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ABSTRACT

The annotation of domain experts is important for some medical applications
where the objective ground truth is ambiguous to define, e.g., the rehabilitation
for some chronic diseases, and the prescreening of some musculoskeletal abnor-
malities without further medical examinations. However, improper uses of the
annotations may hinder developing reliable models. On one hand, forcing the use
of a single ground truth generated from multiple annotations is less informative for
the modeling. On the other hand, feeding the model with all the annotations with-
out proper regularization is noisy given existing disagreements. For such issues,
we propose a novel Learning to Agreement (Learn2Agree) framework to tackle
the challenge of learning from multiple annotators without objective ground truth.
The framework has two streams, with one stream fitting with the multiple anno-
tators and the other stream learning agreement information between annotators.
In particular, the agreement learning stream produces regularization information
to the classifier stream, tuning its decision to be better in line with the agreement
between annotators. The proposed method can be easily added to existing back-
bones, with experiments on two medical datasets showed better agreement levels
with annotators.

1 INTRODUCTION

There exist difficulties for model development in applications where the objective ground truth is
difficult to establish or ambiguous merely given the input data itself. That is, the decision-making,
i.e. the detection, classification, and segmentation process, is based on not only the presented data
but also the expertise or experiences of the annotator. However, the disagreements existed in the
annotations hinder the definition of a good single ground truth. Therefore, an important part of
supervise learning for such applications is to achieve better fitting with annotators. In this learning
scenario, the input normally comprises pairs of (Xi, r

j
i ), where Xi and rji are respectively the data

of i-th sample and the label provided by j-th annotator. Given such input, naı̈ve methods aim to
provide a single set of ground truth label for model development. Therein, a common practice is to
aggregate these multiple annotations with majority voting (Surowiecki, 2005). However, majority-
voting could misrepresent the data instances where the disagreement between different annotators
is high. This is particularly harmful for applications where differences in expertise or experiences
exist in annotators.

Except for majority-voting, some have tried to estimate the ground truth label using STAPLE
(Warfield et al., 2004) based on Expectation-Maximization (EM) algorithms. Nevertheless, such
methods are sensitive to the variance in annotations and the data size (Lampert et al., 2016; Karimi
et al., 2020). When the number of annotations per Xi is modest, efforts are put into creating models
that utilize all the annotations with multi-score learning (Meng et al., 2011) or soft labels (Hu et al.,
2016). Recent approaches have instead focused on leveraging or learning the expertise of annotators
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Figure 1: The proposed Learn2Agree framework regularizes the classifier that fits with all annotators
with the estimated agreement information between annotators.

while training the model (Long et al., 2013; Long & Hua, 2015; Healey, 2011; Guan et al., 2018; Ji
et al., 2021; Yan et al., 2014; 2010; Tanno et al., 2019; Zhang et al., 2020). A basic idea is to refine
the classification or segmentation toward the underlying ground truth by modeling annotators.

In this paper, we focus on a hard situation when the ground truth is ambiguous to define. On one
hand, this could be due to the missing of objective ground truth in a specific scenario. For instance, in
the analysis of bodily movement behavior for chronic-pain (CP) rehabilitation, the self-awareness of
people with CP about their exhibited pain or fear-related behaviors is low, thus physiotherapists play
a key role in judging it (Felipe et al., 2015; Singh et al., 2016). However, since the physiotherapists
are assessing the behavior on the basis of visual observations, they may disagree on the judgment
or ground truth. Additionally, the ground truth could be temporarily missing, at a special stage of
the task. For example, in abnormality prescreening for bone X-rays, except for abnormalities like
fractures and hardware implantation that are obvious and deterministic, other types like degenerative
diseases and miscellaneous abnormalities are mainly diagnosed with further medical examinations
(Rajpurkar et al., 2017). That is, at prescreening stage, the opinion of the doctor makes the decision,
which could disagree with other doctors or the final medical examination though.

