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ABSTRACT

Initializing with pre-trained models when learning on downstream tasks is now
standard practice in machine learning. Several recent works explore the benefits of
pre-trained initialization in a federated learning (FL) setting, where the downstream
training is performed at the edge clients with heterogeneous data distribution. These
works show that starting from a pre-trained model can substantially reduce the
adverse impact of data heterogeneity on the test performance of a model trained
in a federated setting, with no changes to the standard FedAvg training algorithm.
In this work, we provide a deeper theoretical understanding of this phenomenon.
To do so, we study the class of two-layer convolutional neural networks (CNNs)
and provide bounds on the training error convergence and test error of such a
network trained with FedAvg. We introduce the notion of aligned and misaligned
filters at initialization and show that the data heterogeneity only affects learning
on misaligned filters. Starting with a pre-trained model typically results in fewer
misaligned filters at initialization, thus producing a lower test error even when the
model is trained in a federated setting with data heterogeneity. Experiments in
synthetic settings and practical FL training on CNNss verify our theoretical findings.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al.;|2017) has emerged as the de-facto paradigm for training a
Machine Learning (ML) model over data distributed across multiple clients with privacy protection
due to its no data-sharing philosophy. Ever since its inception, it has been observed that heterogeneity
in client data can severely slow down FL training and lead to a model that has poorer generalization
performance than a model trained on Independent and Identically Distributed (IID) data (Kairouz
et al.; 2021} Li et al., |2020} |Yang et al.| [2021a)). This has led works to propose several algorithmic
modifications to the popular Federated Averaging (FedAvg) algorithm such as variance-reduction
(Acar et al.| 2021; Karimireddy et al., [2020), contrastive learning (Li et al., 2021} Tan et al., [2022)
and sophisticated model-aggregation techniques (Lin et al.,[2020; [Wang et al.| 2020), among others
to combat the challenge of data heterogeneity.

A recent line of work (Chen et al.} 2022 Nguyen et al.,[2022)) has sought to understand the benefits
of starting from pre-trained models instead of randomly initializing the global model when doing FL.
This idea has been popularized by results in the centralized setting (Devlin et al.} 2019 |Radford et al.}
2019; |He et al., 2019; Dosovitskiy et al., 2021]), which show that starting from a pre-trained model
can lead to state-of-the-art accuracy and faster convergence on downstream tasks. Pre-training is
usually done on internet-scale public data (Schuhmann et al.| 2022} Thomee et al.,[2016; Raffel et al.}
2020; |Gao et al.,2020) in order for the model to learn fundamental data representations (Sun et al.,
2017; Mahajan et al., [2018}; Radford et al.,|[2019), that can be easily applied for downstream tasks.
Thus, while it would not be unexpected to see some gains of using pre-trained models even in FL,
what is surprising is the sheer scale of improvement. In many cases Nguyen et al.|(2022); Chen et al.
(2022) show that just starting from a pre-trained model can significantly reduce the gap between the
performance of a model trained in a federated setting with non-IID versus IID data partitioning with
no algorithmic modifications. Figure|[I|shows our own replication of this phenomenon, where starting
from a pre-trained model can lead to almost 14% improvement in accuracy for FL with non-IID data
(i.e., high data heterogeneity) compared to 4% for FL with IID data and 2% in the centralized setting.
This observation leads us to ask the question:

Why can pre-trained initialization drastically reduce the challenge of non-IID data in FL?
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Our contributions. In this work we provide a deeper theoretical understanding of the importance of
initialization for FedAvg by studying two-layer ReLU Convolutional Neural Networks (CNNs) for
binary classification. This class of neural networks lends itself to tractable analysis while providing
valuable insights that extend to training deeper CNNs as shown by several recent works (Cao et al.}
2022; Du et al., 2018 Kou et al., [2023; [Zou et al., 2021}, Jelassi & Li, 2022; Bao et al.,|2024;|Oh &
'Yun, 2024). Our data generation model, also studied in|Cao et al.[(2022); Kou et al.| (2023)), allows us
to utilize a signal-noise decomposition result (see Proposition [I)) to perform a fine-grained analysis
of the CNN filter weight updates than can be done with general non-convex optimization. Some
highlights of our results are as follows:

1. We introduce the notion of aligned and misaligned filters at initialization (Definition[I)) and show
that data heterogeneity affects signal learning only on misaligned filters while noise memorization
is unaffected by data heterogeneity (see Section[d). A pre-trained model is expected to have fewer
misaligned filters, which can explain the reduced effect of non-IID data.

2. We provide a test error upper bound for FedAvg that depends on the number of misaligned filters
at initialization and data heterogeneity. The effect of data heterogeneity on misaligned filters
is exacerbated as clients perform more local steps, which explains why FL benefits more from
pre-trained initialization than centralized training. To our knowledge, this is the first result where
the test error for FedAvg explicitly depends on initialization conditions (Theorem [2).

3. We prove the training error convergence of FedAvg by adopting a two-stage analysis: a first stage
where the local loss derivatives are lower bounded by a constant and second stage where the model
is in the neighborhood of a global minimizer with nearly convex loss landscape. Our analysis
shows a provable benefit of using local steps in the first stage to reduce communication cost.

4. We experimentally verify our upper bound on the test error in a synthetic data setting (see Section 3|
as well as conduct experiments on practical FL tasks which show that our insights extend to deeper
CNNss (see Section [5).

Related Work. The two-layer CNN model that we study in this work was originally introduced
in|{Zou et al.[(2021)) for the purpose of analyzing the generalization error of the Adam optimizer in
the centralized setting. Later|Cao et al.|(2022) study the same model to analyze the phenomenon of
benign overfitting in two-layer CNN, i.e., give precise conditions under which the CNN can perfectly
fit the data while also achieving small population loss. |Oh & Yun|(2024)) use this model to prove the
benefit of patch-level data augmentation techniques such as Cutout and CutMix. Kou et al.| (2023)
relaxes the the polynomial ReLU activation in|Cao et al.| (2022)) to the standard ReLU activation and
also introduces label-flipping noise when analyzing benign overfitting in the centralized setting. We
do not consider label-flipping in our work for simplicity; however this can be easily incorporated as
future work. To the best of our knowledge, we are only aware of two other works (Huang et al.| [2023]
Bao et al., [2024) that analyze the two-layer CNN in a FL setting. The focus in|Huang et al.[(2023) is
on showing the benefit of collaboration in FL by considering signal heterogeneity across the data
in clients while Bao et al.|(2024)) considers signal heterogeneity to show the benefit of local steps.
Both|Huang et al.| (2023)) and Bao et al.|(2024) do not consider any label heterogeneity and there is
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no emphasis on the importance of initialization, making their analysis quite different from ours. We
defer more discussion on other related works to the Appendix.

2 PROBLEM SETUP

We begin by introducing the data generation model and the two-layer convolutional neural network,
followed by our FL objective and a brief primer on the FedAvg algorithm. We note that given
integers a, b, we denote by [a : b] the set of integers {a,a+1,...,b}. Also, [n] denotes {1,2,...,n}.
A table summarizing all the notation used in our work can be found in Appendix [B]

Data-Generation Model. Let D be the global data distribution. A datapoint (x,y) ~ D contains
feature vector x = [x(1)7,x(2)7]T € R?? with two components x(1),x(2) € R? and label
y € {+1, —1}, that are generated as follows:

1. Label y € {—1,1} is generated as Py = 1] =Py = —1] = 1/2.

2. One of x(1), x(2) is chosen at random and assigned as yp, where pu € R? is the signal vector
that we are interested in learning. The other of x(1), x(2) is set to be the noise vector & € R%,

which is generated from the Gaussian distribution N'(0,02 - (I — pp " - ||l ).

By definition, this noise vector £ is orthogonal to the signal p, i.e., &€ " o = 0. This data generation
model is inspired by image classification tasks |Cao et al.| (2022) where it has been observed that
only some of the image patches (for example, the foreground) contain information (i.e. the signal)
about the label. We would like the model to predict the label by focusing on such informative image
patches and ignoring background patches that act as noise and are irrelevant to the classification.

Measure of Data Heterogeneity. We consider n datapoints drawn from the distribution D, and
partitioned across K clients such that each client has N = n/K datapoints. The assumption of
equal-sized client datasets is made for simplicity of analysis and can be easily relaxed. The data
partitioning determines the level of heterogeneity across clients. Let D ;, and D_ ;, denote the set
of samples at client £ with positive (y = +1) and negative (y = —1) labels respectively. Define

_ 25:1 min(|D+,k| ) |D*J€|) c [
n

h: 0,1/2]. ey
A smaller h implies a higher data heterogeneity across clients. In the IID setting, with uniform
partitioning across clients, we expect min(| D4 |, |D_ |) = n/2x for all k € [K], and therefore
h =~ 1/2. In the extreme non-IID setting where each client only has samples from one class, A = 0.

Two-Layer CNN. We now describe our two-layer CNN model. The first layer in our model consists
of 2m filters {w ,}™ 1, € {£1}, where each w;,. € R performs a 1-D convolution on the feature
x with stride d followed by ReLU activation and average pooling Lin et al.| (2013);|Yu et al.[(2014).
The weights in the second layer then aggregate the outputs produced after pooling to get the final
output and are fixed as 2/m for j = +1 filters and —2/m for j = —1 filters. Formally, we have,

FOW.x) = =3 o (Wi u) + 0 (Warm €)] = 3 [0 ((Wor e yp) + 0 (Wo10.6))].
r=1 r=1

::F+1(W+1,x) ::F_l(W_l,x)

@

Here W € R?™ parameterizes all the weights of our neural network, W1, W_; € R™? parame-
terize the weights of the j = +1 filters and j = —1 filters respectively, and o(z) = max(0, z) is the
ReLU activation. Intuitively F;(W ;,x) represents the ‘logit score’ that the model assigns to label j.

FL Training and Test Objectives. Let {(xx.i,yx)}Y; be the local dataset at client k. Then the
global FL objective can be written as follows:

Jin {LW) = 2350 Le(W) | where Li(W) = & S0, s (W) G)
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where L (W) is the local objective at client k and ¢(z) = log(1 + exp(—=z)) is the cross-entropy
loss. We also define the test-error LY " as the probability that W will misclassify a point (x,y) ~ D:

LYY (W) := Pryyop (y # sign(f(W,x))) . )

The FedAvg Algorithm. The standard approach to minimizing objectives of the form in Equa-
tion (3) is the FedAvg algorithm. In each round ¢ of the algorithm, the central server sends the
current global model W) to the clients. Clients initialize their local models to the current global

model by setting Wff’o) =W® forall k € [K], and run 7 local steps of gradient descent (GD) as
follows

Local GD: W\"*t) — W) _ o r, (W) vs e [0: 7 —1],Vk € [K]. )

After 7 steps of Local GD, the clients send their local models {W(t "™ to the server, which aggregates

them to get the global model for the next round: W(+1) = Z W(t " /K. While we focus on
FedAvg with local GD in this work, we note that several modlﬁcatlons such as stochastic gradients
instead of full-batch GD, partial client participation |Yang et al.|(2021b)) and server momentum Reddi
et al.| (2021) are considered in both theory and practice. Studying these modifications is an interesting
future research direction.

3 MAIN RESULTS

In this section we first introduce our definition of filter alignment at initialization and a fundamental
result regarding the signal-noise decomposition of the CNN filter weights. We then state our main
result regarding the convergence of FedAvg with random initialization for the problem setup
described in Section[2]and the impact of data heterogeneity and filter alignment at initialization on
the test-error. Later we discuss why starting from a pre-trained model can improve the test accuracy
of FedAvg.

3.1 FILTER ALIGNMENT AT INITIALIZATION

Given datapoint (x,y), for the CNN to correctly predict the label y and minimize the loss
((yf(W,x)), from equation 2} equation 3| we want y f (W, x) = F,(W,,x)—F_,(W_,,x)) > 0.
At an individual filter r € [m], this can happen either with (w,, ., yp) > 0 or (w,, -, &) > 0. How-
ever, we want the model to focus on the signal yu in x while making the prediction. Therefore, for
filter (j,7) we want (w; ., yp) > 01if j = y and (w,,,yu) < 0if j = —y. Depending on the
initialization of our CNN, we have the following definition of aligned and misaligned filters.

Definition 1. The (j,r)-th filter (with j € {1}, r € [m]) is said to be aligned (with signal) at

initialization if (w ¢ 7), jp) > 0 and misaligned otherwise.

We shall see in Section 4] that the alignment of a filter at initialization plays a crucial role in how well
it learns the signal and also the overall generalization performance of the CNN in Theorem 2}

3.2 SIGNAL NOISE DECOMPOSITION OF CNN FILTER WEIGHTS

One of the key insights in|Cao et al.|(2022)) is that when training the two-layer CNN with GD, the
filter weights at each iteration can be expressed as a linear combination of the initial filter weights,
signal vector and noise vectors. Our first result below shows that this is true for FedAvg as well.

Proposition 1. Let {W } forj € {£1} and r € [m), be the global CNN filter weights in round t.

Then there exist unique coeﬁ?czents F;? > 0and {P( )

ik 1};“- such that

t 0 t t —2
wi) = w4 G0 llally® - ek S S P €kally® - € (©)

Signal Term Noise Term

where k € [K| denotes the client index, and i € [N] is the sample index.
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This decomposition allows us to decouple the effect of the signal and noise components on the CNN
filter weights, and analyze them separately throughout training. As we run more communication
rounds (denoted by t), we expect the weights to learn the signal yu, hence it is desirable for I‘(t)
to increase with ¢. In addition, the filter weights also inevitably memorize noise £ and overﬁt to

it, therefore the noise coefficients {P(t ki -} will also grow with t. We are primarily interested in
- () (®)
7,rki T P],rkzﬂ(P],rkz

coefficients Pg Z ki Pj(tr) ki (P]( T) i < 0) remain bounded (see Theoremlln Appendlx and

we can show that }_; ; Pj(tr pi =00 ks P ] - k ;). Henceforth, we refer to F(t and >, ; P(tz ko

as the signal learning and noise memorization coefficients of filter ( j, T) respectlvely As we see later

the growth of positive noise coefficients P > O) since the negative noise-

is fundamental

in Theorem , the ratio of signal learning to noise memorization F 2 -/ Zk i Pk

to the generalization performance of the CNN.

Signal and Noise Coefficients Update Equations. Given that clients are performing local GD, the
signal and noise coefficients evolve over rounds according to Lemma Let W](:’S) be the weights of
the filter at client % at round ¢ and iteration s, let ¢/ ,(f’;’) U (yg,if(W t -5)

the cross-entropy loss for the outputs produced by the local models and leto’(z) =1 (z > 0) be the
derivative of the ReLU function (assume ¢’ (0) = 1 without loss of generality).

(1)

,Xr,i)) be the derivative of

Lemma 1. The signal and noise coefficients Fg? P ki Pg 3 ki SAISfy
1 n T7—1 K N ,S 4 s 2
th: ) = F('t) e D50 Doket 2oim glgcti "o ((w j(tr l)ca yrit)) - el @)
H(t+1) (t) T— )8 / s .
Pj,r,kz P]rszﬁz 16/(7: ) (< §trl)gv€kz>) : 2‘]1(3/1«,1:])7 (8)
1 T— s 4 s .
B = Pl S U 0 (W50 660) < Nenally - Ui = =0), @)

where T\ — 0, P\ - — 0, P(O) = Oforallk € [K],i € [N].

Jyrkyi T M —jr kg T

3.3 TRAINING LOSS CONVERGENCE AND TEST ERROR GUARANTEE

Next, we state our main result regarding the convergence of FedAvg with random initialization. We

assume the CNN weights are initialized as w( ) N (0,021,) for all filters, where I is the (d x d)
identity matrix. We first state the following standard COIldlthIlS used in our analysis.

Condition 1. Let € be a desired training error threshold and § € (0, 1) be some failure probability.[ﬂ

(C1) The allowed number of communication rounds t is bounded by T* = %poly(e_l, m,n,d).

(C2) Dimension d is sufficiently large: d 2 max { n\lullz ,n?

