
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INITIALIZATION MATTERS: UNRAVELING THE IMPACT
OF PRE-TRAINING ON FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Initializing with pre-trained models when learning on downstream tasks is now
standard practice in machine learning. Several recent works explore the benefits of
pre-trained initialization in a federated learning (FL) setting, where the downstream
training is performed at the edge clients with heterogeneous data distribution. These
works show that starting from a pre-trained model can substantially reduce the
adverse impact of data heterogeneity on the test performance of a model trained
in a federated setting, with no changes to the standard FedAvg training algorithm.
In this work, we provide a deeper theoretical understanding of this phenomenon.
To do so, we study the class of two-layer convolutional neural networks (CNNs)
and provide bounds on the training error convergence and test error of such a
network trained with FedAvg. We introduce the notion of aligned and misaligned
filters at initialization and show that the data heterogeneity only affects learning
on misaligned filters. Starting with a pre-trained model typically results in fewer
misaligned filters at initialization, thus producing a lower test error even when the
model is trained in a federated setting with data heterogeneity. Experiments in
synthetic settings and practical FL training on CNNs verify our theoretical findings.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has emerged as the de-facto paradigm for training a
Machine Learning (ML) model over data distributed across multiple clients with privacy protection
due to its no data-sharing philosophy. Ever since its inception, it has been observed that heterogeneity
in client data can severely slow down FL training and lead to a model that has poorer generalization
performance than a model trained on Independent and Identically Distributed (IID) data (Kairouz
et al., 2021; Li et al., 2020; Yang et al., 2021a). This has led works to propose several algorithmic
modifications to the popular Federated Averaging (FedAvg) algorithm such as variance-reduction
(Acar et al., 2021; Karimireddy et al., 2020), contrastive learning (Li et al., 2021; Tan et al., 2022)
and sophisticated model-aggregation techniques (Lin et al., 2020; Wang et al., 2020), among others
to combat the challenge of data heterogeneity.

A recent line of work (Chen et al., 2022; Nguyen et al., 2022) has sought to understand the benefits
of starting from pre-trained models instead of randomly initializing the global model when doing FL.
This idea has been popularized by results in the centralized setting (Devlin et al., 2019; Radford et al.,
2019; He et al., 2019; Dosovitskiy et al., 2021), which show that starting from a pre-trained model
can lead to state-of-the-art accuracy and faster convergence on downstream tasks. Pre-training is
usually done on internet-scale public data (Schuhmann et al., 2022; Thomee et al., 2016; Raffel et al.,
2020; Gao et al., 2020) in order for the model to learn fundamental data representations (Sun et al.,
2017; Mahajan et al., 2018; Radford et al., 2019), that can be easily applied for downstream tasks.
Thus, while it would not be unexpected to see some gains of using pre-trained models even in FL,
what is surprising is the sheer scale of improvement. In many cases Nguyen et al. (2022); Chen et al.
(2022) show that just starting from a pre-trained model can significantly reduce the gap between the
performance of a model trained in a federated setting with non-IID versus IID data partitioning with
no algorithmic modifications. Figure 1 shows our own replication of this phenomenon, where starting
from a pre-trained model can lead to almost 14% improvement in accuracy for FL with non-IID data
(i.e., high data heterogeneity) compared to 4% for FL with IID data and 2% in the centralized setting.
This observation leads us to ask the question:

Why can pre-trained initialization drastically reduce the challenge of non-IID data in FL?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Random Pretrained
60

65

70

75

80

85

90

T
es

t
A

cc
u

ra
cy

63.6

75.6

79.6
77.3

79.7
81.7

FL Non-IID (α = 0.1)
FL IID (α = 10)

Centralized

Figure 1: Test accuracy (%) on CI-
FAR10 with SqueezeNet model Ian-
dola et al. (2016) under different ini-
tializations for FL and centralized
training. Pre-training benefits FL
more than centralized setting and sig-
nificantly reduces the gap between
IID and non-IID FL model perfor-
mance.

One reason suggested by Nguyen et al. (2022) is a lower value of
the training loss at initialization when starting from pre-trained
models. However, this observation can only explain improvement
in training convergence speed (see Theorem V in Karimireddy
et al. (2021)) and not the significantly improved generalization
performance of the trained model. Also, a pre-trained initializa-
tion can have larger loss than random initialization while continu-
ing to have faster convergence and better generalization (Nguyen
et al., 2022, Table 1). Chen et al. (2022); Nguyen et al. (2022) also
observe some optimization-related factors when starting from a
pre-trained model including smaller distance to optimum, better
conditioned loss surface (smaller value of the largest eigen value
of Hessian) and more stable global aggregation. However, it
has not been formally proven that these factors can reduce the
adverse effect of non-IID data. Thus, there is still a lack of fun-
damental understanding of why pre-trained initialization benefits
generalization for non-IID FL.

Our contributions. In this work we provide a deeper theoretical understanding of the importance of
initialization for FedAvg by studying two-layer ReLU Convolutional Neural Networks (CNNs) for
binary classification. This class of neural networks lends itself to tractable analysis while providing
valuable insights that extend to training deeper CNNs as shown by several recent works (Cao et al.,
2022; Du et al., 2018; Kou et al., 2023; Zou et al., 2021; Jelassi & Li, 2022; Bao et al., 2024; Oh &
Yun, 2024). Our data generation model, also studied in Cao et al. (2022); Kou et al. (2023), allows us
to utilize a signal-noise decomposition result (see Proposition 1) to perform a fine-grained analysis
of the CNN filter weight updates than can be done with general non-convex optimization. Some
highlights of our results are as follows:

1. We introduce the notion of aligned and misaligned filters at initialization (Definition 1) and show
that data heterogeneity affects signal learning only on misaligned filters while noise memorization
is unaffected by data heterogeneity (see Section 4). A pre-trained model is expected to have fewer
misaligned filters, which can explain the reduced effect of non-IID data.

2. We provide a test error upper bound for FedAvg that depends on the number of misaligned filters
at initialization and data heterogeneity. The effect of data heterogeneity on misaligned filters
is exacerbated as clients perform more local steps, which explains why FL benefits more from
pre-trained initialization than centralized training. To our knowledge, this is the first result where
the test error for FedAvg explicitly depends on initialization conditions (Theorem 2).

3. We prove the training error convergence of FedAvg by adopting a two-stage analysis: a first stage
where the local loss derivatives are lower bounded by a constant and second stage where the model
is in the neighborhood of a global minimizer with nearly convex loss landscape. Our analysis
shows a provable benefit of using local steps in the first stage to reduce communication cost.

4. We experimentally verify our upper bound on the test error in a synthetic data setting (see Section 3
as well as conduct experiments on practical FL tasks which show that our insights extend to deeper
CNNs (see Section 5).

Related Work. The two-layer CNN model that we study in this work was originally introduced
in Zou et al. (2021) for the purpose of analyzing the generalization error of the Adam optimizer in
the centralized setting. Later Cao et al. (2022) study the same model to analyze the phenomenon of
benign overfitting in two-layer CNN, i.e., give precise conditions under which the CNN can perfectly
fit the data while also achieving small population loss. Oh & Yun (2024) use this model to prove the
benefit of patch-level data augmentation techniques such as Cutout and CutMix. Kou et al. (2023)
relaxes the the polynomial ReLU activation in Cao et al. (2022) to the standard ReLU activation and
also introduces label-flipping noise when analyzing benign overfitting in the centralized setting. We
do not consider label-flipping in our work for simplicity; however this can be easily incorporated as
future work. To the best of our knowledge, we are only aware of two other works (Huang et al., 2023;
Bao et al., 2024) that analyze the two-layer CNN in a FL setting. The focus in Huang et al. (2023) is
on showing the benefit of collaboration in FL by considering signal heterogeneity across the data
in clients while Bao et al. (2024) considers signal heterogeneity to show the benefit of local steps.
Both Huang et al. (2023) and Bao et al. (2024) do not consider any label heterogeneity and there is

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

no emphasis on the importance of initialization, making their analysis quite different from ours. We
defer more discussion on other related works to the Appendix.

2 PROBLEM SETUP

We begin by introducing the data generation model and the two-layer convolutional neural network,
followed by our FL objective and a brief primer on the FedAvg algorithm. We note that given
integers a, b, we denote by [a : b] the set of integers {a, a+1, . . . , b}. Also, [n] denotes {1, 2, . . . , n}.
A table summarizing all the notation used in our work can be found in Appendix B.

Data-Generation Model. Let D be the global data distribution. A datapoint (x, y) ∼ D contains
feature vector x = [x(1)⊤,x(2)⊤]⊤ ∈ R2d with two components x(1),x(2) ∈ Rd and label
y ∈ {+1,−1}, that are generated as follows:

1. Label y ∈ {−1, 1} is generated as P [y = 1] = P [y = −1] = 1/2.
2. One of x(1), x(2) is chosen at random and assigned as yµ, where µ ∈ Rd is the signal vector

that we are interested in learning. The other of x(1), x(2) is set to be the noise vector ξ ∈ Rd,
which is generated from the Gaussian distribution N (0, σ2

p · (I− µµ⊤ · ∥µ∥−2
2)).

By definition, this noise vector ξ is orthogonal to the signal µ, i.e., ξ⊤µ = 0. This data generation
model is inspired by image classification tasks Cao et al. (2022) where it has been observed that
only some of the image patches (for example, the foreground) contain information (i.e. the signal)
about the label. We would like the model to predict the label by focusing on such informative image
patches and ignoring background patches that act as noise and are irrelevant to the classification.

Measure of Data Heterogeneity. We consider n datapoints drawn from the distribution D, and
partitioned across K clients such that each client has N = n/K datapoints. The assumption of
equal-sized client datasets is made for simplicity of analysis and can be easily relaxed. The data
partitioning determines the level of heterogeneity across clients. Let D+,k and D−,k denote the set
of samples at client k with positive (y = +1) and negative (y = −1) labels respectively. Define

h :=

∑K
k=1 min

(∣∣D+,k

∣∣ , ∣∣D−,k

∣∣)
n

∈ [0, 1/2]. (1)

A smaller h implies a higher data heterogeneity across clients. In the IID setting, with uniform
partitioning across clients, we expect min(|D+,k| , |D−,k|) ≈ n/2K for all k ∈ [K], and therefore
h ≈ 1/2. In the extreme non-IID setting where each client only has samples from one class, h = 0.

Two-Layer CNN. We now describe our two-layer CNN model. The first layer in our model consists
of 2m filters {wj,r}mr=1, j ∈ {±1}, where each wj,r ∈ Rd performs a 1-D convolution on the feature
x with stride d followed by ReLU activation and average pooling Lin et al. (2013); Yu et al. (2014).
The weights in the second layer then aggregate the outputs produced after pooling to get the final
output and are fixed as 2/m for j = +1 filters and −2/m for j = −1 filters. Formally, we have,

f(W,x) =
1

m

m∑

r=1

[σ (⟨w+1,r, yµ⟩) + σ (⟨w+1,r, ξ⟩)]
︸ ︷︷ ︸

:=F+1(W+1,x)

− 1

m

m∑

r=1

[σ (⟨w−1,r, yµ⟩) + σ (⟨w−1,r, ξ⟩)]
︸ ︷︷ ︸

:=F−1(W−1,x)

.

(2)

Here W ∈ R2md parameterizes all the weights of our neural network, W+1,W−1 ∈ Rmd parame-
terize the weights of the j = +1 filters and j = −1 filters respectively, and σ(z) = max(0, z) is the
ReLU activation. Intuitively Fj(Wj ,x) represents the ‘logit score’ that the model assigns to label j.

FL Training and Test Objectives. Let {(xk,i, yk,i)}Ni=1 be the local dataset at client k. Then the
global FL objective can be written as follows:

min
W∈R2d

{
L(W) =

1

K

∑K
k=1 Lk(W)

}
where Lk(W) =

1

N

∑N
i=1 ℓ(yk,if(W,xk,i)), (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where Lk(W) is the local objective at client k and ℓ(z) = log(1 + exp(−z)) is the cross-entropy
loss. We also define the test-error L0−1

D as the probability that W will misclassify a point (x, y) ∼ D:

L0−1
D (W) := P(x,y)∼D (y ̸= sign(f(W,x))) . (4)

The FedAvg Algorithm. The standard approach to minimizing objectives of the form in Equa-
tion (3) is the FedAvg algorithm. In each round t of the algorithm, the central server sends the
current global model W(t) to the clients. Clients initialize their local models to the current global
model by setting W

(t,0)
k = W(t), for all k ∈ [K], and run τ local steps of gradient descent (GD) as

follows

Local GD: W
(t,s+1)
k = W

(t,s)
k − η∇Lk(W

(t,s)
k) ∀s ∈ [0 : τ − 1],∀k ∈ [K]. (5)

After τ steps of Local GD, the clients send their local models {W(t,τ)
k } to the server, which aggregates

them to get the global model for the next round: W(t+1) =
∑K

k=1 W
(t,τ)
k /K. While we focus on

FedAvg with local GD in this work, we note that several modifications such as stochastic gradients
instead of full-batch GD, partial client participation Yang et al. (2021b) and server momentum Reddi
et al. (2021) are considered in both theory and practice. Studying these modifications is an interesting
future research direction.

3 MAIN RESULTS

In this section we first introduce our definition of filter alignment at initialization and a fundamental
result regarding the signal-noise decomposition of the CNN filter weights. We then state our main
result regarding the convergence of FedAvg with random initialization for the problem setup
described in Section 2 and the impact of data heterogeneity and filter alignment at initialization on
the test-error. Later we discuss why starting from a pre-trained model can improve the test accuracy
of FedAvg.

3.1 FILTER ALIGNMENT AT INITIALIZATION

Given datapoint (x, y), for the CNN to correctly predict the label y and minimize the loss
ℓ(yf(W,x)), from equation 2-equation 3, we want yf(W,x) = Fy(Wy,x)−F−y(W−y,x)) ≫ 0.
At an individual filter r ∈ [m], this can happen either with ⟨wy,r, yµ⟩ ≫ 0 or ⟨wy,r, ξ⟩ ≫ 0. How-
ever, we want the model to focus on the signal yµ in x while making the prediction. Therefore, for
filter (j, r) we want ⟨wj,r, yµ⟩ ≫ 0 if j = y and ⟨wj,r, yµ⟩ ≪ 0 if j = −y. Depending on the
initialization of our CNN, we have the following definition of aligned and misaligned filters.

Definition 1. The (j, r)-th filter (with j ∈ {±1}, r ∈ [m]) is said to be aligned (with signal) at
initialization if ⟨w(0)

j,r , jµ⟩ ≥ 0 and misaligned otherwise.

We shall see in Section 4 that the alignment of a filter at initialization plays a crucial role in how well
it learns the signal and also the overall generalization performance of the CNN in Theorem 2.

3.2 SIGNAL NOISE DECOMPOSITION OF CNN FILTER WEIGHTS

One of the key insights in Cao et al. (2022) is that when training the two-layer CNN with GD, the
filter weights at each iteration can be expressed as a linear combination of the initial filter weights,
signal vector and noise vectors. Our first result below shows that this is true for FedAvg as well.

Proposition 1. Let {w(t)
j,r}, for j ∈ {±1} and r ∈ [m], be the global CNN filter weights in round t.

Then there exist unique coefficients Γ(t)
j,r ≥ 0 and {P (t)

j,r,k,i}k,i such that

w
(t)
j,r = w

(0)
j,r + jΓ

(t)
j,r · ∥µ∥

−2
2 · µ

︸ ︷︷ ︸
Signal Term

+
∑K

k=1

∑N
i=1 P

(t)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i︸ ︷︷ ︸

Noise Term

, (6)

where k ∈ [K] denotes the client index, and i ∈ [N] is the sample index.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This decomposition allows us to decouple the effect of the signal and noise components on the CNN
filter weights, and analyze them separately throughout training. As we run more communication
rounds (denoted by t), we expect the weights to learn the signal yµ, hence it is desirable for Γ(t)

j,r

to increase with t. In addition, the filter weights also inevitably memorize noise ξ and overfit to
it, therefore the noise coefficients {P (t)

j,r,k,i} will also grow with t. We are primarily interested in

the growth of positive noise coefficients P
(t)

j,r,k,i = P
(t)
j,r,k,i1

(
P

(t)
j,r,k,i ≥ 0

)
since the negative noise-

coefficients P (t)
j,r,k,i := P

(t)
j,r,k,i1

(
P

(t)
j,r,k,i ≤ 0

)
remain bounded (see Theorem 3 in Appendix C) and

we can show that
∑

k,i P
(t)
j,r,k,i = Θ(

∑
k,i P

(t)

j,r,k,i). Henceforth, we refer to Γ
(t)
j,r and

∑
k,i P

(t)

j,r,k,i,
as the signal learning and noise memorization coefficients of filter (j, r) respectively. As we see later

in Theorem 2, the ratio of signal learning to noise memorization Γ
(t)
j,r/

∑
k,i P

(t)

j,r,k,i is fundamental
to the generalization performance of the CNN.

Signal and Noise Coefficients Update Equations. Given that clients are performing local GD, the
signal and noise coefficients evolve over rounds according to Lemma 1. Let w(t,s)

k be the weights of
the filter at client k at round t and iteration s, let ℓ′(t,s)k,i = ℓ′(yk,if(W

(t,s)
k ,xk,i)) be the derivative of

the cross-entropy loss for the outputs produced by the local models and let σ′(z) = 1
(
z ≥ 0

)
be the

derivative of the ReLU function (assume σ′(0) = 1 without loss of generality).

Lemma 1. The signal and noise coefficients Γ(t)
j,r, P

(t)

j,r,k,i, P
(t)
j,r,k,i satisfy

Γ
(t+1)
j,r = Γ

(t)
j,r −

η

nm

∑τ−1
s=0

∑K
k=1

∑N
i=1 ℓ

′(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, yk,iµ⟩
)
· ∥µ∥22 , (7)

P
(t+1)

j,r,k,i = P
(t)

j,r,k,i −
η

nm

∑τ−1
s=0 ℓ

′(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · 1

(
yk,i = j

)
, (8)

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i +

η

nm

∑τ−1
s=0 ℓ

′(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · 1

(
yk,i = −j

)
, (9)

where Γ
(0)
j,r = 0, P

(0)

j,r,k,i = 0, P
(0)
j,r,k,i = 0 for all k ∈ [K], i ∈ [N].

3.3 TRAINING LOSS CONVERGENCE AND TEST ERROR GUARANTEE

Next, we state our main result regarding the convergence of FedAvg with random initialization. We
assume the CNN weights are initialized as w(0)

j,r ∼ N (0, σ2
0Id) for all filters, where Id is the (d× d)

identity matrix. We first state the following standard conditions used in our analysis.

Condition 1. Let ϵ be a desired training error threshold and δ ∈ (0, 1) be some failure probability.1

(C1) The allowed number of communication rounds t is bounded by T ∗ = 1
ηpoly(ϵ

−1,m, n, d).

(C2) Dimension d is sufficiently large: d ≳ max
{

n∥µ∥2
2

σ2
p

, n2
}

.
(C3) Training set size n and neural network width m satisfy: m ≳ log(n/δ), n ≳ log(m/δ).
(C4) Standard deviation of Gaussian initialization is sufficiently small: σ0 ≲ min

{ √
n

σpdτ
, 1
∥µ∥2

}
.

(C5) The norm of the signal satisfies: ∥µ∥22 ≳ σ2
p.

(C6) Learning rate is sufficiently small: η ≲ min
{

nm
σ2
pd
, 1
∥µ∥2

2

, 1
σ2
pd

}
.

The above conditions are standard and have also been made in Cao et al. (2022); Kou et al. (2023) for
the purpose of theoretical analysis. (C1) is a mild condition needed to ensure that the signal and noise
coefficients remain bounded throughout the duration of training. Furthermore, we see in Theorem 1
that we only need T = O

(
mnη−1ϵ−1d−1 log(τ/ϵ)

)
rounds to reach a training error of ϵ, which is

well within the admissible number of rounds. (C2) is used to bound the correlation between the noise
vectors and also the correlation of the initial filter weights with the signal and noise. Consequently
for any two noise vectors ξk,i, ξk′,i′ , we have ∥ξk,i∥−2

2 · ⟨ξk,i, ξk′,i⟩ ≲ 1/
√
d ≲ 1/n, making it easier

to handle the growth of the noise coefficients. (C3) is needed to ensure that a sufficient number
of filters have non-zero activations at initialization so that the initial gradient is non-zero. (C4) is

1We use ≲ and ≳ to denote inequalities that hide constants and logarithmic factors. See Appendix for exact conditions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

needed to ensure that the initial weights of the CNN are not too large and that it has bounded loss
for all datapoints. (C5) is needed to ensure that signal learning is not too slow compared to noise
memorization. Finally, a small enough learning rate in (C6) ensures that Local GD does not diverge.
With this assumption we are now ready to state our main results.
Theorem 1 (Training Loss Convergence). For any ϵ > 0 under Condition 1, there exists a T =

O
(

mn
ησ2

pdτ

)
+O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
such that FedAvg satisfies L(W(T)) ≤ ϵ with probability ≥ 1− δ.

Our training error convergence consists of two stages. In the first stage consisting of T1 := O
(

mn
ησ2

pdτ

)

rounds, we show that the magnitudes of the cross-entropy loss derivatives are lower bounded by a
constant, i.e., |ℓ′(yk,if(W(t,s)

k ,xk,i))| = Ω(1). Using this we can show that the signal and noise

coefficients {Γ(t)
j,r, P

(t)

j,r,k,i} grow linearly and are Θ(1) by the end of this stage (see Lemma 1).
Consequently, by the end of the first stage, the model reaches a neighborhood of a global minimizer
where the loss landscape is nearly convex. Then in the second stage, we can establish that the training
error consistently decreases to an arbitrary error ϵ in O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
rounds.

Note that our analysis does not require the condition η ∝ 1/τ as is common in many works analyzing
FedAvg. Therefore, by setting τ large enough we can make the number of rounds in the first stage
as small as O (1), thereby reducing the communication cost of FL. However, in the second stage we
do not see any continued benefit of local steps; in fact the number of rounds required grows as log(τ).
This suggests an optimal strategy would be to adapt τ throughout training: start with large τ and
decrease τ after some rounds, which has also been found to work well empirically Wang & Joshi
(2019).
Theorem 2 (Test Error Bound). Define signal-to-noise ratio SNR := ∥µ∥2/σp

√
d and Aj := {r ∈

[m] : ⟨w(0)
j,r , jµ⟩ ≥ 0} to be the set of aligned filters (Definition 1) corresponding to label j. Then

under the same conditions as Theorem 1, our trained CNN achieves

1. When SNR2 ≲ 1/
√
nd, test error L0−1

D (W(T)) ≥ 0.1.

