appear in the main paper or the supplemental material, but if they655

appear in the supplemental material, the authors are encouraged to provide a short proof656

sketch to provide intuition.657

• Inversely, any informal proof provided in the core of the paper should be complemented by658

formal proofs provided in appendix or supplemental material.659

• Theorems and Lemmas that the proof relies upon should be properly referenced.660

4. Experimental Result Reproducibility661

Question: Does the paper fully disclose all the information needed to reproduce the main662

experimental results of the paper to the extent that it affects the main claims and/or conclusions663

of the paper (regardless of whether the code and data are provided or not)?664

Answer: [Yes]665

23

Justification: All the necessary details are provided in Section 4 and in the Appendix C. We have666

also uploaded the code along with the submission.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• If the paper includes experiments, a No answer to this question will not be perceived well670

by the reviewers: Making the paper reproducible is important, regardless of whether the671

code and data are provided or not.672

• If the contribution is a dataset and/or model, the authors should describe the steps taken to673

make their results reproducible or verifiable.674

• Depending on the contribution, reproducibility can be accomplished in various ways. For675

example, if the contribution is a novel architecture, describing the architecture fully might676

suffice, or if the contribution is a specific model and empirical evaluation, it may be677

necessary to either make it possible for others to replicate the model with the same dataset,678

or provide access to the model. In general. releasing code and data is often one good way679

to accomplish this, but reproducibility can also be provided via detailed instructions for680

how to replicate the results, access to a hosted model (e.g., in the case of a large language681

model), releasing of a model checkpoint, or other means that are appropriate to the research682

performed.683

• While NeurIPS does not require releasing code, the conference does require all submissions684

to provide some reasonable avenue for reproducibility, which may depend on the nature of685

the contribution. For example686

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to687

reproduce that algorithm.688

(b) If the contribution is primarily a new model architecture, the paper should describe689

the architecture clearly and fully.690

(c) If the contribution is a new model (e.g., a large language model), then there should691

either be a way to access this model for reproducing the results or a way to reproduce692

the model (e.g., with an open-source dataset or instructions for how to construct the693

dataset).694

(d) We recognize that reproducibility may be tricky in some cases, in which case authors695

are welcome to describe the particular way they provide for reproducibility. In the696

case of closed-source models, it may be that access to the model is limited in some697

way (e.g., to registered users), but it should be possible for other researchers to have698

some path to reproducing or verifying the results.699

5. Open access to data and code700

Question: Does the paper provide open access to the data and code, with sufficient instructions701

to faithfully reproduce the main experimental results, as described in supplemental material?702

Answer: [Yes]703

Justification: We use publicly available datasets and uploaded the code as supplementary704

material.705

Guidelines:706

• The answer NA means that paper does not include experiments requiring code.707

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/708

guides/CodeSubmissionPolicy) for more details.709

• While we encourage the release of code and data, we understand that this might not be710

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not711

including code, unless this is central to the contribution (e.g., for a new open-source712

benchmark).713

• The instructions should contain the exact command and environment needed to run to714

reproduce the results. See the NeurIPS code and data submission guidelines (https:715

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.716

• The authors should provide instructions on data access and preparation, including how to717

access the raw data, preprocessed data, intermediate data, and generated data, etc.718

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide scripts to reproduce all experimental results for the new719

proposed method and baselines. If only a subset of experiments are reproducible, they720

should state which ones are omitted from the script and why.721

• At submission time, to preserve anonymity, the authors should release anonymized versions722

(if applicable).723

• Providing as much information as possible in supplemental material (appended to the paper)724

is recommended, but including URLs to data and code is permitted.725

6. Experimental Setting/Details726

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-727

ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?728

Answer: [Yes]729

Justification: These details are provided in the Section 4 and Appendix C.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The experimental setting should be presented in the core of the paper to a level of detail733

that is necessary to appreciate the results and make sense of them.734

• The full details can be provided either with the code, in appendix, or as supplemental735

material.736

7. Experiment Statistical Significance737

Question: Does the paper report error bars suitably and correctly defined or other appropriate738

information about the statistical significance of the experiments?739

Answer: [Yes]740

Justification: We run each setting with multiple random seeds and report the mean, standard741

deviations of the evaluation metrics.742

Guidelines:743

• The answer NA means that the paper does not include experiments.744

• The authors should answer "Yes" if the results are accompanied by error bars, confidence745