(C3) Training set size n and neural network width m satzsfy m 2 log(n/d),n 2 log(m/d).
(C4) Standard deviation of Gaussian initialization is sufficiently small: o¢ < min 0‘/5 I 1| }

(C5) The norm of the signal satisfies: Hu||§ 20

(C6) Learning rate is sufficiently small: n < mln{ o3> Hﬂl\lz’ a%d}

The above conditions are standard and have also been made in |Cao et al.| (2022)); [Kou et al.| (2023)) for
the purpose of theoretical analysis. [(CT)|is a mild condition needed to ensure that the signal and noise
coefficients remain bounded throughout the duration of training. Furthermore, we see in Theorem 1
that we only need ' = O (*rnmfle*ld*1 log(r/ e)) rounds to reach a training error of ¢, which is
well within the admissible number of rounds. [[C2)|is used to bound the correlation between the noise
vectors and also the correlation of the initial filter weights with the signal and noise. Consequently
for any two noise vectors &, ;, &k i+, we have ||€y ;| o2 &k, & i) S Y/va < 1/n, making it easier
to handle the growth of the noise coefficients. @] is needed to ensure that a sufficient number
of filters have non-zero activations at initialization so that the initial gradient is non-zero. [[C4)]is

We use < and 2 to denote inequalities that hide constants and logarithmic factors. See Appendix for exact conditions.
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needed to ensure that the initial weights of the CNN are not too large and that it has bounded loss
for all datapoints. [(C5)]is needed to ensure that signal learning is not too slow compared to noise
memorization. Finally, a small enough learning rate in[(C6)|ensures that Local GD does not diverge.
With this assumption we are now ready to state our main results.

Theorem 1 (Training Loss Convergence). For any ¢ > 0 under Condition|l| there exists a'T =
(@) (,]02d7> +0 (%(T/e)) such that FedAvg satisfies L(WT)) < e with probability > 1 — 6.

noZde

Our training error convergence consists of two stages. In the first stage consisting of 77 := O (T];”TZT)
p

rounds, we show that the magnitudes of the cross-entropy loss derivatives are lower bounded by a

constant, i.e., [¢/(yx, Zf( (t ) x; )| = ©(1). Using this we can show that the signal and noise

coefficients {I‘(t j v k z} grow linearly and are © (1) by the end of this stage (see Lemma .
Consequently, by the end of the first stage, the model reaches a neighborhood of a global minimizer
where the loss landscape is nearly convex. Then in the second stage, we can establish that the training

error consistently decreases to an arbitrary error € in O (%ﬁge)) rounds.

Note that our analysis does not require the condition 7 o 1/ as is common in many works analyzing
FedAvg. Therefore, by setting 7 large enough we can make the number of rounds in the first stage
as small as O (1), thereby reducing the communication cost of FL. However, in the second stage we
do not see any continued benefit of local steps; in fact the number of rounds required grows as log(7).
This suggests an optimal strategy would be to adapt 7 throughout training: start with large 7 and
decrease T after some rounds, which has also been found to work well empirically Wang & Joshi
(2019).

Theorem 2 (Test Error Bound). Define signal-to-noise ratio SNR := lltlz/o,v/d and A; = {r €

[m] : (w 5 T),]u> > 0} to be the set of aligned filters (Deﬁnition corresponding to label j. Then

under the same conditions as Theorem[l} our trained CNN achieves
1. When SNR? < 1/v/nd, test error LY H(W(T)) > 0.1.
2. When SNR? > 1/\/nd, test error

2
L5 WD) <25y exp (= 5 [LISNR? + (1 - D)SNR? (h+ L(1 - n)] ).

Impact of SNR on harmful/benign overfitting. Intuitively, if the SNR is too low (SNR? < 1/\/nd),
then there is simply not enough signal strength for the model to learn compared to the noise. Hence,
we cannot expect the model to generalize well no matter how we train it. This generalizes the
centralized training result in (Kou et al., [2023] Theorem 4.2) (with p = 0), which corresponds to
7 = 1in FedAvg. In this case, the model is in the regime of harmful overfitting. However, if the
SNR is sufficiently large (SNR? > 1/v/nd), we enter the regime of benign overfitting, where the
model can fit the data and generalize well with the test error reducing exponentially with the size of
the global dataset n.

Impact of Filter Alignment and Data Heterogeneity on Test Error. In the benign overfitting
regime, the rate of decay of test error for label y depends on how effectively the j = y filters in the
CNN are actually able to learn the signal compared to noise memorization and can be measured using
>, (T3, P ). Our analysis shows that

y, kG
F(T) SNR? for aligned filters (r € A;), (10)
i P =~ |SNR?*(h+ £(1—h)) for misaligned filters (r € [m] \ A;).

For aligned filters, the ratio is unaffected by data heterogeneity i and the number of local steps 7.
However, for misaligned filters, the ratio becomes smaller as heterogeneity increases (h becomes
smaller) or 7 increases. In centralized training with 7 = 1, we have (h 4+ 1(1 — h)) = 1 and thus
we do not see any impact of heterogeneity at misaligned filters. Therefore, we recover the bound
LY (W) < exp(—nSNR?/d) in (Kou et al., 2023, Theorem 4.2). It is only in FL training with
7 > 1 local steps that we encounter the adverse effect of data heterogeneity at the misaligned filters.
We provide a proof sketch of equation [I0]in Section {f] and also an empirical verification of our bound
in Section
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Figure 2: Empirical results on synthetic dataset to verify the upper bound on test error in Theorem We fix
the training error € = 0.1. Figure2a} Test error increases as we increase the number of misaligned filters, with
much larger rate of increase in the non-IID setting. Figures[2b]and [2¢} Test error increases with local steps and
heterogeneity when m /2 filters are misaligned at initialization, remains constant when all the filters are aligned.

Empirical Verification of Upper Bound on Test Error. We now provide empirical verification
of the upper bound on the test error in Theorem [2]in the benign overfitting regime. We simulate a
synthetic dataset following our data-generation model in Section 2} with n = 20 datapoints, K = 2
clients and m = 10 filters. Additional experimental details can be found in Appendix [F] We fix
a training error threshold of ¢ = 0.1 and then measure the test error of our CNN under various
settmgs in Flgure ] Figure[2a]shows the test error as a function of the number of misaligned filters

— |A;| in Theorem 2 ' ) under different data partitionings with the number of local steps fixed at
7 = 100. While the test error grows with the number of misaligned filters in both data settings, the
rate of growth is much larger in the non-IID setting. Figure [2b]shows the test error as a function of
local steps 7 under different initializations for fixed h = 0 while Figure [2c|shows the test error as
a function of heterogeneity under different initializations for fixed 7 = 100. As predicted by our
theory, heterogeneity and the number of local steps do not affect test error when all the filters are
aligned at initialization. On the other hand, the test error grows with 7 and heterogeneity when the
number of misaligned filters is non-zero (m/2 = 5) for each j € {£1}. Therefore, our empirical
results strongly validate our theoretical results showing the effect of heterogeneity, number of local
steps and number of misaligned filters on the test error.

3.4 IMPACT OF PRE-TRAINING ON FEDERATED LEARNING

Given the result in Theorem [2] we return to our question in Section [T} about the effect of pre-trained
initialization on improving generalization performance in FL. We focus on centralized pre-training
but our discussion here can be extended to federated pre-training as well (see Lemma 30| which states
a federated counterpart of the lemma below). Suppose we pre-train a CNN model in a centralized
manner on a dataset with signal 1P generated according to the data model described in Section
Now if we train for sufficient number of iterations, then we can show that all filters will be correctly
aligned with the pre-training signal.

Lemma 2 (All Filters Aligned After Sufficient Training). There exists T = O (%) such that for

allt > T1,j € {£1},r € [m] we have (ng:e’t),ju(P’e)> > 0.

Now suppose we pre-train for ¢ > T} iterations to get a model W(P™*) and use this model to
initialize for downstream federated training (i.e., W(®) = W ")) with signal vector p. Then

for all j,r filters, we have (w gg,ju> (w; (pre ) , gy 4 + (w; (pre ),](u 1)) We also
know that < (Pre®) )y > 0 using Lemma Therefore, if || p — |5 is small, all the
filters {w } are correctly aligned with the signal ju. As a result, in Theorem I A = [m)] for

je{£1} and in the benign overfitting regime (SNR? > 1//nd), we recover the centralized result
LY (W) < exp(—nSNR?/d) (Kou et al., 2023, Theorem 4.2). Hence, the adverse effects of
cross-client heterogeneity are mitigated by initializing with a pre-trained model.

4 A FINER UNDERSTANDING OF SIGNAL LEARNING AND NOISE
MEMORIZATION
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Figure 4: Signal learning and noise memorization for our CNN model in the IID (A = 1/2) and NonIID (h = 0)
setting after 1 round. Figures[@a] [Ad} In the IID setting signal learning coefficients are similar for all the filters
and increase with the number of local steps 7 equation[T2] but in the NonlID setting they saturate (equation[T3)
for misaligned filters (r = 1,2,4,5). Figures 4b| [4ef Noise memorization is similar for all filters in both
settings and grows with T equation [T4] Figuresc| the IID setting, the ratio of signal learning to noise
memorization remains independent of 7. But in the NonlID setting, the ratio decreases to zero as 7 increases for
misaligned filters (r = 1,2, 4, 5).

In this section, we explain the central idea underlying the Proof of Theorem 2] ) [
that the ratio of signal learning to noise memorization for aligned filters does ¢
not depend on data heterogeneity h, and for misaligned filters it is reduced by - [HE™= NN
a factor (h 4+ L(1 — h)). For ease of presentation, we focus on the first round [

starting ¢ = 0. However, our results extend to multiple rounds also as shown

in our proof in Appendix Figure 3: Initial alignment of
P bP Q the filters in Figure[d]

1 3 3 1

Case 1: Filter is Aligned at Initialization, i.e., (wj(.?r) ,jp) > 0 = Signal Learning is Unaffected

by Data Heterogeneity. Using the fact that the signal vector is orthogonal to all the noise vectors,
ie., (i, &) = 0forall k € [K],i € [N], we can show that the filter at client k satisfies,

0, . 0) . n s—1 N 0,s’ / 0,s’ 2
(winsdogm) = (Wi jp) + = ol S () o (W yeam) - el A1)

forall s € [0: 7 — 1]. Since the second term in equation[I1]is positive (/' < 0) and non-decreasing

with respect to s, we have <w§ors,2 ,jp) > 0 for all k, s. Consequently, using equationwe get
2 71 2 K 2
@ Ot ||pllz |95 Dik| @) (07 el
p _ nllaly e 2 k1 70k ®) ) 2 12
=V RVYk, i =

where (a) follows since |¢/ g?f)\ > C > 0 (see Lemma , and the definition of D j, equation , (b)

follows from |Dj = U,IleDj,k| = Q(n) (see Lemma ED Therefore, for aligned filters, Fng) scales
linearly with the number of local steps 7 and depends only on the total number of samples with label
Jj,i.e., |Dj|. It does not depend on data heterogeneity equation i.e., how D; is partitioned across
clients.

Case 2: Filter is misaligned at initialization, i.e., <w§072 ,ju) < 0 = Signal Learning depends

on Data Heterogeneity. In the first iteration (s = 0), the samples in the set UszlD_ 4.k (for which

o’ <<W§0T0k) ,—jmp)) = 1) contribute to the growth of Fﬁ? (see equation . From the discussion in
(0,9)

ko Ji) is non-decreasing in s. However, for a given s € [1 : 7 — 1],

Case 1, we know that (w
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(0,9) )

the sign of (w jp) can differ across clients and the growth of F< will depend on the set

j rk’ ,r
Uk:l{Dj’,k : j' = sign(( §Orsk),jp,>)}. Again using the fact that \E’,(Sis)| > O, we get from
equation [7]
C77HH||2 T— . . s
rf) > “LR (\uiilij,k\ XS Dy = sien((w i) ) (13)
c 3 . (a) 3L+ (r—1)h
> U (U0 ja] + (7 = ) S min{|Dy al (D) & o (HEL 00,

where (a) follows from |UE_, D_; ;| = ©(n) and the definition of & equation Therefore, for
misaligned filters, global signal coefficient F(l) depends on the data heterogeneity h. Under extreme
data heterogeneity (h = 0), F does not scale with the number of local steps 7. We illustrate this in

)

Figure 4d, where for mlsallgned filters the growth of F§-7T saturates.

Noise Memorization Does not Depend on Data Heterogeneity. From equation[§] we have,

— s s | (a) To2d
S = LSS 0 (%), €)1 (s = ) do () aw

ki k,i s=0

where (a) follows from —¢'(-) < 1 and max;m- ||£;”||§ = O(07d) (see Lemma @) We can also

establish a matching lower bound ) ", i PJ rkyi = S (nTJdefl) (see Lemma . As aresult, the
noise memorization does not depend on data- heteeneity and scales linearly with the number of

where the growth of > ki (1) for all the

local steps T. We illustrate this in Figures 4bjand (4 Pk

filters is similar in the IID and non-IID case.

Lower Bound on Ratio of Signal Learning to Noise Memorization. From equation equa-
tion[I3]and equation[I4] we get the lower bound in equation[I0]on the ratio of signal learning to noise
memorization for any filter. Observe that for aligned filters, the lower bound is independent of the
heterogeneity across clients. However, for misaligned filters, our bound cannot escape the adverse
effects of data heterogeneity: it worsens with increasing data heterogeneity (decreasing i) and also
with increasing number of local steps 7. This is also demonstrated by our experimental results in

Figures [c|and 4]

5 EXPERIMENTS

In this section we provide some empirical results showing how our insights from Section [3]extend
to practical FL tasks with deep CNN models. We train a ResNet18 model on the CIFAR-10 dataset
distributed across 20 clients simulated using Dirichlet(«) Hsu et al.| (2019). Unless specified, for
non-IID partitioning we use an o = 0.1 and for IID data we use a = 10. For pre-training, we use
a ResNet18 pre-trained on ImageNet Russakovsky et al.|(2015)), available in PyTorch Paszke et al.
(2019). Additional experimental details can be found in Appendix [

Pre-trained Initialization has Fewer Misaligned Filters than Random Initialization. Measuring
filter alignment for deep CNNss is challenging since we cannot explicitly characterize the signal
information present in real world datasets and furthermore different layers will learn the signal at
different levels of granularity. Nonetheless, our theoretical findings suggest that given sufficient
number of training rounds, filters will be aligned with the signal (see Section [3) and once a filter is
aligned, the sign of the output produced by the filter with respect to the signal does not change, i.e, if

(w ](tz,];o > 0 then sign((w ]( T), w)) = sign({ 5 2, w)), for all ' > t. Therefore, we propose to use

the'sign of the output produced by a filter at the end of training as a reference for alignment at any
given round. Formally, let W () W) ... W () be the sequence of iterates produced by federated
training and let F(w,x) = [(w,x(1)), (w,x(2)),...{w,x(p))] € RP be the feature map vector
generated by filter w for input x. For a given batch of data B, we define the empirical measure of
alignment of filter w(®) relative to w7 as follows:

Aw®) = Y sign(Fi(w, x))sign(F(w™), x)) (15)

z€B,l€[p]



Under review as a conference paper at ICLR 2025

—&— Pre-trained —&— Pre-trained

Random

()
St

Random

[
o

ot

—

Percentage of Misaligned Filters
wt

o

- 40
10° 10! 10? 0 50 100 150 200
Round No. Round No.
(@) (b)

Figure 5: Percentage of misaligned filters measured using Equation (Figure and test accuracy (Figure
for different initialization across training rounds when training a ResNet18 on CIFAR10 in non-IID FL setting.
The number of misaligned filter at initialization (¢ = 0) is almost 3x lower for pre-trained model compared to
random initialization leading to an improved generalization performance.