2. When SNR2 ≳ 1/
√
nd, test error

L0−1
D (W(T)) ≤ 1

2

∑
j∈{±1} exp

(
− n

d

[
|Aj |
m SNR2 +

(
1− |Aj |

m

)
SNR2

(
h+ 1

τ (1− h)
)]2)

.

Impact of SNR on harmful/benign overfitting. Intuitively, if the SNR is too low (SNR2 ≲ 1/
√
nd),

then there is simply not enough signal strength for the model to learn compared to the noise. Hence,
we cannot expect the model to generalize well no matter how we train it. This generalizes the
centralized training result in (Kou et al., 2023, Theorem 4.2) (with p = 0), which corresponds to
τ = 1 in FedAvg. In this case, the model is in the regime of harmful overfitting. However, if the
SNR is sufficiently large (SNR2 ≳ 1/

√
nd), we enter the regime of benign overfitting, where the

model can fit the data and generalize well with the test error reducing exponentially with the size of
the global dataset n.

Impact of Filter Alignment and Data Heterogeneity on Test Error. In the benign overfitting
regime, the rate of decay of test error for label y depends on how effectively the j = y filters in the
CNN are actually able to learn the signal compared to noise memorization and can be measured using∑

r

(
Γ(T)
y,r/

∑
k,i P

(T)
y,r,k,i

)
. Our analysis shows that

Γ
(T)
j,r∑

k,i P
(T)
j,r,k,i

≥
{
SNR2 for aligned filters (r ∈ Aj),

SNR2(h+ 1
τ (1− h)) for misaligned filters (r ∈ [m] \Aj).

(10)

For aligned filters, the ratio is unaffected by data heterogeneity h and the number of local steps τ .
However, for misaligned filters, the ratio becomes smaller as heterogeneity increases (h becomes
smaller) or τ increases. In centralized training with τ = 1, we have (h+ 1

τ (1− h)) = 1 and thus
we do not see any impact of heterogeneity at misaligned filters. Therefore, we recover the bound
L0−1
D (W(T)) ≤ exp(−nSNR2/d) in (Kou et al., 2023, Theorem 4.2). It is only in FL training with

τ > 1 local steps that we encounter the adverse effect of data heterogeneity at the misaligned filters.
We provide a proof sketch of equation 10 in Section 4 and also an empirical verification of our bound
in Section 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2 4 6 8
No. of misaligned filters at initialization

0.1

0.2

0.3
T

es
t

E
rr

or

IID(h = 1/2)

Non-IID(h = 0)

(a)

0 20 40 60 80 100
No. of local steps

0.02

0.04

0.06

0.08

0.10

0.12

T
es

t
E

rr
or

m/2 filters aligned at init.

All filters aligned at init.

(b)

0.0 0.1 0.2 0.3 0.4 0.5
Heterogeneity (0.5− h)

0.02

0.04

0.06

0.08

0.10

0.12

T
es

t
E

rr
or

m/2 filters aligned at init.

All filters aligned at init.

(c)

Figure 2: Empirical results on synthetic dataset to verify the upper bound on test error in Theorem 2. We fix
the training error ϵ = 0.1. Figure 2a: Test error increases as we increase the number of misaligned filters, with
much larger rate of increase in the non-IID setting. Figures 2b and 2c: Test error increases with local steps and
heterogeneity when m/2 filters are misaligned at initialization, remains constant when all the filters are aligned.

Empirical Verification of Upper Bound on Test Error. We now provide empirical verification
of the upper bound on the test error in Theorem 2 in the benign overfitting regime. We simulate a
synthetic dataset following our data-generation model in Section 2, with n = 20 datapoints, K = 2
clients and m = 10 filters. Additional experimental details can be found in Appendix F. We fix
a training error threshold of ϵ = 0.1 and then measure the test error of our CNN under various
settings in Figure 2. Figure 2a shows the test error as a function of the number of misaligned filters
(m− |Aj | in Theorem 2) under different data partitionings with the number of local steps fixed at
τ = 100. While the test error grows with the number of misaligned filters in both data settings, the
rate of growth is much larger in the non-IID setting. Figure 2b shows the test error as a function of
local steps τ under different initializations for fixed h = 0 while Figure 2c shows the test error as
a function of heterogeneity under different initializations for fixed τ = 100. As predicted by our
theory, heterogeneity and the number of local steps do not affect test error when all the filters are
aligned at initialization. On the other hand, the test error grows with τ and heterogeneity when the
number of misaligned filters is non-zero (m/2 = 5) for each j ∈ {±1}. Therefore, our empirical
results strongly validate our theoretical results showing the effect of heterogeneity, number of local
steps and number of misaligned filters on the test error.

3.4 IMPACT OF PRE-TRAINING ON FEDERATED LEARNING

Given the result in Theorem 2, we return to our question in Section 1, about the effect of pre-trained
initialization on improving generalization performance in FL. We focus on centralized pre-training
but our discussion here can be extended to federated pre-training as well (see Lemma 30 which states
a federated counterpart of the lemma below). Suppose we pre-train a CNN model in a centralized
manner on a dataset with signal µ(pre) generated according to the data model described in Section 2.
Now if we train for sufficient number of iterations, then we can show that all filters will be correctly
aligned with the pre-training signal.

Lemma 2 (All Filters Aligned After Sufficient Training). There exists T1 = O
(

mn
ησ2

pd

)
such that for

all t ≥ T1, j ∈ {±1}, r ∈ [m] we have ⟨w(pre,t)
j,r , jµ(pre)⟩ ≥ 0.

Now suppose we pre-train for t ≥ T1 iterations to get a model W(pre,∗) and use this model to
initialize for downstream federated training (i.e., W(0) = W(pre, *)) with signal vector µ. Then
for all j, r filters, we have ⟨w(0)

j,r , jµ⟩ = ⟨w(pre,*)
j,r , jµ(pre)⟩ + ⟨w(pre,*)

j,r , j(µ − µ(pre))⟩. We also

know that ⟨w(pre,*)
j,r , jµ(pre)⟩ ≥ 0 using Lemma 2. Therefore, if ∥µ − µ(pre)∥2 is small, all the

filters {w(0)
j,r } are correctly aligned with the signal jµ. As a result, in Theorem 2 Aj = [m] for

j ∈ {±1} and in the benign overfitting regime (SNR2 ≳ 1/
√
nd), we recover the centralized result

L0−1
D (W(T)) ≤ exp(−nSNR2/d) (Kou et al., 2023, Theorem 4.2). Hence, the adverse effects of

cross-client heterogeneity are mitigated by initializing with a pre-trained model.

4 A FINER UNDERSTANDING OF SIGNAL LEARNING AND NOISE
MEMORIZATION

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40 60 80
No. of local steps

0.0

0.1

0.2
Γ

(1
)

+
1,
r

r = 1

r = 2

r = 3

r = 4

r = 5

(a) IID Signal Learning

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

∑
k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(b) IID Noise Memorization

0 20 40 60 80
No. of local steps

0.0

0.5

1.0

1.5

2.0

Γ
(1

)
+

1,
r/
∑

k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(c) IID Sig. Learning/Noise Mem.

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

Γ
(1

)
+

1,
r

r = 1

r = 2

r = 3

r = 4

r = 5

(d) NonIID Signal Learning

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

0.3

∑
k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(e) NonIID Noise Memorization

0 20 40 60 80
No. of local steps

0.5

1.0

1.5

Γ
(1

)
+

1,
r/
∑

k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(f) NonIID Sig. Learning/Noise Mem.

Figure 4: Signal learning and noise memorization for our CNN model in the IID (h = 1/2) and NonIID (h = 0)
setting after 1 round. Figures 4a, 4d: In the IID setting signal learning coefficients are similar for all the filters
and increase with the number of local steps τ equation 12, but in the NonIID setting they saturate (equation 13)
for misaligned filters (r = 1, 2, 4, 5). Figures 4b, 4e: Noise memorization is similar for all filters in both
settings and grows with τ equation 14. Figures 4c, 4f: in the IID setting, the ratio of signal learning to noise
memorization remains independent of τ . But in the NonIID setting, the ratio decreases to zero as τ increases for
misaligned filters (r = 1, 2, 4, 5).

1 2 3 4 5
r

−0.2

−0.1

0.0

0.1

<
w

(0
)

+
1,
r,
µ
>

Figure 3: Initial alignment of
the filters in Figure 4.

In this section, we explain the central idea underlying the Proof of Theorem 2,
that the ratio of signal learning to noise memorization for aligned filters does
not depend on data heterogeneity h, and for misaligned filters it is reduced by
a factor (h+ 1

τ (1− h)). For ease of presentation, we focus on the first round
starting t = 0. However, our results extend to multiple rounds also as shown
in our proof in Appendix C.

Case 1: Filter is Aligned at Initialization, i.e., ⟨w(0)
j,r , jµ⟩ ≥ 0 =⇒ Signal Learning is Unaffected

by Data Heterogeneity. Using the fact that the signal vector is orthogonal to all the noise vectors,
i.e., ⟨µ, ξk,i⟩ = 0 for all k ∈ [K], i ∈ [N], we can show that the filter at client k satisfies,

⟨w(0,s)
j,r,k , jµ⟩ = ⟨w(0)

j,r , jµ⟩+
η

Nm

∑s−1
s′=0

∑N
i=1(−ℓ′

(0,s′)
k,i) · σ′(⟨w(0,s′)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 , (11)

for all s ∈ [0 : τ − 1]. Since the second term in equation 11 is positive (ℓ′ ≤ 0) and non-decreasing
with respect to s, we have ⟨w(0,s)

j,r,k , jµ⟩ ≥ 0 for all k, s. Consequently, using equation 7 we get

Γ
(1)
j,r =

η ∥µ∥22
nm

τ−1∑

s=0

∑

k,i:yk,i=j

(−ℓ′
(0,s)
k,i)

(a)

≥ Cητ ∥µ∥22
∣∣∪K

k=1Dj,k

∣∣
nm

(b)
= Ω

(
ητ ∥µ∥22

m

)
, (12)

where (a) follows since |ℓ′(0,s)k,i | ≥ C > 0 (see Lemma 20), and the definition of Dj,k equation 1; (b)

follows from
∣∣Dj := ∪K

k=1Dj,k

∣∣ = Ω(n) (see Lemma 8). Therefore, for aligned filters, Γ(1)
j,r scales

linearly with the number of local steps τ and depends only on the total number of samples with label
j, i.e., |Dj |. It does not depend on data heterogeneity equation 1, i.e., how Dj is partitioned across
clients.

Case 2: Filter is misaligned at initialization, i.e., ⟨w(0)
j,r , jµ⟩ < 0 =⇒ Signal Learning depends

on Data Heterogeneity. In the first iteration (s = 0), the samples in the set ∪K
k=1D−j,k (for which

σ′(⟨w(0,0)
j,r,k ,−jµ⟩

)
= 1) contribute to the growth of Γ(1)

j,r (see equation 7). From the discussion in

Case 1, we know that ⟨w(0,s)
j,r,k , jµ⟩ is non-decreasing in s. However, for a given s ∈ [1 : τ − 1],

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the sign of ⟨w(0,s)
j,r,k , jµ⟩ can differ across clients and the growth of Γ

(1)
j,r will depend on the set

⋃K
k=1{Dj′,k : j′ = sign

(
⟨w(0,s)

j,r,k , jµ⟩
)
}. Again using the fact that |ℓ′(0,s)k,i | ≥ C, we get from

equation 7

Γ
(1)
j,r ≥ Cη ∥µ∥22

nm

(∣∣∪K
k=1D−j,k

∣∣+∑τ−1
s=1

∑K
k=1

∣∣∣Dj′,k : j′ = sign
(
⟨w(0,s)

j,r,k , jµ⟩
)∣∣∣
)

(13)

≥ Cη ∥µ∥22
nm

(∣∣∪K
k=1D−j,k

∣∣+ (τ − 1)
∑K

k=1 min{|D+,k| , |D−,k|}
)

(a)
= Ω

(
η ∥µ∥22 (1 + (τ − 1)h)

m

)
,

where (a) follows from
∣∣∪K

k=1D−j,k

∣∣ = Θ(n) and the definition of h equation 1. Therefore, for

misaligned filters, global signal coefficient Γ(1)
j,r depends on the data heterogeneity h. Under extreme

data heterogeneity (h = 0), Γ(1)
j,r does not scale with the number of local steps τ . We illustrate this in

Figure 4d, where for misaligned filters the growth of Γ(1)
j,r saturates.

Noise Memorization Does not Depend on Data Heterogeneity. From equation 8 we have,
∑

k,i

P
(1)

j,r,k,i =
η

nm

∑

k,i

τ−1∑

s=0

(−ℓ′
(0,s)
k,i)σ

′(⟨w(0,s)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
yk,i = j

) (a)

≤ O
(

ητσ2
pd

m

)
(14)

where (a) follows from −ℓ′(·) ≤ 1 and maxk,i ∥ξk,i∥22 = Θ(σ2
pd) (see Lemma 4). We can also

establish a matching lower bound
∑

k,i P
(1)

j,r,k,i = Ω
(
ητσ2

pdm
−1
)

(see Lemma 29). As a result, the
noise memorization does not depend on data-heterogeneity and scales linearly with the number of
local steps τ . We illustrate this in Figures 4b and 4e where the growth of

∑
k,i P

(1)

j,r,k,i for all the
filters is similar in the IID and non-IID case.

Lower Bound on Ratio of Signal Learning to Noise Memorization. From equation 12, equa-
tion 13 and equation 14, we get the lower bound in equation 10 on the ratio of signal learning to noise
memorization for any filter. Observe that for aligned filters, the lower bound is independent of the
heterogeneity across clients. However, for misaligned filters, our bound cannot escape the adverse
effects of data heterogeneity: it worsens with increasing data heterogeneity (decreasing h) and also
with increasing number of local steps τ . This is also demonstrated by our experimental results in
Figures 4c and 4f.

5 EXPERIMENTS

In this section we provide some empirical results showing how our insights from Section 3 extend
to practical FL tasks with deep CNN models. We train a ResNet18 model on the CIFAR-10 dataset
distributed across 20 clients simulated using Dirichlet(α) Hsu et al. (2019). Unless specified, for
non-IID partitioning we use an α = 0.1 and for IID data we use α = 10. For pre-training, we use
a ResNet18 pre-trained on ImageNet Russakovsky et al. (2015), available in PyTorch Paszke et al.
(2019). Additional experimental details can be found in Appendix F.

Pre-trained Initialization has Fewer Misaligned Filters than Random Initialization. Measuring
filter alignment for deep CNNs is challenging since we cannot explicitly characterize the signal
information present in real world datasets and furthermore different layers will learn the signal at
different levels of granularity. Nonetheless, our theoretical findings suggest that given sufficient
number of training rounds, filters will be aligned with the signal (see Section 3) and once a filter is
aligned, the sign of the output produced by the filter with respect to the signal does not change, i.e, if
⟨w(t)

j,r, jµ⟩ > 0 then sign(⟨w(t′)
j,r ,µ⟩) = sign(⟨w(t)

j,r,µ⟩), for all t′ ≥ t. Therefore, we propose to use
the sign of the output produced by a filter at the end of training as a reference for alignment at any
given round. Formally, let W(0),W(1) · · ·W(T) be the sequence of iterates produced by federated
training and let F(w,x) = [⟨w,x(1)⟩, ⟨w,x(2)⟩, . . . ⟨w,x(p)⟩] ∈ Rp be the feature map vector
generated by filter w for input x. For a given batch of data B, we define the empirical measure of
alignment of filter w(t) relative to w(T) as follows:

A(w(t)) :=
∑

x∈B,l∈[p]

sign(Fl(w
(t),x))sign(Fl(w

(T),x)) (15)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

100 101 102

Round No.

0

5

10

15

20

25

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 50 100 150 200
Round No.

40

50

60

70

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 5: Percentage of misaligned filters measured using Equation (15) (Figure 5a) and test accuracy (Figure 5b)
for different initialization across training rounds when training a ResNet18 on CIFAR10 in non-IID FL setting.
The number of misaligned filter at initialization (t = 0) is almost 3× lower for pre-trained model compared to
random initialization leading to an improved generalization performance.

We say that the weight w(t) at round t is misaligned if A(w(t)) < 0, because this implies that the
sign of the output produced by the filter w at round t eventually changed for a majority of the inputs,
hence indicating that the filter was misaligned at round t. We compute this measure over a batch of
data to account for signal information coming from different classes of data as well as reduce the
impact of noise in the data. Based on this measure, we plot the ratio of the number of misaligned
filters to total filters when starting from pre-trained vs random initialization in Figure 5a for the
non-IID FL setup. As expected, we see that the number of misaligned filters is almost 3× smaller
when starting from a pre-trained initialization compared to a random initialization, which reflects in
the improved test accuracy of pre-trained initialization in Figure 5b.

Pre-trained Initialization Improves Ratio of Signal Learning to Noise Memorization. Our
theoretical results (Theorem 2) along with previous experimental results show that the two-
layer CNN model can have different test errors for the same training error depending on ini-
tialization and data heterogeneity. Our goal is to demonstrate that this finding extends to more
general FL tasks as well. We fix the training loss as 0.7 and measure the test accuracy un-
der different initialization and heterogeneity conditions as shown in Table 1. First, with ran-
dom initialization, IID FL achieves around 2% higher accuracy compared to non-IID FL,

Table 1: Test accuracy of ResNet-18 model for the
same training loss under different initialization and
heterogeneity settings. Test accuracy improves when
starting with a pre-trained model.

Init. Train Loss non-IID IID

Random 0.7±0.05 70.51±1.81 72.31±2.12

Pre-trained 0.7±0.05 74.12±1.51 74.15±0.92

indicating that the ratio of signal learning to noise-
memorization is higher in the IID setting. Sec-
ond, starting with a pre-trained model improves
the test accuracy in both settings, with a larger im-
provement in the non-IID setting. This implies
starting from a pre-trained model can improve the
efficiency of signal learning compared to noise
memorization especially in more heterogeneous
settings, thus corroborating our earlier findings.

6 CONCLUSION AND FUTURE WORK

In this work we provide a deeper theoretical explanation for why pre-training can drastically reduce
the adverse effects of non-IID data in FL by studying the class of two layer CNN models under a
signal-noise data model. Our analysis shows that the reduction in test accuracy seen in non-IID FL
compared to IID FL is only caused by filters that are misaligned at initialization. When starting from a
pre-trained model we expect most of the filters to be already aligned with the signal thereby reducing
the effect of heterogeneity and leading to a higher ratio of signal learning to noise memorization.
This is corroborated by experiments on synthetic setup as well as more practical FL training tasks.
Our work also opens up several avenues for future work. These including extending the analysis
to deeper and more practical neural networks and also incorporating multi-class classification with
more than two labels. Another interesting direction is to see how pre-training affects other federated
algorithms such as those that explicitly incorporate heterogeneity reducing mechanisms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2021.

Yajie Bao, Michael Crawshaw, and Mingrui Liu. Provable benefits of local steps in heterogeneous
federated learning for neural networks: A feature learning perspective. In Forty-first International
Conference on Machine Learning, 2024.

Leighton Pate Barnes, Alex Dytso, and H Vincent Poor. Improved information theoretic general-
ization bounds for distributed and federated learning. In 2022 IEEE International Symposium on
Information Theory (ISIT), pp. 1465–1470. IEEE, 2022.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convolu-
tional neural networks. Advances in Neural Information Processing Systems, 35:25237–25250,
2022.

Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao. On the importance
and applicability of pre-training for federated learning. International Conference on Learning
Representations, 2022.

Shuxiao Chen, Qinqing Zheng, Qi Long, and Weijie J Su. A theorem of the alternative for personalized
federated learning. arXiv preprint arXiv:2103.01901, 2021.

Gary Cheng, Karan Chadha, and John Duchi. Fine-tuning is fine in federated learning. arXiv preprint
arXiv:2108.07313, 3, 2021.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Fedavg with fine tuning:
Local updates lead to representation learning. Advances in Neural Information Processing Systems,
35:10572–10586, 2022.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlocking high-
accuracy differentially private image classification through scale. arXiv preprint arXiv:2204.13650,
2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association
for Computational Linguistics, 2019.

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between high-
dimensional gaussians with the same mean. arXiv preprint arXiv:1810.08693, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. International Conference on
Learning Representations, 2021.

Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent learns
one-hidden-layer cnn: Don’t be afraid of spurious local minima. In International Conference on
Machine Learning, pp. 1339–1348. PMLR, 2018.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Generalization of model-agnostic meta-
learning algorithms: Recurring and unseen tasks. Advances in Neural Information Processing
Systems, 34:5469–5480, 2021.

Eros Fanì, Raffaello Camoriano, Barbara Caputo, and Marco Ciccone. Fed3r: Recursive ridge
regression for federated learning with strong pre-trained models. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar,
Abhradeep Guha Thakurta, and Lun Wang. Why is public pretraining necessary for private
model training? In International Conference on Machine Learning, pp. 10611–10627. PMLR,
2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Peyman Gholami and Hulya Seferoglu. Improved generalization bounds for communication efficient
federated learning. arXiv preprint arXiv:2404.11754, 2024.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. Recovering
private text in federated learning of language models. Advances in Neural Information Processing
Systems, 35:8130–8143, 2022.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4918–4927, 2019.

Charlie Hou, Akshat Shrivastava, Hongyuan Zhan, Rylan Conway, Trang Le, Adithya Sagar, Giulia
Fanti, and Daniel Lazar. Pre-text: Training language models on private federated data in the age of
llms. arXiv preprint arXiv:2406.02958, 2024.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. In International Workshop on Federated Learning
for User Privacy and Data Confidentiality in Conjunction with NeurIPS 2019 (FL-NeurIPS’19),
December 2019.

Xiaolin Hu, Shaojie Li, and Yong Liu. Generalization bounds for federated learning: Fast rates,
unparticipating clients and unbounded losses. In The Eleventh International Conference on
Learning Representations, 2022.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021.

Wei Huang, Ye Shi, Zhongyi Cai, and Taiji Suzuki. Understanding convergence and generalization in
federated learning through feature learning theory. In The Twelfth International Conference on
Learning Representations, 2023.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, pp. 9965–10040. PMLR, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated
learning. Advances in Neural Information Processing Systems, 34:28663–28676, 2021.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer relu
convolutional neural networks. In International Conference on Machine Learning, pp. 17615–
17659. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. International Conference on
Learning Representations, 2022.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Gwen Legate, Nicolas Bernier, Lucas Page-Caccia, Edouard Oyallon, and Eugene Belilovsky. Guiding
the last layer in federated learning with pre-trained models. Advances in Neural Information
Processing Systems, 36, 2024.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722, 2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022a.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can
be strong differentially private learners. International Conference on Learning Representations,
2022b.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Dianbo Liu and Tim Miller. Federated pretraining and fine tuning of bert using clinical notes from
multiple silos. arXiv preprint arXiv:2002.08562, 2020.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196,
2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In Interna-
tional Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael Rabbat. Where to begin?
on the impact of pre-training and initialization in federated learning. International Conference on
Learning Representations, 2022.