Thereon, unlike the traditional modeling goal that usually requires the existence of a set of ground
truth labels to evaluate the performance, the objective of modeling in this paper is to improve the
overall agreement between the model and annotators. Our contributions are four-fold: (i) We pro-
pose a novel Learn2Agree framework to directly leverage the agreement information stored in anno-
tations from multiple annotators to regularize the behavior of the classifier that learns from them; (ii)
To improve the robustness, we propose a general agreement distribution and an agreement regression
loss to model the uncertainty in annotations; (iii) To regularize the classifier, we propose a regular-
ization function to tune the classifier to better agree with all annotators; (iv) Our method noticeably
improves existing backbones for better agreement levels with all annotators on classification tasks
in two medical datasets, involving data of body movement sequences and bone X-rays.

2 RELATED WORK

2.1 MODELING ANNOTATORS

The leveraging or learning of annotators’ expertise for better modeling is usually implemented in a
two-step or multiphase manner, or integrated to run simultaneously. For the first category, one way
to acquire the expertise is by referring to the prior knowledge about the annotation, e.g. the year
of experience of each annotator, and the discussion held on the disagreed annotations. With such
prior knowledge, studies in Long et al. (2013); Long & Hua (2015); Healey (2011) propose to distill
the annotations, deciding which annotator to trust for disagreed samples. Without the access to such
prior knowledge, the expertise, or behavior of an annotator can also be modeled given the annotation
and the data, which could be used as a way to weight each annotator in the training of a classification
model Guan et al. (2018), or adopted to refine the segmentation learned from multiple annotators Ji
et al. (2021). More close to ours are the ones that simultaneously model the expertise of annotators
while training the classifier. Previous efforts are seen on using probabilistic models Yan et al. (2014;
2010) driven by EM algorithms, and multi-head models that directly model annotators as confusion
matrices estimated in comparison with the underlying ground truth Tanno et al. (2019); Zhang et al.
(2020). While the idea behind these works may indeed work for applications where the distance
between each annotator and the underlying ground truth exists and can be estimated in some ways
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Figure 2: An overview of our Learn2Agree framework, comprising i) (above) the classifier stream
with original prediction p̂θ(xi) that fits with available annotations {rji }j=1,...,J ; and ii) (below) the
agreement learning stream that learns to estimate ŷi of the agreement level αi between annotators,
and leverage such information to compute the regularized prediction p̃θ(xi).

to refine the decision-making of a model, we argue that in some cases it is (at least temporarily)
difficult to assume the existence of the underlying ground truth.

2.2 MODELING UNCERTAINTY

Modeling uncertainty is a popular topic in the computer vision domain, especially for tasks of se-
mantic segmentation and object detection. Therein, methods proposed can be categorized into two
groups: i) the Bayesian methods, where parameters of the posterior distribution (e.g. mean and vari-
ance) of the uncertainty are estimated with Monte Carlo dropout Leibig et al. (2017); Kendall et al.
(2017); Ma et al. (2017) and parametric learning Hu et al. (2020); Charpentier et al. (2020) etc.;
and ii) ’non-Bayesian’ alternatives, where the distribution of uncertainty is learned with ensemble
methods Lakshminarayanan et al. (2016), variance propagation Postels et al. (2019), and knowledge
distillation Shen et al. (2021) etc. Except for their complex and time-consuming training or infer-
ence strategies, another characteristic of these methods is the dependence on Gaussian or Dirac delta
distributions as the prior assumption.

2.3 EVALUATION WITHOUT GROUND TRUTH

In the context of modeling multiple annotations without ground truth, typical evaluation measures
rely on metrics of agreements. For example, Kleinsmith et al. (2011) uses metrics of agreement, e.g.
Cohen’s Kappa Cohen (1960) and Fleiss’ Kappa Fleiss (1971), as the way to compare the agreement
level between a system and an annotator and the agreement level between other unseen annotators,
in a cross-validation manner. However, this method does not consider how to directly learn from
all the annotators, and how to evaluate the performance of the model in this case. For this end,
Lovchinsky et al. (2019) proposes a metric named discrepancy ratio. In short, the metric compares
performances of the model-annotator vs. the annotator-annotator, where the performance can be
computed as discrepancy e.g. with absolute error, or as agreement e.g. with Cohen’s kappa. In this
paper, we use the Cohen’s kappa as the agreement calculator together with such a metric to evaluate
the performance of our method. We refer to this metric as agreement ratio.