We say that the weight w(*) at round # is misaligned if A(w(*)) < 0, because this implies that the
sign of the output produced by the filter w at round ¢ eventually changed for a majority of the inputs,
hence indicating that the filter was misaligned at round ¢. We compute this measure over a batch of
data to account for signal information coming from different classes of data as well as reduce the
impact of noise in the data. Based on this measure, we plot the ratio of the number of misaligned
filters to total filters when starting from pre-trained vs random initialization in Figure [5a] for the
non-I1ID FL setup. As expected, we see that the number of misaligned filters is almost 3x smaller
when starting from a pre-trained initialization compared to a random initialization, which reflects in
the improved test accuracy of pre-trained initialization in Figure [5b]

Pre-trained Initialization Improves Ratio of Signal Learning to Noise Memorization. Our
theoretical results (Theorem [2) along with previous experimental results show that the two-
layer CNN model can have different test errors for the same training error depending on ini-
tialization and data heterogeneity. Our goal is to demonstrate that this finding extends to more
general FL tasks as well. We fix the training loss as 0.7 and measure the test accuracy un-
der different initialization and heterogeneity conditions as shown in Table First, with ran-
dom initialization, IID FL achieves around 2% higher accuracy compared to non-IID FL,
indicating that the ratio of signal learning to noise-
memorization is higher in the IID setting. Sec- Table 1: Test accuracy of ResNet-18 model for the
ond, starting with a pre-trained model improves same training los§ under different 1n1.t1ahzat10n and

. . . . heterogeneity settings. Test accuracy improves when
the test accuracy in both settings, with a larger im- . : :

. . .. . starting with a pre-trained model.

provement in the non-IID setting. This implies
starting from a pre-trained model can improve the

efficiency of signal learning compared to noise _ ™Mb |Train Loss | non-lID| 1D
memorization especially in more heterogeneous  Random | 0.7+0.05 [70.51+1.81]72.31+2.12
settings, thus corroborating our earlier findings. Pre-trained| 0.7+0.05 |74.12+1.51|74.15+0.92

6 CONCLUSION AND FUTURE WORK

In this work we provide a deeper theoretical explanation for why pre-training can drastically reduce
the adverse effects of non-IID data in FL by studying the class of two layer CNN models under a
signal-noise data model. Our analysis shows that the reduction in test accuracy seen in non-IID FL
compared to IID FL is only caused by filters that are misaligned at initialization. When starting from a
pre-trained model we expect most of the filters to be already aligned with the signal thereby reducing
the effect of heterogeneity and leading to a higher ratio of signal learning to noise memorization.
This is corroborated by experiments on synthetic setup as well as more practical FL training tasks.
Our work also opens up several avenues for future work. These including extending the analysis
to deeper and more practical neural networks and also incorporating multi-class classification with
more than two labels. Another interesting direction is to see how pre-training affects other federated
algorithms such as those that explicitly incorporate heterogeneity reducing mechanisms.

10
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A ADDITIONAL RELATED WORK

Use of Pre-Trained Models in Federated Learning. Tan et al|(2022) explore the benefit of
using pre-trained models in FL by proposing to use multiple fixed pre-trained backbones as the
encoder model at each client and using contrastive learning to extract useful shared representations.
Zhuang et al.|(2023) discuss the opportunities and challenges of using large foundation models for FL
including the high communication and computation cost. One solution to this as proposed by [Legate
et al.| (2024) is that instead of full fine-tuning as done in (Chen et al.|(2022); Nguyen et al.| (2022), we
can just fine-tune the last layer. Specifically |[Legate et al.|(2024) proposes a two-stage approach to
federated fine-tuning by first fine-tuning the head and then doing a full-finetuning. This approach
is inspired by results in the centralized setting [Kumar et al.[|(2022)) which show that in some case
fine-tuning can distort the pre-trained features. [Fani et al.|(2023) also study the problem of fine-tuning
just the last layer in a federated setting by replacing the softmax classifier with a ridge-regression
classifier which enables them to compute a closed form expression for the last layer weights.

There has also been some recent work on exploring the benefit of pre-training for federated natural
language processing tasks including the use of Large Language Models (LLMs). [Wang et al.|(2023)
discuss how to leverage the power of pre-trained LLMs for private on-device fine-tuning of language
models. Specifically, Wang et al.| (2023) proposes a distribution matching approach to select public
data that is closest to private data and then use this selected public data to train the on-device language
model. Zhang et al.|(2023) propose to first pre-train on synthetic data to construct the initialization
point followed by federated fine-tuning. [Hou et al.| (2024) propose that clients send DP information
to the server which then uses this information to generate synthetic data and fine-tune centrally on
this synthetic data. Liu & Miller| (2020) discuss the challenges of pre-training and fine-tuning BERT
in federated manner using clinical notes from multiple silos without data transfer. [Tian et al.[(2022)
propose to pre-train a BERT model in a federated manner in a more general setting and show that their
pre-trained model can retain accuracy on the GLUE (Wang et al.||2018)) dataset without sacrificing
client privacy. |Gupta et al.| (2022) propose a defense using pre-trained models to prevent an attacker
from recovering multiple sentences from gradients in the federated training of the language modeling
task.

Use of Pre-trained Models for Private Optimization. We note that an orthogonal line of work
has explored the benefits of starting from a pre-trained model when doing differentially private
optimization Dwork et al.| (2006) and seen similar striking improvement in accuracy De et al.|(2022);
Li et al.| (2022b), as we see in the heterogeneous FL setting. |Ganesh et al.| (2023) study this
phenomenon for a stylized mean estimation problem and show that public pre-training can help the
model start from a good loss basin which is otherwise hard to achieve with private noisy optimization.
Li et al.[ (2022a) study differentially private convex optimization and show that starting from a
pre-trained model can leads to dimension independent convergence guarantees. Specifically |L1 et al.
(2022a)) define the notion of restricted Lipschitz continuity and show that when gradients are low rank
most of the restricted Lispchitz coefficients will be zero.

Generalization performance in Federated Learning. Several existing works have studied the
generalization performance of FL in different settings |(Cheng et al.| (2021)); (Gholami & Seferoglu
(2024); [Huang et al.| (2023)); [Yuan et al.| (2021). Some of the initial works either provide results
independent of the algorithm being used [Mobhri et al.| (2019); |Hu et al.| (2022)); \Sun & Wei| (2022), or
only study convex losses (Chen et al.|(2021)); [Fallah et al.| (2021)). Barnes et al.| (2022); |Sefidgaran
et al.[(2022) derive information-theoretic bounds, but these bounds require specific forms of loss
functions and cannot capture effects of heterogeneity. [Huang et al.|(2021) study the generalization
of FedAvg on wide two-layer ReLU networks with homogeneous data. |Collins et al.|(2022) studies
FedAvg under multi-task linear representation learning setting. In|Sun et al.| (2024), the authors have
demonstrated the impact of data heterogeneity on the generalization performance of some popular FL
algorithms.

B THEORY NOTATION AND PRELIMINARIES

We follow a similar notation as Kou et al.|(2023)) in most of the analysis.

17
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Table 2: Summary of notation

Symbol Description
je{-1,1} Layer index
m Number of filters
d Dimension of filter
r € [m] Filter Index
K Number of clients
k€ [K] Client index
N Number of datapoints at each client
i € [N] Datapoint index
n=KN Global dataset size
Yk, € {1, -1} Label of i-th datapoint at k-th client
n Signal vector
0127 Variance of Gaussian noise
Er,i Noise vector for k-th client and ¢-th datapoint
n Local learning rate
T Number of local steps

{(z) = log(1 + exp(—z))
o(z) = max(0, z)
o'(z) = l]fl(z >0)

Cross-entropy loss function
ReLU function

Derivative of ReLU function
Round index

s Iteration index
h Heterogeneity parameter
SNR := llellz/o,va Signal to Noise Ratio
W,(C) Parameterized weights of the k-th client
wi, (j,7)-th filter weight of the k-th client
7(77)k Local signal co-efficient for k-th client
pg.{’r')k p Local noise coefficient for £-th client and i-th datapoint
ﬁi’%}m Positive local noise coefficient for k-th client and i-th datapoint
BYTS,Z p Negative local noise coefficient for k-th client and i-th datapoint
é’g”lf) Shorthand for —1/ (1 + exp(ymf(vvl(c'f)7 xk,i)) which is the
derivative of cross-entropy loss for i-th datapoint at k-th client
w0 Parameterized weight vector of the global model
W(Z J, r-th filter weight of the global model
1"52, Global signal co-efficient
PJ.()'T)’ ki Global noise coefficient for (k, 7)-th datapoint
FE)T ki Positive global noise coefficient for (k, ¢)-th datapoint
E;i ki Negative global noise coefficient for (k, 7)-th client datapoint

B.1

Using local GD updates in equation [5]to minimize the local loss function in equation [3] the local

LocAL MODEL UPDATE

model update for the (j,7) filter at client & in round ¢ can be written as,

18
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T 7) s / ]
§t712 - wgti Z Z gl(t x ﬁtTSz)ga'fk z>) ']yk,ifk,i

s=0ie[N
f s) ’ \S .
Z Z /( : fr,,l,yk,m»'w
s=04€[N]
“mﬁ; loalls® bt 32 T Nl - € (16)
1€[N]
where, we use j(trO]z £ wfﬂ Further, we define
t,r n t,s ’ t,s 2
Tk 2 =5 5 Z O o (w5 i) 3 (a7
s=0 €[N
n T—1
T t, ’ ,S 2 .
P 2 =i D o (W &) - €l - Gy (18)
s=0

( 77—)) (t 77—).

which respectively, denote the local signal (
We also define pgt:,z ;= py:,g 1]1(/);72 ;> 0) and pgt:,z .= pgt;,z zll(py;,g ; < 0), where ]l( )
denotes the indicator function, and which can alternatively be written as

and local noise ({p e 1} ) components of w;

T—1

_(t,7 n t,s 2 .
P =~ 2L o (W 60) - 16wl - 1 (e = 4), (19)
s=0
T — /(t,s / t,s .
753121 = Z ) §r])ga£k: 2>) HSk:z (yk:z = j) (20)
s=0
B.2  PROOF OF PROPOSITION(I]
The global model update at round ¢ 4 1 can be written as
K (
(t+1) t,7)
Win =D g Vimk
k=1
j K
t (t,7 t, T
:W§,2+?Z%rk) lal? m+ 3 Z ol el g @D
k=1 k=14i€[N

Mimicking the signal-noise decomposition in equation[I6] we can define a similar decomposition for
the global model as follows.

wi) = w4 T 5 u+ZZPJim €x,illy - €. (22)
k=14i€[N]

B.3 PROOF OF LEMMA[I]

Comparing with equation 2T} we have the following recursive update for the global signal and noise
coefficients using n = K'N.

(t+1) (t (t )
Fj, P Z Vjrk

-1 - L ZZZ@’EJ? () o)) -l 23)

k 1:€[N] s=0
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(t+1) _ p(®) LG
Pj,r,k},z Pj,rk i + Kpj,rk i

t n /(t,s ' t,s 2 .
j(,«)k i Z ) 5,«;1,& i) - NErills - yk,i- (24)

Analogously, we can also define the positive and negative global noise coefficients,

T—1
SHt+1) () n s) 7 s .
Pjrki=Ljrki— LR W) &) €nll3 1 (v = J) (25)
s=0
and,
1 n t,s ’ s .
ng:rk)z Byr,k,z Z l( ) gtrl)wsk 2>) HS’C i <yk i = ‘7)' (26)

Lemma 3. (Measuring local and global signal coefficient)

From equation[16] it follows that

(W) Wi i) = gy, 27)
and from equation[22] it follows that
(wi —wl% py = 4T, (28)

Since {F }f are non-negative and non-decreasing in ¢, the global weights {w }, become i 1ncreasmg
aligned Wlth the actual signal yy, ;p corresponding to the filters j = yy, ;. Slmllarly, as {'y] , k}t are

non-negative and non-decreasing in s for fixed ¢, the local weights {w . k} become increasing
aligned with the signal y, ; o corresponding to the filters j = yy, ;.

3

C TRAINING ERROR CONVERGENCE OF FEDAVG WITH RANDOM
INITIALIZATION

For the sake of completeness, we state the conditions used in our analysis (Condition |1} in full detail.

Assumptions. Let e be a desired training error threshold and § € (0, 1) be some failure probability.
Let T* = %poly(e_l7 m,n, d) be the maximum admissible rounds. Suppose there exists a sufficiently

large constant C, such that the following hold.
Assumption 1. Dimension d is sufficiently large, i.e.,

2
9p

2 1 T*
d > Cmax {”“”2‘%(” n? log(nm/5)(log(T*7))2} .

Assumption 2. Training sample size n and neural network width m satisfy

m > Clog(n/d),n > Clog(m/s).
Assumption 3. The norm of the signal satisfies,

2
Ipll5 > Co log(n/d).
Assumption 4. Standard deviation of Gaussian initialization is sufficiently small, i.e.,
1. vn 1
09 < — min , .
e {%w\mww&um}

Assumption 5. Learning rate is sufficiently small, i.e.,

nm+/log(m/6) 1 1 }
n < = min —= (-
c { opd Tlpll3 o3d
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The assumptions are primarily used to ensure that the model is sufficiently overparameterized, i.e.,
training loss can be made arbitrarily small, and that we do not begin optimization from a point where
the gradient is already zero or unbounded. We provide a more intuitive reasoning behind each of the
assumptions below:

* Bounded number of communication rounds: This is needed to ensure that the magnitude of
filter weights remains bounded throughout training since they grow logarithmically with the
number of updates (see Theorem 3). We note that this is quite a mild condition since the
max rounds can have polynomial dependence on 1/e where € is our desired training error.

e Dimension d is sufficiently large: This is needed to ensure that the model is sufficiently
overparameterized and the training loss can be made arbitrarily small. Recall that our input
x consists of a signal component g € R? that is common across all datapoints and noise
component & € R? that is independently drawn from A/(0, 0'1% - I). Having a sufficiently
large d ensures that the correlation between any two noise vectors, i.e. (€,£’)/||€? is not
too large. Otherwise if the correlation between two noise vectors is large and negative, then
minimizing the loss on one data point could end up increasing the loss on another training
point which complicates convergence and prevents loss from becoming arbitrarily small.

 Training set size and network width is sufficiently large: The condition ensures that a
sufficient number of filters get activated at initialization with high probability (see Lemma
6 and Lemma 7) and prevents cases where the initial gradient is zero. The condition on
training set size also ensures that there are a sufficient number of datapoints with negative
and positive labels (see Lemma 8).

Standard deviation of Gaussian random initialization is sufficiently small: This condition is
needed to ensure that the magnitude of the initial correlation between the filter weights and

the signal and noise components, i.e \( Wi u>| [(w )| is not too large. This simplifies
the analysis and prevents cases where none of the ﬁfters get activated at initialization (see
Lemma 21). It also ensures that after some number of rounds all filters get aligned with the
signal (see Lemma 30).

e Norm of signal is larger than noise variance: This condition is needed to ensure that all
misaligned filters at initialization eventually become aligned with the signal after some
rounds (see Lemma 30). This allows us to derive a meaningful bound on test performance
that is not dominated by noise memorization.

Learning rate is sufficiently small: This is a standard condition to ensure that gradient
descent does not diverge. The conditions are derived from ensuring that the signal and
noise coefficient remain bounded in the first stage of training and that the loss decreases
monotonically in every round in the second stage of training.

For ease of reference, we restate Theoremmbelow.

Theorem (Training Loss Convergence). Let T3 = O (%) With probability 1 — § over the

random initialization, for all Ty < T < T* we have,

T Ty) _ P
1 W —w|
L S pwey< 2
T—T1+1t;1 W) s S a—rTn) *°
Therefore we can find an iterate with training error smaller than 2e¢ within T = T +
||W(T1) — W* z/(ne) =0 (WZdr) +0 (77”"7712%5;/6)) rounds.

