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Abstract

Text-driven motion generation has achieved substantial progress with the emer-
gence of diffusion models. However, existing methods still struggle to generate
complex motion sequences that correspond to fine-grained descriptions, depicting
detailed and accurate spatio-temporal actions. This lack of fine controllability limits
the usage of motion generation to a larger audience. To tackle these challenges, we
present FineMoGen, a diffusion-based motion generation and editing framework
that can synthesize fine-grained motions, with spatial-temporal composition to the
user instructions. Specifically, FineMoGen builds upon diffusion model with a
novel transformer architecture dubbed Spatio-Temporal Mixture Attention (SAMI).
SAMI optimizes the generation of the global attention template from two perspec-
tives: 1) explicitly modeling the constraints of spatio-temporal composition; and 2)
utilizing sparsely-activated mixture-of-experts to adaptively extract fine-grained
features. To facilitate a large-scale study on this new fine-grained motion genera-
tion task, we contribute the HuMMan-MoGen dataset, which consists of 2,968
videos and 102,336 fine-grained spatio-temporal descriptions. Extensive experi-
ments validate that FineMoGen exhibits superior motion generation quality over
state-of-the-art methods. Notably, FineMoGen further enables zero-shot motion
editing capabilities with the aid of modern large language models (LLM), which
faithfully manipulates motion sequences with fine-grained instructions. Project
Page: https://mingyuan-zhang.github.io/projects/FineMoGen.html.

1 Introduction

While traditional text-driven motion generation tasks have empowered models to generate motion
sequences based on text, two issues still persist: 1) Users can hardly control the generated actions
with fine-grained spatio-temporal details; 2) Users struggle to further edit the already generated
animations. These two drawbacks significantly limit the application scenarios of these algorithms.
Therefore, in this paper, we propose a new task, Fine-grained Spatio-temporal Motion Generation
and Editing. We anticipate that the new algorithm framework derived from this task will better accept
detailed commands from users and interactively optimize the generated action sequences according
to users’ further needs. This would thus allow text-driven motion generation technology to be utilized
more widely by the general public.

Previous work has made some initial strides in fine-grained motion generation, but often ends up in
one of two extremes: 1) it heavily relies on full supervision, producing good generation results but
requiring extensive and detailed annotation [11]; 2) it fully depends on zero-shot inference, allowing
use in various scenarios, but the generated results often contain many artifacts [20, 18]. These work
have not deeply explored the fine-grained correspondence between text and motion. This fine-grained
relationship is represented spatially as the coordination of body parts and temporally as semantic
consistency. With the help of such granular relationships, a sequence of motions that is spatially
reasonable and temporally semantically consistent can be composed from the bottom up. To better
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Figure 1: FineMoGen is a motion diffusion model that can accept fine-grained spatio-temporal
descriptions. The synthesized motion sequences are natural and consistent with the given conditions.
With the assistance of Large Language Model (LLM), users can interactively edit the generated
sequence.

capture this correlation, we propose a new framework, FineMoGen. We explicitly model the influence
of space and time in the attention mechanism we use, which not only improves the performance in
full-supervise scenarios, but also mines spatio-temporal information from standard text-driven motion
generation datasets, achieving better results in zero-shot scenarios. Specifically, we have made two
modifications based on the Efficient Attention [16] used in previous work [20, 21]: 1) We delve
deeper into the properties of Efficient Attention used therein, proposing a spatio-temporal decoupled
method for explicit modelling. This not only supports both single text condition and fine-grained
text condition formats during training, but also allows for the introduction of more conditions during
testing; 2) We employ Sparsely-activated Mixture-of-Experts to adaptively provide the most suitable
information, thereby optimizing feature quality.

To thoroughly evaluate our proposed algorithm, we have conducted extensive experimental analysis
on existing standard datasets such as HumanML3D [6], KIT-ML [12], and BABEL [13]. However,
the existing datasets only provide rough description of human motion as a whole, without fine-grained
descriptions of body parts and temporal decomposition. To promote fine-grained motion synthesis, we
selected the comprehensive HuMMan [3] dataset and provided it with fine-grained text annotations.
Specifically, we divided a long motion sequence into several different motion stages. For each stage
we provided an overall text description and detailed descriptions for seven different body parts. This
dataset contains a total of 2,968 videos and 102,336 text annotations, which can effectively support
future research on fine-grained spatio-temporal motion generation algorithms. Experimental results
show that our method has achieved state-of-the-art levels on these benchmarks. Visualization results
further demonstrate that our method can generate more natural motion sequences that are more
consistent with the given commands, whether in full-supervise scenarios or zero-shot scenarios.