intervals, or statistical significance tests, at least for the experiments that support the main746

claims of the paper.747

• The factors of variability that the error bars are capturing should be clearly stated (for748

example, train/test split, initialization, random drawing of some parameter, or overall run749

with given experimental conditions).750

• The method for calculating the error bars should be explained (closed form formula, call to751

a library function, bootstrap, etc.)752

• The assumptions made should be given (e.g., Normally distributed errors).753

• It should be clear whether the error bar is the standard deviation or the standard error of the754

mean.755

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably756

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality757

of errors is not verified.758

• For asymmetric distributions, the authors should be careful not to show in tables or figures759

symmetric error bars that would yield results that are out of range (e.g. negative error rates).760

• If error bars are reported in tables or plots, The authors should explain in the text how they761

were calculated and reference the corresponding figures or tables in the text.762

8. Experiments Compute Resources763

Question: For each experiment, does the paper provide sufficient information on the computer764

resources (type of compute workers, memory, time of execution) needed to reproduce the765

experiments?766

Answer: [Yes]767

Justification: Provided in the Appendix C.768

Guidelines:769

25

• The answer NA means that the paper does not include experiments.770

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or771

cloud provider, including relevant memory and storage.772

• The paper should provide the amount of compute required for each of the individual773

experimental runs as well as estimate the total compute.774

• The paper should disclose whether the full research project required more compute than775

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t776

make it into the paper).777

9. Code Of Ethics778

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS779

Code of Ethics https://neurips.cc/public/EthicsGuidelines?780

Answer: [Yes]781

Justification: We have followed the NeurIPS Code of Ethics to the best of our knowledge.782

Guidelines:783

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.784

• If the authors answer No, they should explain the special circumstances that require a785

deviation from the Code of Ethics.786

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration787

due to laws or regulations in their jurisdiction).788

10. Broader Impacts789

Question: Does the paper discuss both potential positive societal impacts and negative societal790

impacts of the work performed?791

Answer: [Yes]792

Justification: The paper has a brief discussion on the broader impacts.793

Guidelines:794

• The answer NA means that there is no societal impact of the work performed.795

• If the authors answer NA or No, they should explain why their work has no societal impact796

or why the paper does not address societal impact.797

• Examples of negative societal impacts include potential malicious or unintended uses798

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,799

deployment of technologies that could make decisions that unfairly impact specific groups),800

privacy considerations, and security considerations.801

• The conference expects that many papers will be foundational research and not tied to802

particular applications, let alone deployments. However, if there is a direct path to any803

negative applications, the authors should point it out. For example, it is legitimate to point804

out that an improvement in the quality of generative models could be used to generate805

deepfakes for disinformation. On the other hand, it is not needed to point out that a generic806

algorithm for optimizing neural networks could enable people to train models that generate807

Deepfakes faster.808

• The authors should consider possible harms that could arise when the technology is being809

used as intended and functioning correctly, harms that could arise when the technology is810

being used as intended but gives incorrect results, and harms following from (intentional or811

unintentional) misuse of the technology.812

• If there are negative societal impacts, the authors could also discuss possible mitigation813

strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-814

nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback815

over time, improving the efficiency and accessibility of ML).816

11. Safeguards817

Question: Does the paper describe safeguards that have been put in place for responsible release818

of data or models that have a high risk for misuse (e.g., pretrained language models, image819

generators, or scraped datasets)?820

Answer: [NA]821

26

https://neurips.cc/public/EthicsGuidelines

Justification: The paper does not release such data or models that have high risk for misuse.822

Guidelines:823

• The answer NA means that the paper poses no such risks.824

• Released models that have a high risk for misuse or dual-use should be released with825

necessary safeguards to allow for controlled use of the model, for example by requiring826

that users adhere to usage guidelines or restrictions to access the model or implementing827

safety filters.828

• Datasets that have been scraped from the Internet could pose safety risks. The authors829

should describe how they avoided releasing unsafe images.830

• We recognize that providing effective safeguards is challenging, and many papers do not831

require this, but we encourage authors to take this into account and make a best faith effort.832

12. Licenses for existing assets833

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the834

paper, properly credited and are the license and terms of use explicitly mentioned and properly835

respected?836

Answer: [Yes]837

Justification: We have appropriately credited them along with citations.838

Guidelines:839

• The answer NA means that the paper does not use existing assets.840

• The authors should cite the original paper that produced the code package or dataset.841