Proof Sketch. The template follows that of and is divided into 3 parts. In
the first part (Appendix [C.2), we show that the magnitude of the signal and noise memorization
coefficients for the global model is bounded for the entire duration of training (see Theorem|3)), where
|I‘§t2| < 4log(T*) and |P](tr),“| < 4log(T*r) forall 0 < ¢ < T* — 1. Next, we divide our training
into two stages. In the first stage (Appendix [C.3), we show (see Lemma [20) that the noise (and
also signal) memorization coefficients grow fast and are lower bounded by some constant after T

rounds i.e., | P ] v k Z| = Q(1). In the second stage (Appendix , the growth of the noise and signal
coefficients becomes relatively slower and the model reaches a neighborhood of a global minimizer
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where the loss landscape is nearly convex (see Lemma[24). Using this we can show that our objective
is monotonically decreasing in every round (see Lemma [25)), which establishes convergence (in
Appendix [C.3)). We begin by stating (in Appendix [C.I]) some intermediate results that we use in the
subsequent analysis.

C.1 PRELIMINARY LEMMAS

Lemma 4. (Lemma B.4 in|Cao et al.|(2022))) Suppose that 6 > 0 and d = Q (log(4n/)). Then with
probability at least 1 — 9,

2
ond/2 < |[€kally < 303d/2,

[(€k,is Errir)| < 202/ dlog(6n2 /),

forallk, k' € [K)], i,i € [N], and (k,i) # (K',7).
Lemma 5. (Lemma B.5 in|Kou et al.|(2023)). Suppose that d = 2 (log(mn/§)), m = Q (log(1/9)).
Then with probability at least 1 — 0,

2 o 2
o5d/2 < Hw‘” HQ < 305d/2,

‘<W§f?,u>‘ < \/2log(12m/68) - a0 ||l ,

forallr € [m], j € {£1}, k € [K] and i € [N].

(Wi &0 < 2y/log(12mn/s) - 0o, V4,

Lemma 6. (Lemma B.6 in|Kou et al.|(2023))). Let S,(C?i) = {r € [m]: <W§2?i7r,€k,i> > O}. Suppose
d > 0 and m > 501og(2n/0). Then with probability at least 1 — 6,

‘S,(COB‘ > 0.4m,Vi € [n].

Lemma 7. (Lemma B7 in |Kou et al| (2023)) Let S\
{k € [K],i € [N]:ygi=1], <wj(-?3,£k7i> > 0}. Suppose § > 0 and n > 32log(4dm/J).
Then with probability at least 1 — 0,

]S*](?)‘ > n/8,Vi € [n].

Lemma 8. Ler D; = {k € [K],i € [N] : yx,; = j}. Suppose 6 > 0 and n > 8log(4/d). Then with
probability at least 1 — 6,

n .
D3| > V) € {21},

Proof. We have |D;| = 33, ;1(yx: = j) and therefore E|D;| = >, Py = j) = n/2.
Applying Hoeffding’s inequality we have with probability 1 — 26,

< /oS

2

D51 1
n 2n

Now if n > 8log(4/4), by applying union bound, we have with probability at least 1 — 6,

n .
D3| > V) € {21},
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C.2 BOUNDING THE SCALE OF SIGNAL AND NOISE MEMORIZATION COEFFICIENTS

Our first goal is to show that the coefficients of the global model, i.e., thi, ?; l ki Ll

and ‘P
are bounded as O (log(T*7)). To do so, we look at a virfual iteration index given by v =
0,1,2,3,...,7*r — 1. For any v, we can define the filter weights at virtual iteration v in terms of
the filter weights we have seen so far. In particular,

~(v) & (I_%j,v mod 7')

Wirk = Wirk :

We also define the following virtual sequence of local coefficients which will be used in our proof.

Let (G((T =0, P 0,P”) = 0. We have the following update equation for G, B

j’l‘k?’L_ ' =g, ki 3,rk? ]rkz
andIP’ET),“forv> 1.
v— v—1 / — .
Gl = w2 O o (W ) il it e (mod 7) £ 0,
(v) zG[N]
ij”"vk - G- _ /(v T+9) ! ~(v T+5) 2 29
j r.k nm ZZ Z Z % j’r‘k: 7yk»il“l‘>) ||’J’||2 CISC,

s=0 k' i€[N]

v ,v mod T
where we slightly abuse notation, using E’ (v) ; to denote ¢’} (L ! )

mv—1) 1) 1~ (v—1 2. .
]P)j ki nglévz ) (< gvr k)ask 1>) ||€k,l||2 ]1(] = yk,i)v ifv (mOd T) % Oa
P'.rki: (U T) v—T+8) !/~ T+s .

s ] r.k,i ZE/ I _5U7 k * );ék 1>) Hék,z”; ]l(] = yk,i) else.

(30)

) PO e (W i) 1kill2 1(j = —yna), if v (mod ) #0,
v _ 71

E'r i v—T v—=7+s) /)~ (v—T+s 2 .
S B DO T (T ) 6kalla 10 = ) clse.
s=0
€1y
Note that we have the relation G(”) =1l l,Pgt:)k ;= ?;ti X z?ESt:)k ;= P; 2 pi forallt =
0,1,2,...,7* — 1. Intuitively, 1f we can bound the virtual sequence of coefficients, we can also

bound the actual coefficients of the global model at every round.

C.2.1 DECOMPOSITION OF VIRTUAL LOCAL FILTER WEIGHTS

The purpose of introducing the virtual sequence of coefficients is to write the local filter weight at
each client as the following decomposition.

v 0 v LU/TJ T|lv/T —2
W = w0 GG el e SN @ BT g oy € i
k' k' #k i’ €[N]

+ Z .]Tkrz ’r’kz)HSk’l 2£k,i' (32)

i€[N]

Note that (7|v/7]) denotes the last iteration at which communication happened. If v (mod 7) = 0,

o (v)

then w;', is the same for all k € [K].

C.2.2 THEOREM ON SCALE OF COEFFICIENTS

We will now state the theorem that bounds our virtual sequence of coefficients and give the proof
below. We first define some quantities that will be used throughout the proof.

. nlpl?
< Jraékz>}7’y_ O'gd .

a = 4log(T*7); B := 2 max {‘( 502,;1)
i,5,k,T
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Theorem 3. Under assumptions, for allv =0,1,2,...,T*T — 1, we have that,
0 (0) 0
G;,T?,k O]P;jrkz_OJP);gki_OV
0<P,, <a, (33)
1 2/6
0>p"),  >-B-8 L(GZZ /) e > —a, (34)
0< G, < C'Fa, (35)

forallr € [m],j € {£1},k € [K],i € [N], where C' is some positive constant.

We will use induction to prove this theorem. The statement is clearly true at v = 0. Now assuming
the statement holds at v = v’ we will show that it holds at v = v’ + 1. We first state and prove some
intermediate lemmas that we will use in our proof.

C.2.3 INTERMEDIATE STEPS TO PROVE THE INDUCTION IN THEOREM 3]

Lemma 9.

2
max{ﬁ,él l()g(fi?/a)noz} < %2

Proof. From Lemmawe have 8 = 409 max{dlog(l?mn/é) -opVd, \/log(12m/§) - ||u||2}

Now from Assumptions[I]and[4] by choosing C' large enough, the inequality is satisfied. O

Lemma 10. Suppose, equation equationand equationholds for all iterations 0 < v < v'.
Then for all v € [m], j € {x1},k € [K],i € [N] we have,

(W = wi ) =G, (36)
~ (v’ =’ log(6n2/8 .
(@0 Wl )~ B | <y O G7)
_ log(6n2/6 )
R N T e %)

Proof of equation[36] 1t follows directly from equationby using our assumption that (g, £z ;) = 0
forall k € [K],i € [N]. O

Proof of equation[37] Note that for y,;, = j we have IP; T)k , = 0. Now using equation [32| for
J = Yk, we have,

~ (v’ v’)
‘<W§',r,)k ]ragk 1> _]Tkl
(Tl /7)) (v /71)N (Ekio€nr /> (v (v") (€r,ir€n.ir)
=12 > Bl +BLLEY) Hgk/k/ Y @k H B ) |
k’,k'#k i’ €[N] i'€[N],i’ #i 2
(@) (TI.U /TJ) T|v' /T (v") v’ log(6n2/6
<| X2 (Fl ) ¢ 2 (B | [B]) | av e
k', k'#k i’ €[N] i’€[N]

(b) 2
<4 log(ﬁ;1 /5)na7

where (a) follows from triangle inequality and Lemma (b) follows from the induction hypothesis.
O
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Proof of equation[38] Note that for j # y; we have IP’j r. k 4+ = 0. Using equationforj # Yk
we have,

= (") (0) (U )
< r gk z>

J,rk —]7kz

(Tl /7]) 70"/ (€kirErrir) (v") v’ (&k.ir€r,ir)
Z Z IP] rk’ i’ +]P)§ rLk//z’J)) — + Z (IFDJ rk,i’ +E§',r,)k,i/)k7k,2

k' k'#k i €[N] lew '” i E[N],i'#£i o (L
(@) L' /7)) o' /r o [log(6n% /3
< Z Z (‘PJT]C/ i’ ‘ + ‘Pg rLk’/z/J)D (‘PJT]GZ + ‘E;,r,)k,i’ ) 4 w
k' k' #k i €[N] €[N

(b) 2
2, 1og<6; /9 e

where (a) follows from triangle inequality and Lemmalé-_l|; (b) follows from the induction hypothesis.
This concludes the proof of Lemma 9] O
Lemma 11. Suppose equation equation 34| and equation |35 hold at iteration v'. Then for all
k€ [K]andi € [N],

1. Forj # yua Fj (W), xp,0) < 0.5.

2. Forj =yes Fj(ifvfk), xpi) > L 3m B —0.25.

3y f (W x) = L yom B 075,
Proof of[l} First note that for j # yj, ; from Lemmawe have,
(W) < (Wi ). (39)

since G( . = 0 by the induction hypothesis. Also from Lemmafor J # Yr,; we have,

Wi v 10 677,2 6
(W) < (w6 + B, 4 /2O
(a) log(6n2/4
< JOT?’ £ ”L> MTLO{ (40)

d
where (a) follows from E;v;)k ; < 0 (induction hypothesis). Now using the definition of F; (W, x)
for j # yi,; we have,

m

1
F(W§k7xk1 —EZ{ ( ]rkaykzu>)+0'(< JTk76k1>)i|
r=1
@ log(6n2/8)
(0) g

S37¥I€1%nx]{‘< J’l"l’l'> < ]r’£71> ; T”OK

() 1 2

< 3max{6,4 (%(667/5)71@}

(e

< 0.5. (41)
Here (a) follows from equation[39)and equation 40} (b) follows from the definition of 3; (c) follows
from Lemma[9Q] O

Proof of 2} For j =y, ; we have,
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FWS) i) = S [o (68 mam)) + o (5 60))]

2 %Z {<V~VJ('?)7:,)k’yk,iN> + <V~"J('?)7~,7)k,£k,i>}

r=1
© 15 (0) (0) =(v') log(6n2/9)
> m Z:l [<W]—,T7yk,iu> + (wm,ﬁkﬂ-) + Pk —4 Tna
(C) 1 m (’U/) 10g(6n2/6)
= E — Pj,nk,i —-28-4 Tna
@ 1 S5
mZ;IPﬂm—o.za “2)

Here (a) follows from o(z) > z; (b) follows from Lemmaand that GEUT,,),C > 0; (c) follows from
the definition of /3; (d) follows from Lemma|9] O

Proof of 3] Combining the results in equation [#T]and equation #2] we have,
— /) — ’ )

i f(WE xp0) = Fyk,i(wézyi,kaxk,i) - F—yk,i(Wgkai,k,Xk,i)

(@) — (o

Z Fykz(wq(;,ij’kv Xk,q’,) —0.5

m
()
> =3 Py, i~ 0.75.
r=1

where (a) follows from equation 1} (b) follows from equation
This concludes the proof of Lemma[TT] O

Lemma 12. Suppose equation equation |34 and equation 35| . hold at iteration v'. Then for all
je{£l} ke [Klandie [N], || < exp ( Fyo (W) xi) + 0.5).

Proof. We have,
1
1 AFa (W %) — Foi (WD, x
+ exp | Yk,i +1( +17k-7xkr,l) 71( +17k7xk,z)
(a) o o
< exp (_yk,i [F+1(W(+1?k,xk7i) - F71(Wgrl)k,xk,i)D

= exp (= Fy (W) i) + Foy (W) i)

“Yk,i

E/(U )

) i

< exp (—Fy,m. (W;kik, Xk,i) + 0.5) ,
where (a) uses 1/(1 4 exp(z)) < exp(—z); (b) uses part 1 of Lemmal[l1} O
Lemma 13. Let g(z) = ¢/(z) = —1/(1 + exp(z)). Further suppose zo — z1 < ¢ where ¢ > 0. Then,

g9(21)
9(22)

< exp(c). (43)

Proof. We have,

g(z1)  1+exp(z) (@)
= < max{l,exp(z — 2 < expl(c),
g(z2) 1+exp(z1) ~ x{1,exp(z2 — 21)} < exp(c)

where (a) follows from ¢ > 0. O
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Lemma 14. Suppose equation equation 34| and equation |35 hold at iteration v'. Then for all
k€ [K]andi € [N],

<VTI(U &k,i) > —0.25, (44)

Yk,isTyk?
% (") < < (w!) 0.25. 45
<W 1rka€’£1> a < yklrkaékl> —< rkv£kz>+ (45)

Proof of equation From Lemma[I0] we have,

(o 0 () log(6n?/6)
<Wék,3mk’€k*i> > <W.7(Jk),7:mk’£k’i> + Pyk,i,hk,i —4 d no
(a) 1 2
N T
d
(b)
> —0.25

Here (a) follows from the definition of 8 and R(/Z 37“ ki > 0 forall v > 0; (b) follows from

Lemma B O

Proof of equation[d3] The first inequality of equation 45| follows naturally since o(z) > z for all
z € R. For the second inequality we have,

~ (v <€‘}1(/1;,rk7£k1>§<~l1(j;i,rk7£kl>+025 1f< yklrk:’ékl>—
O'(< yk“7k;a€kz>): (a) ~ (") ( A
0< <Wyk,i-,7"7k’£k’i> +0.25, 1f< rka&k z> 0,

where (a) follows from (w, ( ) k> §k,i) > —0.25. This completes the proof.
This concludes the proof of Lemma@ O

Lemma 15. Suppose equation equation 34| and equation |35 hold at iteration v'. Then for all
k, k' € [K]andi,i € [N],

1 =)
yklf(W( ) Xkl) Yk! z’f(wl(c/ )7Xk/ " %Z{ Yk,i > k0 _]P Yi! i r,k’,i’:|

r=1

< 1.75.

Proof. We can write,

ysz( ) Xhyi) — yk/,af(VNV,?),xz«,w)

Fykl(w(v)mxk z) nykl(w(,vy) ko Xk, z)

- F

yk’ il

(W(U ) Xk:/,’i’) + F*yk’, il (W(—in/ i k) Xk,’i/)

yk/,i/,k’/’

=Py, (W) i) = Foyy (WO i)

—Yr! il k' “Yk,i ko

y’c i (W(v ) ik’ Xk 74) Fyk,J, (W(U ) Xk:’,’i')

Yg! it N

= F_yk/ i’ (W(U ) Xk’,i/) - F—yk,i (W( N3 Xk 7.)

“Ykr ik —Yk,i
Iy
+ 77112:1 [0 <<V~V@(/k f,r ko Yk, m)) -0 (<v~vz(;;:?i/,r,k'vyk’,¢’#>)}
- g
+ nlzz_; [a <<‘A7\}1(/1,i/)rk7£kz>) —0 ((\7\};2/ e & ,,>)}
- g
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Next we bound I, I> and I3 as follows.

(a)

L <F.,, ,(W") Xpr 1) +F,yk7i(W<}y;“k,xk,i) <1,

Yk’ i’ k"
where (a) follows from part 1 of Lemmal[T1] For |I5| we have the following bound,

1 «— _ 1 «— .
|I2| S maX{mZO’ << Z(!k 3,rk’yk zll'>) mZa‘ <<w1(;;/)/ ’ k”yk/ Z//,1,>)}

r= r=

(a)
< 2 max {| oWl o)
rem "

0 (") (")
’ )<W1(/k)/ 13T l'l’>‘ ’ Gykmr,k’ Gyka,i/,r,k’}
(®) ,
< 2 max {8, C"3a}
re\m

(e)
< 0.25.