Building on the foundation of fine-grained spatio-temporal motion generation, we further explored
its integration with large language models (LLMs). Our framework allows users to interact with
the LLM using natural language instructions, which in turn automatically modify the fine-grained
descriptions. This enables our algorithm to adjust the content and style of the generated motion
sequences according to user commands, enhancing interaction efficiency and extending application
possibilities.

Our work has made the following three major contributions:

1. We have proposed the first framework capable of fine-grained motion generation and editing
that applies to both zero-shot and fully-supervised scenarios.

2. We have delved deeply into the attention technology used in the motion diffusion model,
proposing a spatio-temporal decoupled method for generating global templates, enhanced
by the use of Mixture of Experts.

3. We have established a large-scale dataset with fine-grained spatio-temporal text annotations,
HuMMan-MoGen, to facilitate future research in this direction.

2



2 Related Works

2.1 Text-driven Motion Generation

Recent years have seen significant progress in text-driven motion generation. Traditional research in
this field often requires the model to learn a multimodal joint space comprising both text descriptions
and motion sequences. For instance, JL2P [1] integrates language and pose into a joint embedding
space. Ghosh et al. [5] strive to learn a joint-level mapping between language and pose, breaking
down the pose embedding into two separate body part embeddings. MotionCLIP [17] also aligns
text and motion in a shared embedding space. By leveraging the shared text-image latent space
learned by CLIP, MotionCLIP is capable of generating out-of-distribution and stylized motions.
In the pursuit of generating motion sequences with high diversity, several works have introduced
variational mechanisms. For instance, TEMOS [11] employs transformer-based VAEs to produce
motion sequences conditioned on text descriptions. Guo et al. [6] propose an auto-regressive
conditional VAE that generates a short clip in a recursive manner. TM2T[8] leverages a neural
model for machine translation to facilitate the mapping between text and motion. T2M-GPT[19]
reframes the problem of text-driven motion generation as a next-index prediction task by mapping
a motion sequence to a sequence of indices. Recently, diffusion-based generative models have
shown impressive performance on leading benchmarks for text-to-motion task. MotionDiffuse [20],
MDM [18], FLAME [10] are the first attempts to apply diffusion model into text-driven motion
generation field. MLD [4] further exploit the usage of latent diffusion model and achieve a better
performance. ReMoDiffuse [21] integrates the retrieval technique to motion generation pipeline. The
retrieved samples provide informative knowledge for the generation process and thus can generate
more natural motion sequences.

2.2 Spatio-Temporal Motion Composition

TEACH [2], based on the TEMOS [11] algorithm, extracts features from previously generated motion
sequences and combines them with text features to obtain a latent code for motion reconstruction.
This method is simple and effective, but it must be established under a full-supervised scenario to fit
the adjacency relationship between motions in adjacent labels, limiting its usage in broader scenarios.
Furthermore, all conditions are compressed into a single latent code, which can easily lose low-level
kinematic characteristics. On the other hand, diffusion model-based motion generative models can
leverage the advantages of diffusion models for zero-shot spatio-temporal composition [20, 18, 15].
Going further, MotionDiffuse [20] proposes a smoothing term to make the generated motions appear
more natural. PriorMDM [15] present a two-stage generation scheme as an inference trick to generate
smoother motion sequence. However, due to the lack of effective supervised learning, these types
of generated motions often contain many artifacts, such as abrupt changes in speed. These two
predicaments mean that there is currently no appropriate method that can truly meet user needs.
In this paper, we introduce a novel attention mechanism that is capable of not only uncovering
spatio-temporal correlations in standard text-to-motion benchmarks but also more effectively learning
transition schemes in a fully-supervised context.

3 Methodology

In this section, we will thoroughly introduce our proposed method, FineMoGen. We first present
our overall framework in Section 3.1. Then we define the problem of Fine-grained Spatio-Temporal
Generation and list the preliminaries used in our method, including the formulas for the diffusion
model and the network architecture in Section 3.2. We then detail our proposed SpAtio-Temporal
MIxture Attention (SAMI), in Section 3.3. In Section 3.4, we explain how we have implemented
zero-shot motion editing by leveraging the definition of fine-grained description. Finally, in Section
3.5, we discuss the methods used in the training and testing phases.