3 METHOD

An overview of our proposed Learn2Agree framework is shown in Fig.2. The core of our proposed
method is to learn to estimate the agreement between different annotators based on their raw anno-
tations, and simultaneously utilize the agreement-level estimation to regularize the training of the
classification task. Therein, different components of the proposed method concern: the learning of
agreement levels between annotators, and regularizing the classifier with such information. In test-
ing or inference, the model estimates annotators’ agreement level based on the current data input,
which is then used to aid the classification.

In this paper, we consider a dataset comprising N samples X = {xi}i=1,...,N , with each sample xi

being an image or a timestep in a body movement data sequence. For each sample xi, r
j
i denotes

the annotation provided by j-th annotator, with αi ∈ [0, 1] being the agreement computed between
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annotators (see Appendix for details). For a binary task, rji ∈ {0, 1}. With such dataset D =

{xi, r
j
i }

j=1,...,J
i=1,...,N , the proposed method aims to improve the agreement level with all annotators. It

should be noted that, for each sample xi, the method does not expect the annotations to be available
from all the J annotators.

3.1 MODELING UNCERTAINTY IN AGREEMENT LEARNING

Figure 3: The learning of the agreement
αi between annotators is modeled with
a general agreement distribution G(yi)
using agreement regression loss LAR

(above), with the X axis of the distribu-
tion being the possible agreement levels
yi and the Y axis being the respective
probabilities. This learning can also be
implemented as a linear regression task
that learns to approach the exact agree-
ment level αi using RMSE loss (below).

To enable a robust learning of the agreement between an-
notators, we consider modeling the uncertainty that could
exist in the annotations. In our scenarios, the uncer-
tainty comes from annotators’ varying expertise exhib-
ited in their annotations across different data samples,
which may not follow specific prior distributions. We
propose a general agreement distribution G(yi) for agree-
ment learning (see the upper part of Fig.3). Therein, the
distribution values are the possible agreement levels yi
between annotators with a range of [0, 1], which is further
discretized into {y0i , y1i , ...y

n−1
i , yni } with a uniform in-

terval of 1/n, with n being a tunable hyperparameter de-
ciding how precise the learning is. The general agreement
distribution has a property

∑n
k=0 G(yk

i ) = 1, which can
be implemented with a softmax layer with n + 1 nodes.
The predicted agreement ŷi for regression can be com-
puted as the weighted sum of all the distribution values

ŷi =

n∑
k=0

G(yki )y
k
i . (1)

For training the predicted agreement value ŷi toward
the target agreement αi, inspired by the effectiveness of
quantile regression in understanding the property of con-
ditional distribution Koenker & Hallock (2001); Hao et al. (2007); Fan et al. (2019), we propose a
novel Agreement Regression (AR) loss defined by

LAR(ŷi, αi) = max[αi(ŷi − αi), (αi − 1)(ŷi − αi)]. (2)

Comparing with the original quantile regression loss, the quantile q is replaced with the agreement αi

computed at current input sample xi. The quantile q is usually fixed for a dataset, as to understand the
underlying distribution of the model’s output at a given quantile. By replacing q with αi, we optimize
the general agreement distribution to focus on the given agreement level dynamically across samples.

In Li et al. (2021), the authors proposed to use the top k values of the distribution and their mean
to indicate the shape (flatness) of the distribution, which provides the level of uncertainty in object
classification. In our case, all probabilities of the distribution are used to regularize the classifier.
While this also informs the shape of the distribution for the perspective of uncertainty modeling,
the skewness reflecting the high or low agreement level learned at the current data sample is also
revealed. Thereon, two fully-connected layers with RELU and Sigmoid activations respectively are
used to process such information and produce the agreement indicator ỹi for regularization.

3.1.1 LEARNING AGREEMENT WITH LINEAR REGRESSION.

Straightforwardly, we can also formulate the agreement learning as a plain linear regression task,
modelled by a fully-connected layer with a Sigmoid activation function (see the lower part of Fig.3).
Then, the predicted agreement ŷi is directly taken as the agreement indicator ỹi for regularization.
Given the predicted agreement ŷi and target agreement αi at each input sample xi, by using Root
Mean Squared Error (RMSE), the linear regression loss is computed as

LRMSE(ŷ, α) = [
1

N

N∑
i

(ŷi − αi)
2]

1
2 . (3)
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It should be noted that, the proposed AR loss can also be used for this linear regression variant, which
may help optimize the underlying distribution toward the given agreement level. In the experiments,
an empirical comparison between different variants for agreement learning is conducted.