Junsoo Oh and Chulhee Yun. Provable benefit of cutout and cutmix for feature learning. In High-
dimensional Learning Dynamics 2024: The Emergence of Structure and Reasoning, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated optimization. International Conference on
Learning Representations, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115:211–252, 2015.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Milad Sefidgaran, Romain Chor, and Abdellatif Zaidi. Rate-distortion theoretic bounds on gener-
alization error for distributed learning. Advances in Neural Information Processing Systems, 35:
19687–19702, 2022.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 843–852, 2017.

Zhenyu Sun and Ermin Wei. A communication-efficient algorithm with linear convergence for
federated minimax learning. Advances in Neural Information Processing Systems, 35:6060–6073,
2022.

Zhenyu Sun, Xiaochun Niu, and Ermin Wei. Understanding generalization of federated learning
via stability: Heterogeneity matters. In International Conference on Artificial Intelligence and
Statistics, pp. 676–684. PMLR, 2024.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from
pre-trained models: A contrastive learning approach. Advances in Neural Information Processing
Systems, 35:19332–19344, 2022.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, Hai Jin, and Lichao Sun. Fedbert: When
federated learning meets pre-training. ACM Transactions on Intelligent Systems and Technology
(TIST), 13(4):1–26, 2022.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018–5027, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li, H Brendan McMahan, Sewoong Oh, Zheng Xu,
and Manzil Zaheer. Can public large language models help private cross-device federated learning?
arXiv preprint arXiv:2305.12132, 2023.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and Yasaman Khaz-
aeni. Federated learning with matched averaging. In International Conference on Learning
Representations, 2020.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime
trade-off in local-update sgd. Proceedings of Machine Learning and Systems, 1:212–229, 2019.

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-scale
benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2575–2584, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin Liu, and Xuanzhe
Liu. Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone
data. In Proceedings of the Web Conference 2021, pp. 935–946, 2021a.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-iid federated learning. International Conference on Learning Representations, 2021b.

Dingjun Yu, Hanli Wang, Peiqiu Chen, and Zhihua Wei. Mixed pooling for convolutional neural
networks. In Rough Sets and Knowledge Technology: 9th International Conference, RSKT 2014,
Shanghai, China, October 24-26, 2014, Proceedings 9, pp. 364–375. Springer, 2014.

Honglin Yuan, Warren Morningstar, Lin Ning, and Karan Singhal. What do we mean by generalization
in federated learning? arXiv preprint arXiv:2110.14216, 2021.

Tuo Zhang, Tiantian Feng, Samiul Alam, Dimitrios Dimitriadis, Mi Zhang, Shrikanth S Narayanan,
and Salman Avestimehr. Gpt-fl: Generative pre-trained model-assisted federated learning. arXiv
preprint arXiv:2306.02210, 2023.

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated learning:
Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546, 2023.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A Additional Related Work 17

B Theory Notation and Preliminaries 17

B.1 Local Model Update . 18

B.2 Proof of Proposition 1 . 19

B.3 Proof of Lemma 1 . 19

C Training Error Convergence of FedAvg with Random Initialization 20

C.1 Preliminary Lemmas . 22

C.2 Bounding the Scale of Signal and Noise Memorization Coefficients 23

C.3 First Stage of Training. 38

C.4 Second Stage of Training . 40

C.5 Proof of Theorem 1 . 43

D Proof of Theorem 2 44

D.1 Test Error Upper Bound . 51

D.2 Test Error Lower Bound . 52

E Proof of Lemma 2 53

F Additional Experiments and Details 53

F.1 Details for Figures and Tables in Main Paper . 53

F.2 Additional Experiments . 55

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Use of Pre-Trained Models in Federated Learning. Tan et al. (2022) explore the benefit of
using pre-trained models in FL by proposing to use multiple fixed pre-trained backbones as the
encoder model at each client and using contrastive learning to extract useful shared representations.
Zhuang et al. (2023) discuss the opportunities and challenges of using large foundation models for FL
including the high communication and computation cost. One solution to this as proposed by Legate
et al. (2024) is that instead of full fine-tuning as done in Chen et al. (2022); Nguyen et al. (2022), we
can just fine-tune the last layer. Specifically Legate et al. (2024) proposes a two-stage approach to
federated fine-tuning by first fine-tuning the head and then doing a full-finetuning. This approach
is inspired by results in the centralized setting Kumar et al. (2022) which show that in some case
fine-tuning can distort the pre-trained features. Fanì et al. (2023) also study the problem of fine-tuning
just the last layer in a federated setting by replacing the softmax classifier with a ridge-regression
classifier which enables them to compute a closed form expression for the last layer weights.

There has also been some recent work on exploring the benefit of pre-training for federated natural
language processing tasks including the use of Large Language Models (LLMs). Wang et al. (2023)
discuss how to leverage the power of pre-trained LLMs for private on-device fine-tuning of language
models. Specifically, Wang et al. (2023) proposes a distribution matching approach to select public
data that is closest to private data and then use this selected public data to train the on-device language
model. Zhang et al. (2023) propose to first pre-train on synthetic data to construct the initialization
point followed by federated fine-tuning. Hou et al. (2024) propose that clients send DP information
to the server which then uses this information to generate synthetic data and fine-tune centrally on
this synthetic data. Liu & Miller (2020) discuss the challenges of pre-training and fine-tuning BERT
in federated manner using clinical notes from multiple silos without data transfer. Tian et al. (2022)
propose to pre-train a BERT model in a federated manner in a more general setting and show that their
pre-trained model can retain accuracy on the GLUE (Wang et al., 2018) dataset without sacrificing
client privacy. Gupta et al. (2022) propose a defense using pre-trained models to prevent an attacker
from recovering multiple sentences from gradients in the federated training of the language modeling
task.

Use of Pre-trained Models for Private Optimization. We note that an orthogonal line of work
has explored the benefits of starting from a pre-trained model when doing differentially private
optimization Dwork et al. (2006) and seen similar striking improvement in accuracy De et al. (2022);
Li et al. (2022b), as we see in the heterogeneous FL setting. Ganesh et al. (2023) study this
phenomenon for a stylized mean estimation problem and show that public pre-training can help the
model start from a good loss basin which is otherwise hard to achieve with private noisy optimization.
Li et al. (2022a) study differentially private convex optimization and show that starting from a
pre-trained model can leads to dimension independent convergence guarantees. Specifically Li et al.
(2022a) define the notion of restricted Lipschitz continuity and show that when gradients are low rank
most of the restricted Lispchitz coefficients will be zero.

Generalization performance in Federated Learning. Several existing works have studied the
generalization performance of FL in different settings Cheng et al. (2021); Gholami & Seferoglu
(2024); Huang et al. (2023); Yuan et al. (2021). Some of the initial works either provide results
independent of the algorithm being used Mohri et al. (2019); Hu et al. (2022); Sun & Wei (2022), or
only study convex losses Chen et al. (2021); Fallah et al. (2021). Barnes et al. (2022); Sefidgaran
et al. (2022) derive information-theoretic bounds, but these bounds require specific forms of loss
functions and cannot capture effects of heterogeneity. Huang et al. (2021) study the generalization
of FedAvg on wide two-layer ReLU networks with homogeneous data. Collins et al. (2022) studies
FedAvg under multi-task linear representation learning setting. In Sun et al. (2024), the authors have
demonstrated the impact of data heterogeneity on the generalization performance of some popular FL
algorithms.

B THEORY NOTATION AND PRELIMINARIES

We follow a similar notation as Kou et al. (2023) in most of the analysis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 2: Summary of notation

Symbol Description

j ∈ {−1, 1} Layer index
m Number of filters
d Dimension of filter

r ∈ [m] Filter Index
K Number of clients

k ∈ [K] Client index
N Number of datapoints at each client

i ∈ [N] Datapoint index
n = KN Global dataset size

yk,i ∈ {1,−1} Label of i-th datapoint at k-th client
µ Signal vector
σ2
p Variance of Gaussian noise

ξk,i Noise vector for k-th client and i-th datapoint
η Local learning rate
τ Number of local steps

ℓ(z) = log(1 + exp(−z)) Cross-entropy loss function
σ(z) = max(0, z) ReLU function
σ′(z) = 1

(
z ≥ 0

)
Derivative of ReLU function

t Round index
s Iteration index
h Heterogeneity parameter

SNR := ∥µ∥2/σp

√
d Signal to Noise Ratio

W
(·,·)
k Parameterized weights of the k-th client

w
(·,·)
j,r,k (j, r)-th filter weight of the k-th client

γ
(·,·)
j,r,k Local signal co-efficient for k-th client

ρ
(·,·)
j,r,k,i Local noise coefficient for k-th client and i-th datapoint

ρ
(·,·)
j,r,k,i Positive local noise coefficient for k-th client and i-th datapoint

ρ
(t,s)
j,r,k,i Negative local noise coefficient for k-th client and i-th datapoint

ℓ′
(·,·)
k,i Shorthand for −1/

(
1 + exp(yk,if(W

(·,·)
k ,xk,i)

)
which is the

derivative of cross-entropy loss for i-th datapoint at k-th client
W(·) Parameterized weight vector of the global model
w

(·)
j,r j, r-th filter weight of the global model

Γ
(·)
j,r Global signal co-efficient

P
(·)
j,r,k,i Global noise coefficient for (k, i)-th datapoint

P
(·)
j,r,k,i Positive global noise coefficient for (k, i)-th datapoint

P
(·)
j,r,k,i Negative global noise coefficient for (k, i)-th client datapoint

B.1 LOCAL MODEL UPDATE

Using local GD updates in equation 5 to minimize the local loss function in equation 3, the local
model update for the (j, r) filter at client k in round t can be written as,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

w
(t,τ)
j,r,k = w

(t)
j,r −

η

Nm

τ−1∑

s=0

∑

i∈[N]

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· jyk,iξk,i

− η

Nm

τ−1∑

s=0

∑

i∈[N]

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, yk,iµ⟩
)
· jµ

= w
(t)
j,r + jγ

(t,τ)
j,r,k · ∥µ∥−2

2 · µ+
∑

i∈[N]

ρ
(t,τ)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i (16)

where, we use w
(t,0)
j,r,k ≜ w

(t)
j,r. Further, we define

γ
(t,τ)
j,r,k ≜ − η

Nm

τ−1∑

s=0

∑

i∈[N]

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, yk,iµ⟩
)
· ∥µ∥22 , (17)

ρ
(t,τ)
j,r,k,i ≜ − η

Nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · jyk,i. (18)

which respectively, denote the local signal (γ(t,τ)
j,r,k) and local noise ({ρ(t,τ)j,r,k,i}i) components of w(t,τ)

j,r,k .

We also define ρ
(t,τ)
j,r,k,i = ρ

(t,τ)
j,r,k,i1

(
ρ
(t,τ)
j,r,k,i ≥ 0

)
and ρ

(t,τ)
j,r,k,i = ρ

(t,τ)
j,r,k,i1

(
ρ
(t,τ)
j,r,k,i < 0

)
, where 1

(
·
)

denotes the indicator function, and which can alternatively be written as

ρ
(t,τ)
j,r,k,i = − η

Nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · 1

(
yk,i = j

)
, (19)

ρ(t,τ)
j,r,k,i

=
η

Nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · 1

(
yk,i = −j

)
. (20)

B.2 PROOF OF PROPOSITION 1

The global model update at round t+ 1 can be written as

w
(t+1)
j,r =

K∑

k=1

1

K
w

(t,τ)
j,r,k

= w
(t)
j,r +

j

K

K∑

k=1

γ
(t,τ)
j,r,k · ∥µ∥−2

2 · µ+

K∑

k=1

∑

i∈[N]

1

K
ρ
(t,τ)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i. (21)

Mimicking the signal-noise decomposition in equation 16, we can define a similar decomposition for
the global model as follows.

w
(t)
j,r = w

(0)
j,r + jΓ

(t)
j,r · ∥µ∥

−2
2 · µ+

K∑

k=1

∑

i∈[N]

P
(t)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i. (22)

B.3 PROOF OF LEMMA 1

Comparing with equation 21, we have the following recursive update for the global signal and noise
coefficients using n = KN .

Γ
(t+1)
j,r = Γ

(t)
j,r +

K∑

k=1

1

K
γ
(t,τ)
j,r,k

= Γ
(t)
j,r −

η

nm

K∑

k=1

∑

i∈[N]

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, yk,iµ⟩
)
· ∥µ∥22 (23)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i +

1

K
ρ
(t,τ)
j,r,k,i

= P
(t)
j,r,k,i −

η

nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 · jyk,i. (24)

Analogously, we can also define the positive and negative global noise coefficients,

P
(t+1)

j,r,k,i = P
(t)

j,r,k,i −
η

nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 1

(
yk,i = j

)
(25)

and,

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i +

η

nm

τ−1∑

s=0

ℓ′
(t,s)
k,i · σ′(⟨w(t,s)

j,r,k, ξk,i⟩
)
· ∥ξk,i∥22 1

(
yk,i = −j

)
. (26)

Lemma 3. (Measuring local and global signal coefficient)

From equation 16, it follows that

⟨w(t,s)
j,r,k −w

(t)
j,r, yk,iµ⟩ = jyk,iγ

(t,s)
j,r,k. (27)

and from equation 22, it follows that

⟨w(t)
j,r −w

(0)
j,r ,µ⟩ = jΓ

(t)
j,r. (28)

Since {Γ(t)
j,r}t are non-negative and non-decreasing in t, the global weights {w(t)

j,r}r become increasing

aligned with the actual signal yk,iµ corresponding to the filters j = yk,i. Similarly, as {γ(t,s)
j,r,k}t are

non-negative and non-decreasing in s for fixed t, the local weights {w(t,s)
yk,i,r,k

}r become increasing
aligned with the signal yk,iµ corresponding to the filters j = yk,i.

‘

C TRAINING ERROR CONVERGENCE OF FEDAVG WITH RANDOM
INITIALIZATION

For the sake of completeness, we state the conditions used in our analysis (Condition 1) in full detail.

Assumptions. Let ϵ be a desired training error threshold and δ ∈ (0, 1) be some failure probability.
Let T ∗ = 1

ηpoly(ϵ
−1,m, n, d) be the maximum admissible rounds. Suppose there exists a sufficiently

large constant C, such that the following hold.
Assumption 1. Dimension d is sufficiently large, i.e.,

d ≥ Cmax

{
n ∥µ∥22 log(T ∗τ)

σ2
p

, n2 log(nm/δ)(log(T ∗τ))2
}
.

Assumption 2. Training sample size n and neural network width m satisfy

m ≥ C log(n/δ), n ≥ C log(m/δ).

Assumption 3. The norm of the signal satisfies,

∥µ∥22 ≥ Cσ2
p log(n/δ).

Assumption 4. Standard deviation of Gaussian initialization is sufficiently small, i.e.,

σ0 ≤ 1

C
min

{ √
n

σpdτ
,

1√
log(m/δ) ∥µ∥2

}
.

Assumption 5. Learning rate is sufficiently small, i.e.,

η ≤ 1

C
min

{
nm

√
log(m/δ)

σ2
pd

,
1

∥µ∥22
,

1

σ2
pd

}
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The assumptions are primarily used to ensure that the model is sufficiently overparameterized, i.e.,
training loss can be made arbitrarily small, and that we do not begin optimization from a point where
the gradient is already zero or unbounded. We provide a more intuitive reasoning behind each of the
assumptions below:

• Bounded number of communication rounds: This is needed to ensure that the magnitude of
filter weights remains bounded throughout training since they grow logarithmically with the
number of updates (see Theorem 3). We note that this is quite a mild condition since the
max rounds can have polynomial dependence on 1/ϵ where ϵ is our desired training error.

• Dimension d is sufficiently large: This is needed to ensure that the model is sufficiently
overparameterized and the training loss can be made arbitrarily small. Recall that our input
x consists of a signal component µ ∈ Rd that is common across all datapoints and noise
component ξ ∈ Rd that is independently drawn from N (0, σ2

p · I). Having a sufficiently
large d ensures that the correlation between any two noise vectors, i.e. ⟨ξ, ξ′⟩/∥ξ∥2 is not
too large. Otherwise if the correlation between two noise vectors is large and negative, then
minimizing the loss on one data point could end up increasing the loss on another training
point which complicates convergence and prevents loss from becoming arbitrarily small.

• Training set size and network width is sufficiently large: The condition ensures that a
sufficient number of filters get activated at initialization with high probability (see Lemma
6 and Lemma 7) and prevents cases where the initial gradient is zero. The condition on
training set size also ensures that there are a sufficient number of datapoints with negative
and positive labels (see Lemma 8).

• Standard deviation of Gaussian random initialization is sufficiently small: This condition is
needed to ensure that the magnitude of the initial correlation between the filter weights and
the signal and noise components, i.e |⟨w(0)

j,r ,µ⟩|, |⟨w
(0)
j,r , ξ⟩| is not too large. This simplifies

the analysis and prevents cases where none of the filters get activated at initialization (see
Lemma 21). It also ensures that after some number of rounds all filters get aligned with the
signal (see Lemma 30).

• Norm of signal is larger than noise variance: This condition is needed to ensure that all
misaligned filters at initialization eventually become aligned with the signal after some
rounds (see Lemma 30). This allows us to derive a meaningful bound on test performance
that is not dominated by noise memorization.

• Learning rate is sufficiently small: This is a standard condition to ensure that gradient
descent does not diverge. The conditions are derived from ensuring that the signal and
noise coefficient remain bounded in the first stage of training and that the loss decreases
monotonically in every round in the second stage of training.

For ease of reference, we restate Theorem 1 below.

Theorem (Training Loss Convergence). Let T1 = O
(

mn
ησ2

pdτ

)
. With probability 1 − δ over the

random initialization, for all T1 ≤ T ≤ T ∗ we have,

1

T − T1 + 1

T∑

t=T1

L(W(t)) ≤
∥∥W(T1) −W∗

∥∥2
2

η(T − T1 + 1)
+ ϵ.

Therefore we can find an iterate with training error smaller than 2ϵ within T = T1 +∥∥W(T1) −W∗
∥∥2
2
/(ηϵ) = O

(
mn

ησ2
pdτ

)
+O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
rounds.

Proof Sketch. The template follows that of Kou et al. (2023) and is divided into 3 parts. In
the first part (Appendix C.2), we show that the magnitude of the signal and noise memorization
coefficients for the global model is bounded for the entire duration of training (see Theorem 3), where
|Γ(t)

j,r| ≤ 4 log(T ∗τ) and |P (t)
j,r,k,i| ≤ 4 log(T ∗τ) for all 0 ≤ t ≤ T ∗ − 1. Next, we divide our training

into two stages. In the first stage (Appendix C.3), we show (see Lemma 20) that the noise (and
also signal) memorization coefficients grow fast and are lower bounded by some constant after T1

rounds i.e., |P (T1)

j,r,k,i| = Ω(1). In the second stage (Appendix C.4), the growth of the noise and signal
coefficients becomes relatively slower and the model reaches a neighborhood of a global minimizer

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where the loss landscape is nearly convex (see Lemma 24). Using this we can show that our objective
is monotonically decreasing in every round (see Lemma 25), which establishes convergence (in
Appendix C.5). We begin by stating (in Appendix C.1) some intermediate results that we use in the
subsequent analysis.

C.1 PRELIMINARY LEMMAS

Lemma 4. (Lemma B.4 in Cao et al. (2022)) Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with
probability at least 1− δ,

σ2
pd/2 ≤ ∥ξk,i∥22 ≤ 3σ2

pd/2,

|⟨ξk,i, ξk′,i′⟩| ≤ 2σ2
p

√
d log(6n2/δ),

for all k, k′ ∈ [K], i, i′ ∈ [N], and (k, i) ̸= (k′, i′).

Lemma 5. (Lemma B.5 in Kou et al. (2023)). Suppose that d = Ω(log(mn/δ)), m = Ω(log(1/δ)).
Then with probability at least 1− δ,

σ2
0d/2 ≤

∥∥∥w(0)
j,r

∥∥∥
2

2
≤ 3σ2

0d/2,

∣∣∣⟨w(0)
j,r ,µ⟩

∣∣∣ ≤
√

2 log(12m/δ) · σ0 ∥µ∥2 ,
∣∣∣⟨w(0)

j,r , ξk,i⟩
∣∣∣ ≤ 2

√
log(12mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1}, k ∈ [K] and i ∈ [N].

Lemma 6. (Lemma B.6 in Kou et al. (2023)). Let S(0)
k,i =

{
r ∈ [m] : ⟨w(0)

yk,i,r, ξk,i⟩ ≥ 0
}

. Suppose

δ > 0 and m ≥ 50 log(2n/δ). Then with probability at least 1− δ,
∣∣∣S(0)

k,i

∣∣∣ ≥ 0.4m,∀i ∈ [n].

Lemma 7. (Lemma B.7 in Kou et al. (2023)) Let S̃
(0)
j,r ={

k ∈ [K], i ∈ [N] : yk,i = j, ⟨w(0)
j,r , ξk,i⟩ ≥ 0

}
. Suppose δ > 0 and n ≥ 32 log(4m/δ).

Then with probability at least 1− δ,
∣∣∣S̃(0)

j,r

∣∣∣ ≥ n/8,∀i ∈ [n].

Lemma 8. Let Dj = {k ∈ [K], i ∈ [N] : yk,i = j}. Suppose δ > 0 and n ≥ 8 log(4/δ). Then with
probability at least 1− δ,

|Dj | ≥
n

4
,∀j ∈ {±1}.

Proof. We have |Dj | =
∑

k,i 1
(
yk,i = j

)
and therefore E |Dj | =

∑
k,i P(yk,i = j) = n/2.

Applying Hoeffding’s inequality we have with probability 1− 2δ,
∣∣∣∣
|Dj |
n

− 1

2

∣∣∣∣ ≤
√

log(4/δ)

2n
.

Now if n ≥ 8 log(4/δ), by applying union bound, we have with probability at least 1− δ,

|Dj | ≥
n

4
,∀j ∈ {±1}.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.2 BOUNDING THE SCALE OF SIGNAL AND NOISE MEMORIZATION COEFFICIENTS

Our first goal is to show that the coefficients of the global model, i.e., Γ(t)
j,r, P

(t)

j,r,k,i and
∣∣∣P (t)

j,r,k,i

∣∣∣
are bounded as O (log(T ∗τ)). To do so, we look at a virtual iteration index given by v =
0, 1, 2, 3, . . . , T ∗τ − 1. For any v, we can define the filter weights at virtual iteration v in terms of
the filter weights we have seen so far. In particular,

w̃
(v)
j,r,k ≜ w

(⌊ v
τ ⌋,v mod τ)

j,r,k .