3.1 Framework Overview

Figure 2 illustrates the entire process of our proposed FineMoGen, a transformer-based motion
diffusion model. As for fine-grained spatio-temporal motion generation, the fine-grained descriptions
are first passed through a frozen-CLIP model to generate a text feature matrix. This feature matrix is
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Figure 2: An overview of FineMoGen. As for the motion generation task, the fine-grained descrip-
tions are first processed by a text encoder. A text feature matrix can be acquired, and then sent to
a diffusion model-based motion generative network to generate corresponding motion sequence.
For the editing purpose, LLM is used to interact with users and modify the fine-grained description
accordingly.

then fed into the transformer, where it influences the generation of various global templates within
the SAMI mechanism. During the editing phase, users interact with a large language model (LLM) to
efficiently modify the existing fine-grained descriptions. After updating the conditions, FineMoGen
generates new motion sequences that better align with the users’ expectations.

3.2 Preliminaries

Problem Definition. Similar to the standard text-driven motion generation task, the Fine-grained
Spatio-temporal motion generation also demands the model to generate realistic action sequences
consistent with the given text description. The difference lies in that the latter provides multiple fine-
grained descriptions with their respective time ranges and body part scopes. Formally, in Fine-grained
Spatio-temporal motion generation task, we define the annotation format as a description matrix
Texti,j , i ∈ [1, NT ], j ∈ [1, NS ], where NT and NS indicate the number of stages and number of
body parts we divide. Accordingly, the motion sequences we generate need to satisfy all constraints,
i.e., the entire action sequence Θ can be divided into NT stages, with each stage containing NS body
parts. We expect that the motion sequence Θi,j , corresponding to the jth body part in the ith stage,
aligns with the given text description Texti,j . Additionally, we aim for the generated motions to
appear natural as a whole. This means that we need to ensure smooth coordination among different
body parts’ movements and achieve seamless transitions between different time segments.

Diffusion Model. In line with the approach of ReMoDiffuse [21], we have developed a transformer-
based diffusion model specifically to tackle the fine-grained spatio-temporal motion generation task.
The diffusion model integrates two key components for optimal generation quality: a diffusion
process and a corresponding reverse process.

Diffusion Process is modeled as a T -step Markov chain, where the noised sequences x1, . . . ,xT

are distortions of the real data x0 ∼ q(x0). The intermediate sequence xt can be represented by a
series of poses θi ∈ RD, i = 1, 2, . . . , Nm, where D is the dimensionality of the pose representation
and Nm is the number of frames. Each diffusion step inject Gaussian noises to the data following
the formulation: q(xt|xt−1) := N (xt;

√
1− βtxt−1, βtI). An efficient approximation from Ho et

al. [9] simplify the multi-step diffusion process by xt :=
√
ᾱtx0 +

√
1− ᾱtϵ, where αt := 1− βt

and ᾱt :=
∏t

s=1 αs.

Reverse Process stands as the counter-process, tasked with eliminating the injected noise from
the distorted motion sequences. We employ a learnable deep learning model x̄0 = Sθ(xt, t, c)
to approximate the original sequence. Here, c signifies the provided condition. In the standard
text-driven motion generation, c is the singular text prompt given. However, for the fine-grained
spatio-temporal motion generation task, c embodies the provided detailed linguistic constraints. The
training objective for this network is to minimize the mean square error between the true original
sequence x0 and the estimated one x̄0, which can be formulated as Ex0,ϵ,t[x0 − Sθ(xt, t, c)].
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Figure 3: Architecutre of FineMoGen.In Figure a), our employed Motion Transformer first encodes
the timestamp t, the noise-infused motion sequence xt, and descriptions Texti,j into feature vectors,
which undergo further processing by N layers. Central to these layers lies our proposed SAMI, which
takes into account both spatial independence and temporal independence. In Figure (b)’s left segment,
the feature fusion among different body parts is demonstrated. This fusion is driven by a sequence of
learnable parameters ωi,j and the enhanced feature Bk,j derived from MoE projection. The outcome
of this spatial modeling is denoted as the feature vector YS

k,i. Figure b)’s right segment illustrates
the process of temporal modeling. Initially, text features and motion features are concatenated and
fed into MoE layers, yielding informative features Ki,j,k and Vi,j,k. These two feature vectors are
then merged into global templates Gi,j . For each time moment, the refined feature is obtained from
these global templates through temporal independence modeling, as depicted in Figure c). Here, we
generate Ng time-varying signals. After normalization by the time differences between xk and time
anchors Gt

i,j , we ultimately acquire the refined feature YT
k,i. Upon summation with YS

k,i, the final
output of SAMI, denoted as Yk,i, is achieved.