3.2 REGULARIZING THE CLASSIFIER WITH AGREEMENT

Figure 4: The property of the regular-
ization function. X and Y axes are the
agreement indicator ỹi and regularized
probability p̃θ(xi), respectively. p̃θ(xi)
is regularized to the class, for which the
ỹi is high, with λ controlling scale.

Since the high-level information implied by the agree-
ment between annotators could provide extra hints in
classification tasks, we utilize the agreement indicator ỹi
to regularize the classifier training toward providing out-
comes that are more in agreement with annotators. Given
a binary classification task (a multi-class task can be de-
composed into several binary ones), at input sample xi,
we denote the original predicted probability toward the
positive class of the classifier to be p̂θ(xi). The gen-
eral idea is that, when the learned agreement indicator
is i) at chance level i.e. ỹi = 0.5, p̂θ(xi) shall stay un-
changed; ii) biased toward the positive/negative class, the
value of p̂θ(xi) shall be regularized toward the respective
class. For these, we propose a novel regularization func-
tion written as

p̃θ(xi) =
p̂θ(xi)e

λ(ỹi−0.5)

p̂θ(xi)eλ(ỹi−0.5) + (1− p̂θ(xi))eλ(0.5−ỹi)
,

(4)

where p̃θ(xi) is the regularized probability toward the
positive class of the current binary task, λ is a hyperpa-
rameter controlling the scale at which the original pre-
dicted probability p̂θ(xi) changes toward p̃θ(xi) when the
agreement indicator increases/decreases. Fig.4 shows the
property of the function: for the original predicted probability p̂θ(xi) = 0.5, the function with larger
λ augments the effect of the learned agreement indicator ỹi so that the output p̃θ(xi) is regularized
toward the more (dis)agreed; when ỹi is at 0.5, where annotators are unable to reach an above-chance
opinion about the task, the regularized probability stays unchanged with p̃θ(xi) = p̂θ(xi).

3.3 COMBATING IMBALANCES IN LOGARITHMIC LOSS

In this subsection, we first alleviate the influence of class imbalances present in the annotation
of each annotator, by refining the vanilla cross-entropy loss. We further explore the use of an
agreement-oriented loss that may naturally avoid such imbalances during training.

3.3.1 ANNOTATION BALANCING FOR EACH ANNOTATOR.

For the classifier stream, given the regularized probability p̃θ(xi) at the current input sample xi, the
classifier is updated using the sum of the loss computed according to the available annotation rji
from each annotator. Due to the various the nature of the task (i.e., positive samples are sparse), the
annotation from each annotator could be noticeably imbalanced. Toward this problem, we use the
Focal Loss (FL) Lin et al. (2017), written as follows.

LFL(p, g) = −|g − p|γ(g log(p) + (1− g) log(1− p)), (5)

where p is the predicted probability of the model toward the positive class at the current data sample,
g ∈ {0, 1} is the binary ground truth, and γ ≥ 0 is the focusing parameter used to control the
threshold for judging the well-classified. A larger γ leads to a lower threshold so that more samples
would be treated as the well-classified and down weighted. In our scenario, the FL function is
integrated into the following loss function to compute the average loss from all annotators.

Lθ(P̃θ,R) =
1

J

J∑
j=1

1

Ǹ j

Ǹj∑
i=1

LFL(p̃θ(xi), r
j
i ), (6)
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where Ǹ j ≤ N is the number of samples that have been labelled by j-th annotator, P̃θ =

{p̃θ(xi)}i=1,...,N , R = {rji }
j=1,...,J

i=1,...,Ǹj
. rji = null if the j-th annotator did not annotate at i−th

sample, and the loss is not computed here.

Additionally, searching for the γ manually for each annotator could be cumbersome, especially for
a dataset labeled by numerous annotators. In this paper, we compute γ given the number of samples
annotated by each annotator per class of each binary task. The hypothesis is that, for annotations
biased more toward one class, γ shall set to be bigger since larger number of samples tend to be
well-classified. We leverage the effective number of samples Cui et al. (2019) to compute each γj
as follows.