Here (a) follows Lemma(I0] (b) follows from the definition of 3 and the induction hypothesis, (c)
follows from Lemma 9] and Assumption[I} Next we derive an upper bound on I3 as follows.

I; = %i [U <<~1(/k3,rk7€k z>) -0 <<~1(;;/ . rk;’aEk/ ’>>}

@ 1 [~ ) o)

§ EZ < ;11177 k’Ek 7'> < !j)i/’ i T,k?”Ek,ai/>:| +025
r=1

®) 1 < (=) —(v") log(6n2/6)

= m Z _Pyk ikt Pyk’, ’ﬂ"vk'vi'} +26+8 g T« +0.25
r=1

(C) 1 m -7(1)/) 7(’0,)

< E Z ]P)yk,m’r‘,k,i - Pyklyi,,nk/ﬂ;/} +0.5.

r=1

Here (a) follows from Lemma (b) follows from Lemma. follows from Lemma@ Similarly,
we can get a lower bound for I3 as follows,

= 5 [ (94, 00800) — 0 (9, 0]

r=1

—~
s)
N

(V4
3=
NE

|:<VFVZ(UZ,Z,T,IC’ 5k,z> - <W;Z/?i/,r,k’ ) 5k’,i’>i| —0.25

r=1
1 =[50 S0) log(6n2/5)
z m Zl [Pyk NN K Pykr /,r,k’,i’} —26-38 TTLO& —0.25
© 1 3~ [50) S
2 D B B aee] 05

I
-

r

Here (a) follows from Lemma|[T4} (b) follows from Lemmal[I0} (c) follows from Lemma[9] Combin-
ing the above results, we have

Yk, (W )  Xkyi) — yk',i'f(Wz(gf ),Xk',i') < ||+ o] + 13

1 = (=) (")
~> [P i = P ]| + 175,

<
r=1
and,
yk’if(w’(“v )’X’”) - yk/’i’f(wl(; )»Xk/,i') > —|11| — I + 13
(v )
e Z [ Yk,i:Ts k1 yk, /,r,k’,i’:| — 1.75.
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This implies,

(' (0 1 Q- [50) W)
?Jk,7:f(VV§c ),Xk,i) - yk’,i/f(wl(gf )7Xk',i/) “m Z |:]P)y1; 7k i ]P)yz,i@ v r,k/,i’} < L.75.
r=1

We will now state and prove a version of Lemma C.7 that appears in|Cao et al.| (2022)). Note that|Cao
et al.| (2022) only considers the heterogeneity arising due to different datapoints for the same model.
Interestingly, we show that the lemma can be extended to the case with different local models and
different datapoints as long as the local models start from the same initialization.

Lemma 16. Suppose equation equationand equationhold forall 0 < v < v'. Then the
Sollowing holds for all 0 < v < v’

Liym B B k} < Kk forall k, k' € [K],i,i’ € [N].

m

2. yg, Zf( k ,X;“) yk/,i/f(wli/) Xgr i) < Cy forallk, k' € [K|and i,i € [N].

f/(v)

3. él’“(' >/ < Cy =exp(Cy) forall k, k' € [K] and i,i" € [N].

4. S(O) - S Where S(v = {7‘ € [m]: (Vvl(lz)i,r,kafk,ﬁ > 0}, and hence ’S,(CUZ)‘ > 0.4m for all
ke [K],i e [N].

5. 5502 C S'J(”T) where ~§?T = {k € [K],i € [N]:yr:i =], <€V§?27k,$k,i> > 0}, and hence
g(v) n
‘Sj,r 2 EN

Here we take k = 5 and C7; = 6.75.

Proof of[I] We will use a proof by induction. For v = 0, it is simple to verify that holds since

ﬁf&k,i =0forall j € {£1},7 € [m], k € [K],i € [N] by definition. Now supposeholds for all

0 < v <9 <. Then we will show thatalso holds at v = ¥ + 1. We have the following cases.
Case1: (0 +1) (mod 7) #0

In this case, from equation [30]

(0+1) (0 D) (D 2
Pyk ik Pyk,i,r,k i Nm El ) (< ?(“ ik Zaék ’L>) ||£k7z||2 .

Thus,

m m
1 —(5+1) (1)+1) 1 — (%) —(%)
% Pyk ismikyi T yk/ ok | T Z Y Pyk/,xuhk’,i’

(7)
‘s,;f ;

—C0) N&wall3)
(46)

where S ,(f)z), S ,(f), are defined inEl We bound equation @ in two cases, depending on the value of
1 —(?) —(?)
m Zr 1 ]P)yk i,k ]P)yk( /,r,k/,i’] .
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I [Pyk ki~ IP’;Z? ,’T’k,’i,} < 0.9%. From equation@we have,
m
1 —(5+1) FHD
E Z Pyk isTyk,i 'Uk/ gkl =

(@) n 2
< 0. ;

(b)
< K.

0D I€x 1

(a) follows from ‘S’ ,(fl)

(1) < 1;(b) follows from Lemma and Assumption

i) If -5 [P;’c)“nk ; Pz(/? ,mk,’i,} > 0.9%. From Lemmawe know that,

Ms

@
[Pyk 057k yk/ /7,«,k/7i/} —1.75

s __ 1
lec,z'f(VV;(C )7Xk,i) - yk’,i’f(wl(g/ Xpt i) E

r=1
(a)
> 0.9x — 0.35k
= 0.55kK. 47

where (a) follows from x = 5. Also note that since L 3™ B

Ly ]P’(lg e +0.95 > 0.95 = 4.5, we have from Lemmathat

r=1"yk,qi,mk,i =

i f (W k ,X;“) > 3.75. (48)

Now from the definition of ¢(-) we have,

(_K/l(jg) _ 1+ exp(yr, ,/f(W,(C,) Xp i)
(—07) 1+ explynif (W, xx.4))
@ 1+ exp(yp.if (W, ,x;“) 0.55k)
a 1+ exp(ye,i f (WY, x1.4))

(b)
< 1/7.5. (49)
Here (a) follows from equation 47} (b) follows from equation 48] Thus,

(5) v v
|52 | New.al? (— ) @, Naly-efh o (o) 9
S el (—62%) —  lewwlly (<600 T (=6)

Here (a) follows from ‘S ,(f?

> 0.4m using our induction hypothesis; (b) fol-
2 @
2 (_gll(m? ) <

K/ if
lows from Lemma ( ) follows from equation ﬁ This implies ’S ,(fl.)
‘ Sk/ Z,

€k i || (—£,, ) Now from equation 46| we have,

15 [pe P+ o LN [pe 50 -
m Z RN Y R WAV N U A m Z yk 05Tk, yk/ sk = K,
r=1 r=1

where the last inequality follows from our induction hypothesis.

Case2: (0+1) (mod 7) =0

30



Under review as a conference paper at ICLR 2025

In this case, using equation [30] we can write our update equation as follows:

Yk, i 7k, 0 IP Yt il k!

1 & [7(174-1) o41) ]

I A [ (t1-7)  —(541-7)
= E Z |:]P)yk,ur,k' ) Pyk/ k! "j|

T—1
1 n D+1—7+s) o+1—7+s5) 2 D4+1—7+s v4+1—7+s 2
o 2 (’S'iz (=% ) lgwills = ST (<05 ) w3
s=0
=1
I N [ (41-7)  —(541-7) I
m;{ﬁbykurkl Pyk/ k! l/:| +E (50)

From our induction hypothesis we know that
(v)
" Z [ Yke,isTyk,0 yk’ ’7T,k"i':| < K. (1)

Now unrolling the LHS expression in equation [51] using equation [30] we see that this implies

1 (04+1—71) (v+1 T)

m I
EZ{Pymnkn* Yps it TR ’} +N§“ (52)

Case 2a): I; > 0.
In this case it directly follows equation [50] and equation [52] that
Ly, {Féifl,fk i — ]P’(tjl/)r k/ﬂ-,] < i since N < n.
Case 2b): If I; < 0.
In this case from equation |3_U| we have,
1 = [—(i41) (5+1) 1 N [—(541—7)  —(41—7)
o > {Pykmr,k i~ Pyk/)i/,nk’,i’] <=3 {Pyk,i7r,k,i - Pyk/‘i/,r,k’,i’} < K.

m
r=1 r=1

where the last inequality follows from our induction hypothesis. O

Proof of 2} For any 0 < v < v’ we have,

< 1 Q= [0 5(v)
yrif (W k ,Xm) yk/,i/f(Wlﬂ/) Xpr i) < %Z {]P’yk,i,r,k,i Py rprir | 7175

(b)
< k+ 175 =C4.
Here (a) follows from Lemmal[T5} (b) follows from I} O

Proof of 3] For any 0 < v < v’ we have,

0 @ . ®)
;(v) < maX{l exp (yk fWL xp) — yk',i'f(W;(c/)7Xk/,z"))} < exp(C1).
ki
Here (a) follows from Lemma|[13}(b) follows from 2} O

Proof of§} To provel we will use the result in [3| and show that ( (O) k> &ki) > 0 implies

~(v

(W, ks &kyi) > 0forall 1 < v < v'. We use a proof by induction. Assummg (w ;k ko Ski) >0

for all O < v <9 <, we will show that <~(U+1T)k, &) > 0. We have the following cases.
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Case1: (0+ 1) (mod 7) # 0.

Using the fact that (w ; 2) o &k,i) > 0 we have,

pam GO 81

N0 (T ko)) (6 i)

~ (041 (%
W ) = W6+

+NLZ(

m
i €[N],i' #i

NZQ

(@)

2
~ (v no d v
> (w ;k)lrkfk,ﬁ + n )

e (00D = 200 dlog(4n6) Y (<))
1,3 #i

Nm

i"e[N

(®) o2d 5
> (W) o €ii) + 5ol (—040) = 202 /dlog(An?8)Ca ()

@
Z <W;k?i,r7k7£k,i>
> 0.

Here (a) follows from Lemmad} (b) follows from[3} (¢) follows from Assumption [I]by choosing a
sufficiently large d.

Case2: (0+ 1) (mod 7) =0.

From our induction hypothesis we know that (w S;HT kfﬂ &) > 0forall 0 < s <7 — 1. Then,

T—1

~ (v ~ (04+1—71 n o+1—7+s
(Wt 1) = (W0 600+ 20 (=T

I;

n - i+1—7+s ~(04+1—7+s
nf Z (- 5/(1+ i ))U (<W;k+1rk " )a€k7i’>) (Ekis Ek,ir)
5=0i'€[N],i'#i

I3

n — v4+1—7+s ~ (0+1—T7+s
ey Z Z (~C e (<W;(/k,t,r,ch+ %éw) (&kis &)
=0 k' Kk’

#ki'€[N]

I3
(53)

Using Lemmafd] we can lower bound I; as follows:

/(v+1 T+5) )

)
=0

where the inequality follows from Lemma 4]
For |I5| we have,

Lemmalfd]as follows:

7720 JWZ T ()

|I k i’

s=04/€[N] z’;ﬁz

(%) n(N -1 0220 \/dlog (4n?/9) | Z g’(”“ r+s)

)-
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Here (a) follows from Lemmafd} (b) follows from[3] Similarly we can bound || as follows,

Y Yy )

s=0 Kk’ k’;ﬁkzeN]

(%) nin—N 0220 \/dlog (4n?/0) < Z g’(”“ r+s)

dlog (4n2/6) |

(@) 20
1]

)-

Here (a) follows from Lemma [} (b) follows from[3] Substituting the bounds for Iy, |I5|, |I5] in
equation[53] we have,

~ (v ~ (v4+1—71
(W i) > (W ikfrk)7€k¢>+11*|fz\*|f3|

o \v T 1-7)+
> (W ) ¢ I S
5=0
- LC220 V/dlog(4n2/6) z_: (UH T+s))
m s=0
(@)
~ (0+1—7)
2 < yk“rk )E >
> 0.

Here (a) follows from Assumption I by choosing a sufficiently large d. Thus we have shown

that (w f/k) Tk,é;H) > 0forall 0 < v < v and r such that< © ) Tk,&,) > 0. This implies

S]iog C S,(:l) for all 0 < v < v’. Furthermore we know that ’S,ioz‘ Z 0.4m for all k € [K],i € [N]

from Lemma|§|and thus ‘S,(:Z) > 0.4mforall k € [K],i € [N],0 <v <. O

Proof of )] Note that as part of the proof of |4/ we have already shown that <v~v§”r) e €k,i) > 0 for all
0 < v < v and k,i such that yj; = j and (W) &.;) > 0. This implies S\°) C S for all

0 < v < v'. Furthermore we know that |S i , 7 € [m] from Lemmaand

thus ’SJ(U,)

>n/8forall j € {£1},7 € [m)].

This concludes the proof of Lemma|[I6] O
We are now ready to prove Theorem 3]
C.2.4 PROOF OF THEOREM[3]

We will again use a proof by induction to prove this theorem.

Proof of equation For j = y,, we know from equation [31that E;U;J,glz) = 0 and hence we look
at the case where j # yy, ;.

Case 1: (v/ + 1) (mod 7) # 0.

a)IfP, r)k <058 —4y/ Wna, then from equationin Lemma |10 we know that,

W v log(6m2/6

< §Tk7£k‘1>g< 5027£k’i>+E§T)kz+4 %TLOX
(a) ] 275
<055+P§”Tk1+4 %na

)
<0
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Here (a) follows from definition of S in Theoreml b) follows from P < —0.58 —

=7,k
4 /Wna Now using the fact that <~§U,qk,€k i) < 0 we have o (( ﬁk?gk 1)) =0,
which implies ]P’(Urzlz) E(UT —B — 8y/282/9) o, using the induction hypothesis.
b). If IP’7 ki > -0.56—-4 Wna, then from equationwe have,

B =B+ =t Do (W &) 1€al21( = —yrs)

) log( n?/6) 3nold

> —0.58 — 4y =L g —

2 —0.55 d " 3Nm

®) 1 2

D 5 gy lesl6n?/o) (54)

- d

2
Here (a) follows from |¢/(-)| < 1 and Lemmal4t (b) follows from Bnopd < 44/ 1080672/9) 1) o usin
INm d 8
Assumption 3]

Case2: (v +1) (mod 7) = 0.

In this case, from equation 31| we have,

'+1 "1 n +1=745) )~ (v +1— 2 .
Bkl =B Z T (W T 6) 6316 = k)

=15

—pWti-n 1 (55)
nm

AL

Now suppose instead of doing the update in equation 53} we performed the following hypothetical
update:

- (v'41) v v '~ (v 2 .

i =B R 7”( o (WS &) 1€ ll3 1 (G = —yn)
(a) v’ +1—7 v'+1—7+s8) '~ (v +1—T+s 2 .
SR+ Zé’( o (T ) N€al3 10 = )
_ p@41-7)
=Pjrks Tt 7Nm12-

Here (a) uses equation [31|for v = [v/ + 1 — 7 : v]. From the argument in Case 1 we know that
]I'D(P H.) > -0 — 84/ Mna Observe that ]P’(U +1) > ]P’( ) ) since Is < 0and NV < n and

=jrki = =7,r,k,i =j,r,k,i

thus ngrzll > —0— 84/ Wna. O

’

Proof of equation[33] We know from equation (30| that for j # vy ;, 5 T)k 4 =0forall 0 < v <

T*7 — 1 and hence we focus on the case where j = yy ;.
Case 1: (v' 4+ 1) (mod 7) # 0.

)

(mod T) —OandIPj;,;’;‘ < 0.5« and let s be the
/)

PR < 0.5a.. Define vj ;. 1 s =

Let v}, . ; be the last iteration such that v} ., ;

maximum value in {0, 1,...,7 — 1} such that P, + 5. We

]Tkz

34



Under review as a conference paper at ICLR 2025

see that for all v > v, ;. 1. ; we have IP’; T) ki > 0.5a. Furthermore,

D) @D 5@k N k) (o (Wgries) 2000
P]rkz = ]Pj ;,k; _me/l(c,i' ’k g (< j?"kk aék ’L>) ||€k’b||2]l(] :yk,i)

Ly

= e (1 8) kil 31 = ) 56)

Vo ki <ULV’

Lo

Here (a) uses the fact that we are avoiding the scaling down by a factor of % which occurs at every v
(mod 7) = 0 (see equation[30) for v/ ., ; < v < v'.