• The authors should state which version of the asset is used and, if possible, include a URL.842

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.843

• For scraped data from a particular source (e.g., website), the copyright and terms of service844

of that source should be provided.845

• If assets are released, the license, copyright information, and terms of use in the package846

should be provided. For popular datasets, paperswithcode.com/datasets has curated847

licenses for some datasets. Their licensing guide can help determine the license of a dataset.848

• For existing datasets that are re-packaged, both the original license and the license of the849

derived asset (if it has changed) should be provided.850

• If this information is not available online, the authors are encouraged to reach out to the851

asset’s creators.852

13. New Assets853

Question: Are new assets introduced in the paper well documented and is the documentation854

provided alongside the assets?855

Answer: [Yes]856

Justification: The code is well documented along with instructions to run.857

Guidelines:858

• The answer NA means that the paper does not release new assets.859

• Researchers should communicate the details of the dataset/code/model as part of their sub-860

missions via structured templates. This includes details about training, license, limitations,861

etc.862

• The paper should discuss whether and how consent was obtained from people whose asset863

is used.864

• At submission time, remember to anonymize your assets (if applicable). You can either865

create an anonymized URL or include an anonymized zip file.866

14. Crowdsourcing and Research with Human Subjects867

Question: For crowdsourcing experiments and research with human subjects, does the paper868

include the full text of instructions given to participants and screenshots, if applicable, as well as869

details about compensation (if any)?870

Answer: [NA]871

Justification: We did not use crowdsourcing or human subjects in the paper.872

27

paperswithcode.com/datasets

Guidelines:873

• The answer NA means that the paper does not involve crowdsourcing nor research with874

human subjects.875

• Including this information in the supplemental material is fine, but if the main contribution876

of the paper involves human subjects, then as much detail as possible should be included in877

the main paper.878

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or879

other labor should be paid at least the minimum wage in the country of the data collector.880

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human881

Subjects882

Question: Does the paper describe potential risks incurred by study participants, whether such883

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or884

an equivalent approval/review based on the requirements of your country or institution) were885

obtained?886

Answer: [NA]887

Justification: We did not use crowdsourcing or human subjects in the paper.888

Guidelines:889

• The answer NA means that the paper does not involve crowdsourcing nor research with890

human subjects.891

• Depending on the country in which research is conducted, IRB approval (or equivalent)892

may be required for any human subjects research. If you obtained IRB approval, you should893

clearly state this in the paper.894

• We recognize that the procedures for this may vary significantly between institutions and895

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines896

for their institution.897

• For initial submissions, do not include any information that would break anonymity (if898

applicable), such as the institution conducting the review.899

28

Method Hyperparameter Values
Temperature scaling optimizer Adam

learning rate 0.001, 0.01, 0.1
batch size 64
max epoch 500
weight decay 0.01, 0.1, 1

Top-label histogram binning points per bin 25, 50

Scaling-binning number of bins 15, 25
learning rate 0.001, 0.01, 0.1
batch size 64
max epoch 500
weight decay 0.01, 0.1, 1

Dirichlet calibration regularization parameter 0.001, 0.01, 0.1

Ours λ 10, 100
features key concat
class-wise independent
optimizer Adam
learning rate 0.01, 0.1
max epoch 500
weight decay 0.01, 0.1, 1
batch size 64
regularize false
α 0.01, 0.1, 1

Table 9: Hyperparamters swept over for post-hoc methods. For each method, we swept through all
possible combinations of the possible values for each hyperparameter.

29

	Introduction
	Background and Motivation
	Proposed Method (Colander)
	Auto-labeling optimization framework

	Empirical Evaluation
	Conclusion
	Appendix to Section 2
	Detailed Comparison with Active Learning and Self Training
	Details of the motivating experiment in Section 2

	 Appendix on Our Method
	Detailed Algorithms
	Tightness of surrogates.
	Active Querying Strategy.
	TBAL procedure with Colander
	Glossary

	 Additional Experiments and Details
	Experiments on Nt, Nv and
	Experiments on Colander input
	Experiments on a
	Experiments on multiple rounds
	Experiments on different architectures
	Hyperparameters
	Train-time and post-hoc methods
	Train-time methods
	Post-hoc methods

	Compute resources
	Detailed dataset and model
	Detailed experiments protocol

	Broader Impact
	Related Work
	NeurIPS Paper Checklist