γj =
(1− βnj

k)

(1− β(Ǹj−nj
k))

, (7)

where nj
k is the number of samples for the majority class k in the current binary task annotated by

annotator j, β = Ǹj−1
Ǹj

.

3.3.2 AGREEMENT-ORIENTED LOSS.

In de La Torre et al. (2018), a Weighted Kappa Loss (WKL) was used to compute the agreement-
oriented loss between the output of a model and the annotation of an annotator. As developed from
the Cohen’s Kappa, this loss may guide the model to pay attention to the overall agreement level
instead of the local mistake. Thus, we may be able to avoid the cumbersome work of alleviating the
class imbalances as above. This loss function can be written as follows.

LWKL = log(1− κ). (8)

The linear weighted kappa κ Cohen (1968) is used in this equation, where the penalization weight
is proportional to the distance between the predicted and the class. We replace the FL loss written
in Equation 5, to compute the weighted kappa loss across samples and annotators using Equation 6.
The value range of this loss is (−∞, log 2], thus a Sigmoid function is applied before we sum the loss
from each annotator. We compare this WKL loss function to the logarithmic one in our experiment.

4 EXPERIMENTS

In this section, we evaluate our proposed method with data annotated by multiple human experts,
where the objective ground truth is ambiguous to define. Please refer to the Appendix for dataset
descriptions, implementation details, and the computation of agreement ground truth.

4.1 METRIC

Following Lovchinsky et al. (2019), we evaluate the performance of a model by using the agreement
ratio as follows.

∆ =
C2

J

J

∑J
j=1 Sigmoid(κ(P̃θ,R

j))∑J
j,j′=1&j ̸=j′ Sigmoid(κ(Rj ,Rj′ ))

, (9)

where the numerator computes the average agreement for the pairs of predictions of the model
and annotations of each annotator, and the denominator computes the average agreement between
annotators with C2

J denoting the number of different annotator pairs. κ is the Cohen’s Kappa. The
agreement ratio ∆ > 0 is larger than 1 when the model performs better than the average annotator
Lovchinsky et al. (2019).

4.2 RESULTS

4.2.1 AGREEMENT-ORIENTED LOSS VS. LOGARITHMIC LOSS.

As shown in the first section of Table 1, models trained with majority-voted ground truth produce
agreement ratios of 1.0417 and 0.7616 with logarithmic loss and annotation balancing (in this case
is class balancing for the single majority-voted ground truth) on the EmoPain and MURA datasets,
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Table 1: The ablation experiment on the EmoPain and MURA datasets. Majority-voting refers to the
method using the majority-voted ground truth for training. CE and WKL refer to the logarithmic and
weighted kappa loss functions used in the classifier stream, respectively. Linear and Distributional
refer to the agreement learning stream with linear regression and general agreement distribution,
respectively. The best performance in each section is marked in bold per dataset.

Framework/Annotator CE WKL Annotation Balance Linear Distributional ∆↑
EmoPain

∆↑
MURA

Majority
√ √

1.0417 0.7616
Voting

√
1.0452 0.7638√
0.9733 0.7564

Learn-from-all
√ √

1.0189 0.7665√
1.0407 0.7751√ √ √
1.0477 0.7727

Learn2Agree
√ √ √

1.0508 0.7796
(Ours)

√ √
1.0471 0.7768√ √
1.0547 0.7801

Annotator 1 0.9613 1.0679
Annotator 2 1.0231 0.9984
Annotator 3 1.0447 0.9743
Annotator 4 0.9732 0.9627

respectively. However, as shown in the second section of Table 1, directly exposing the model to
all the annotations is harmful, with performances lower than the majority-voting ones of 0.9733 and
0.7564 achieved on the two datasets using logarithmic loss alone. By using the balancing method
during training, the performance on the EmoPain dataset is improved to 1.0189 but is still lower than
majority-voting one, while a better performance of 0.7665 than the majority-voting is achieved on
the MURA dataset. These results show the importance of balancing for the modeling with logarith-
mic loss in a learn-from-all paradigm. With the WKL loss, performances of the model in majority-
voting (1.0452/0.7638) and learn-from-all (1.0407/0.7751) paradigms are further improved. This
shows the advantage of the WKL loss for improving the fitting with multiple annotators, which also
alleviates the need to use class balancing strategies.