We know IP)S YA ) < 0.5a. We can bound L; and Lo as follows:

@ >3na2d<> (d)
Ly < 7||€m||2_2N <1 < 0.25a.

Here (a) uses |¢/(:)] < 1,0”(-) < 1; (b) uses Lemmaf} (c) uses Assumption[5} (d) uses 77 > e.

Now note that for v, ., ; < v < v’ since IF’; T)k ; > 0.5 we have,

v (v) log(6n2/8
< ]gk’£k7‘>*< §07)k’£k1>+]P)jrkz_4 %na
® -
> —0.53+ 0.50 — 4 Mm
(o)
> 0.25q. 57)

Here (a) follows from Lemma , (b) follows from the definition of (3 (see Theorem b and ]P’; r) ki 2

0.5a, (c) follows from 3 < 75 < 0.1 and 44/ wna < 0.2¢ using Assumption

Substituting the bound above in Lo we have,

(a) (v s )
Lol < Y exp (< &) +05) o (W) 600) 1€Rall3 LG = w)

Vi ek, <OV

(b) 2 ~ (v
Y 2 (@) el 9

Ve ki <ULV
(©) 2 302d
< Z N—Zn exp(—0.250) —2

Vi ek, <OV

2 r— ir i—l 30’2d
= n(v ;\ijmk )exp(—logT*T) “
2n(T* 302d
S%exp(—logT*T) L
Snaid
Nm

(d)
< 0.25a.

For (a) we use Lemma for (b) we use exp(0.5) < 2 and <~§vr o &k,i) > 0 from equation L (¢)
follows from Lemma [ and equation[57} () follows from Assumption|[3]

35



Under review as a conference paper at ICLR 2025

Thus substituting the bounds for L; and L, we have,

@(U,‘H)

ki < 0

which completes our proof.
Case2: (v +1) (mod 7) = 0.
Suppose instead of doing the update in equation 30| we performed the following hypothetical update

(1) () N @) e 2.
et = Pk — r,mf/k,i)a (<W;,r,)k>§k7i>) [€k.ill5 1(J = Yr.i)- (59)
~ (v '+ +1) —(v +1) v’+1)
From the argument in Case 1 we know that P; , , ;» < «. Observe that IP’] ki S IP’J r.k.i and thus
B < =

Proof of equation[33] This part bounds G(“ +1) To do so we show that the growth of GW D 4

7,k
P

upper bounded by the growth of k1 for any r* € S ,i i that is,

(v'+1)

7,k I~
oy SO
Pyk 1,7%,k,1

We will again use a proof by induction. We first argue the base case of our induction. Since
r* e S,(C(_)i C S,(Cvl), 50,

(1) (0) UG 0 2
Pyk71,’l‘*,k 1 — Pyk 1,7%,k,1 _Nmé/i:,i JI (<W'!(Jk),177‘*7k’£k’1>) H€k,1||2
—_——

=0
=1(r*€S)

2 2
— 1112 (_él(o)) T}U
Nm k1) = oNm’

where (a) follows from Lemmaf4} On the other hand,

2
1 (0 n 2 ||H|| n
Gl =G~ D e (Wi yeam) alls < HE72.
-0 ZE[N]

Therefore,

(1) 2
Gy _ 2N |
P(l) = g2d = ’

Yk,1,7%,k,1

if ' > 2. Now assuming equation [60]holds at v" we have the following cases for (v + 1).

B

Yk, 1,7k, 1
Case 1: (v' 4+ 1) (mod 7) # 0. From equation [29| we have,

v +1 n ! W 2
Gﬁrk) Hﬁi S (- Jrk,yz“m) el
1€[N

2
¢ G+ 2 (- —0) w2

(60)
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where (a) follows from part (3) in Lemma At the same time since (W;Z)M*’ k1) > 0 for any
T e Sliof and for all 0 < v < T*7 — 1, we have from equation

(v +1) S(") v
]P)yk,hr*vkvl = Pyk 1,7*,k,1 + Nm( gl( ) H&k 1||2
(@) —(v") n /(v ) 02d
2Py ikt Nm( ty, )7,

where (a) follows from Lemmald}

Thus,
(v'+1) c) 2
Gk sk 20N ||pll; | @ i oo D
o Smaxq —n ; 2 < max{C"7,2C>7} < C'7.
P o2d
Yk,1,7*,k,1 Yk,1,7%,k,1 P

Here (a) follows from the definition of 7; (b) follows from setting C’ = 2C5.
Case 2: (v' 4+ 1) (mod 7) =0.

We have from equation [29]
T—1
v +1 v 41—-7 n 1) +1 T+s ~ (v—T+s 2
Gy k) =Gy T+ ST (T ) sl

nm
s=0 Kk’ {€[N]

(@ (g1t 7702 V' +1l—7+s
<Gl S0 e,
s=0

where (a) follows from part (3) in Lemma At the same time since <W§f;)1 v+ 1 &k,1) > 0 for any
r* e S,(ﬂ and for all 0 < v < T*7 — 1, we have from equation

BOH) g (v/ 41— +5)
Pyt =Py e T —= D (=34 ) 1€k15
s=0
@ (@' +1-7) RS +1 rs) T
Z yk,l,’l‘*,k?,l +% ( El ! ) 2 )
s=0
where (a) follows from Lemmad] Thus,
(/1) Gl 1) 2
rk ik 202’!1 ||'u,|| (a) - - () .
(UJT < max 7(2,“77) Y 25 < max{C'7,2C.7} < C'A.
Pyk 1,7%,k,1 Yk, 1,7k, 1 p

Here (a) follows from the definition of 7; (b) follows from setting C’ = 2C5. Thus we have shown
G;”Tf) < C’AIP’SZ ji) k1 < C'Ja where the last inequality follows from Pék ji) o <o O

Now that we have proved Theorem [3] that is, equation [33] equation [34] and equation [35] hold for
all 0 < v < T*7r — 1, we state a simple proposition that extends the result in Lemma [16] for all
0<v<T*r—1.

Proposition 2. Under assumptions, for all 0 < v < T*1 — 1 we have

TR Sl | S S } <k forall k, k' € [K],i,i’ € [N].

2. yeif W x00) = g i fOWS  xp030) < Cy forall k, k' € [K] and i, i’ € [N).

V4 (v)

3. o < Ca = exp(C1) forall k. k' € [K] and i, € [N].
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4. S;(:,)i) - S,(:}L) where S,E”L) = {r eml: (W' ) > 0}’ and hence

(v)
Yk, i,T, K Sﬁ;
k € [K],i € [N].

> 0.4m for all

5. S‘(-O) C 5“(-”) where s’](vr) = {k: € [K],i € [N]:yri =17, <%§?2,k7£k,i> 2 0}’ and hence

‘S'U) >n

Here we take k = 5 and C7; = 6.75.

C.3 FIRST STAGE OF TRAINING.

Define,
Csnm
= & (61)
nopdr
where C'3 = ©(1) is some large constant. In this stage, our goal is to show that P( I)T ki =2
for all »* such that r* € Sl(;’)i = {r € [m]: (wyk R ) O} To do so, we first introduce the

following lemmas.

Lemma 17. Forall0 <t <T) —1and0 < s <7 — 1 we have,

Csn ||l
() (.t’s)}< P _ o).
ma {T0 ) < S0 =00

Proof. We have,

t—1 T—1
t,s n tﬂs v, 2
P+l = =L ST ST S S o (v el
t'=0 k i€[N]s=0
n 5 t,s') t,s’ 2
- N 5/,(6&- o (<Wj(-,r7k)7yk,ill'>) ([l
s'=04€[N]
(@ g 2 = 0 S )2
EE e 2 - ZZé sl
t'=0 k i€[N]s=0 =0ie[N
© ot 1)7 sl
- m
2
i el
m
2
_ Conllul?
o2d
Y o).

Here (a) follows from o’(-) € {0, 1}, (b) follows from |¢'(-)| < 1, (c) follows from Assumption 1}
O

Lemma 18. Forall0 <t <T) —1and0 < s <7 — 1 we have,

max {F5f27k7i +pibs) } =0(1).

goresi Jrkt

38



Under review as a conference paper at ICLR 2025

Proof. We have from equation [T9)and equation 23]
t—1 7—1

P Pk = = 30 3 70 (55 600) Wl 10 = 1)

=0 s=0
S

—Nim 0 (Wi €6ad) el 1 (us = 5)
=0

t—1 7—1

- ZZK’ ) Nl - Zwmusklnz

=0 s5=0
2

e el
- Nm
(<b) 37]T17'Uzd
- 2Nm

30371
<
- 2N
—0(1).

Here (a) follows from ¢”(-) < 1, (b) follows from ¢ < T; — 1 and Lemma[d] O

a

Lemma 19. For any k € [K| and i € [N], we have Fj(W;tkS),xkz) =0O)forall j € {£1},
0<t<T1—1and0 <s<7—1.

Proof. We have,
Fy (Wi %)

*Z[ o (i) o (13.600)]

r=1
(t,9)

(Wi, )| + T 4+ 5] + | w0 +

3

< §i,i,ymu>\ (Wit )

I/\g
3|~
NE

ﬂ
I
-

—
o
~

IA
3=
NE

Y5 4,/ log(6n2/6) 6n2/5 ]
]T‘k’t _]Tkz
7(“,) log( n2/5
jr,k,z ]Tkz’

r=1

(t) )+ 7(16}27

W' el

re[m]

|
<5max{ (w ](OT),;Q

t t,s (t) —(t,s log(6n2/5)
2 {0 L P 47t
Doq).
Here (a) follows from o (z) < |z|, (b) follows from Lemmal[I0] (c) follows from the definition of 3,
(d) follows from Lemma[9} Lemma[17]and LemmalI8] O
Lemma 20. Forallt > T, and 0 < s < 7 — 1 we have,
P e i 4 P e s 2 Pt i 2 2 (62

Yk,iTsk?

where r* € S(O) = {T € [m]: <W(O)_ Eki) > O}.

Proof. First note that from Lemma we have for any £ € [K|, i € |[N],
F (WS xi,0), Foy (W xi0) = O (1) forall t € {0,1,..., Ty — 1}, s € {0,1,...,7 — 1},
Thus there exists a positive constant C' such that forall 0 < ¢ <77 —1land 0 < s < 7 — 1 we have,

z’“ el (63)
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Next we know from Proposition 2] part[d] that,

(w (t,) &) >0 foral0<¢t<T)—1,0<s<7-1,

Yk,i T+, k)
where 7* € S,(”) : {7" € [m] : <W§2) rir &) > 0} . This implies that for ¢ > T7,
—(t) _(t,s) —(T1)

Pyklr*kl+pykl,7 kL—Pyk'uT*k'L
(a) t ,8) 2
= Z Z O el
(b) OTlTO'
> - F
- 2nm
(®)
> 2. (64)

Here (a) follows from equation 25} (b) follows from equation [63]and Lemmafd} (b) follows from the
definition of 77 in equatlonand setting C5 = 4/C.

O

C.4 SECOND STAGE OF TRAINING

In the first stage we have shown that for any & € [K] and i € [N], ?Li)i,r*,kyi + ﬁ;s)r* ki = 2
forall¢ > T} and s € [0 : 7 — 1]. Our goal in the second stage is to show that for every round
inTy <t <T* — 1, the loss of the global model is decreasing. To do so, we will show that our
objective satisfies the following property
s ,S * ) €
(VLW Wi = W) = Lu(Wi) = o

where W is defined as follows.

(O)+510g27/6 ZZ (j = yni) Ek’-2

- (65)
k i€[N] H&k,in

Using this we can easily show that the loss of the global model is decreasing in every round leading
to convergence. We now state and prove some intermediate lemmas.

=0 (@bg(r/e)) .

< [ - o)
2 2 2

@ o <m1/2 eelly maxl"(T1 ) +0 (m1/2n1/2 ~1q=1/2 max {P( ) plm) })

ki U Gk Sgir ki

Lemma 21. Under Condition[I} we have

e

Proof.
wT) —wr

1O (m1/2n0p—1d—3/4) I HW* _ W(O)H

2
® 5 ( /2, e, Up—2d—1) L0 (ml/in/Qap_ld_l/z) 1O (m1/2n1/2 10g(7’/€)0;1d_1/2)
© O (m1/2n1/20;1d71/2> + 0 (m1/2n1/2 log(T/e)cf;ld*l/Q)

=0 <m1/2n1/2 10g(7’/e)a;1d71/2> .
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Here (a) follows from the following argument:

e wo
2

2

= 3| el NH > Z Z P ey ? - En
7,7

Jjr ||k=1i€[N 9

t)
+2m<F( eelly MZZ ) i N€mill ém>
k=14€[N]

=0

© < m2 max(I‘;fZﬁ) +0 <mn2 maX_(Pj(?k_i)2> + O (mn2 max W)
lpelly 57 ([€xill5 Gmkis 27 SR PN s

2
m (t)y2 mn ) 2 mn
=0 x(T5))? | + O —— max (P, ) | + O | —p
<Ilu||§ o) ) (nsmn; i) ) <a,%d3/2>

where the last equality follows from Lemmal Getting back to our proof, we see that (b) follows from
Lemma(17] Lemma[18|and definition of W* in equation[65} (c) follows from Assumptlon i o

Lemma 22. For any k € [K], i € [N] we have for all t € {Tn,Th +1,...,T* — 1}, s €
{0,1,...,7 =1},

Uk (VFW D xp ), W*) > log(27 /).

Proof.
i (VWY x0), W)

fZ (e o gws )+ = 500" (w5600 ) i W5,

VELS

= EZZOJ( ]rkvsk z>>510g(2/€)n(j:yk’,i’)w

jr k! i ||€k/,i’H2

+— ZZ ( Jrk7ykzu>)5log(2/e)1(j:yk,}i,)w

2
proe 1€kl

1 t,s 0 1 t,s . (0
T2 o’ (<W](',7¥7]17yk,iu>) (1w, JW§ )+ — o ZU/ (<W§,r,;,€k,i>) <yk,i£k,iajwj(‘72>

2,7 7T

1S o)

I=Yk,isT
I
1 79 ’ gl
- Z Z o (( §t,s’1,5k Z>) 510g(27/6)|<£’“v7w
g (ki) #(kyi) Hgk’,i'HQ
Iz
/1’7€k",'/
_722 ( ]rk?yklu>)5log(27'/6)w
M [F3%%
I3
0 1 ts e
772 ( JTk’yklu>) <M7J ( )> EZO— (< j(lll’gkl>> ‘<yk,i£k,iajwj('77)»> .
7,r
Iy bt
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Now noting that o/(z) < 1 and (p, & ;) = 0 Vk € [K],i € [N] we have the following bounds for
I5, I5, I, I using Lemmafd] Lemma 5]and Lemma 9}

= log(27/¢)O ( V1og(n2/9) /\[) I3 =0,
1, = 0 (Viog(m/8) - ool ) . 15 = O (Viog(mn/6) - 000, V/d)
For I; we know that, (w, (t s) e gr ki) 2 0VEE0: T — 1], Vs €[0: 7 — 1] (Lemma) and r*
such that r* € Sk,i = {r € [ ]: (w( ) o ki) 2 O} Thus,
L g0
I > E|Sk7i|5log(27'/e) > 2log(27/€).
where the last inequality follows from Lemma[6] Applying triangle inequality we have,
b (VF W 3000), W) > I = [B] = 1] = L] = [I5] > log(2r/e),
where the last inequality follows from Assumption [T]and Assumption @} O

Lemma 23. (Lemma D.4 in|Kou et al.|(2023)) Under assumptions, for0 < t <T* and(0 < s < 17—1,
the following result holds,

ONE 2 9 (,5)
| VLW < 0 (max { Il o2d} ) LW,
Lemma24. Forallk € [K], T <t <T*—1,0<s<7—1we have,

(VLW ), W W) > L (W) — =

Proof.
(VL (W(t"“)) W) W

Z g/(t S) y lvf( t&) Xk-7) W(t s) W*>

ZE[N

DS [ POV ) — i VAW i), W)

ZG [N]

30 Y [ W) ) — og(2r/ )]

ZE[N]

—
I\/s;

A
Vo
| —

(i W 1)) — /27

Here (a) follows from the property that (V f(W,x), W) = f(W,x) for our two-layer CNN model;
(b) follows from equation(note that K’,(:”f) < 0), (¢) follows from ¢'(2)(z — 2') > €(z) — £(2')
since £(-) is convex and log(1 + z) < z. O

Lemma 25. (Local Model Convergence) Under assumptions, for all t > T we have,

—nZLk ) + me.