We also define the following virtual sequence of local coefficients which will be used in our proof.
Let G(0)

j,r,k = 0,P(0)

j,r,k,i = 0,P(0)
j,r,k,i = 0. We have the following update equation for G(v)

j,r,k,P
(v)

j,r,k,i

and P(v)
j,r,k,i for v ≥ 1.

G(v)
j,r,k =

G(v−1)
j,r,k − η

Nm

∑

i∈[N]

ℓ′
(v−1)
k,i σ

′(⟨w̃(v−1)
j,r,k , yk,iµ⟩

)
∥µ∥22 , if v (mod τ) ̸= 0,

G(v−τ)
j,r,k − η

nm

τ−1∑

s=0

∑

k′

∑

i∈[N]

ℓ′
(v−τ+s)
k′,i σ

′(⟨w̃(v−τ+s)
j,r,k , yk,iµ⟩

)
∥µ∥22 else,

(29)

where we slightly abuse notation, using ℓ′
(v)
k,i to denote ℓ′

(⌊ v
τ ⌋,v mod τ)

k,i .

P(v)

j,r,k,i =

P(v−1)

j,r,k,i − η
Nmℓ′

(v−1)
k,i σ

′(⟨w̃(v−1)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)
, if v (mod τ) ̸= 0,

P(v−τ)

j,r,k,i − η
nm

τ−1∑

s=0

ℓ′
(v−τ+s)
k,i σ

′(⟨w̃(v−τ+s)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)
else.

(30)

P(v)
j,r,k,i =

P(v−1)
j,r,k,i +

η
Nmℓ′

(v−1)
k,i σ

′(⟨w̃(v−1)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)
, if v (mod τ) ̸= 0,

P(v−τ)
j,r,k,i +

η
nm

τ−1∑

s=0

ℓ′
(v−τ+s)
k,i σ

′(⟨w̃(v−τ+s)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)
else.

(31)

Note that we have the relation G(tτ)
j,r,k = Γ

(t)
j,r,P

(tτ)

j,r,k,i = P
(t)

j,r,k,i,P
(tτ)
j,r,k,i = P

(t)
j,r,k,i for all t =

0, 1, 2, . . . , T ∗ − 1. Intuitively, if we can bound the virtual sequence of coefficients, we can also
bound the actual coefficients of the global model at every round.

C.2.1 DECOMPOSITION OF VIRTUAL LOCAL FILTER WEIGHTS

The purpose of introducing the virtual sequence of coefficients is to write the local filter weight at
each client as the following decomposition.

w̃
(v)
j,r,k = w

(0)
j,r + jG(v)

j,r,k ∥µ∥
−2
2 µ+

∑

k′,k′ ̸=k

∑

i′∈[N]

(P(τ⌊v/τ⌋)
j,r,k′,i′ + P(τ⌊v/τ⌋)

j,r,k′,i′) ∥ξk′,i′∥−2
2 ξk′,i′

+
∑

i∈[N]

(P(v)

j,r,k,i + P(v)
j,r,k,i) ∥ξk,i∥

−2
2 ξk,i. (32)

Note that (τ⌊v/τ⌋) denotes the last iteration at which communication happened. If v (mod τ) = 0,
then w̃

(v)
j,r,k is the same for all k ∈ [K].

C.2.2 THEOREM ON SCALE OF COEFFICIENTS

We will now state the theorem that bounds our virtual sequence of coefficients and give the proof
below. We first define some quantities that will be used throughout the proof.

α := 4 log(T ∗τ); β := 2 max
i,j,k,r

{∣∣∣⟨w(0)
j,r ,µ⟩

∣∣∣ ,
∣∣∣⟨w(0)

j,r , ξk,i⟩
∣∣∣
}
; γ̂ =

n ∥µ∥22
σ2
pd

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Theorem 3. Under assumptions, for all v = 0, 1, 2, . . . , T ∗τ − 1, we have that,

G(0)
j,r,k = 0,P(0)

j,r,k,i = 0,P(0)
j,r,k,i = 0,

0 ≤ P(v)

j,r,k,i ≤ α, (33)

0 ≥ P(v)
j,r,k,i ≥ −β − 8

√
log(6n2/δ)

d
nα ≥ −α, (34)

0 ≤ G(v)
j,r,k ≤ C ′γ̂α, (35)

for all r ∈ [m], j ∈ {±1}, k ∈ [K], i ∈ [N], where C ′ is some positive constant.

We will use induction to prove this theorem. The statement is clearly true at v = 0. Now assuming
the statement holds at v = v′ we will show that it holds at v = v′ + 1. We first state and prove some
intermediate lemmas that we will use in our proof.

C.2.3 INTERMEDIATE STEPS TO PROVE THE INDUCTION IN THEOREM 3

Lemma 9.

max

{
β, 4

√
log(6n2/δ)

d
nα

}
≤ 1

12
.

Proof. From Lemma 5 we have β = 4σ0 max
{√

log(12mn/δ) · σp

√
d,
√
log(12m/δ) · ∥µ∥2

}
.

Now from Assumptions 1 and 4, by choosing C large enough, the inequality is satisfied.

Lemma 10. Suppose, equation 33, equation 34 and equation 35 holds for all iterations 0 ≤ v ≤ v′.
Then for all r ∈ [m], j ∈ {±1}, k ∈ [K], i ∈ [N] we have,

⟨w̃(v′)
j,r,k −w

(0)
j,r ,µ⟩ = jG(v′)

j,r,k, (36)
∣∣∣⟨w̃(v′)

j,r,k −w
(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣ ≤ 4

√
log(6n2/δ)

d
nα, j = yk,i, (37)

∣∣∣⟨w̃(v′)
j,r,k −w

(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣ ≤ 4

√
log(6n2/δ)

d
nα, j ̸= yk,i. (38)

Proof of equation 36. It follows directly from equation 32 by using our assumption that ⟨µ, ξk,i⟩ = 0
for all k ∈ [K], i ∈ [N].

Proof of equation 37. Note that for yk,i = j we have P(v′)
j,r,k,i = 0. Now using equation 32 for

j = yk,i we have,
∣∣∣⟨w̃(v′)

j,r,k −w
(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣

=

∣∣∣∣∣∣
∑

k′,k′ ̸=k

∑

i′∈[N]

(P(τ⌊v′/τ⌋)
j,r,k′,i′ + P(τ⌊v′/τ⌋)

j,r,k′,i′)
⟨ξk,i,ξk′,i′ ⟩

∥ξk′,i′∥2

2

+
∑

i′∈[N],i′ ̸=i

(P(v′)

j,r,k,i′ + P(v′)
j,r,k,i′)

⟨ξk,i,ξk,i′ ⟩

∥ξk,i′∥2

2

∣∣∣∣∣∣

(a)

≤

 ∑

k′,k′ ̸=k

∑

i′∈[N]

(∣∣∣P(τ⌊v′/τ⌋)
j,r,k′,i′

∣∣∣+
∣∣∣P(τ⌊v′/τ⌋)

j,r,k′,i′

∣∣∣
)
+
∑

i′∈[N]

(∣∣∣P(v′)

j,r,k,i′

∣∣∣+
∣∣∣P(v′)

j,r,k,i′

∣∣∣
)

 4

√
log(6n2/δ)

d

(b)

≤ 4

√
log(6n2/δ)

d
nα,

where (a) follows from triangle inequality and Lemma 4; (b) follows from the induction hypothesis.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof of equation 38. Note that for j ̸= yk,i we have P(v′)

j,r,k,i = 0. Using equation 32 for j ̸= yk,i
we have,
∣∣∣⟨w̃(v′)

j,r,k −w
(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣

=

∣∣∣∣∣∣
∑

k′,k′ ̸=k

∑

i′∈[N]

(P(τ⌊v′/τ⌋)
j,r,k′,i′ + P(τ⌊v′/τ⌋)

j,r,k′,i′)
⟨ξk,i,ξk′,i′ ⟩

∥ξk′,i′∥2

2

+
∑

i′∈[N],i′ ̸=i

(P(v′)

j,r,k,i′ + P(v′)
j,r,k,i′)

⟨ξk,i,ξk,i′ ⟩

∥ξk,i′∥2

2

∣∣∣∣∣∣

(a)

≤

 ∑

k′,k′ ̸=k

∑

i′∈[N]

(∣∣∣P(τ⌊v′/τ⌋)
j,r,k′,i′

∣∣∣+
∣∣∣P(τ⌊v′/τ⌋)

j,r,k′,i′

∣∣∣
)
+
∑

i′∈[N]

(∣∣∣P(v′)

j,r,k,i′

∣∣∣+
∣∣∣P(v′)

j,r,k,i′

∣∣∣
)

 4

√
log(6n2/δ)

d

(b)

≤ 4

√
log(6n2/δ)

d
nα,

where (a) follows from triangle inequality and Lemma 4; (b) follows from the induction hypothesis.

This concludes the proof of Lemma 9.

Lemma 11. Suppose equation 33, equation 34 and equation 35 hold at iteration v′. Then for all
k ∈ [K] and i ∈ [N],

1. For j ̸= yk,i, Fj(W̃
(v′)
j,k ,xk,i) ≤ 0.5.

2. For j = yk,i, Fj(W̃
(v′)
j,k ,xk,i) ≥ 1

m

∑m
r=1 P

(v′)

j,r,k,i − 0.25.

3. yk,if(W̃
(v′)
k ,xk,i) ≥ 1

m

∑m
r=1 P

(v′)

yk,i,r,k,i
− 0.75.

Proof of 1. First note that for j ̸= yk,i from Lemma 10 we have,

⟨w̃(v′)
j,r,k,µ⟩ ≤ ⟨w(0)

j,r ,µ⟩. (39)

since G(v′)
j,r,k ≥ 0 by the induction hypothesis. Also from Lemma 10 for j ̸= yk,i we have,

⟨w̃(v′)
j,r,k, ξk,i⟩ ≤ ⟨w(0)

j,r , ξk,i⟩+ P(v′)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

(a)

≤ ⟨w(0)
j,r , ξk,i⟩+ 4

√
log(6n2/δ)

d
nα (40)

where (a) follows from P(v′)
j,r,k,i ≤ 0 (induction hypothesis). Now using the definition of Fj(W,x)

for j ̸= yk,i we have,

Fj(W̃
(v′)
j,k ,xk,i) =

1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

j,r,k, yk,iµ⟩
)
+ σ

(
⟨w̃(v′)

j,r,k, ξk,i⟩
)]

(a)

≤ 3 max
r∈[m]

{∣∣∣⟨w(0)
j,r ,µ⟩

∣∣∣ ,
∣∣∣⟨w(0)

j,r , ξk,i⟩
∣∣∣ , 4
√

log(6n2/δ)

d
nα

}

(b)

≤ 3max

{
β, 4

√
log(6n2/δ)

d
nα

}

(c)

≤ 0.5. (41)

Here (a) follows from equation 39 and equation 40; (b) follows from the definition of β; (c) follows
from Lemma 9.

Proof of 2. For j = yk,i we have,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Fj(W̃
(v′)
j,k ,xk,i) =

1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

j,r,k, yk,iµ⟩
)
+ σ

(
⟨w̃(v′)

j,r,k, ξk,i⟩
)]

(a)

≥ 1

m

m∑

r=1

[
⟨w̃(v′)

j,r,k, yk,iµ⟩+ ⟨w̃(v′)
j,r,k, ξk,i⟩

]

(b)

≥ 1

m

m∑

r=1

[
⟨w(0)

j,r , yk,iµ⟩+ ⟨w(0)
j,r , ξk,i⟩+ P(v′)

j,r,k,i − 4

√
log(6n2/δ)

d
nα

]

(c)

≥ 1

m

m∑

r=1

P(v′)

j,r,k,i − 2β − 4

√
log(6n2/δ)

d
nα

(d)

≥ 1

m

m∑

r=1

P(v′)

j,r,k,i − 0.25. (42)

Here (a) follows from σ(z) ≥ z; (b) follows from Lemma 10 and that G(v′)
j,r,k ≥ 0; (c) follows from

the definition of β; (d) follows from Lemma 9.

Proof of 3. Combining the results in equation 41 and equation 42 we have,

yk,if(W̃
(v′)
k ,xk,i) = Fyk,i

(W̃
(v′)
yk,i,k

,xk,i)− F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)

(a)

≥ Fyk,i
(W̃

(v′)
yk,i,k

,xk,i)− 0.5

(b)

≥ 1

m

m∑

r=1

P(v′)

yk,i,r,k,i
− 0.75.

where (a) follows from equation 41; (b) follows from equation 42.

This concludes the proof of Lemma 11.

Lemma 12. Suppose equation 33, equation 34 and equation 35 hold at iteration v′. Then for all
j ∈ {±1}, k ∈ [K] and i ∈ [N],

∣∣∣ℓ′(v
′)

k,i

∣∣∣ ≤ exp
(
−Fyk,i

(W̃
(v′)
yk,i,k

,xi) + 0.5
)

.

Proof. We have,
∣∣∣ℓ′(v

′)
k,i

∣∣∣ = 1

1 + exp
(
yk,i

[
F+1(W̃

(v′)
+1,k,xk,i)− F−1(W̃

(v′)
+1,k,xk,i)

])

(a)

≤ exp
(
−yk,i

[
F+1(W̃

(v′)
+1,k,xk,i)− F−1(W̃

(v′)
+1,k,xk,i)

])

= exp
(
−Fyk,i

(W̃
(v′)
yk,i,k

,xk,i) + F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)
)

(b)

≤ exp
(
−Fyk,i

(W̃
(v′)
yk,i,k

,xk,i) + 0.5
)
,

where (a) uses 1/(1 + exp(z)) ≤ exp(−z); (b) uses part 1 of Lemma 11.

Lemma 13. Let g(z) = ℓ′(z) = −1/(1+ exp(z)). Further suppose z2 − z1 ≤ c where c ≥ 0. Then,

g(z1)

g(z2)
≤ exp(c). (43)

Proof. We have,

g(z1)

g(z2)
=

1 + exp(z2)

1 + exp(z1)
≤ max{1, exp(z2 − z1)}

(a)

≤ exp(c),

where (a) follows from c ≥ 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Lemma 14. Suppose equation 33, equation 34 and equation 35 hold at iteration v′. Then for all
k ∈ [K] and i ∈ [N],

⟨w̃(v′)
yk,i,r,k

, ξk,i⟩ ≥ −0.25, (44)

⟨w̃(v′)
yk,i,r,k

, ξk,i⟩ ≤ σ
(
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩

)
≤ ⟨w̃(v′)

yk,i,r,k
, ξk,i⟩+ 0.25. (45)

Proof of equation 44. From Lemma 10 we have,

⟨w̃(v′)
yk,i,r,k

, ξk,i⟩ ≥ ⟨w(0)
yk,i,r,k

, ξk,i⟩+ P(v′)

yk,i,r,k,i
− 4

√
log(6n2/δ)

d
nα

(a)

≥ −β − 4

√
log(6n2/δ)

d
nα

(b)

≥ −0.25.

Here (a) follows from the definition of β and P(v′)

yk,i,r,k,i
≥ 0 for all v′ ≥ 0; (b) follows from

Lemma 9.

Proof of equation 45. The first inequality of equation 45 follows naturally since σ(z) ≥ z for all
z ∈ R. For the second inequality we have,

σ
(
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩

)
=

⟨w̃(v′)

yk,i,r,k
, ξk,i⟩ ≤ ⟨w̃(v′)

yk,i,r,k
, ξk,i⟩+ 0.25, if ⟨w̃(v′)

yk,i,r,k
, ξk,i⟩ ≥ 0

0
(a)

≤ ⟨w̃(v′)
yk,i,r,k

, ξk,i⟩+ 0.25, if ⟨w̃(v′)
yk,i,r,k

, ξk,i⟩ < 0,

where (a) follows from ⟨w̃(v′)
yk,i,r,k

, ξk,i⟩ ≥ −0.25. This completes the proof.

This concludes the proof of Lemma 14.

Lemma 15. Suppose equation 33, equation 34 and equation 35 hold at iteration v′. Then for all
k, k′ ∈ [K] and i, i′ ∈ [N],

∣∣∣∣∣yk,if(W̃
(v′)
k ,xk,i)− yk′,i′f(W̃

(v′)
k′ ,xk′,i′)−

1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]∣∣∣∣∣ ≤ 1.75.

Proof. We can write,

yk,if(W̃
(v′)
k ,xk,i)− yk′,i′f(W̃

(v′)
k′ ,xk′,i′)

= Fyk,i
(W̃

(v′)
yk,i,k

,xk,i)− F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)

− Fyk′,i′ (W̃
(v′)
yk′,i′ ,k

′ ,xk′,i′) + F−yk′,i′ (W̃
(v′)
−yk′,i′ ,k

′ ,xk′,i′)

= F−yk′,i′ (W̃
(v′)
−yk′,i′ ,k

′ ,xk′,i′)− F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)

+ Fyk,i
(W̃

(v′)
yk,i,k

,xk,i)− Fyk′,i′ (W̃
(v′)
yk′,i′ ,k

′ ,xk′,i′)

= F−yk′,i′ (W̃
(v′)
−yk′,i′ ,k

′ ,xk′,i′)− F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)
︸ ︷︷ ︸

I1

+
1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

yk,i,r,k
, yk,iµ⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k
′ , yk′,i′µ⟩

)]

︸ ︷︷ ︸
I2

+
1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k
′ , ξk′,i′⟩

)]

︸ ︷︷ ︸
I3

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Next we bound I1, I2 and I3 as follows.

|I1| ≤ F−yk′,i′ (W̃
(v′)
−yk′,i′ ,k

′ ,xk′,i′) + F−yk,i
(W̃

(v′)
−yk,i,k

,xk,i)
(a)

≤ 1,

where (a) follows from part 1 of Lemma 11. For |I2| we have the following bound,

|I2| ≤ max

{
1

m

m∑

r=1

σ
(
⟨w̃(v′)

yk,i,r,k
, yk,iµ⟩

)
,
1

m

m∑

r=1

σ
(
⟨w̃(v′)

yk′,i′ ,r,k
′ , yk′,i′µ⟩

)}

(a)

≤ 2 max
r∈[m]

{∣∣∣⟨w(0)
yk,i,r

,µ⟩
∣∣∣ ,
∣∣∣⟨w(0)

yk′,i′ ,r
,µ⟩
∣∣∣ ,G(v′)

yk,i,r,k
,G(v′)

yk′,i′ ,r,k
′

}

(b)

≤ 2 max
r∈[m]

{β,C ′γ̂α}

(c)

≤ 0.25.

Here (a) follows Lemma 10, (b) follows from the definition of β and the induction hypothesis, (c)
follows from Lemma 9 and Assumption 1. Next we derive an upper bound on I3 as follows.

I3 =
1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k
′ , ξk′,i′⟩

)]

(a)

≤ 1

m

m∑

r=1

[
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩ − ⟨w̃(v′)

yk′,i′ ,r,k
′ , ξk′,i′⟩

]
+ 0.25

(b)

≤ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
+ 2β + 8

√
log(6n2/δ)

d
nα+ 0.25

(c)

≤ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
+ 0.5.

Here (a) follows from Lemma 14; (b) follows from Lemma 10; (c) follows from Lemma 9. Similarly,
we can get a lower bound for I3 as follows,

I3 =
1

m

m∑

r=1

[
σ
(
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k
′ , ξk′,i′⟩

)]

(a)

≥ 1

m

m∑

r=1

[
⟨w̃(v′)

yk,i,r,k
, ξk,i⟩ − ⟨w̃(v′)

yk′,i′ ,r,k
′ , ξk′,i′⟩

]
− 0.25

(b)

≥ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
− 2β − 8

√
log(6n2/δ)

d
nα− 0.25

(c)

≥ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
− 0.5.

Here (a) follows from Lemma 14; (b) follows from Lemma 10; (c) follows from Lemma 9. Combin-
ing the above results, we have

yk,if(W̃
(v′)
k ,xk,i)− yk′,i′f(W̃

(v′)
k′ ,xk′,i′) ≤ |I1|+ |I2|+ I3

≤ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
+ 1.75,

and,

yk,if(W̃
(v′)
k ,xk,i)− yk′,i′f(W̃

(v′)
k′ ,xk′,i′) ≥ −|I1| − |I2|+ I3

≥ 1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]
− 1.75.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

This implies,
∣∣∣∣∣yk,if(W̃

(v′)
k ,xk,i)− yk′,i′f(W̃

(v′)
k′ ,xk′,i′)−

1

m

m∑

r=1

[
P(v′)

yk,i,r,k,i
− P(v′)

yk′,i′ ,r,k
′,i′

]∣∣∣∣∣ ≤ 1.75.

We will now state and prove a version of Lemma C.7 that appears in Cao et al. (2022). Note that Cao
et al. (2022) only considers the heterogeneity arising due to different datapoints for the same model.
Interestingly, we show that the lemma can be extended to the case with different local models and
different datapoints as long as the local models start from the same initialization.

Lemma 16. Suppose equation 33, equation 34 and equation 35 hold for all 0 ≤ v ≤ v′. Then the
following holds for all 0 ≤ v ≤ v′.

1. 1
m

∑m
r=1

[
P(v)

yk,i,r,k,i
− P(v)

yk′,i′ ,r,k
′,i′

]
≤ κ for all k, k′ ∈ [K], i, i′ ∈ [N].

2. yk,if(W̃
(v)
k ,xk,i)− yk′,i′f(W̃

(v)
k′ ,xk′,i′) ≤ C1 for all k, k′ ∈ [K] and i, i′ ∈ [N].

3.
ℓ′

(v)

k′,i′

ℓ′
(v)
k,i

≤ C2 = exp(C1) for all k, k′ ∈ [K] and i, i′ ∈ [N].

4. S
(0)
k,i ⊆ S

(v)
k,i where S

(v)
k,i :=

{
r ∈ [m] : ⟨w̃(v)

yk,i,r,k
, ξk,i⟩ ≥ 0

}
, and hence

∣∣∣S(v)
k,i

∣∣∣ ≥ 0.4m for all

k ∈ [K], i ∈ [N].

5. S̃
(0)
j,r ⊆ S̃

(v)
j,r where S̃

(0)
j,r :=

{
k ∈ [K], i ∈ [N] : yk,i = j, ⟨w̃(v)

j,r,k, ξk,i⟩ ≥ 0
}

, and hence∣∣∣S̃(v)
j,r

∣∣∣ ≥ n
8 .

Here we take κ = 5 and C1 = 6.75.

Proof of 1. We will use a proof by induction. For v = 0, it is simple to verify that 1 holds since
P(0)

j,r,k,i = 0 for all j ∈ {±1}, r ∈ [m], k ∈ [K], i ∈ [N] by definition. Now suppose 1 holds for all
0 ≤ v ≤ ṽ < v′. Then we will show that 1 also holds at v = ṽ + 1. We have the following cases.