4.2.2 THE IMPACT OF OUR LEARN2AGREE METHOD.

For both datasets, as shown in the third section of Table 1, with our proposed Learn2Agree method
using general agreement distribution, the best overall performances of 1.0547 and 0.7801 are
achieved on the two datasets, respectively. For the agreement learning stream, the combination
of general agreement distribution and AR loss shows better performance than its variant using linear
regression and RMSE on both datasets (1.0477 with logarithmic loss and 0.7768 with WKL loss).
Such results could be due to the fact that the agreement indicator ỹi produced from the linear regres-
sion is directly the estimated agreement value ŷi, which could be largely affected by the errors made
during agreement learning. In contrast, with general agreement distribution, the information passed
to the classifier is first the shape and skewness of the distribution G(yi). Thus, it is more tolerant to
the errors (if) made by the weighted sum that used for regression with agreement learning.

4.2.3 COMPARING WITH ANNOTATORS.

In the last section of Table 1, the annotation of each annotator is used to compute the agreement
ratio against the other annotators (Equation 9).

For the EmoPain dataset, the best method in majority-voting (1.0452) and learn-from-all (1.0407)
paradigms show very competitive if not better performances than annotator 3 (1.0447) who has the
best agreement level with all the other annotators. Thereon, the proposed Learn2Agree method
improves the performance to an even higher agreement ratio of 1.0547 against all the annotators.
This performance suggests that, when adopted in real-life, the model is able to analyze the protective
behavior of people with CP at a performance that is highly in agreement with the human experts.

However, for the MURA dataset, the best performance so far achieved by the Learn2Agree method
of 0.7801 is still lower than annotator 1. This suggests that, at the current task setting, the model
may make around 22% errors more than the human experts. One reason could be largely due to the
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Table 2: The experiment on analyzing the impact of Agreement Regression (AR) loss on agreement
learning

Dataset Classifier Loss Agreement Learning Type Agreement Learning Loss ∆ ↑

EmoPain

CE
Linear RMSE 1.0477

AR 0.9976

Distributional RMSE 1.0289
AR 1.0508

WKL
Linear RMSE 1.0454

AR 1.035

Distributional RMSE 1.0454
AR 1.0482

MURA

CE
Linear RMSE 0.7727

AR 0.7698

Distributional RMSE 0.7729
AR 0.7796

WKL
Linear RMSE 0.7707

AR 0.7674

Distributional RMSE 0.7724
AR 0.7773

challenge of the task. As shown in Rajpurkar et al. (2017), where the same backbone only achieved
a similar if not better performance than the other radiologists for only one (wrist) out of the seven
upper extremity types. In this paper, the testing set comprises all the extremity types, which makes
the experiment even more challenging. Future works may explore better backbones tackling this.

4.2.4 THE IMPACT OF AGREEMENT REGRESSION LOSS.

The proposed AR loss can be used for both the distributional and linear agreement learning stream.
However, as seen in Table 2 and Table 2, the performance of linear agreement learning is better with
RMSE loss rather than with the AR loss. The design of the AR loss assumes the loss computed for a
given quantile is in accord with its counterpart of agreement level. Thus, such results may be due to
the gap between the quantile of the underlying distribution of the linear regression and the targeted
agreement level. Therefore, the resulting estimated agreement indicator using AR loss passed to the
classifier may not reflect the actual agreement level. Instead, for linear regression, a vanilla loss like
RMSE promises that the regression value is fitting toward the actual agreement level.

By contrast, the proposed general agreement distribution directly adopts the range of agreement
levels to be the distribution values, which helps to narrow such a gap when AR loss is used. Therein,
the agreement indicator is extracted from the shape and skewness of such distribution (probabilities
of all distribution values), which could better reflect the agreement level when updated with AR
loss. As shown, the combination of distributional agreement learning and AR loss achieves the best
performance in each dataset.