Hw(t ,T) W*

o
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Proof.

2
t,s+1 *
wiess? = we]

2
= Wi W} - o acw 5>>,W§f’s> W [T,
DY (h3) (t,9)
wi) _w —2nLk(Wk )+ =4 | VEk(W 1l i
Hw(t DW= W)+ 76

where (a) follows from Lemma.; ) follows from Lemma[23|and Assumption[5} Now starting
from s = 7 — 1 and unrolling the recursion we have,

9 T—1
T ,0 * ,S
[Wie == Wi we | = 30 W)+ e
s=0
O
C.5 PROOF OF THEOREM[I]
For any ¢t > T} we have,
2 K q 2
(t+1) * S wtT) *
e w5 i w
k=1 2
< Z Hw(t 7') W*
(b) 1 K -1 ®, S)
< ‘W(t)—W*‘ “ 13 2D I(W) e
k=1 s=0
(© 1 &
®) _w*|| —
g‘“f “TL ”KEZM? )+ ne
:‘W(t) W 2—77L(W(t))+ne, (66)

where (a) follows from Jensen’s inequality, (b) follows from Lemma (¢) follows from
ST Ly (W,(:’S)) < Lk(W,(f’O)) = Li(W®). From equationwe get,

nL(W®) < Hw(t> _

2
L

Summing over t = 71,77 + 1,...,T and dividing by n(T — 71 + 1) we have,

T 2
‘ﬁ7(T1) — W*
T—T1+1tZ:T1 i 2T —Ti + 1)

+ €, (67)

forall 7y < T < T* — 1. Now equation [67]implies that we can find an iterate with training error less
than 2¢ within,

W W, mn mnlog(r/e)
—==0(—F5- | +tO0|(——
ne no,dr no,de

rounds where the last equality follows from the definition of 77 in equation[61)and Lemma 21| This
completes our proof of Theorem|[T]

T=T +

O
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D PROOF OF THEOREM [2

We first state some intermediate lemmas that will be used in the proof.

("

7T

Lemma 26. Suppose (w

we have (W;trsll, ju) > 0.

,j) > 0 for somet' > 0. Thenforallt >t ,s€[0:7—1], k € [K],

Proof. We will use a proof by induction. We will show that our claim holds fort = ¢/, s € [0 : 7 — 1]
and also ¢t = (¢’ + 1), s = 0. Using this fact we can argue that the claim holds for all ¢ > ¢’ and

sef0:7—1].

Case 1: First let us look at the local iterations s € [0 : 7 — 1] for ¢ = . From Lemma 3| we have,

('7')

t',s) )
(wit ) gy = (Wi gy +

" (')

> (wit), jp)

where (a) uses 7; 3 > 0 by definition; (b) uses (w ¢ T)7j/,l,> > 0.

Case 2: Now let us look at the round update t = ' + 1, s = 0. We have,

(w

(t'+1,0)
Jrk

5D )

(" (t',7)
< JT"ju Zﬁy]rk

@
> (wil) )

where (a) uses 7( ) > 0 by definition; (b) uses (w gr)du) 0.

7,7

Lemma 27. Under Conditionfor any 0 <t <T* — 1 we have,

(t) (t
Fw = FJ r
and,
0 < p-n el
FJ}TEFJ}T + 4m
Proof.

From equation 23| we have the following update equation for I'; °,

n s) ! ,8
anZW o (Wi )

]_'\(f) I\(t 1)
7,7

7,7

77HN||2 Z

min |¢
ki

(t{—l,s) t

él(t 1 S

t 10 ’—Fthln

) o

(®

s=0 k,i

Proof of equation[68] 1In this case we know from Lemma that if (w ]( 3, Jp

(w

t,s
ok im

y>0forallk € [K],se€[0:7—1].
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) gmy <

2
el -

) > 0, then

0.

(68)

(69)

(70)
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Using this observation we have from equation [70}

(@)

W @ U\D |||u|| — (=1
P-t S F-t 1 /t ,5

®

(t-1) nHqu /(e 1s>
> L5+ Z

(72)

where (a) follows from the definition of D; := {k € [K],i € [N] : yr; = j}; (b) follows from

Lemmaand min ;e p, E’,(;i’s)‘ > miny ; é’,(:’i’s) . O
Proof of equation[69) First let us look at the iteration s = 0. In this case we know that
<Wg(',tr_’,i’0),jlt> = <W§tr ),][l,> < 0 and thus (wﬁffl),yk,iu> > 0 for yy; = —j. Using this

observation we have,

2
n (t—1,0) ’ t—1,0 2 _ Dl |pll .
22 (ol ) Ll 2 TR i

/(t—1,0)
19|

nm (k,i)eD_;
2
Wanlels n|e710) ‘
- 4dm k,
where (a) follows from Lemmaand min ;)ep, E’,(i;’s)’ > miny ; K’,(f’;’s) )
Now let us look at the case 1 < s < 7 — 1. In this case if (w ]( ok ),ju> < 0 then,
_n Z ,(t Ls) W(tfl,s) ] >) ) H H2 > n |D i, 5 min g/(t 1,s) (73)
Iy, ke Yk Hliz = nm (ki)ED_jk ’
and if <w](.tr_;’s),ju> > 0 then,
o Zf/ 1) (w0 ) g2 2 T2 el p19)
nm Wik o Yk 2= nm (k,i)ED; 2
Thus,
. 2
n J(t=1,8) 0, (t—1,8) 2 _ nmin{|Dy x|, |D_ k[} | pl5 /(t—1,5)
1 VA y i . > iy .
nm - ki "o (<WJ,7‘,k )y Yk, N>) ||l"’||2 - nm (k,i)€ Dy k,i
(74)
Using the results in equation [73]and equation [74] we have,
t) < plt-1) 1 ||u||2 /(110 7 ||HH2 (t=1.5)
Fj,r 2 Fj,r + é ‘ + Z (k z) f kst
(a) ,8)
ZI“g‘frl)JrnHNllz (m t 10’+h2mln K'(t ! )7
where (a) follows from our definition of & in equation|l| l O

Lemma 28. Let A; := {r € [m] : 5027]u> > 0}. Forany 0 <t <T* — 1 we have,

1. Forany j € {£1},r € [m]: thl < "H“HQ Z Z o Maxy ; é’,(:;’s) .
2. Foranyr € A; F;TZ > UHV‘HQ Z : o Min g 4 f’g;’s) .

(t',s)
élk,i

2
3. Foranyr ¢ A, F(t) > n!ﬁllz S (mink,i

Z’(t 0)’+hzé 1 ming ;

)-
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O
Proof.
Unrolling the iterative update in equation 23] we have,
t—17-1
= (=) o (Wi i) - el (75)
/=0 5=0 k,i

(®)

Proof of equation Using equation , we can get an upper bound on I'; 7 as follows.

where the inequality follows from o/ (-) < 1.
Proof of equanonl From Lemmawe know that if (w (. )7 ju) > 0 then (wgt;) ,jp) > 0 for all
t' > 0. Thus using equation [68|repeatedly for all 0 < ¢’ < t — 1 we get,

t—1 7—1

thz > 77HN||2 Z Zm’

=0s=0

Proof of equation |3| Note that the bound in equation 69| holds even if (wﬁt_l), ju) > 0. Thus

applying equation [69|repeatedly for all 0 < ¢’ < ¢ — 1 we get, ’

) |

gl(t ‘3

nHqu 5 (mm

Lemma 29. Under assumptions, for any 0 <t < T* — 1 we have,

é’( 0)‘ +th1n

3n02d ~t—1 —7—1 /(t,8)
1. Zk i j r, k i < om t1=0 2us=0 MAXk i ¢ ki |
(t) nopd —~t—1 -1 )
2. Zkz ki 2 Tom 2at/=0 2us— omm(;C 1)6530;) 4y

where S(t =) {k € [K],i € [N]: <W](trz ki) > 0}.

Proof.

-

From equation |25|we have the following update equation for P, ., ;.

ZPYB‘ICZ Z‘Pifr;)z_n:{nz Z glt b : /(< ;tr;S)75k1>)||£k,z||g

$=0 k,i:y,i=J

—Z 5’222—*2 S oY gall? (76)

s=0 (k, 74)65(:f 1,s)

where the last equality follows from the definition of S (t S,

Proof of equation[I} Now using equation [76] we have,

3770 d <

Zi‘gtrkz = Z gtrli)z Z k

ki s=0

el(t 1,s)
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where (a) follows from Lemmalé-_tl Unrolling the recursion above we have the following upper bound,

th 17-1

() 3no (t %)
> P < S |
ki =0 s=0
Proof of equation 2] From equation [76] we have,
2 T—1
(t-1) »d pt=1)
ZPkaZ—ZPJTk’L 16m “(h, )ES’“IS) ki

where (a) follows from Lemmaand Propositionpartwhich implies ‘Sj(t; Ll > g /8. Unrolling
the recursion above we have,

2d t—1 7—1

f(t) 770;; . /(t',s)
P, > — min |0, 7.
O
Lemma 30. Forallt > T}, we have <W@(,t)r, yp) > 0.
Proof. We have,
(Wil yp) = (Wi, ym) + 1)
(a)
> —0 (Viog(m/) - oo lull,) + T
(b) !
Y o (viomima) - o laly) + 1L S i o)
(©) nllull
9 6 (\/log(m/0) - a0 lul,) + 9 ( S
<o (Viogm/i)- f“"2)+a<”JL‘;ﬂ2>
(e)
> 0. 17

Here (a) follows from Lemmal5} (b) follows from Lemma[28} (c) follows from the definition of 7} in
Equation (61); (d) follows from AssumptlonEL ) follows from Assumptlonland Assumption2} O

Lemma 31. Under Conditionmfor any Ty <t <T* — 1 we have,

21,
1. @( ~14-1/2 _1/2)2 Pgtikl :O(l)
n sl B
2. 0(op 'd-1/2n-1/2) %, PO O(1)

Proof of equation[I] Note from our proof of Lemma [20] we know that for all 77 < ¢ < T* — 1
we have P\) . . > 2 forall (k*,i*) € 5% = {k: € [Kli € [N]: ypi = 4, (W &) > 0}.
Thus,

ZPN,”22‘S§?Q W m), (78)

47



Under review as a conference paper at ICLR 2025

where (a) follows from Lemmal(7} This implies,

) @ 6 (00va)

© (0p 'd=1/?n~ Y2) 34 P ;tw)”kz O (op 'd=1/2n" 1/2)Zk Etv)ﬂki

et

Here (a) follows from Lemma 5} (b) follows from equation[78} (c) follows from Assumptiond} [

Proof of equation[2] From Lemma[27]and Lemma 29 we have,

¢ t—1 T—1 RG]
o tolpt  ZeaoZiimenh0] o w00, i
—(t) - 2 T— t’,s 2 ’
Z Pj'r‘kz Tp d Z s= 0 Il’lln( kyi)e g(t’,s) elge,i ) %P d
where (a) follows from Proposition I part I which implies max; ; [¢/}, (t el <
Comin, g0 ¢ forall0 < ¢ < T* — 1,0 < s < 7 — 1. Thus,
¢ —1
o sl 2l @
—1 1/2 ~1/2 o =9 opdi2 ) T o).
S ( d- ) Ek ) Pj r,k,i p
where (a) follows from Assumption|[1} O

Lemma 32. Forany Ty <t <T* — 1 we have,

oo (Wihum) ol 1
((t) ). I (1t -t (s 2o -m) )
Zr,k,i P—y,r,k’,i P

where Cy > 0 is some constant.

Proof.

‘We can write,

So(whoum) = > o(whm)+ Y o (W) 79

" ro{wi) yp) >0 r{wi) yp) <0

11 I2

First note that if (w‘flor),7 yp) > 0 then from Lemmawe know that ,
(W) yp) > 0forallk € [K],0<t<T*~1,0<s<7—1. (80)

We can bound I; as follows:

n= Y U(( él,ym)

r(wih yp) >0

(@
= > wiyw

r{wiyp) >0

=

(®)

v
M
P:

G

(Wi yp) >0

t—1 7—1
9o <|A I |2 Z > min |/ ) (81)

030’
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Here (a) follows from equation[80} (b) follows from Lemma|[3} (c) follows from Lemma 28| part[2}
For I, we have the following bound:

L= Y 0(< ét)r,ym)

ri(wi) yp) <0

> S Wy + 1

r{wihyp) <0

2_(m—|Ay\)@( 1og(m/5)-oo||u||2)+ >,

)

ri(wi) yp) <0

(@ 2 (=
> Q((m — Ay Il (Z min
t'=0

t',s
o

0 Ty —17-1
/(t',0 .
Y Sl
t’=0 s=1
t—1 7—1
+ (m = [Ay ) [|ll3 Z > min |0y ) (82)

=T, s=0

Here (a) follows from o(z) > z; (b) follows from Lemma [5|and Assumption[4} (c) follows from
Lemma

(d) follows from Lemma. 28| Substituting equatlonﬂ and equation 82fin equation 79| we
have,
t—1 7—1 ( )
t ,S
ZU (<W7(f,3~71/li>) > Q<|Ay|n ||H||2 Z Zmln E’
" =0 5=0
T —
+ (m — Ay [|ull3 ( min e’“ 0)‘ +h Z me g/u ) )
t'=0 t'=0 s=

t—1 7—1
+ (m — Ay ) [|pll3 Z > _min o ) (83)

=T, s=0 i
Now using equation [83]and Lemma [29] we have,

5o ((wiihym))

—-(t)
Zr,k,i Pfy,r,k,i

t—1 T—1_ . /(t,8)
@ el #1=0 2s=0 Wil |07 ;
> o B0z (14 ,
- o2md "V i1 -l ptss)
P t1=0 2us=0 MaXk,i |E ;

T—1(_ . 0
Vo (mmkﬂ E’( )‘ + hzs | miny ;

T1—1 T—1
t'=0 25:0 ma’kai

¢ Q(M (1401 + (m = 14, (h+i<1—h>)))

where (a) follows from Lemma[29} (b) follows from Proposition [2] part[3] and Equation (63).
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)—i—ztlzo s—o Ming ;

t—1 r—1 S (t,5)
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Lemma 33. Under assumptions, for all Ty <t < T* — 1 we have

o ((wi,
2o (< v ym)Z@<W<|Ay+(m—|Ay|)<h+i(1_h)>)>'

UPZT 1H 7yr

2

Proof. To prove this, we first show that Hw

= O(o,td M 2n712) . 3, PJ »xq for all
2

J € {£1}.
We first bound the norm of the noise components as follows.
2
> P lnally” - €
kit 5

t -2 t -2 -2
—Z( PO el 2 X PO P el el (€ o)

Kk >k, >i
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< [@ (J;Qd_l) +0 (U;2d_3/2>} Z ‘P;t,), ki
2

—0 (o2 ) [P0 (84)

ki
Pthkz‘ < B+ 8\/@7104 = O (1) from

— (Z ki P(t) ) Now from equation 22f we know that,

B0
ki

Here for (a) uses Lemma (b) uses max; . j;

P(t)

=—j,r.k,i 7,k

Theorem and s0 ), ;

t 0 -
wit) = will 0Tl u+ZZPji?m €ill,” - &
k=14ie[N
Using triangle inequality and equation [84] we have,
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where (a) follows from Lemma[31]
Thus,
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where (a) follows from Lemma [32] O

Lemma 34. (sub-result in Theorem E.I in|Cao et al.|(2022)).) Denote g(§) = o ((w(fz)%r, >)
Then for any x > 0 it holds that

Pr(g(§) —Eg(§) > z) <exp | —

(®)

where c is a constant and Eg (&) = m H woy .