Case 1: (ṽ + 1) (mod τ) ̸= 0

In this case, from equation 30

P(ṽ+1)

yk,i,r,k,i
= P(ṽ)

yk,i,r,k,i
− η

Nm
ℓ′
(ṽ)
k,iσ

′(⟨w̃(ṽ)
yk,i,r,k,i

, ξk,i⟩
)
∥ξk,i∥22 .

Thus,

1

m

m∑

r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]
=

1

m

m∑

r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]

+
η

Nm2

[∣∣∣S(ṽ)
k,i

∣∣∣ (−ℓ′
(ṽ)
k,i) ∥ξk,i∥22 −

∣∣∣S(ṽ)
k′,i′

∣∣∣ (−ℓ′
(ṽ)
k′,i′) ∥ξk′,i′∥22

]
,

(46)

where S
(ṽ)
k,i , S

(ṽ)
k′,i′ are defined in 4. We bound equation 46 in two cases, depending on the value of

1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

i) If 1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
≤ 0.9κ. From equation 46 we have,

1

m

m∑

r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]
≤ 0.9κ+

η

Nm2

∣∣∣S(ṽ)
k,i

∣∣∣ (−ℓ′
(ṽ)
k,i) ∥ξk,i∥22

(a)

≤ 0.9κ+
η

Nm
∥ξk,i∥22

(b)

≤ κ.

(a) follows from
∣∣∣S(ṽ)

k,i

∣∣∣ ≤ m,−ℓ′(·) ≤ 1;(b) follows from Lemma 4 and Assumption 5.

ii) If 1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
> 0.9κ. From Lemma 15 we know that,

yk,if(W̃
(ṽ)
k ,xk,i)− yk′,i′f(W̃

(ṽ)
k′ ,xk′,i′) ≥

1

m

m∑

r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
− 1.75

(a)

≥ 0.9κ− 0.35κ

= 0.55κ. (47)

where (a) follows from κ = 5. Also note that since 1
m

∑m
r=1 P

(ṽ)

yk,i,r,k,i
≥

1
m

∑m
r=1 P

(ṽ)

yk′,i′ ,r,k
′,i′ + 0.9κ ≥ 0.9κ = 4.5, we have from Lemma 11 that

yk,if(W̃
(ṽ)
k ,xk,i) ≥ 3.75. (48)

Now from the definition of ℓ(·) we have,

(−ℓ′
(ṽ)
k,i)

(−ℓ
(ṽ)
k′,i′)

=
1 + exp(yk′,i′f(W̃

(ṽ)
k′ ,xk′,i′))

1 + exp(yk,if(W̃
(ṽ)
k ,xk,i))

(a)

≤ 1 + exp(yk,if(W̃
(ṽ)
k ,xk,i)− 0.55κ)

1 + exp(yk,if(W̃
(ṽ)
k ,xk,i))

(b)
< 1/7.5. (49)

Here (a) follows from equation 47; (b) follows from equation 48. Thus,
∣∣∣S(ṽ)

k,i

∣∣∣ ∥ξk,i∥22 (−ℓ′
(ṽ)
k,i)∣∣∣S(ṽ)

k′,i′

∣∣∣ ∥ξk′,i′∥22 (−ℓ
(ṽ)
k′,i′)

(a)

≤ 2.5
∥ξk,i∥22 (−ℓ′

(ṽ)
k,i)

∥ξk′,i′∥22 (−ℓ
(ṽ)
k′,i′)

(b)

≤ 2.5 · 3
(−ℓ′

(ṽ)
k,i)

(−ℓ
(ṽ)
k′,i′)

(c)
< 1.

Here (a) follows from
∣∣∣S(ṽ)

k,i

∣∣∣ ≤ m,
∣∣∣S(ṽ)

k′,i′

∣∣∣ ≥ 0.4m using our induction hypothesis; (b) fol-

lows from Lemma 4; (c) follows from equation 49. This implies
∣∣∣S(ṽ)

k,i

∣∣∣ ∥ξk,i∥22 (−ℓ′
(ṽ)
k,i) <∣∣∣S(ṽ)

k′,i′

∣∣∣ ∥ξk′,i′∥22 (−ℓ
(ṽ)
k′,i′). Now from equation 46 we have,

1

m

m∑

r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]
≤ 1

m

m∑

r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
≤ κ,

where the last inequality follows from our induction hypothesis.

Case 2: (ṽ + 1) (mod τ) = 0

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

In this case, using equation 30 we can write our update equation as follows:

1

m

m∑

r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]

=
1

m

m∑

r=1

[
P(ṽ+1−τ)

yk,i,r,k,i
− P(ṽ+1−τ)

yk′,i′ ,r,k
′,i′

]

+
1

n

η

m2

τ−1∑

s=0

(∣∣∣S(ṽ+1−τ+s)
k,i

∣∣∣ (−ℓ′
(ṽ+1−τ+s)
k,i) ∥ξk,i∥22 −

∣∣∣S(ṽ+1−τ+s)
k′,i′

∣∣∣ (−ℓ
(ṽ+1−τ+s)
k′,i′) ∥ξk′,i′∥22

)

︸ ︷︷ ︸
:=I1

=
1

m

m∑

r=1

[
P(ṽ+1−τ)

yk,i,r,k,i
− P(ṽ+1−τ)

yk′,i′ ,r,k
′,i′

]
+

I1
n
. (50)

From our induction hypothesis we know that

1

m

m∑

r=1

[
P(ṽ)

yk,i,r,k,i
− P(ṽ)

yk′,i′ ,r,k
′,i′

]
≤ κ. (51)

Now unrolling the LHS expression in equation 51 using equation 30, we see that this implies

1

m

m∑

r=1

[
P(ṽ+1−τ)

yk,i,r,k,i
− P(ṽ+1−τ)

yk′,i′ ,r,k
′,i′

]
+

I1
N

≤ κ (52)

Case 2a): I1 ≥ 0.

In this case it directly follows equation 50 and equation 52 that
1
m

∑m
r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]
≤ κ since N ≤ n.

Case 2b): If I1 < 0.

In this case from equation 50 we have,

1

m

m∑

r=1

[
P(ṽ+1)

yk,i,r,k,i
− P(ṽ+1)

yk′,i′ ,r,k
′,i′

]
≤ 1

m

m∑

r=1

[
P(ṽ+1−τ)

yk,i,r,k,i
− P(ṽ+1−τ)

yk′,i′ ,r,k
′,i′

]
≤ κ.

where the last inequality follows from our induction hypothesis.

Proof of 2. For any 0 ≤ v ≤ v′ we have,

yk,if(W̃
(v)
k ,xk,i)− yk′,i′f(W̃

(v)
k′ ,xk′,i′)

(a)

≤ 1

m

m∑

r=1

[
P(v)

yk,i,r,k,i
− P(v)

yk′,i′ ,r,k
′,i′

]
+ 1.75

(b)

≤ κ+ 1.75 = C1.

Here (a) follows from Lemma 15; (b) follows from 1.

Proof of 3. For any 0 ≤ v ≤ v′ we have,

ℓ′
(v)
k′,i′

ℓ′
(v)
k,i

(a)

≤ max
{
1, exp

(
yk,if(W̃

(v)
k ,xk,i)− yk′,i′f(W̃

(v)
k′ ,xk′,i′)

)} (b)

≤ exp(C1).

Here (a) follows from Lemma 13;(b) follows from 2.

Proof of 4. To prove 4, we will use the result in 3 and show that ⟨w̃(0)
yk,i,r,k

, ξk,i⟩ > 0 implies

⟨w̃(v)
yk,i,r,k

, ξk,i⟩ > 0 for all 1 ≤ v ≤ v′. We use a proof by induction. Assuming ⟨w̃(v)
yk,i,r,k

, ξk,i⟩ > 0

for all 0 ≤ v ≤ ṽ < v′, we will show that ⟨w̃(ṽ+1)
yk,i,r,k

, ξk,i⟩ > 0. We have the following cases.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Case 1: (ṽ + 1) (mod τ) ̸= 0.

Using the fact that ⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩ > 0 we have,

⟨w̃(ṽ+1)
yk,i,r,k

, ξk,i⟩ = ⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩+
η

Nm
(−ℓ′

(ṽ)
k,i) ∥ξk,i∥22

+
η

Nm

∑

i′∈[N],i′ ̸=i

(−ℓ′
(ṽ)
k,i′)σ

′
(
⟨w̃(ṽ)

yk,i,r,k
, ξk,i′⟩

)
⟨ξk,i, ξk,i′⟩

(a)

≥ ⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩+
ησ2

pd

2Nm
(−ℓ′

(ṽ)
k,i)−

η

Nm
2σ2

p

√
d log(4n2/δ)

∑

i′∈[N],i′ ̸=i

(−ℓ′
(ṽ)
k,i′)

(b)

≥ ⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩+
ησ2

pd

2Nm
(−ℓ′

(ṽ)
k,i)−

η

m
2σ2

p

√
d log(4n2/δ)C2(−ℓ′

(ṽ)
k,i)

(c)

≥ ⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩
> 0.

Here (a) follows from Lemma 4; (b) follows from 3; (c) follows from Assumption 1 by choosing a
sufficiently large d.

Case 2: (ṽ + 1) (mod τ) = 0.

From our induction hypothesis we know that ⟨w̃(ṽ+1−τ+s)
yk,i,r,k

, ξk,i⟩ > 0 for all 0 ≤ s ≤ τ − 1. Then,

⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩ = ⟨w̃(ṽ+1−τ)
yk,i,r,k

, ξk,i⟩+
η

nm

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ+s)
k,i) ∥ξk,i∥22

︸ ︷︷ ︸
I1

+
η

nm

τ−1∑

s=0

∑

i′∈[N],i′ ̸=i

(−ℓ′
(ṽ+1−τ+s)
k,i′)σ′

(
⟨w̃(ṽ+1−τ+s)

yk,i,r,k
, ξk,i′⟩

)
⟨ξk,i, ξk,i′⟩

︸ ︷︷ ︸
I2

+
η

nm

τ−1∑

s=0

∑

k′,k′ ̸=k

∑

i′∈[N]

(−ℓ′
(ṽ+1−τ+s)
k′,i′)σ′

(
⟨w̃(ṽ+1−τ+s)

yk,i,r,k′ , ξk′,i′⟩
)
⟨ξk,i, ξk′,i′⟩

︸ ︷︷ ︸
I3

(53)

Using Lemma 4 we can lower bound I1 as follows:

I1 ≥ ησ2
pd

2nm

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ+s)
k,i),

where the inequality follows from Lemma 4.

For |I2| we have,

Lemma 4 as follows:

|I2|
(a)

≤ η2σ2
p

√
d log(4n2/δ)

nm

τ−1∑

s=0

∑

i′∈[N],i′ ̸=i

(−ℓ′
(ṽ+1−τ+s)
k,i′)

(b)

≤ η(N − 1)C22σ
2
p

√
d log(4n2/δ)

nm

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ+s)
k,i).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Here (a) follows from Lemma 4; (b) follows from 3. Similarly we can bound |I3| as follows,

|I3|
(a)

≤ η2σ2
p

√
d log(4n2/δ)

nm

τ−1∑

s=0

∑

k′,k′ ̸=k

∑

i′∈[N]

(−ℓ′
(ṽ+1−τ+s)
k′,i′)

(b)

≤ η(n−N)C22σ
2
p

√
d log(4n2/δ)

nm

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ+s)
k,i).

Here (a) follows from Lemma 4; (b) follows from 3. Substituting the bounds for I1, |I2|, |I3| in
equation 53 we have,

⟨w̃(ṽ)
yk,i,r,k

, ξk,i⟩ ≥ ⟨w̃(ṽ+1−τ)
yk,i,r,k

, ξk,i⟩+ I1 − |I2| − |I3|

≥ ⟨w̃(ṽ+1−τ)
yk,i,r,k

, ξk,i⟩+
ησ2

pd

2nm

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ)+s
k,i)

− ηC2

m
2σ2

p

√
d log(4n2/δ)

τ−1∑

s=0

(−ℓ′
(ṽ+1−τ+s)
k,i)

(a)

≥ ⟨w̃(ṽ+1−τ)
yk,i,r,k

, ξk,i⟩
≥ 0.

Here (a) follows from Assumption 1 by choosing a sufficiently large d. Thus we have shown
that ⟨w̃(v)

yk,i,r,k
, ξk,i⟩ ≥ 0 for all 0 ≤ v ≤ v′ and r such that ⟨w(0)

yk,i,r,k
, ξk,i⟩ ≥ 0. This implies

S
(0)
k,i ⊆ S

(v)
k,i for all 0 ≤ v ≤ v′. Furthermore we know that

∣∣∣S(0)
k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N]

from Lemma 6 and thus
∣∣∣S(v)

k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N], 0 ≤ v ≤ v′.

Proof of 5. Note that as part of the proof of 4 we have already shown that ⟨w̃(v)
j,r,k, ξk,i⟩ ≥ 0 for all

0 ≤ v ≤ v′ and k, i such that yk,i = j and ⟨w̃(0)
j,r,k, ξk,i⟩ ≥ 0. This implies S̃

(0)
j,r ⊆ S̃

(v)
j,r for all

0 ≤ v ≤ v′. Furthermore we know that
∣∣∣S̃(0)

j,r

∣∣∣ ≥ n/8 for all j ∈ {±1}, r ∈ [m] from Lemma 7 and

thus
∣∣∣S̃(v)

j,r

∣∣∣ ≥ n/8 for all j ∈ {±1}, r ∈ [m].

This concludes the proof of Lemma 16.

We are now ready to prove Theorem 3.

C.2.4 PROOF OF THEOREM 3

We will again use a proof by induction to prove this theorem.

Proof of equation 34. For j = yk,i we know from equation 31 that P(v′+1)
j,r,k,i = 0 and hence we look

at the case where j ̸= yk,i.

Case 1: (v′ + 1) (mod τ) ̸= 0.

a) If P(v′)
j,r,k,i < −0.5β − 4

√
log(6n2/δ)

d nα, then from equation 38 in Lemma 10 we know that,

⟨w̃(v′)
j,r,k, ξk,i⟩ ≤ ⟨w(0)

j,r , ξk,i⟩+ P(v′)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

(a)

≤ 0.5β + P(v′)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

(b)
< 0.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Here (a) follows from definition of β in Theorem 3; (b) follows from P(v′)
j,r,k,i < −0.5β −

4
√

log(6n2/δ)
d nα. Now using the fact that ⟨w̃(v′)

j,r,k, ξk,i⟩ < 0 we have σ′
(
⟨w̃(v′)

j,r,k, ξk,i⟩
)

= 0,

which implies P(v′+1)
j,r,k,i = P(v′)

j,r,k,i ≥ −β − 8
√

log(6n2/δ)
d nα using the induction hypothesis.

b). If P(v′)
j,r,k,i ≥ −0.5β − 4

√
log(6n2/δ)

d nα, then from equation 31 we have,

P(v′+1)
j,r,k,i = P(v′)

j,r,k,i +
η

Nm
ℓ′
(v′)
k,i σ

′(⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)

(a)

≥ −0.5β − 4

√
log(6n2/δ)

d
nα− 3ησ2

pd

2Nm
(b)

≥ −β − 8

√
log(6n2/δ)

d
nα. (54)

Here (a) follows from |ℓ′(·)| ≤ 1 and Lemma 4; (b) follows from
3ησ2

pd

2Nm ≤ 4
√

log(6n2/δ)
d nα using

Assumption 5.

Case 2: (v′ + 1) (mod τ) = 0.

In this case, from equation 31 we have,

P(v′+1)
j,r,k,i = P(v′+1−τ)

j,r,k,i +
η

nm

τ−1∑

s=0

ℓ′
(v′+1−τ+s)
k,i σ

′(⟨w̃(v′+1−τ+s)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)

︸ ︷︷ ︸
:=I2

= P(v′+1−τ)
j,r,k,i +

η

nm
I2. (55)

Now suppose instead of doing the update in equation 55, we performed the following hypothetical
update:

Ṗ
(v′+1)

j,r,k,i = P(v′)
j,r,k,i +

η

Nm
ℓ′
(v′)
k,i σ

′(⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)

(a)
= P(v′+1−τ)

j,r,k,i +
η

Nm

τ−1∑

s=0

ℓ′
(v′+1−τ+s)
k,i σ

′(⟨w̃(v′+1−τ+s)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = −yk,i

)

= P(v′+1−τ)
j,r,k,i +

η

Nm
I2.

Here (a) uses equation 31 for v = [v′ + 1 − τ : v′]. From the argument in Case 1 we know that

Ṗ
(v′+1)

j,r,k,i ≥ −β − 8
√

log(6n2/δ)
d nα. Observe that P(v′+1)

j,r,k,i ≥ Ṗ
(v′+1)

j,r,k,i since I2 ≤ 0 and N ≤ n and

thus P(v′+1)
j,r,k,i ≥ −β − 8

√
log(6n2/δ)

d nα.

Proof of equation 33. We know from equation 30 that for j ̸= yk,i, P
(v′)

j,r,k,i = 0 for all 0 ≤ v′ ≤
T ∗τ − 1 and hence we focus on the case where j = yk,i.

Case 1: (v′ + 1) (mod τ) ̸= 0.

Let v′j,r,k,i be the last iteration such that v′j,r,k,i (mod τ) = 0 and P(v′
j,r,k,i)

j,r,k,i ≤ 0.5α and let s be the

maximum value in {0, 1, . . . , τ − 1} such that P(v′
j,r,k,i+s)

j,r,k,i ≤ 0.5α. Define vj,r,k,i = v′j,r,k,i + s. We

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

see that for all v > vj,r,k,i we have P(v)

j,r,k,i > 0.5α. Furthermore,

P(v′+1)

j,r,k,i

(a)

≤ P(vj,r,k,i)

j,r,k,i − η

Nm
ℓ′
(vj,r,k,i)
k,i σ

′(⟨w̃(vj,r,k,i)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)
︸ ︷︷ ︸

L1

−
∑

vj,r,k,i<v≤v′

η

Nm
ℓ′
(v)
k,iσ

′(⟨w̃(v)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)

︸ ︷︷ ︸
L2

. (56)

Here (a) uses the fact that we are avoiding the scaling down by a factor of 1
K which occurs at every v

(mod τ) = 0 (see equation 30) for v′j,r,k,i < v ≤ v′.

We know P(vj,r,k,i)

j,r,k,i ≤ 0.5α. We can bound L1 and L2 as follows:

L1

(a)

≤ η

Nm
∥ξk,i∥22

(b)

≤ 3ησ2
pd

2Nm

(c)

≤ 1
(d)

≤ 0.25α.

Here (a) uses |ℓ′(·)| ≤ 1, σ′(·) ≤ 1; (b) uses Lemma 4; (c) uses Assumption 5; (d) uses T ∗τ ≥ e.

Now note that for vj,r,k,i < v ≤ v′ since P(v)

j,r,k,i ≥ 0.5α we have,

⟨w̃(v)
j,r,k, ξk,i⟩

(a)

≥ ⟨w(0)
j,r,k, ξk,i⟩+ P(v)

j,r,k,i − 4

√
log(6n2/δ)

d
nα

(b)

≥ −0.5β + 0.5α− 4

√
log(6n2/δ)

d
nα

(c)

≥ 0.25α. (57)

Here (a) follows from Lemma 10, (b) follows from the definition of β (see Theorem 3) and P(v)

j,r,k,i ≥
0.5α, (c) follows from β ≤ 1

12 ≤ 0.1α and 4
√

log(6n2/δ)
d nα ≤ 0.2α using Assumption 1.

Substituting the bound above in L2 we have,

|L2|
(a)

≤
∑

vj,r,k,i<v≤v′

η

Nm
exp

(
−⟨w̃(v)

j,r,k, ξk,i⟩+ 0.5
)
σ

′(⟨w̃(v)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)

(b)

≤
∑

vj,r,k,i<v≤v′

2η

Nm
exp

(
−⟨w̃(v)

j,r,k, ξk,i⟩
)
∥ξk,i∥22 (58)

(c)

≤
∑

vj,r,k,i<v≤v′

2η

Nm
exp(−0.25α)

3σ2
pd

2

=
2η(v′ − vj,r,k,i − 1)

Nm
exp(− log T ∗τ)

3σ2
pd

2

≤ 2η(T ∗τ)

Nm
exp(− log T ∗τ)

3σ2
pd

2

=
3ησ2

pd

Nm
(d)

≤ 0.25α.

For (a) we use Lemma 12; for (b) we use exp(0.5) ≤ 2 and ⟨w̃(v)
j,r,k, ξk,i⟩ ≥ 0 from equation 57, (c)

follows from Lemma 4 and equation 57; (d) follows from Assumption 5.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Thus substituting the bounds for L1 and L2 we have,

P(v′+1)

j,r,k,i ≤ α,

which completes our proof.

Case 2: (v′ + 1) (mod τ) = 0.

Suppose instead of doing the update in equation 30, we performed the following hypothetical update

Ṗ
(v′+1)

j,r,k,i′ = P(v′)

j,r,k,i −
η

Nm
ℓ′
(v′)
k,i σ

′(⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
j = yk,i

)
. (59)

From the argument in Case 1 we know that Ṗ
(v′+1)

j,r,k,i′ ≤ α. Observe that P(v′+1)

j,r,k,i ≤ Ṗ
(v′+1)

j,r,k,i′ and thus

P(v′+1)

j,r,k,i ≤ α.

Proof of equation 35. This part bounds G(v′+1)
j,r,k . To do so we show that the growth of G(v′+1)

j,r,k is

upper bounded by the growth of P(v′+1)

yk,1,r∗,k,1
for any r∗ ∈ S

(0)
k,1, that is,

G(v′+1)
j,r,k

P(v′+1)

yk,1,r∗,k,1

≤ C ′γ̂.

We will again use a proof by induction. We first argue the base case of our induction. Since
r∗ ∈ S

(0)
k,1 ⊆ S

(v)
k,1 , so,

P(1)

yk,1,r∗,k,1
= P(0)

yk,1,r∗,k,1︸ ︷︷ ︸
=0

− η

Nm
ℓ′
(0)
k,1 σ

′
(〈

w
(0)
yk,1,r∗,k

, ξk,1

〉)

︸ ︷︷ ︸
=1(∵r∗∈S

(0)
k,1)

∥ξk,1∥22

=
η ∥ξk,1∥22
Nm

(
−ℓ′

(0)
k,1

) (a)

≥ ησ2
pd

2Nm
,

where (a) follows from Lemma 4. On the other hand,

G(1)
j,r,k = G(0)

j,r,k︸ ︷︷ ︸
=0

− η

Nm

∑

i∈[N]

ℓ′
(0)
k,iσ

′(⟨w(0)
j,r,k, yk,iµ⟩

)
∥µ∥22 ≤ ∥µ∥22 η

m
.

Therefore,

G(1)
j,r,k

P(1)

yk,1,r∗,k,1

≤ 2N ∥µ∥22
σ2
pd

≤ C ′γ̂,

if C ′ ≥ 2. Now assuming equation 60 holds at v′ we have the following cases for (v′ + 1).