5 CONCLUSION

In this paper, we targeted the scenario of learning with multiple annotators where the ground truth
is ambiguous to define. Two medical datasets in this scenario were adopted for the evaluation. We
showed that backbones developed with majority-voted ground truth or multiple annotations can be
easily enhanced to achieve better agreement levels with annotators, by leveraging the underlying
agreement information stored in the annotations. For agreement learning, our experiments demon-
strate the advantage of learning with the proposed general agreement distribution and agreement
regression loss, in comparison with other possible variants. Future works may extend this paper
to prove its efficiency in datasets having multiple classes, as only binary tasks were considered in
this paper. Additionally, the learning of annotator’s expertise seen in Tanno et al. (2019); Zhang
et al. (2020); Ji et al. (2021) could be leveraged to weight the agreement computation and learning
proposed in our method for cases where annotators are treated differently.
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Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Lever-
aging uncertainty information from deep neural networks for disease detection. Scientific reports,
7(1):1–14, 2017.

Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss v2:
Learning reliable localization quality estimation for dense object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11632–11641, 2021.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Chengjiang Long and Gang Hua. Multi-class multi-annotator active learning with robust gaussian
process for visual recognition. In Proceedings of the IEEE international conference on computer
vision, pp. 2839–2847, 2015.

Chengjiang Long, Gang Hua, and Ashish Kapoor. Active visual recognition with expertise estima-
tion in crowdsourcing. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 3000–3007, 2013.

Igor Lovchinsky, Alon Daks, Israel Malkin, Pouya Samangouei, Ardavan Saeedi, Yang Liu, Swami
Sankaranarayanan, Tomer Gafner, Ben Sternlieb, Patrick Maher, et al. Discrepancy ratio: Eval-
uating model performance when even experts disagree on the truth. In International Conference
on Learning Representations, 2019.

Lingni Ma, Jörg Stückler, Christian Kerl, and Daniel Cremers. Multi-view deep learning for con-
sistent semantic mapping with rgb-d cameras. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 598–605. IEEE, 2017.

Hongying Meng, Andrea Kleinsmith, and Nadia Bianchi-Berthouze. Multi-score learning for affect
recognition: the case of body postures. In International Conference on Affective Computing and
Intelligent Interaction, pp. 225–234. Springer, 2011.

Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico Tombari. Sampling-
free epistemic uncertainty estimation using approximated variance propagation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 2931–2940, 2019.

10



Published at the TML4H workshop, ICLR 2023

Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon
Yang, Kaylie Zhu, Dillon Laird, Robyn L Ball, et al. Mura: Large dataset for abnormality detec-
tion in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957, 2017.

Yichen Shen, Zhilu Zhang, Mert R Sabuncu, and Lin Sun. Real-time uncertainty estimation in
computer vision via uncertainty-aware distribution distillation. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 707–716, 2021.

Aneesha Singh, Stefano Piana, Davide Pollarolo, Gualtiero Volpe, Giovanna Varni, Ana Tajadura-
Jimenez, Amanda CdeC Williams, Antonio Camurri, and Nadia Bianchi-Berthouze. Go-with-
the-flow: tracking, analysis and sonification of movement and breathing to build confidence in
activity despite chronic pain. Human–Computer Interaction, 31(3-4):335–383, 2016.

James Surowiecki. The wisdom of crowds. Anchor, 2005.

Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C Alexander, and Nathan Silber-
man. Learning from noisy labels by regularized estimation of annotator confusion. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11244–11253,
2019.

Chongyang Wang, Yuan Gao, Akhil Mathur, Amanda C. DE C. Williams, Nicholas D Lane, and
Nadia Bianchi-Berthouze. Leveraging activity recognition to enable protective behavior detection
in continuous data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(2), 2021a.

Chongyang Wang, Temitayo A Olugbade, Akhil Mathur, Amanda C DE C Williams, Nicholas D
Lane, and Nadia Bianchi-Berthouze. Chronic pain protective behavior detection with deep learn-
ing. ACM Transactions on Computing for Healthcare, 2(3):1–24, 2021b.

Simon K Warfield, Kelly H Zou, and William M Wells. Simultaneous truth and performance level
estimation (staple): an algorithm for the validation of image segmentation. IEEE transactions on
medical imaging, 23(7):903–921, 2004.
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A APPENDIX

A.1 DATASETS

Two medical datasets are selected, involving data of body movement sequences and bone X-rays.
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A.1.1 EMOPAIN.