Y
D.1 TEST ERROR UPPER BOUND

We now prove the upper bound on our test error in the benign overfitting regime as stated in Theorem 2]

First note that for some given (x, y) we have,
P(y # sign(f(W',x)) = P(yf (W', x) <0).
‘We can write,

yf(W® x) = F,(WH x) — F_,(W") x)

= L3 [ (i) o (662.8)] - 557 [o (w5 o0m) 0 (1w,.8))].

(85)

Now note that since ¢ > T we know that o (( (fz/’r, ym) = 0 for all » € [m] from Lemma
Thus,

B f(W,x) <0) <P (ia (,.6) = > o ((w ;tl,ym))
2p <g<s> Eg€) > Yo ((wlhoum) - =2 Z w0,

(®) (C(ZT1”(< Wik o)) = ST WY 2)2
7 (27 W)
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Here (a) follows from the definition of g(&) in Lemma b) follows from the result in Lemma 34}
(c) uses (a—b)? > a?/2—b?,Va,b > 0; (d) uses Lemma|33} () follows from the benign overfitting

condition n || qu = Q (opd) and choosing sufficiently large Cs. Now note that,

Ly ' W)= 3" By =j)B(y # sign(f(W",x))

je{£1}
2
Ly (_nuuné(mm(m—|Aj|>(h+i(l—h))) )
- 40n2 :
je{e1} 2C50'pm d

This completes our proof for the upper bound on the test error in the benign overfitting regime.

D.2 TEST ERROR LOWER BOUND

We first state some intermediate lemmas that we use in our proof.
Lemma 35. (Lemma 5.8 in |Kou et al.|(2023)) Let g(§) = >_,, jo (( Wi ,S)). Ifn ||u||421 =

O (opd) (harmful overfitting condition) then there exists a fixed vector v with ||VH2 < 0.060, such

that
Y. 9@ +v) —g(i'€)] = 4Cs o, {Z Fﬁ-’}

jle{£1}

forall ¢ € R4,

Lemma 36. (Proposition 2.1 in|Devroye et al.|(2018)) The TV distance between N (0, agId) and
N(v,021y) is less than ||V||§ /20,.

Proof.
‘We have,

Ly (W)

= P(x,y)~p (y # sign(f(W

= ]P)(x y)~D (yf(w X) < )

© Piyyon (;U(<W(Ty)m’£>)_z (( 7(47;)7£>) o << §T27yu>) ZU(( (?wyM))

X))

T (s

(b)
2 Pie o (ZJ (wT,.8) =S (twh).€) > Cymax {Zp@, Zp@m})

S (2.6) - S (1w5,.6)| = Comns {2 570, )

> 0.5P (3.4 (

2 0.5 <|g< )| > Comax {Z FST;’,ZF”B,T})

D 0.5p(0). (86)
Here (a) follows from equation Py # sign(f(W® x)) = P(yf(W®H, x) < 0); (b)
follows from o (( (fz”,yM) = 0 (Lemma and o ((Wy,,,ym (I‘ét)r), (c) fol-

lows from defining g(§) = >, o ((wg), )) >0 ((w(Tl)T, )), (d) follows from defining
Q= {€:19(8)] = Comax {, 1), 2, 1%, .

Now we know from Lemma Lemma 35} that }_ [(9(j€ + V) — g(j§)] > 4Csmax;{}_, I‘(T)}
This implies that one one of the &, & + v, —&, —€ + v must belong to ). Therefore,
min {P(Q),P(-Q),P(Q —v),P(—Q —v)} > 0.25 (87)
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Also note that by symmetry P(Q2) = P(—£2). Furthermore,
P(Q) = P2 = )| = [Peuno.021,)(€ € D)~ Peonwozn(€ € Q)

TV (W(0,0210) N (v, 021,)

ONF
- 20,
< 0.03. (88)

Here (a) follows from the definition of TV distance; (b) follows from Lemma Lemman 36l Thus we
see that equation[88|along with equation [87]implies that P(2) = 0.22. Substituting this in equation[86]
we get LY H(WT)) = 0.1 as claimed.

E PROOF OF LEMMA 2]

Using our result in Lemma with 7 = 1 and A = 0, we have after T} = O (7;}? d) iterations for all

je{xl}andr € [m],

2 2
pom) nl\u“’” n sl lelmm pomeo| @ 0l 0 (nHu“’“)Hg)

4m o2d
t=0 p

Here (a) follows from equation[63] Now for any ¢ > T} we have from Lemma 3]
(wiPret) ey = (w @0y ere)y 4 plored

7,7

—
Ve

0 jpur)) 4 T

-0 (\/W(O-pd)—l\/ﬁ HN(WC)
<)

= 0,

(w

_
V=

AEEICR O

)

where (a) follows from the fact that I‘( ) is non- -decreasing with respect to ¢, (b) follows from
Assumption[d]and Lemma 5} (c) follows From Assumption[3]

—~

O

F ADDITIONAL EXPERIMENTS AND DETAILS

F.1 DETAILS FOR FIGURES AND TABLES IN MAIN PAPER

Implementation. We use PyTorch|Paszke et al.|(2019)) to run all our algorithms and also simulate
our synthetic data setting. For experiments on neural network training we use one H100 GPU with
2 cores and 20GB memory. For synthetic data experiments we use one T4 GPU. The approximate
total run-time for all our experiments on neural networks is about 36 hours. The approximate total
run-time for all experiments on the synthetic data setting is about 1 hour.

Details for Figure[l, We simulate a FL setup with /X = 10 clients on the CIFAR10 data partitioned
using Dirichlet(a) with & = 0.1 for the non-IID setting and o = 10 for the IID setting. For pre-
training, we consider a Squeezenet model pre-trained on ImageNet Russakovsky et al.|(2015) which
is available in PyTorch. Following Nguyen et al.| (2022)) we replace the BatchNorm layers in the
model with GroupNorm|Wu & He|(2018). For FL optimization we use the vanilla FedAvg optimizer
with server step size 1, = 1 and train the model for 500 rounds and 1 local epoch at each client. For
centralized optimization we use SGD optimizer and run the optimization for 200 epochs. Learning
rates were tuned using grid search with the grid {0.1,0.01,0.001}. Final accuracies were reported
after averaging across 3 random seeds.
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Details for Figure 4 and Figure For these experiments we simulate a synthetic data setup
following our data model in Section We set the dimension d = 200, n = 20 datapoints (we
keep n small to ensure we are in the over-parameterized regime), m = 10 filters, i = 2 clients,
N = 10 local datapoints. The signal strength is ||u||§ = 3, noise variance is 02 = 0.1 and variance
of Gaussian initialization is oy = 0.01. The global dataset has 10 datapoints with positive labels and
10 datapoints with negative labels. We also create a test dataset of 1000 datapoints following the
same setup to evaluate our test error.

Details for Table[T|and Figure We simulate a FL setup with K = 20 clients on the CIFAR10
data partitioned using Dirichlet(a) with o = 0.1 for the non-1ID setting and o = 10 for the IID
setting. For pre-training, we consider a ResNet18 model pre-trained on ImageNet |Russakovsky et al.
(2015) which is available in PyTorch. Following |Nguyen et al.| (2022 we replace the BatchNorm
layers in the model with GroupNorm |Wu & He| (2018)). For FL optimization we use the FedAvg
optimizer with server step size 77, = 1 and 1 local epoch at each client. Local learning rates were
tuned using a grid search in the range {0.1,0.01,0.001}. For Table [I| we train the model till it
achieves 0.74¢ .05 train loss and measure the corresponding test accuracy. Final results were reported
after averaging across 3 random seeds.
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Figure 6: Percentage of misaligned filters (Figure@ and test accuracy (Figure for different initializations
when training a ResNet18 on TinyImageNet.
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Figure 7: Percentage of misaligned filters (Figure@) and test accuracy (Figure@) for different initializations
when training a ResNet18 on Google Landmarks v2 23k.

F.2 ADDITIONAL EXPERIMENTS

Details on Model and Algorithm. For all the following experiments, unless specified we use the
ResNet18 model and FedAvg algorithm with server step as 1. Following Nguyen et al.| (2022)) we
replace the BatchNorm layers in ResNet18 with GroupNorm |[Wu & He|(2018). For pre-training, we
consider a ResNet18 model pre-trained on ImageNet Russakovsky et al.| (2015)) which is available in
PyTorch. Additional details on each experiment can be found below.

F.2.1 MEASURING MISALIGNMENT ON TINYIMAGENET AND GOOGLE LANDMARKS V2 23K

We extend the experiment from Figure [5]of our paper, originally conducted on CIFAR-10, to evaluate
the number of misaligned filters at initialization, on more challenging datasets which include:

1. TinyImageNet (2015): 100k datapoints, 200 classes, data partitioned across 20
clients with o = 0.3 heterogeneity

2. Google Landmarks v2 23k Weyand et al.| (2020):23k datapoints, 203 classes, 233 clients,
data naturally grouped by photographer to achieve a federated partitioning

Additional Details. For local optimization we use the SGD optimizer with a learning rate of 0.01
and 0.9 momentum for both random and pre-trained initialization. The learning rate is decayed by a
factor of 0.998 in every round in the case of TinyImageNet. For TinyImageNet we sample all clients
for training in every round and perform 1 local epoch per clients. For Google Landmarks v2 23k, we
uniformly sample 20 clients without replacement from the 233 clients and perform 5 local epochs per
client. Each experiment is repeated with 3 different random seeds.

55



Under review as a conference paper at ICLR 2025

Discussion. Figure [6|shows the test accuracy and percentage of misaligned filter results on Tiny-
ImageNet while Figure [7a] shows the test accuracy and percentage of misaligned filters plots on
Google Landmarks v2. For random initialization we see a sharp increase in the percentage of mis-
aligned filters for these datasets compared to CIFAR-10 (25% to 40%). In contrast, with pre-trained
initialization, the percentage of misaligned filters remains less than 15% across datasets leading
to a larger improvement in test accuracy for harder datasets. These results align well with our
theoretical findings: as the ratio of misaligned filters increases, the benefits of pre-training become
more pronounced.

F.2.2 MEASURING MISALIGNMENT WITH VARYING HETEROGENEITY LEVELS ON CIFAR-10

We extend the experiment from Figure [5] of our paper, originally conducted on CIFAR-10 with
« = 0.1 Dirichlet heterogeneity to three other levels of heterogeneity:

1. a = 0.05 (high heterogenity)
2. a = 0.3 (medium heterogeneity)
3. a = 10 (low heterogeneity)

Additional Details. We use the SGD optimizer for local optimization. In the case of random
initialization we use a learning rate of 0.01 and 0.9 momentum. For pre-trained initialization we use
a learning rate of 0.001 and 0.9 momentum. The learning rate is decayed by a factor of 0.998 in
every round. We sample all clients for training in every round and perform 1 local epoch per clients.
Each experiment is repeated with 3 different random seeds.

Discussion. Figure[8] Figure[9]and Figure [I0]show the test accuracy and percentage of misaligned
filters plots for a = 0.05, @ = 0.3 and o = 10 respectively. We observe that the percentage of
misaligned filters remains approximately 25% with random initialization and 10% with pre-trained
initialization, regardless of the level of heterogeneity. However, as heterogeneity increases, the
improvement in test accuracy provided by pre-trained initialization becomes more pronounced. This
trend is consistent with our theoretical analysis in Theorem 2, which suggests that the percentage of
misaligned filters will have a greater impact on test performance as data heterogeneity increases.
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Figure 8: Percentage of misaligned filters (Figure and test accuracy (Figure for different initializations
when training a ResNet18 on CIFAR-10 with o = 0.05 heterogeneity.
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Figure 9: Percentage of misaligned filters (Figure@ and test accuracy (Figure@) for different initializations
when training a ResNet18 on CIFAR-10 with o = 0.3 heterogeneity.
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Figure 10: Percentage of misaligned filters (Figure and test accuracy (Figure|10b) for different initializations
when training a ResNet18 on CIFAR-10 with o« = 10 heterogeneity.

F.2.3 IMPACT OF DOMAIN HETEROGENEITY ON OFFICE-HOME DATASET

The goal of this experiment is to demonstrate that heterogeneity in the label space has a greater
impact on FedAvg convergence compared to heterogeneity in the domain space. To simulate domain

57



Under review as a conference paper at ICLR 2025

7
40

Z6 \j
Z30
A5 g
- 3]
g = 20
BN &
O —e— [ID 10 —e— [ID

3 ~—&— Domain Non-IID —&— Domain Non-1ID

—&— Label Non-1ID —&— Label Non-I1ID
2 0
0 100 200 300 0 100 200 300
Round No. Round No.
(@) (b)

Figure 11: Gradient diversity (Figure|l1a)) and test accuracy (Figure [l 1b) when training a ResNet18 on Office-
Home with different types of heterogeneity.

heterogeneity, we consider the Office-Home dataset [Venkateswara et al.| (2017)) which consists of
images of 65 objects in 4 different domains - Art, Clipart, Product and Real World. Each domain has
around 20 — 60 images of every object. We split the data across 4 clients in the following ways:

1. IID: Data across all domains is split IID across clients, i.e., each client will images corre-
sponding to every domain and every label

2. Domain Heterogeneity: Each client only has images corresponding to a single domain

3. Label Heterogeneity: Data is split with across clients with o = 0.1 Dirichlet label het-
erogeneity, i.e, each client will have images corresponding to all domains but only certain
labels.

Additional Details. For local optimization we use the SGD optimizer with a learning rate of 0.01
and 0 momentum for both random and pre-trained initialization. The learning rate is decayed by a
factor of 0.995 in every round. We sample all clients for training in every round and perform 1 local
epoch per clients. To measure gradient diversity we use the following expression, which is also used

in[Nguyen et al| (2022)

poriy VY (89)
=, o)

where Ay, is the update of client k, i.e., the difference between its local model and the global model
sent by the client. Each experiment is repeated with 3 different random seeds.

Discussion. Figure [TTa]shows the test accuracy and gradient diversity plots across the 3 different
types of heterogeneity. We see that while gradient diversity in the domain heterogeneity setting is
higher than in the IID case, it does not significantly affect test performance of FedAvg unlike the
label heterogeneity setting. We conjecture that the impact of domain heterogeneity is mitigated due to
standard pre-processing data augmentations such as rotation and cropping which have a regularizing
effect of enabling clients to learn similar features across domains. Thus, this experiment establishes
that label heterogeneity is the more challenging form of heterogeneity in FL systems.

Gradient Diversity =

F.2.4 MEASURING MISALIGNMENT ON MNIST wiTH VGG MODEL

We consider an experimental setup where the data is MNIST, the model is VGG11, and the task is to
classify digits odd and even number classification. For local optimization we use the SGD optimizer
with a learning rate of 0.0005 and 0.9 momentum for both random and pre-trained initialization. The
learning rate is decayed by a factor of 0.998 in every round. We sample all clients for training in
every round and perform 1 local epoch per clients. Each experiment is repeated with 3 different
random seeds.

Discussion. Figure[T2]shows the test accuracy and percentage of misaligned filters plots. We observe
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Figure 12: Percentage of misaligned filters (Figure and test accuracy (Figure|12b) for different initializations
when training a VGG11 on MNIST to classify even and odd digits.

that the percentage of misaligned filters for random initialization in this task is lower compared to
our experiment on CIFAR-10 where it was around 25%. Intuitively, this suggests that even random
features generated by deep CNNs are sufficient to achieve reasonably good test accuracy on MNIST.
Nonetheless, pre-trained initialization still achieves higher accuracy, as it results in a lower percentage
of misaligned filters.
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