G(v)
j,r,k

P(v)

yk,1,r∗,k,1

≤ C ′γ̂.

Case 1: (v′ + 1) (mod τ) ̸= 0. From equation 29 we have,

G(v′+1)
j,r,k = G(v′)

j,r,k +
η

Nm

∑

i∈[N]

(−ℓ′
(v′)
k,i)σ

′(⟨w̃(v′)
j,r,k, yk,iµ⟩

)
∥µ∥22

(a)

≤ G(v′)
j,r,k +

ηC2

m
(−ℓ′

(v′)
k,1) ∥µ∥22

(60)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

where (a) follows from part (3) in Lemma 16. At the same time since ⟨w(v)
yk,1,r∗,k

, ξk,1⟩ ≥ 0 for any

r∗ ∈ S
(0)
k,1 and for all 0 ≤ v ≤ T ∗τ − 1, we have from equation 30:

P(v′+1)

yk,1,r∗,k,1
= P(v′)

yk,1,r∗,k,1
+

η

Nm
(−ℓ′

(v′)
k,1) ∥ξk,1∥22

(a)

≥ P(v′)

yk,1,r∗,k,1
+

η

Nm
(−ℓ′

(v′)
k,1)

σ2
pd

2
,

where (a) follows from Lemma 4.

Thus,

G(v′+1)
j,r,k

P(v′+1)

yk,1,r∗,k,1

≤ max

G(v′)
j,r,k

P(v′)

yk,1,r∗,k,1

,
2C2N ∥µ∥22

σ2
pd

(a)

≤ max{C ′γ̂, 2C2γ̂}
(b)

≤ C ′γ̂.

Here (a) follows from the definition of γ̂; (b) follows from setting C ′ = 2C2.

Case 2: (v′ + 1) (mod τ) = 0.

We have from equation 29,

G(v′+1)
j,r,k = G(v′+1−τ)

j,r,k +
η

nm

τ−1∑

s=0

∑

k′

∑

i∈[N]

(−ℓ′
(v′+1−τ+s)
k′,i)σ

′(⟨w̃(v−τ+s)
j,r,k , yk,iµ⟩

)
∥µ∥22

(a)

≤ G(v′+1−τ)
j,r,k +

ηC2

m

τ−1∑

s=0

(−ℓ′
(v′+1−τ+s)
k,1) ∥µ∥22 ,

where (a) follows from part (3) in Lemma 16. At the same time since ⟨w(v)
yk,1,r∗,k

, ξk,1⟩ ≥ 0 for any

r∗ ∈ S
(0)
k,1 and for all 0 ≤ v ≤ T ∗τ − 1, we have from equation 30,

P(v′+1)

yk,1,r∗,k,1
= P(v′+1−τ)

yk,1,r∗,k,1
+

η

nm

τ−1∑

s=0

(−ℓ′
(v′+1−τ+s)
k,1) ∥ξk,1∥22

(a)

≥ P(v′+1−τ)

yk,1,r∗,k,1
+

η

nm

τ−1∑

s=0

(−ℓ′
(v′+1−τ+s)
k,1)

σ2
pd

2
,

where (a) follows from Lemma 4. Thus,

G(v′+1)
j,r,k

P(v′+1)

yk,1,r∗,k,1

≤ max

G(v′+1−τ)
j,r,k

P(v′+1−τ)

yk,1,r∗,k,1

,
2C2n ∥µ∥22

σ2
pd

(a)

≤ max{C ′γ̂, 2C2γ̂}
(b)

≤ C ′γ̂.

Here (a) follows from the definition of γ̂; (b) follows from setting C ′ = 2C2. Thus we have shown

G(v′+1)
j,r,k ≤ C ′γ̂P(v′+1)

yk,1,r∗,k,1
≤ C ′γ̂α where the last inequality follows from P(v′+1)

yk,1,r∗,k,1
≤ α.

Now that we have proved Theorem 3, that is, equation 33, equation 34 and equation 35 hold for
all 0 ≤ v ≤ T ∗τ − 1, we state a simple proposition that extends the result in Lemma 16 for all
0 ≤ v ≤ T ∗τ − 1.

Proposition 2. Under assumptions, for all 0 ≤ v ≤ T ∗τ − 1 we have

1. 1
m

∑m
r=1

[
P(v)

yk,i,r,k,i
− P(v)

yk′,i′ ,r,k
′,i′

]
≤ κ for all k, k′ ∈ [K], i, i′ ∈ [N].

2. yk,if(W̃
(v)
k ,xk,i)− yk′,i′f(W̃

(v)
k′ ,xk′,i′) ≤ C1 for all k, k′ ∈ [K] and i, i′ ∈ [N].

3.
ℓ′

(v)

k′,i′

ℓ′
(v)
k,i

≤ C2 = exp(C1) for all k, k′ ∈ [K] and i, i′ ∈ [N].

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

4. S
(0)
k,i ⊆ S

(v)
k,i where S

(v)
k,i :=

{
r ∈ [m] : ⟨w̃(v)

yk,i,r,k
, ξk,i⟩ ≥ 0

}
, and hence

∣∣∣S(v)
k,i

∣∣∣ ≥ 0.4m for all

k ∈ [K], i ∈ [N].

5. S̃
(0)
j,r ⊆ S̃

(v)
j,r where S̃

(v)
j,r :=

{
k ∈ [K], i ∈ [N] : yk,i = j, ⟨w̃(v)

j,r,k, ξk,i⟩ ≥ 0
}

, and hence∣∣∣S̃(v)
j,r

∣∣∣ ≥ n
8 .

Here we take κ = 5 and C1 = 6.75.

C.3 FIRST STAGE OF TRAINING.

Define,

T1 =
C3nm

ησ2
pdτ

(61)

where C3 = Θ(1) is some large constant. In this stage, our goal is to show that P
(T1)

yk,i,r∗,k,i
≥ 2

for all r∗ such that r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r∗
, ξk,i⟩ ≥ 0

}
. To do so, we first introduce the

following lemmas.

Lemma 17. For all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

max
j,r,k

{
Γ
(t)
j,r + γ

(t,s)
j,r,k

}
≤ C3n ∥µ∥22

σ2
pd

= O (1) .

Proof. We have,

Γ
(t)
j,r + γ

(t,s)
j,r,k = − η

nm

t−1∑

t′=0

∑

k

∑

i∈[N]

τ−1∑

s=0

ℓ′
(t′,s)
k,i σ

′(⟨w(t′,s)
j,r,k , yk,iµ⟩

)
∥µ∥22

− η

Nm

s∑

s′=0

∑

i∈[N]

ℓ′
(t,s′)
k,i σ

′(⟨w(t,s′)
j,r,k , yk,iµ⟩

)
∥µ∥22

(a)

≤ − η

nm

t−1∑

t′=0

∑

k

∑

i∈[N]

τ−1∑

s=0

ℓ′
(t′,s)
k,i ∥µ∥22 −

η

Nm

s∑

s′=0

∑

i∈[N]

ℓ′
(t,s′)
k,i ∥µ∥22

(b)

≤ η(t+ 1)τ ∥µ∥22
m

≤ ηT1τ ∥µ∥22
m

=
C3n ∥µ∥22

σ2
pd

(c)
= O (1) .

Here (a) follows from σ′(·) ∈ {0, 1}, (b) follows from |ℓ′(·)| ≤ 1, (c) follows from Assumption 1.

Lemma 18. For all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

max
j,r,k,i

{
P

(t)

j,r,k,i + ρ
(t,s)
j,r,k,i

}
= O (1) .

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Proof. We have from equation 19 and equation 25,

P
(t)

j,r,k,i + ρ
(t,s)
j,r,k,i = − η

nm

t−1∑

t′=0

τ−1∑

s=0

ℓ′
(t′,s)
k,i σ

′(⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥22 1

(
yk,i = j

)

− η

Nm

s∑

s′=0

ℓ′
(t,s′)
k,i σ

′(⟨w(t,s′)
j,r,k , ξk,i⟩

)
∥ξk,i∥22 1

(
yk,i = j

)

(a)

≤ − η

nm

t−1∑

t′=0

τ−1∑

s=0

ℓ′
(t′,s)
k,i ∥ξk,i∥22 −

η

Nm

s∑

s′=0

ℓ′
(t,s′)
k,i ∥ξk,i∥22

≤ η(t+ 1)τ ∥ξk,i∥22
Nm

(b)

≤ 3ηT1τσ
2
pd

2Nm

≤ 3C3n

2N
= O (1) .

Here (a) follows from σ′(·) ≤ 1, (b) follows from t ≤ T1 − 1 and Lemma 4.

Lemma 19. For any k ∈ [K] and i ∈ [N], we have Fj(W
(t,s)
j,k ,xk,i) = O (1) for all j ∈ {±1},

0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1.

Proof. We have,

Fj(W
(t,s)
j,k ,xk,i)

=
1

m

m∑

r=1

[
σ
(
⟨w(t,s)

j,r,k, yk,iµ⟩
)
+ σ

(
⟨w(t,s)

j,r,k, ξk,i⟩
)]

(a)

≤ 1

m

m∑

r=1

[∣∣∣⟨w(t,s)
j,r,k, yk,iµ⟩

∣∣∣+
∣∣∣⟨w(t,s)

j,r,k, ξk,i⟩
∣∣∣
]

(b)

≤ 1

m

m∑

r=1

[∣∣∣⟨w(0)
j,r ,µ⟩

∣∣∣+ Γ
(t)
j,r + γ

(t,s)
j,r,k +

∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣+ P
(t)

j,r,k,i + ρ
(t,s)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

]

≤ 5 max
r∈[m]

{∣∣∣⟨w(0)
j,r ,µ⟩

∣∣∣ ,Γ(t)
j,r + γ

(t,s)
j,r,k,

∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣ , P (t)

j,r,k,i + ρ
(t,s)
j,r,k,i, 4

√
log(6n2/δ)

d
nα

}

(c)

≤ 5 max
r∈[m]

{
β,Γ

(t)
j,r + γ

(t,s)
j,r,k, P

(t)

j,r,k,i + ρ
(t,s)
j,r,k,i, 4

√
log(6n2/δ)

d
nα

}

(d)
= O (1) .

Here (a) follows from σ(z) ≤ |z|, (b) follows from Lemma 10, (c) follows from the definition of β,
(d) follows from Lemma 9, Lemma 17 and Lemma 18.

Lemma 20. For all t ≥ T1 and 0 ≤ s ≤ τ − 1 we have,

P
(t)

yk,i,r∗,k,i
+ ρ

(t,s)
yk,i,r∗,k,i

≥ P
(T1)

yk,i,r∗,k,i
≥ 2. (62)

where r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k
, ξk,i⟩ > 0

}
.

Proof. First note that from Lemma 19, we have for any k ∈ [K], i ∈ [N],
F+1(W

(t,s)
+1,k,xk,i), F−1(W

(t,s)
−1,k,xk,i) = O (1) for all t ∈ {0, 1, . . . , T1− 1}, s ∈ {0, 1, . . . , τ − 1}.

Thus there exists a positive constant C such that for all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

−ℓ′
(t′,s)
k,i ≥ C. (63)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Next we know from Proposition 2 part 4 that,

⟨w(t,s)
yk,i,r∗,k

, ξk,i⟩ > 0 for all 0 ≤ t ≤ T1 − 1, 0 ≤ s ≤ τ − 1,

where r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k
, ξk,i⟩ > 0

}
. This implies that for t ≥ T1,

P
(t)

yk,i,r∗,k,i
+ ρ

(t,s)
yk,i,r∗,k,i

≥ P
(T1)

yk,i,r∗,k,i

(a)
= −

T1∑

t′=0

η

nm

τ−1∑

s=0

ℓ′
(t′,s)
k,i · ∥ξk,i∥22

(b)

≥ ηCT1τσ
2
pd

2nm
(b)

≥ 2. (64)

Here (a) follows from equation 25; (b) follows from equation 63 and Lemma 4; (b) follows from the
definition of T1 in equation 61 and setting C3 = 4/C.

C.4 SECOND STAGE OF TRAINING

In the first stage we have shown that for any k ∈ [K] and i ∈ [N], P
(t)

yk,i,r∗,k,i
+ ρ

(t,s)
yk,i,r∗,k,i

≥ 2

for all t ≥ T1 and s ∈ [0 : τ − 1]. Our goal in the second stage is to show that for every round
in T1 ≤ t ≤ T ∗ − 1, the loss of the global model is decreasing. To do so, we will show that our
objective satisfies the following property

⟨∇Lk(W
(t,s)
k),W

(t,s)
k −W∗⟩ ≥ Lk(W

(t,s)
k)− ϵ

2τ
,

where W∗ is defined as follows.

w∗
j,r := w

(0)
j,r + 5 log(2τ/ϵ)

∑

k

∑

i∈[N]

1
(
j = yk,i

) ξk,i

∥ξk,i∥22

 . (65)

Using this we can easily show that the loss of the global model is decreasing in every round leading
to convergence. We now state and prove some intermediate lemmas.

Lemma 21. Under Condition 1, we have

∥∥∥W(T1) −W∗
∥∥∥
2
= O

(√
mn

σ2
pd

log(τ/ϵ)

)
.

Proof.∥∥∥W(T1) −W∗
∥∥∥
2
≤
∥∥∥W(T1) −W(0)

∥∥∥
2
+
∥∥∥W∗ −W(0)

∥∥∥
2

(a)
= O

(
m1/2 ∥µ∥−1

2 max
j,r

Γ
(T1)
j,r

)
+O

(
m1/2n1/2σ−1

p d−1/2 max
j,r,k,i

{
P

(T1)

j,r,k,i, P
(T1)
j,r,k,i

})

+O
(
m1/2nσ−1

p d−3/4
)
+
∥∥∥W∗ −W(0)

∥∥∥
2

(b)
= O

(
m1/2n ∥µ∥2 σ−2

p d−1
)
+O

(
m1/2n1/2σ−1

p d−1/2
)
+O

(
m1/2n1/2 log(τ/ϵ)σ−1

p d−1/2
)

(c)
= O

(
m1/2n1/2σ−1

p d−1/2
)
+O

(
m1/2n1/2 log(τ/ϵ)σ−1

p d−1/2
)

= O
(
m1/2n1/2 log(τ/ϵ)σ−1

p d−1/2
)
.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Here (a) follows from the following argument:
∥∥∥W(T1) −W(0)

∥∥∥
2

2

=
∑

j,r

∥∥∥Γ(T1)
j,r · ∥µ∥−2

2 · µ
∥∥∥
2

2
+
∑

j,r

∥∥∥∥∥∥

K∑

k=1

∑

i∈[N]

P
(T1)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i

∥∥∥∥∥∥

2

2

+ 2m

〈
Γ
(t)
j,r · ∥µ∥

−2
2 µ,

2∑

k=1

∑

i∈[N]

P
(t)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i

〉

︸ ︷︷ ︸
=0

= O
(

m

∥µ∥22
max
j,r

(Γ
(t)
j,r)

2

)
+O

(
mn

∥ξk,i∥22
max
j,r,k,i

(P
(t)
j,r,k,i)

2

)
+O

(
mn2 max

k,k,k′,i′

⟨ξk,i, ξk′,i′⟩
∥ξk,i∥42

)

= O
(

m

∥µ∥22
max
j,r

(Γ
(t)
j,r)

2

)
+O

(
mn

∥ξk,i∥22
max
j,r,k,i

(P
(t)
j,r,k,i)

2

)
+O

(
mn2

σ2
pd

3/2

)

where the last equality follows from Lemma 4. Getting back to our proof, we see that (b) follows from
Lemma 17, Lemma 18 and definition of W∗ in equation 65; (c) follows from Assumption 1.

Lemma 22. For any k ∈ [K], i ∈ [N] we have for all t ∈ {T1, T1 + 1, . . . , T ∗ − 1}, s ∈
{0, 1, . . . , τ − 1},

yk,i⟨∇f(W
(t,s)
k ,xk,i),W

∗⟩ ≥ log(2τ/ϵ).

Proof.
yk,i⟨∇f(W

(t,s)
k ,xk,i),W

∗⟩

=
1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, yk,iµ⟩
)
⟨µ, jw∗

j,r⟩+
1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
)
⟨yk,iξk,i, jw∗

j,r⟩

=
1

m

∑

j,r

∑

k′,i′

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
)
5 log(2/ϵ)1

(
j = yk′,i′

) ⟨yk,iξk,i, jξk′,i′⟩
∥ξk′,i′∥22

+
1

m

∑

j,r

∑

k′,i′

σ′
(
⟨w(t,s)

j,r,k, yk,iµ⟩
)
5 log(2/ϵ)1

(
j = yk′,i′

) ⟨µ, jξk′,i′⟩
∥ξk′,i′∥22

+
1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, yk,iµ⟩
)
⟨µ, jw(0)

j,r ⟩+
1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
)
⟨yk,iξk,i, jw(0)

j,r ⟩

≥ 1

m

∑

j=yk,i,r

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
)
5 log(2τ/ϵ)

︸ ︷︷ ︸
I1

− 1

m

∑

j,r

∑

(k′,i′)̸=(k,i)

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
)
5 log(2τ/ϵ)

|⟨ξk,i, ξk′,i′⟩|
∥ξk′,i′∥22︸ ︷︷ ︸

I2

− 1

m

∑

j,r

∑

k′,i′

σ′
(
⟨w(t,s)

j,r,k, yk,iµ⟩
)
5 log(2τ/ϵ)

|⟨µ, ξk′,i′⟩|
∥ξk′,i′∥22︸ ︷︷ ︸

I3

− 1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, yk,iµ⟩
) ∣∣∣⟨µ, jw(0)

j,r ⟩
∣∣∣

︸ ︷︷ ︸
I4

− 1

m

∑

j,r

σ′
(
⟨w(t,s)

j,r,k, ξk,i⟩
) ∣∣∣⟨yk,iξk,i, jw(0)

j,r ⟩
∣∣∣

︸ ︷︷ ︸
I5

.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Now noting that σ′(z) ≤ 1 and ⟨µ, ξk,i⟩ = 0 ∀k ∈ [K], i ∈ [N] we have the following bounds for
I2, I3, I4, I5 using Lemma 4, Lemma 5 and Lemma 9.

I2 = log(2τ/ϵ)O
(
n
√
log(n2/δ)/

√
d
)
, I3 = 0,

I4 = O
(√

log(m/δ) · σ0 ∥µ∥2
)
, I5 = O

(√
log(mn/δ) · σ0σp

√
d
)
.

For I1 we know that, ⟨w(t,s)
yk,i,r∗,k

, ξk,i⟩ ≥ 0 ∀t ∈ [0 : T ∗ − 1],∀s ∈ [0 : τ − 1] (Lemma 20) and r∗

such that r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k
, ξk,i⟩ ≥ 0

}
. Thus,

I1 ≥ 1

m
|S(0)

k,i |5 log(2τ/ϵ) ≥ 2 log(2τ/ϵ).

where the last inequality follows from Lemma 6. Applying triangle inequality we have,

yk,i⟨∇f(W
(t,s)
k ,xk,i),W

∗⟩ ≥ I1 − |I2| − |I3| − |I4| − |I5| ≥ log(2τ/ϵ),

where the last inequality follows from Assumption 1 and Assumption 4.

Lemma 23. (Lemma D.4 in Kou et al. (2023)) Under assumptions, for 0 ≤ t ≤ T ∗ and 0 ≤ s ≤ τ−1,
the following result holds,

∥∥∥∇Lk(W
(t,s)
k)

∥∥∥
2

2
≤ O

(
max

{
∥µ∥22 , σ2

pd
})

Lk(W
(t,s)
k).

Lemma 24. For all k ∈ [K], T1 ≤ t ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1 we have,

⟨∇Lk(W
(t,s)
k),W

(t,s)
k −W∗⟩ ≥ Lk(W

(t,s)
k)− ϵ

2τ
.

Proof.
⟨∇Lk(W

(t,s)
k),W

(t,s)
k −W∗⟩

=
1

N

∑

i∈[N]

ℓ′
(t,s)
k,i ⟨yk,i∇f(W

(t,s)
k ,xk,i),W

(t,s)
k −W∗⟩

(a)
=

1

N

∑

i∈[N]

ℓ′
(t,s)
k,i

[
yk,if(W

(t,s)
k ,x)− yk,i⟨∇f(W

(t,s)
k ,xk,i),W

∗⟩
]

(b)

≥ 1

N

∑

i∈[N]

ℓ′
(t,s)
k,i

[
yk,if(W

(t,s)
k ,xk,i)− log(2τ/ϵ)

]

(c)

≥ 1

N

∑

i∈[N]

[
ℓ(yk,if(W

(t,s)
k ,xk,i))− ϵ/2τ

]

= Lk(W
(t,s)
k)− ϵ

2τ
.

Here (a) follows from the property that ⟨∇f(W,x),W⟩ = f(W,x) for our two-layer CNN model;
(b) follows from equation 22 (note that ℓ′(t,s)k,i ≤ 0), (c) follows from ℓ′(z)(z − z′) ≥ ℓ(z) − ℓ(z′)

since ℓ(·) is convex and log(1 + z) ≤ z.

Lemma 25. (Local Model Convergence) Under assumptions, for all t ≥ T1 we have,

∥∥∥W(t,τ)
k −W∗

∥∥∥
2

2
≤
∥∥∥W(t) −W∗

∥∥∥
2

2
− η

τ−1∑

s=0

Lk(W
(t,s)
k) + ηϵ.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Proof. ∥∥∥W(t,s+1)
k −W∗

∥∥∥
2

2

=
∥∥∥W(t,s)

k −W∗
∥∥∥
2

2
− 2η⟨∇Lk(W

(t,s)
k),W

(t,s)
k −W∗⟩+ η2

∥∥∥∇Lk(W
(t,s)
k)

∥∥∥
2

2

(a)

≤
∥∥∥W(t,s)

k −W∗
∥∥∥
2

2
− 2ηLk(W

(t,s)
k) +

ηϵ

τ
+ η2

∥∥∥∇Lk(W
(t,s)
k)

∥∥∥
2

2

(b)

≤
∥∥∥W(t,s)

k −W∗
∥∥∥
2

2
− ηLk(W

(t,s)
k) +

ηϵ

τ
,

where (a) follows from Lemma 24; (b) follows from Lemma 23 and Assumption 5. Now starting
from s = τ − 1 and unrolling the recursion we have,

∥∥∥W(t,τ)
k −W∗

∥∥∥
2

2
≤
∥∥∥W(t,0)

k −W∗
∥∥∥
2

2
− η

τ−1∑

s=0

Lk(W
(t,s)
k) + ηϵ.