The EmoPain Aung et al. (2015) dataset contains skeleton-like movement data collected from 18
participants with CP and 12 healthy participants while they perform a variety of full-body physical
rehabilitation activities (e.g. stretching forward and sitting down). In total, we have 46 activity
sequences collected from these 30 participants, with each sequence lasting for about 10 minutes
(or 36,000 samples). A binary task is included to detect the presence of protective behavior (e.g.
hesitation, guarding) Keefe & Block (1982) exhibited by participants with CP during the perfor-
mances. The detection of such behavior could be leveraged to generate automatic feedback and
inform therapeutic personalized interventions Wang et al. (2021a). Four experts were recruited to
provide the binary annotations of the presence or absence of protective behavior per timestep for
each CP participant data sequence.

A.1.2 MURA.

The MURA dataset Rajpurkar et al. (2017) comprises 40,561 radiographic images of 7 upper ex-
tremity types (i.e., shoulder, humerus, elbow, forearm, wrist, hand, and finger), and is used for the
binary classification of abnormality. This dataset is officially split into training (36,808 images), val-
idation (3197 images), and testing (556 images) sets, with no overlap in subjects. The training and
validation sets are publicly available, with each image labelled by a radiologist. In the testing set,
the authors of MURA recruited six additional radiologists for annotation, and defined the ground
truth with majority-voting among three randomly-picked radiologists. The rest three radiologists
achieved Cohen’s kappa with such ground truth of 0.731, 0.763, and 0.778, respectively. To simu-
late the opinions of different experts for the data we have access to, three synthetic annotators are
created to reach Cohen’s kappa with the existing annotator at 0.80, 0.75, and 0.70, respectively.

A.2 IMPLEMENTATION DETAILS

For experiments on the EmoPain dataset, the state-of-the-art HAR-PBD network Wang et al. (2021a)
is adopted as the backbone, and Leave-One-Subject-Out validation is conducted across the partici-
pants with CP. The average of the performances achieved on all the folds is reported. The training
data is augmented by adding Gaussian noise and cropping, as seen in Wang et al. (2021b). The num-
ber of bins used in the general agreement distribution is set to 10, i.e., the respective softmax layer
has 11 nodes. The λ used in the regularization function is set to 3.0. For experiments on the MURA
dataset, the Dense-169 network Huang et al. (2017) pretrained on the ImageNet dataset Deng et al.
(2009) is used as the backbone. The original validation set is used as the testing set, where the first
view (image) from each of the 7 upper extremity types of a subject is used. Images are all resized to
be 224× 224, while images in the training set are further augmented with random lateral inversions
and rotations of up to 30 degrees. The number of bins is set to 5, and the λ is set to 3.0. The setting
of number of bins (namely, n in the distribution) and λ was found based on a grid search across their
possible ranges, i.e., n ∈ {5, 10, 15, 20, 25, 30} and λ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5}.

For all the experiments, the classifier stream is implemented with a fully-connected layer using
a Softmax activation with two output nodes for the binary classification task. Adam Kingma &
Ba (2014) is used as the optimizer with a learning rate lr =1e-4, which is reduced by 1/10 if the
performance is not improved after 10 epochs. The number of epochs is set to 50. the logarithmic loss
is adopted by default as written in Equation 5 and 6, while the WKL loss (8) is used for comparison
when mentioned. For the agreement learning stream, the AR loss is used for its distributional variant,
while the RMSE is used for its linear regression variant. We implement our method with TensorFlow
deep learning library on a PC with a RTX 3080 GPU and 32 GB memory.

A.3 AGREEMENT COMPUTATION

For a binary task, the agreement level αi between annotators is computed as follows.

αi =
1

J̀

J̀∑
j=1

wj
i r

j
i , (10)

where J̀ is the number of annotators that have labelled the sample xi. In this way, αi ∈ [0, 1] stands
for the agreement of annotators toward the positive class of the current binary task. In this work,
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we assume each sample was labelled by at least one annotator. wj
i is the weight for the annotation

provided by j-th annotator that could be used to show the different levels of expertise of annotators.
The weight can be set manually given prior knowledge about the annotator, or used as a learnable
parameter for the model to estimate. In this work, we treat annotators equally by setting wj

i to 1. We
leave the discussion on other situations to future works.
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