C.5 PROOF OF THEOREM 1

For any t ≥ T1 we have,

∥∥∥W(t+1) −W∗
∥∥∥
2

2
=

∥∥∥∥∥
K∑

k=1

1

K
W

(t,τ)
k −W∗

∥∥∥∥∥

2

2

(a)

≤
K∑

k=1

1

K

∥∥∥W(t,τ)
k −W∗

∥∥∥
2

2

(b)

≤
∥∥∥W(t) −W∗

∥∥∥
2

2
− η

1

K

K∑

k=1

τ−1∑

s=0

Lk(W
(t,s)
k) + ηϵ

(c)

≤
∥∥∥W(t) −W∗

∥∥∥
2

2
− η

1

K

K∑

k=1

Lk(W
(t)) + ηϵ

=
∥∥∥W(t) −W∗

∥∥∥
2

2
− ηL(W(t)) + ηϵ, (66)

where (a) follows from Jensen’s inequality, (b) follows from Lemma 25; (c) follows from∑τ−1
s=0 Lk(W

(t,s)
k) ≤ Lk(W

(t,0)
k) = Lk(W

(t)). From equation 66 we get,

ηL(W(t)) ≤
∥∥∥W(t) −W∗

∥∥∥
2

2
−
∥∥∥W(t+1) −W∗

∥∥∥
2

2
+ ηϵ.

Summing over t = T1, T1 + 1, . . . , T and dividing by η(T − T1 + 1) we have,

1

T − T1 + 1

T∑

t=T1

L(W(t)) ≤
∥∥W(T1) −W∗

∥∥2
2

η(T − T1 + 1)
+ ϵ, (67)

for all T1 ≤ T ≤ T ∗ − 1. Now equation 67 implies that we can find an iterate with training error less
than 2ϵ within,

T = T1 +

∥∥W(t) −W∗
∥∥2
2

ηϵ
= O

(
mn

ησ2
pdτ

)
+O

(
mn log(τ/ϵ)

ησ2
pdϵ

)

rounds where the last equality follows from the definition of T1 in equation 61 and Lemma 21. This
completes our proof of Theorem 1.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

D PROOF OF THEOREM 2

We first state some intermediate lemmas that will be used in the proof.

Lemma 26. Suppose ⟨w(t′)
j,r , jµ⟩ ≥ 0 for some t′ ≥ 0. Then for all t ≥ t′, s ∈ [0 : τ − 1], k ∈ [K],

we have ⟨w(t,s)
j,r,k, jµ⟩ ≥ 0.

Proof. We will use a proof by induction. We will show that our claim holds for t = t′, s ∈ [0 : τ − 1]
and also t = (t′ + 1), s = 0. Using this fact we can argue that the claim holds for all t ≥ t′ and
s ∈ [0 : τ − 1].

Case 1: First let us look at the local iterations s ∈ [0 : τ − 1] for t = t′. From Lemma 3 we have,

⟨w(t′,s)
j,r,k , jµ⟩ = ⟨w(t′)

j,r , jµ⟩+ γ
(t′,s)
j,r,k

(a)

≥ ⟨w(t′)
y,r , jµ⟩

(b)

≥ 0,

where (a) uses γ(·,·)
j,r,k ≥ 0 by definition; (b) uses ⟨w(t′)

j,r , jµ⟩ ≥ 0.

Case 2: Now let us look at the round update t = t′ + 1, s = 0. We have,

⟨w(t′+1,0)
j,r,k , jµ⟩ = ⟨w(t′+1)

j,r , jµ⟩

= ⟨w(t′)
j,r , jµ⟩+

1

K

K∑

i=1

γ
(t′,τ)
j,r,k

(a)

≥ ⟨w(t′)
j,r , jµ⟩

(b)

≥ 0,

where (a) uses γ(·,·)
j,r,k ≥ 0 by definition; (b) uses ⟨w(t′)

j,r , jµ⟩ ≥ 0.

Lemma 27. Under Condition 1, for any 0 ≤ t ≤ T ∗ − 1 we have,

Γ
(t)
j,r ≥ Γ

(t−1)
j,r +

η ∥µ∥22
4m

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ if ⟨w(t−1)
j,r , jµ⟩ ≥ 0, (68)

and,

Γ
(t)
j,r ≥ Γ

(t−1)
j,r +

η ∥µ∥22
4m

(
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ h

τ−1∑

s=1

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
)

if ⟨w(0)
j,r , jµ⟩ < 0. (69)

Proof.

From equation 23 we have the following update equation for Γ(t)
j,r,

Γ
(t)
j,r = Γ

(t−1)
j,r − η

nm

τ−1∑

s=0

∑

k,i

ℓ′
(t−1,s)
k,i · σ′(⟨w(t−1,s)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 . (70)

Proof of equation 68. In this case we know from Lemma 26 that if ⟨w(t)
j,r, jµ⟩ ≥ 0, then

⟨w(t,s)
j,r,k, jµ⟩ ≥ 0 for all k ∈ [K], s ∈ [0 : τ − 1]. (71)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Using this observation we have from equation 70,

Γ
(t)
j,r

(a)

≥ Γ
(t−1)
j,r +

η|Dj | ∥µ∥22
nm

τ−1∑

s=0

min
(k,i)∈Dj

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣

(b)

≥ Γ
(t−1)
j,r +

η ∥µ∥22
4m

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ (72)

where (a) follows from the definition of Dj := {k ∈ [K], i ∈ [N] : yk,i = j}; (b) follows from

Lemma 8 and min(k,i)∈Dj

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ ≥ mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣.

Proof of equation 69. First let us look at the iteration s = 0. In this case we know that
⟨w(t−1,0)

j,r,k , jµ⟩ = ⟨w(t−1)
j,r , jµ⟩ < 0 and thus ⟨w(t−1)

j,r , yk,iµ⟩ > 0 for yk,i = −j. Using this
observation we have,

− η

nm

∑

k,i

ℓ′
(t−1,0)
k,i · σ′(⟨w(t−1,0)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 ≥ η |D−j | ∥µ∥22

nm
min

(k,i)∈D−j

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣

(a)

≥ η ∥µ∥22
4m

min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣

where (a) follows from Lemma 8 and min(k,i)∈Dj

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ ≥ mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣.

Now let us look at the case 1 ≤ s ≤ τ − 1. In this case if ⟨w(t−1,s)
j,r,k , jµ⟩ < 0 then,

− η

nm

∑

i

ℓ′
(t−1,s)
k,i · σ′(⟨w(t−1,s)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 ≥ η |D−j,k| ∥µ∥22

nm
min

(k,i)∈D−j,k

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ , (73)

and if ⟨w(t−1,s)
j,r,k , jµ⟩ ≥ 0 then,

− η

nm

∑

i

ℓ′
(t−1,s)
k,i · σ′(⟨w(t−1,s)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 ≥ η |Dj,k| ∥µ∥22

nm
min

(k,i)∈Dj,k

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ .

Thus,

− η

nm

∑

i

ℓ′
(t−1,s)
k,i · σ′(⟨w(t−1,s)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 ≥ ηmin{|D+,k| , |D−,k|} ∥µ∥22

nm
min

(k,i)∈Dk

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ .

(74)

Using the results in equation 73 and equation 74 we have,

Γ
(t)
j,r ≥ Γ

(t−1)
j,r +

η ∥µ∥22
4m

min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ η ∥µ∥22
m

∑

k

min{|D+,k| , |D−,k|}
n

τ−1∑

s=1

min
(k,i)

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣

(a)

≥ Γ
(t−1)
j,r +

η ∥µ∥22
4m

(
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ h

τ−1∑

s=1

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
)
,

where (a) follows from our definition of h in equation 1.

Lemma 28. Let Aj := {r ∈ [m] : ⟨w(0)
j,r , jµ⟩ ≥ 0}. For any 0 ≤ t ≤ T ∗ − 1 we have,

1. For any j ∈ {±1}, r ∈ [m] : Γ
(t)
j,r ≤ η∥µ∥2

2

m

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣.

2. For any r ∈ Aj : Γ
(t)
j,r ≥ η∥µ∥2

2

4m

∑t−1
t′=0

∑τ−1
s=0 min(k,i)

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣.

3. For any r /∈ Aj : Γ
(t)
j,r ≥ η∥µ∥2

2

4m

∑t−1
t′=0

(
mink,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣+ h
∑τ−1

s=1 mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)

.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Proof.

Unrolling the iterative update in equation 23 we have,

Γ
(t)
j,r =

η

nm

t−1∑

t′=0

τ−1∑

s=0

∑

k,i

(−ℓ′
(t′,s)
k,i) · σ′(⟨w(t′,s)

j,r,k , yk,iµ⟩
)
· ∥µ∥22 . (75)

Proof of equation 1. Using equation 75, we can get an upper bound on Γ
(t)
j,r as follows.

Γ
(t)
j,r ≤ η ∥µ∥22

m

t−1∑

t′=0

τ−1∑

s=0

max
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ ,

where the inequality follows from σ′(·) ≤ 1.

Proof of equation 2. From Lemma 26 we know that if ⟨w(0)
j,r , jµ⟩ ≥ 0 then ⟨w(t′)

j,r , jµ⟩ ≥ 0 for all
t′ ≥ 0. Thus using equation 68 repeatedly for all 0 ≤ t′ ≤ t− 1 we get,

Γ
(t)
j,r ≥ η ∥µ∥22

4m

t−1∑

t′=0

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ .

Proof of equation 3. Note that the bound in equation 69 holds even if ⟨w(t−1)
j,r , jµ⟩ ≥ 0. Thus

applying equation 69 repeatedly for all 0 ≤ t′ ≤ t− 1 we get,

Γ
(t)
j,r ≥ η ∥µ∥22

4m

t−1∑

t′=0

(
min
k,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣+ h

τ−1∑

s=1

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)
.

Lemma 29. Under assumptions, for any 0 ≤ t ≤ T ∗ − 1 we have,

1.
∑

k,i P
(t)

j,r,k,i ≤
3ησ2

pd

2m

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣.

2.
∑

k,i P
(t)

j,r,k,i ≥
ησ2

pd

16m

∑t−1
t′=0

∑τ−1
s=0 min

(k,i)∈S̃
(t′,s)
j,r

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣

where S̃
(t′,s)
j,r :=

{
k ∈ [K], i ∈ [N] : ⟨w(t′,s)

j,r,k , ξk,i⟩ ≥ 0
}

.

Proof.

From equation 25 we have the following update equation for P
(t)

j,r,k,i.

∑

k,i

P
(t)

j,r,k,i =
∑

k,i

P
(t−1)

j,r,k,i −
η

nm

τ−1∑

s=0

∑

k,i:yk,i=j

ℓ′
(t−1,s)
k,i · σ′(⟨w(t−1,s)

j,r,k , ξk,i⟩
)
· ∥ξk,i∥22

=
∑

k,i

P
(t−1)

j,r,k,i −
η

nm

τ−1∑

s=0

∑

(k,i)∈S̃
(t−1,s)
j,r

ℓ′
(t−1,s)
k,i · ∥ξk,i∥22 . (76)

where the last equality follows from the definition of S̃(t,s)
j,r .

Proof of equation 1. Now using equation 76 we have,

∑

k,i

P
(t)

j,r,k,i

(a)

≤
∑

k,i

P
(t−1)

j,r,k,i +
3ησ2

pd

2m

τ−1∑

s=0

max
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

where (a) follows from Lemma 4. Unrolling the recursion above we have the following upper bound,

∑

k,i

P
(t)

j,r,k,i ≤
3ησ2

pd

2m

t−1∑

t′=0

τ−1∑

s=0

max
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ .

Proof of equation 2. From equation 76 we have,

∑

k,i

P
(t)

j,r,k,i

(a)

≥
∑

k,i

P
(t−1)

j,r,k,i +
ησ2

pd

16m

τ−1∑

s=0

min
(k,i)∈S̃

(t−1,s)
j,r

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣

where (a) follows from Lemma 4 and Proposition 2 part 5 which implies
∣∣∣S̃(t−1,s)

j,r

∣∣∣ ≥ n/8. Unrolling
the recursion above we have,

∑

k,i

P
(t)

j,r,k,i ≥
ησ2

pd

16m

t−1∑

t′=0

τ−1∑

s=0

min
(k,i)∈S̃

(t′,s)
j,r

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣ .

Lemma 30. For all t ≥ T1, we have ⟨w(t)
y,r, yµ⟩ > 0.

Proof. We have,

⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩+ Γ
(t)
j,r

(a)

≥ −Θ
(√

log(m/δ) · σ0 ∥µ∥2
)
+ Γ

(t)
j,r

(b)

≥ −Θ
(√

log(m/δ) · σ0 ∥µ∥2
)
+

η ∥µ∥22
4m

T1−1∑

t′=0

min
k,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣

(c)
= −Θ

(√
log(m/δ) · σ0 ∥µ∥2

)
+Ω

(
n ∥µ∥22
σ2
pdτ

)

(d)

≥ Θ

(√
log(m/δ) ·

√
n ∥µ∥2
σpdτ

)
+Ω

(
n ∥µ∥22
σ2
pdτ

)

(e)

≥ 0. (77)

Here (a) follows from Lemma 5; (b) follows from Lemma 28; (c) follows from the definition of T1 in
Equation (61); (d) follows from Assumption 4; (e) follows from Assumption 3 and Assumption 2.

Lemma 31. Under Condition 1, for any T1 ≤ t ≤ T ∗ − 1 we have,

1.

∥∥∥w(0)
j,r

∥∥∥
2

Θ(σ−1
p d−1/2n−1/2)

∑
k,i P

(t)
j,r,k,i

= O (1)

2.
Γ
(t)
j,r∥µ∥−1

2

Θ(σ−1
p d−1/2n−1/2)

∑
k,i P

(t)
j,r,k,i

= O (1)

Proof of equation 1. Note from our proof of Lemma 20, we know that for all T1 ≤ t ≤ T ∗ − 1

we have P
(t)

j,r,k∗,i∗ ≥ 2 for all (k∗, i∗) ∈ S̃
(0)
j,r =

{
k ∈ [K], i ∈ [N] : yk,i = j, ⟨w(0)

j,r,k, ξk,i⟩ ≥ 0
}

.
Thus,

∑

k,i

P
(t)

j,r,k,i ≥ 2
∣∣∣S̃(0)

j,r

∣∣∣ (a)= Ω(n) , (78)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

where (a) follows from Lemma 7. This implies,
∥∥∥w(0)

j,r

∥∥∥
2

Θ
(
σ−1
p d−1/2n−1/2

)∑
k,i P

(t)

j,r,k,i

(a)
=

Θ
(
σ0

√
d
)

Θ
(
σ−1
p d−1/2n−1/2

)∑
k,i P

(t)

j,r,k,i

(b)
= O

(
σ0σpdn

−1/2
)

(c)
= O (1) .

Here (a) follows from Lemma 5; (b) follows from equation 78; (c) follows from Assumption 4.

Proof of equation 2. From Lemma 27 and Lemma 29 we have,

Γ
(t)
j,r

∑
k,i P

(t)

j,r,k,i

≤ 16 ∥µ∥22
σ2
pd

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
∑t−1

t′=0

∑τ−1
s=0 min

(k,i)∈S̃
(t′,s)
j,r

∣∣∣ℓ′(t′,s)k,i

∣∣∣

(a)

≤ 16C2 ∥µ∥22
σ2
pd

,

where (a) follows from Proposition 2 part 3 which implies maxk,i

∣∣∣ℓ′(t
′−1,s)

k,i

∣∣∣ ≤
C2 min

(k,i)∈S̃
(t′−1,s)
j,r

∣∣∣ℓ′(t
′−1,s)

k,i

∣∣∣ for all 0 ≤ t′ ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1. Thus,

Γ
(t)
j,r ∥µ∥

−1
2

Θ
(
σ−1
p d−1/2n−1/2

)∑
k,i P

(t)

j,r,k,i

= O
(
n1/2 ∥µ∥2
σpd1/2

)
(a)
= O (1) .

where (a) follows from Assumption 1.

Lemma 32. For any T1 ≤ t ≤ T ∗ − 1 we have,
∑

r σ
(
⟨w(t)

y,r, yµ⟩
)

∑
r,k,i P

(t)

−y,r,k,i

≥ C4 ∥µ∥22
σ2
pmd

(
|Ay|+ (m− |Ay|)

(
h+

1

τ
(1− h)

))
,

where C4 > 0 is some constant.

Proof.

We can write,
∑

r

σ
(
⟨w(t)

y,r, yµ⟩
)
=

∑

r:⟨w(0)
y,r,yµ⟩≥0

σ
(
⟨w(t)

y,r, yµ⟩
)

︸ ︷︷ ︸
I1

+
∑

r:⟨w(0)
y,r,yµ⟩<0

σ
(
⟨w(t)

y,r, yµ⟩
)

︸ ︷︷ ︸
I2

. (79)

First note that if ⟨w(0)
y,r, yµ⟩ ≥ 0 then from Lemma 26 we know that ,

⟨w(t,s)
y,r,k, yµ⟩ ≥ 0 for all k ∈ [K], 0 ≤ t ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1. (80)

We can bound I1 as follows:

I1 =
∑

r:⟨w(0)
y,r,yµ⟩≥0

σ
(
⟨w(t)

y,r, yµ⟩
)

(a)
=

∑

r:⟨w(0)
y,r,yµ⟩≥0

⟨w(t)
y,r, yµ⟩

(b)

≥
∑

r:⟨w(0)
y,r,yµ⟩≥0

Γ(t)
y,r

(c)
= Ω

(
|Ay|η ∥µ∥22

t−1∑

t′=0

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)
. (81)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Here (a) follows from equation 80; (b) follows from Lemma 3; (c) follows from Lemma 28 part 2.
For I2, we have the following bound:

I2 =
∑

r:⟨w(0)
y,r,yµ⟩<0

σ
(
⟨w(t)

y,r, yµ⟩
)

(a)

≥
∑

r:⟨w(0)
y,r,yµ⟩<0

⟨w(0)
y,r, yµ⟩+ Γ

(t)
j,r

(b)

≥ −(m− |Ay|)Θ
(√

log(m/δ) · σ0 ∥µ∥2
)
+

∑

r:⟨w(0)
y,r,yµ⟩<0

Γ
(t)
j,r

(c)
= Ω

∑

r:⟨w(0)
y,r,yµ⟩<0

Γ
(t)
j,r

(d)

≥ Ω

(
(m− |Ay|)η ∥µ∥22

(
T1−1∑

t′=0

min
k,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣+ h

T1−1∑

t′=0

τ−1∑

s=1

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)

+ (m− |Ay|)η ∥µ∥22
t−1∑

t′=T1

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)
. (82)

Here (a) follows from σ(z) ≥ z; (b) follows from Lemma 5 and Assumption 4; (c) follows from
Lemma 30; (d) follows from Lemma 28. Substituting equation 81 and equation 82 in equation 79 we
have,

∑

r

σ
(
⟨w(t)

y,r, yµ⟩
)
≥ Ω

(
|Ay|η ∥µ∥22

t−1∑

t′=0

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣

+ (m− |Ay|)η ∥µ∥22

(
T1−1∑

t′=0

min
k,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣+ h

T1−1∑

t′=0

τ−1∑

s=1

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)

+ (m− |Ay|)η ∥µ∥22
t−1∑

t′=T1

τ−1∑

s=0

min
k,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)

(83)

Now using equation 83 and Lemma 29 we have,

∑
r σ
(
⟨w(t)

y,r, yµ⟩
)

∑
r,k,i P

(t)

−y,r,k,i

(a)

≥ Ω

(
∥µ∥22
σ2
pmd

(
|Ay|

∑t−1
t′=0

∑τ−1
s=0 mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
∑t−1

t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)k,i

∣∣∣

+ (m− |Ay|)
∑T1−1

t′=0

(
mink,i

∣∣∣ℓ′(t
′,0)

k,i

∣∣∣+ h
∑τ−1

s=1 mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
)
+
∑t−1

t′=0

∑τ−1
s=0 mink,i

∣∣∣ℓ′(t
′,s)

k,i

∣∣∣
∑T1−1

t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)k,i

∣∣∣+
∑t−1

t′=T1

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)k,i

∣∣∣

))

(b)

≥ Ω

(
∥µ∥22
σ2
pmd

(
|Ay|+ (m− |Ay|)

(
h+

1

τ
(1− h)

)))

where (a) follows from Lemma 29; (b) follows from Proposition 2 part 3 and Equation (63).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Lemma 33. Under assumptions, for all T1 ≤ t ≤ T ∗ − 1 we have
∑

r σ
(
⟨w(t)

y,r, yµ⟩
)

σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥ Θ

(
n1/2 ∥µ∥22
σ2
pmd1/2

(
|Ay|+ (m− |Ay|)

(
h+

1

τ
(1− h)

)))
.

Proof. To prove this, we first show that
∥∥∥w(t)

j,r

∥∥∥
2
= O

(
σ−1
p d−1/2n−1/2

)
·∑k,i P

(t)

j,r,k,i for all

j ∈ {±1}.

We first bound the norm of the noise components as follows.∥∥∥∥∥∥
∑

k,i

P
(t)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i

∥∥∥∥∥∥

2

2

=
∑

k,i

(
P

(t)
j,r,k,i

)2
· ∥ξk,i∥−2

2 + 2
∑

k,k′>k,i,i′>i

P
(t)
j,r,k,iP

(t)
j,r,k′,i′ · ∥ξk,i∥

−2
2 · ∥ξk′,i′∥−2

2 · ⟨ξk,i, ξk′,i′⟩

(a)

≤ 4σ−2
p d−1

∑

k,i

(
P

(t)
j,r,k,i

)2
+ 2

∑

k,k′>k,i,i′>i

∣∣∣P (t)
j,r,k,iP

(t)
j,r,k′,i′

∣∣∣ (16σ−4
p d−2)(2σ2

p

√
d log(6n2/δ))

= 4σ−2
p d−1

∑

k,i

(
P

(t)
j,r,k,i

)2
+ 32σ−2

p d−3/2

∑

k,i

∣∣∣P (t)
j,r,k,i

∣∣∣

2

−
∑

k,i

(
P

(t)
j,r,k,i

)2

= Θ
(
σ−2
p d−1

)∑

k,i

(
P

(t)
j,r,k,i

)2
+ Θ̃

(
σ−2
p d−3/2

)

∑

k,i

∣∣∣P (t)
j,r,k,i

∣∣∣

2

(b)

≤
[
Θ
(
σ−2
p d−1

)
+ Θ̃

(
σ−2
p d−3/2

)]

∑

k,i

∣∣∣P (t)

j,r,k,i

∣∣∣+
∑

k,i

∣∣∣P (t)
j,r,k,i

∣∣∣

2

= Θ
(
σ−2
p d−1n−1

)

∑

k,i

P
(t)

j,r,k,i

2

. (84)

Here for (a) uses Lemma 4; (b) uses maxj,r,k,i

∣∣∣P (t)
j,r,k,i

∣∣∣ ≤ β + 8
√

log(6n2/δ)
d nα = O (1) from

Theorem 3 and so
∑

k,i

∣∣∣P (t)
j,r,k,i

∣∣∣ = O
(∑

k,i P
(t)

j,r,k,i

)
. Now from equation 22 we know that,

w
(t)
j,r = w

(0)
j,r + jΓ

(t)
j,r · ∥µ∥

−2
2 µ+

2∑

k=1

∑

i∈[N]

P
(t)
j,r,k,i · ∥ξk,i∥

−2
2 · ξk,i.

Using triangle inequality and equation 84 we have,∥∥∥w(t)
j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+ Γ

(t)
j,r ∥µ∥

−1
2 +Θ

(
σ−1
p d−1/2n−1/2

)∑

k,i

P
(t)

j,r,k,i

(a)
= Θ

(
σ−1
p d−1/2n−1/2

)∑

k,i

P
(t)

j,r,k,i

where (a) follows from Lemma 31.

Thus,
∑

r σ
(
⟨w(t)

y,r, yµ⟩
)

σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥
∑

r σ
(
⟨w(t)

y,r, yµ⟩
)

Θ
(
d−1/2n−1/2

)∑
k,i P

(t)

j,r,k,i

(a)
= Θ

(
n1/2 ∥µ∥22
σ2
pmd1/2

(
|Ay|+ (m− |Ay|)

(
h+

1

τ
(1− h)

)))

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

where (a) follows from Lemma 32.

Lemma 34. (sub-result in Theorem E.1 in Cao et al. (2022).) Denote g(ξ) =
∑

r σ
(
⟨w(t)

−y,r, ξ⟩
)

.
Then for any x ≥ 0 it holds that

Pr(g(ξ)− Eg(ξ) > x) ≤ exp

− cx2

σ2
p

(∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2

where c is a constant and Eg(ξ) = σp√
2π

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
.

D.1 TEST ERROR UPPER BOUND

We now prove the upper bound on our test error in the benign overfitting regime as stated in Theorem 2.

First note that for some given (x, y) we have,

P(y ̸= sign(f(W(t),x)) = P(yf(W(t),x) ≤ 0).

We can write,

yf(W(t),x) = Fy(W
(t)
y ,x)− F−y(W

(t)
−y,x)

=
1

m

m∑

r=1

[
σ
(
⟨w(t)

y,r, yµ⟩
)
+ σ

(
⟨w(t)

y,r, ξ⟩
)]

− 1

m

m∑

r=1

[
σ
(
⟨w(t)

−y,r, yµ⟩
)
+ σ

(
⟨w(t)

−y,r, ξ⟩
)]

.

(85)

Now note that since t ≥ T1 we know that σ
(
⟨w(t)

−y,r, yµ⟩
)
= 0 for all r ∈ [m] from Lemma 30.

Thus,

P(yf(W(t),x) ≤ 0) ≤ P

(
m∑

r=1

σ
(
⟨w(t)

−y,r, ξ⟩
)
≥

m∑

r=1

σ
(
⟨w(t)

y,r, yµ⟩
))

(a)
= P

(
g(ξ)− Eg(ξ) ≥

m∑

r=1

σ
(
⟨w(t)

y,r, yµ⟩
)
− σp√

2π

m∑

r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)

(b)

≤ exp

−

c
(∑m

r=1 σ
(
⟨w(t)

y,r, yµ⟩
)
− σp√

2π

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2

σ2
p

(∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2

= exp

−c

∑m

r=1 σ
(
⟨w(t)

y,r, yµ⟩
)

σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

− 1√
2π

2

(c)

≤ exp

 c

2π
− c

2

∑m

r=1 σ
(
⟨w(t)

y,r, yµ⟩
)

σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2

(d)

≤ exp

(
c

2π
− n ∥µ∥42

(
|Ay|+ (m− |Ay|)

(
h+ 1

τ (1− h)
))2

C5σ4
pm

2d

)

(e)

≤ exp

(
−n ∥µ∥42

(
|Ay|+ (m− |Ay|)

(
h+ 1

τ (1− h)
))2

2C5σ4
pm

2d

)
.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Here (a) follows from the definition of g(ξ) in Lemma 34; (b) follows from the result in Lemma 34;
(c) uses (a− b)2 ≥ a2/2− b2,∀a, b ≥ 0; (d) uses Lemma 33; (e) follows from the benign overfitting
condition n ∥µ∥42 = Ω

(
σ4
pd
)

and choosing sufficiently large C6. Now note that,

L0−1
D (W(T)) =

∑

j∈{±1}

P(y = j)P(y ̸= sign(f(W(t),x))

=
1

2

∑

j∈{±1}

exp

(
−n ∥µ∥42

(
|Aj |+ (m− |Aj |)

(
h+ 1

τ (1− h)
))2

2C5σ4
pm

2d

)
.

This completes our proof for the upper bound on the test error in the benign overfitting regime.

D.2 TEST ERROR LOWER BOUND

We first state some intermediate lemmas that we use in our proof.

Lemma 35. (Lemma 5.8 in Kou et al. (2023)) Let g(ξ) =
∑

j,r jσ
(
⟨w(T)

j,r , ξ⟩
)

. If n ∥µ∥42 =

O
(
σ4
pd
)

(harmful overfitting condition) then there exists a fixed vector v with ∥v∥22 ≤ 0.06σp such
that

∑

j′∈{±1}

[g(j′ξ + v)− g(j′ξ)] ≥ 4C6 max
j∈{±1}

{∑

r

Γ
(T)
j,r

}

for all ξ ∈ Rd.
Lemma 36. (Proposition 2.1 in Devroye et al. (2018)) The TV distance between N (0, σ2

pId) and
N (v, σ2

pId) is less than ∥v∥22 /2σp.

Proof.

We have,

L0−1
D (W(T))

= P(x,y)∼D (y ̸= sign(f(W,x)))

= P(x,y)∼D (yf(W,x) ≤ 0)

(a)
= P(x,y)∼D

(∑

r

σ
(
⟨w(T)

−y,r, ξ⟩
)
−
∑

r

σ
(
⟨w(T)

y,r , ξ⟩
)
≥
∑

r

σ
(
⟨w(T)

y,r , yµ⟩
)
−
∑

r

σ
(
⟨w(T)

−y,r, yµ⟩
))

(b)

≥ P(x,y)∼D

(∑

r

σ
(
⟨w(T)

−y,r, ξ⟩
)
−
∑

r

σ
(
⟨w(T)

y,r , ξ⟩
)
≥ C6 max

{∑

r

Γ
(T)
1,r ,

∑

r

Γ
(T)
−1,r

})

≥ 0.5P(x,y)∼D

(∣∣∣∣∣
∑

r

σ
(
⟨w(T)

1,r , ξ⟩
)
−
∑

r

σ
(
⟨w(T)

−1,r, ξ⟩
)∣∣∣∣∣ ≥ C6 max

{∑

r

Γ
(T)
1,r ,

∑

r

Γ
(T)
−1,r

})

(c)
= 0.5P(x,y)∼D

(
|g(ξ)| ≥ C6 max

{∑

r

Γ
(T)
1,r ,

∑

r

Γ
(T)
−1,r

})

(d)
= 0.5P(Ω). (86)

Here (a) follows from equation 85; P(y ̸= sign(f(W(t),x)) = P(yf(W(t),x) ≤ 0); (b)

follows from σ
(
⟨w(t)

−y,r, yµ⟩
)

= 0 (Lemma 30) and σ
(
⟨w(t)

y,r, yµ⟩
)

= Θ
(
Γ
(t)
y,r

)
; (c) fol-

lows from defining g(ξ) =
∑

r σ
(
⟨w(T)

1,r , ξ⟩
)
−∑r σ

(
⟨w(T)

−1,r, ξ⟩
)

; (d) follows from defining

Ω :=
{
ξ : |g(ξ)| ≥ C6 max

{∑
r Γ

(T)
1,r ,

∑
r Γ

(T)
−1,r

}}
.

Now we know from Lemma Lemma 35, that
∑

j [(g(jξ + v)− g(jξ)] ≥ 4C6 maxj{
∑

r Γ
(T)
j,r }.

This implies that one one of the ξ, ξ + v,−ξ,−ξ + v must belong to Ω. Therefore,
min {P(Ω),P(−Ω),P(Ω− v),P(−Ω− v)} ≥ 0.25 (87)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Also note that by symmetry P(Ω) = P(−Ω). Furthermore,

|P (Ω)− P (Ω− v)| =
∣∣∣Pξ∼N (0,σ2

pId)(ξ ∈ Ω)− Pξ∼N (v,σ2
pId)

(ξ ∈ Ω)]
∣∣∣

(a)

≤ TV
(
N (0, σ2

pId),N (v, σ2
pId)

)

(b)

≤ ∥v∥22
2σp

≤ 0.03. (88)

Here (a) follows from the definition of TV distance; (b) follows from Lemma Lemma 36. Thus we
see that equation 88 along with equation 87 implies that P(Ω) = 0.22. Substituting this in equation 86
we get L0−1

D (W(T)) = 0.1 as claimed.

E PROOF OF LEMMA 2

Using our result in Lemma 27 with τ = 1 and h = 0, we have after T1 = O
(

mn
ησ2

pd

)
iterations for all

j ∈ {±1} and r ∈ [m],

Γ
(pre,T1)
j,r ≥

η
∥∥µ(pre)

∥∥2
2

4m

T1−1∑

t=0

min
i

∣∣∣ℓ′(pre,t)
i

∣∣∣
(a)

≥
η
∥∥µ(pre)

∥∥2
2
CT1

4m
= Ω

(
n
∥∥µ(pre)

∥∥2
2

σ2
pd

)
.

Here (a) follows from equation 63. Now for any t ≥ T1 we have from Lemma 3,

⟨w(pre,t)
j,r , jµ(pre)⟩ = ⟨w(pre,0)

j,r , jµ(pre)⟩+ Γ
(pre,t)
j,r

(a)

≥ ⟨w(pre,0)
j,r , jµ(pre)⟩+ Γ

(pre,T1)
j,r

(b)

≥ −Θ
(√

log(m/δ)(σpd)
−1

√
n
∥∥∥µ(pre)

∥∥∥
2

)
+Ω

(
σ−2
p d−1n

∥∥∥µ(pre)
∥∥∥
2

2

)

(c)

≥ 0,

where (a) follows from the fact that Γ(t)
j,r is non-decreasing with respect to t, (b) follows from

Assumption 4 and Lemma 5; (c) follows from Assumption 3.

F ADDITIONAL EXPERIMENTS AND DETAILS

F.1 DETAILS FOR FIGURES AND TABLES IN MAIN PAPER

Implementation. We use PyTorch Paszke et al. (2019) to run all our algorithms and also simulate
our synthetic data setting. For experiments on neural network training we use one H100 GPU with
2 cores and 20GB memory. For synthetic data experiments we use one T4 GPU. The approximate
total run-time for all our experiments on neural networks is about 36 hours. The approximate total
run-time for all experiments on the synthetic data setting is about 1 hour.

Details for Figure 1. We simulate a FL setup with K = 10 clients on the CIFAR10 data partitioned
using Dirichlet(α) with α = 0.1 for the non-IID setting and α = 10 for the IID setting. For pre-
training, we consider a Squeezenet model pre-trained on ImageNet Russakovsky et al. (2015) which
is available in PyTorch. Following Nguyen et al. (2022) we replace the BatchNorm layers in the
model with GroupNorm Wu & He (2018). For FL optimization we use the vanilla FedAvg optimizer
with server step size ηg = 1 and train the model for 500 rounds and 1 local epoch at each client. For
centralized optimization we use SGD optimizer and run the optimization for 200 epochs. Learning
rates were tuned using grid search with the grid {0.1, 0.01, 0.001}. Final accuracies were reported
after averaging across 3 random seeds.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Details for Figure 4 and Figure 2. For these experiments we simulate a synthetic data setup
following our data model in Section 2. We set the dimension d = 200, n = 20 datapoints (we
keep n small to ensure we are in the over-parameterized regime), m = 10 filters, K = 2 clients,
N = 10 local datapoints. The signal strength is ∥µ∥22 = 3, noise variance is σ2

p = 0.1 and variance
of Gaussian initialization is σ0 = 0.01. The global dataset has 10 datapoints with positive labels and
10 datapoints with negative labels. We also create a test dataset of 1000 datapoints following the
same setup to evaluate our test error.

Details for Table 1 and Figure 5. We simulate a FL setup with K = 20 clients on the CIFAR10
data partitioned using Dirichlet(α) with α = 0.1 for the non-IID setting and α = 10 for the IID
setting. For pre-training, we consider a ResNet18 model pre-trained on ImageNet Russakovsky et al.
(2015) which is available in PyTorch. Following Nguyen et al. (2022) we replace the BatchNorm
layers in the model with GroupNorm Wu & He (2018). For FL optimization we use the FedAvg
optimizer with server step size ηg = 1 and 1 local epoch at each client. Local learning rates were
tuned using a grid search in the range {0.1, 0.01, 0.001}. For Table 1 we train the model till it
achieves 0.7±0.05 train loss and measure the corresponding test accuracy. Final results were reported
after averaging across 3 random seeds.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

100 101 102

Round No.

0

10

20

30

40

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 100 200 300
Round No.

0

10

20

30

40

50

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 6: Percentage of misaligned filters (Figure 6a) and test accuracy (Figure 6b) for different initializations
when training a ResNet18 on TinyImageNet.

100 101 102

Round No.

0

10

20

30

40

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 100 200 300 400 500
Round No.

0

10

20

30

40

50

60

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 7: Percentage of misaligned filters (Figure 7a) and test accuracy (Figure 7b) for different initializations
when training a ResNet18 on Google Landmarks v2 23k.

F.2 ADDITIONAL EXPERIMENTS

Details on Model and Algorithm. For all the following experiments, unless specified we use the
ResNet18 model and FedAvg algorithm with server step as 1. Following Nguyen et al. (2022) we
replace the BatchNorm layers in ResNet18 with GroupNorm Wu & He (2018). For pre-training, we
consider a ResNet18 model pre-trained on ImageNet Russakovsky et al. (2015) which is available in
PyTorch. Additional details on each experiment can be found below.

F.2.1 MEASURING MISALIGNMENT ON TINYIMAGENET AND GOOGLE LANDMARKS V2 23K

We extend the experiment from Figure 5 of our paper, originally conducted on CIFAR-10, to evaluate
the number of misaligned filters at initialization, on more challenging datasets which include:

1. TinyImageNet Le & Yang (2015): 100k datapoints, 200 classes, data partitioned across 20
clients with α = 0.3 heterogeneity

2. Google Landmarks v2 23k Weyand et al. (2020):23k datapoints, 203 classes, 233 clients,
data naturally grouped by photographer to achieve a federated partitioning

Additional Details. For local optimization we use the SGD optimizer with a learning rate of 0.01
and 0.9 momentum for both random and pre-trained initialization. The learning rate is decayed by a
factor of 0.998 in every round in the case of TinyImageNet. For TinyImageNet we sample all clients
for training in every round and perform 1 local epoch per clients. For Google Landmarks v2 23k, we
uniformly sample 20 clients without replacement from the 233 clients and perform 5 local epochs per
client. Each experiment is repeated with 3 different random seeds.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Discussion. Figure 6 shows the test accuracy and percentage of misaligned filter results on Tiny-
ImageNet while Figure 7a shows the test accuracy and percentage of misaligned filters plots on
Google Landmarks v2. For random initialization we see a sharp increase in the percentage of mis-
aligned filters for these datasets compared to CIFAR-10 (25% to 40%). In contrast, with pre-trained
initialization, the percentage of misaligned filters remains less than 15% across datasets leading
to a larger improvement in test accuracy for harder datasets. These results align well with our
theoretical findings: as the ratio of misaligned filters increases, the benefits of pre-training become
more pronounced.

F.2.2 MEASURING MISALIGNMENT WITH VARYING HETEROGENEITY LEVELS ON CIFAR-10

We extend the experiment from Figure 5 of our paper, originally conducted on CIFAR-10 with
α = 0.1 Dirichlet heterogeneity to three other levels of heterogeneity:

1. α = 0.05 (high heterogenity)
2. α = 0.3 (medium heterogeneity)
3. α = 10 (low heterogeneity)

Additional Details. We use the SGD optimizer for local optimization. In the case of random
initialization we use a learning rate of 0.01 and 0.9 momentum. For pre-trained initialization we use
a learning rate of 0.001 and 0.9 momentum. The learning rate is decayed by a factor of 0.998 in
every round. We sample all clients for training in every round and perform 1 local epoch per clients.
Each experiment is repeated with 3 different random seeds.
Discussion. Figure 8, Figure 9 and Figure 10 show the test accuracy and percentage of misaligned
filters plots for α = 0.05, α = 0.3 and α = 10 respectively. We observe that the percentage of
misaligned filters remains approximately 25% with random initialization and 10% with pre-trained
initialization, regardless of the level of heterogeneity. However, as heterogeneity increases, the
improvement in test accuracy provided by pre-trained initialization becomes more pronounced. This
trend is consistent with our theoretical analysis in Theorem 2, which suggests that the percentage of
misaligned filters will have a greater impact on test performance as data heterogeneity increases.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

100 101 102

Round No.

0

5

10

15

20

25

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 100 200 300
Round No.

40

50

60

70

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)
Figure 8: Percentage of misaligned filters (Figure 8a) and test accuracy (Figure 8b) for different initializations
when training a ResNet18 on CIFAR-10 with α = 0.05 heterogeneity.

100 101 102

Round No.

0

5

10

15

20

25

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 100 200 300
Round No.

40

50

60

70

80

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 9: Percentage of misaligned filters (Figure 9a) and test accuracy (Figure 9b) for different initializations
when training a ResNet18 on CIFAR-10 with α = 0.3 heterogeneity.

100 101 102

Round No.

0

5

10

15

20

25

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 100 200 300
Round No.

40

50

60

70

80

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 10: Percentage of misaligned filters (Figure 10a) and test accuracy (Figure 10b) for different initializations
when training a ResNet18 on CIFAR-10 with α = 10 heterogeneity.

F.2.3 IMPACT OF DOMAIN HETEROGENEITY ON OFFICE-HOME DATASET

The goal of this experiment is to demonstrate that heterogeneity in the label space has a greater
impact on FedAvg convergence compared to heterogeneity in the domain space. To simulate domain

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

0 100 200 300
Round No.

2

3

4

5

6

7

G
ra

d
ie

nt
D

iv
er

si
ty

IID

Domain Non-IID

Label Non-IID

(a)

0 100 200 300
Round No.

0

10

20

30

40

T
es

t
A

cc
u

ra
cy

IID

Domain Non-IID

Label Non-IID

(b)

Figure 11: Gradient diversity (Figure 11a) and test accuracy (Figure 11b) when training a ResNet18 on Office-
Home with different types of heterogeneity.

heterogeneity, we consider the Office-Home dataset Venkateswara et al. (2017) which consists of
images of 65 objects in 4 different domains - Art, Clipart, Product and Real World. Each domain has
around 20− 60 images of every object. We split the data across 4 clients in the following ways:

1. IID: Data across all domains is split IID across clients, i.e., each client will images corre-
sponding to every domain and every label

2. Domain Heterogeneity: Each client only has images corresponding to a single domain
3. Label Heterogeneity: Data is split with across clients with α = 0.1 Dirichlet label het-

erogeneity, i.e, each client will have images corresponding to all domains but only certain
labels.

Additional Details. For local optimization we use the SGD optimizer with a learning rate of 0.01
and 0 momentum for both random and pre-trained initialization. The learning rate is decayed by a
factor of 0.995 in every round. We sample all clients for training in every round and perform 1 local
epoch per clients. To measure gradient diversity we use the following expression, which is also used
in Nguyen et al. (2022)

Gradient Diversity =

∑K
k=1 ∥∆k∥22∥∥∥
∑K

k=1 ∆k

∥∥∥
2

2

(89)

where ∆k is the update of client k, i.e., the difference between its local model and the global model
sent by the client. Each experiment is repeated with 3 different random seeds.
Discussion. Figure 11a shows the test accuracy and gradient diversity plots across the 3 different
types of heterogeneity. We see that while gradient diversity in the domain heterogeneity setting is
higher than in the IID case, it does not significantly affect test performance of FedAvg unlike the
label heterogeneity setting. We conjecture that the impact of domain heterogeneity is mitigated due to
standard pre-processing data augmentations such as rotation and cropping which have a regularizing
effect of enabling clients to learn similar features across domains. Thus, this experiment establishes
that label heterogeneity is the more challenging form of heterogeneity in FL systems.

F.2.4 MEASURING MISALIGNMENT ON MNIST WITH VGG MODEL

We consider an experimental setup where the data is MNIST, the model is VGG11, and the task is to
classify digits odd and even number classification. For local optimization we use the SGD optimizer
with a learning rate of 0.0005 and 0.9 momentum for both random and pre-trained initialization. The
learning rate is decayed by a factor of 0.998 in every round. We sample all clients for training in
every round and perform 1 local epoch per clients. Each experiment is repeated with 3 different
random seeds.
Discussion. Figure 12 shows the test accuracy and percentage of misaligned filters plots. We observe

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

100 101 102

Round No.

0.0

2.5

5.0

7.5

10.0

12.5

P
er

ce
nt

ag
e

of
M

is
al

ig
n

ed
F

ilt
er

s Pre-trained

Random

(a)

0 20 40 60 80 100
Round No.

85

90

95

100

T
es

t
A

cc
u

ra
cy

Pre-trained

Random

(b)

Figure 12: Percentage of misaligned filters (Figure 12a) and test accuracy (Figure 12b) for different initializations
when training a VGG11 on MNIST to classify even and odd digits.

that the percentage of misaligned filters for random initialization in this task is lower compared to
our experiment on CIFAR-10 where it was around 25%. Intuitively, this suggests that even random
features generated by deep CNNs are sufficient to achieve reasonably good test accuracy on MNIST.
Nonetheless, pre-trained initialization still achieves higher accuracy, as it results in a lower percentage
of misaligned filters.

59

	Introduction
	Problem Setup
	Main Results
	Filter Alignment at Initialization
	Signal Noise Decomposition of CNN Filter Weights
	Training Loss Convergence and Test Error Guarantee
	Impact of Pre-Training on Federated Learning

	A Finer Understanding of Signal Learning and Noise Memorization
	Experiments
	Conclusion and Future Work
	Additional Related Work
	Theory Notation and Preliminaries
	Local Model Update
	Proof of prop:decomposition
	Proof of lemma:coeffupdate

	Training Error Convergence of FedAvg with Random Initialization
	Preliminary Lemmas
	Bounding the Scale of Signal and Noise Memorization Coefficients
	First Stage of Training.
	Second Stage of Training
	Proof of thm:trainloss

	Proof of Theorem 2
	Test Error Upper Bound
	Test Error Lower Bound

	Proof of lemma:pretrain
	Additional Experiments and Details
	Details for Figures and Tables in Main Paper
	Additional Experiments