Motion Transformer Network are frequently chosen as the foundation for estimators in motion
diffusion models. These networks consist of several identical blocks that sequentially process the
input data as shown in Figure 3. For the provided linguistic prompts, a pre-trained CLIP model [14]
is utilized to first extract informative and generalized features. These features are further refined by
a series of trainable transformer layers to better align with the requirements of the task at hand. In
line with ReMoDiffuse, each block in FineMoGen integrates an efficient mixed attention module
and a feed-forward network (FFN). This paper delves into the operational principles of the mixed
attention mechanism and subsequently presents a novel attention mechanism specifically designed
for spatio-temporal motion composition.

3.3 Spatio-Temporal Mixture Attention

In the attention module, we aim to accurately apply fine-grained textual information to the corre-
sponding body parts and time intervals. First we introduce the baseline attention mechanism we used
and then illustrate how we modify it to achieve both spatial independence modelling and temporal
independence modelling.

Baseline Mixed Attention. Here, we follow the design of attention in ReMoDiffuse [21] by
incorporating efficient self-attention and efficient cross-attention [16] within the same module,
forming a unique Mixed Efficient Attention module (MEA). Suppose the input motion feature
sequence and text feature sequence are Xm ∈ RNm×Lm ,Xt ∈ RNt×Lt respectively. Nm and Nt are
the lengths of motion and text sequences. Lm and Lt are the dimensionality of them. The core idea
of MEA is the usage of global templates instead of pair-wise attention. Formally, all elements in Xm

and Xt first produce a matrix V ∈ R(Nm+Nt)×H×Lg by linear projections induced by the weight
WV

m ∈ RLm×(H·Lg) or WV
t ∈ RLt×(H·Lg), where H is the number of heads used in multi-head

attention mechanism and Lg is the dimensionality of global templates. Similarly, we get a matrix
K ∈ RH×Ng×(Nm+Nt) and perform softmax operation on the last dimension, where Ng is the
number of global templates in each head. These two matrix are multiplied together to get all global
templates G ∈ RH×Ng×Lg . This process can be written as:

V = [WV
mXm;WV

t Xt],K = [WK
mXm;WK

t Xt],G = Softmax(K)V, (1)
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where [·; ·] indicates a concatenation of two tensors. Matrix K can be regarded as a series of
coefficients that Ki,j,k shows the influence magnitude of kth element on Gi,j , the jth global template
in ith group. The features in V are summarized to H ×Ng groups with the normalized weights from
K, results in the global templates G.

Similar to standard self-attention, we also produce a matrix Q ∈ RNm×H×Ng to query on the global
templates. Qk,i,j illustrates the significance of Gi,j on the kth element. Here we also perform the
Softmax operation on the last dimension. and then perform multiplication between Q and G to get
the refined feature, as the output of this attention module. The process is formulated as:

Q = WQ
mXm,Y = Softmax(Q)G, (2)

where Y ∈ RNm×H×Lg is the output matrix.

Temporal Independence. An intuitive solution is to generate independent refined features for
different time intervals and apply them to the corresponding motion segments. However, it lacks a
direct mechanism to effectively integrate information across different time intervals and it becomes
challenging to generate satisfactory results when we want to generate a varying number of time
intervals during testing. The core issue lies in the difficulty of describing the interactions between
different time intervals in a scalable manner. To tackle with this issue, we explicitly introduce the
concept of time into this procedure. Formally, we propose the following approximation for temporal
feature refinement:

YT
k,i ≈ µi(xk) =

Ng∑
j=1

G′
i,j(xk) ·G∗

i,j(xk) (3)

where xk represents the time position of kth pose state in the motion sequence. G′
i,j(x) indicates

the time-varied signal we derive from the feature vector Gi,j and G∗
i,j(xk) denotes the relative

significance of this template for the kth position. Consider the properties of motion generation task,
we further construct G′

i,j(x) and G∗
i,j(xk) as:

G′
i,j(x) = Gs

i,j +Gv
i,j · (x−Gt

i,j),G
∗
i,j(xk) =

e−(xk−Gt
i,j)

2/σ2∑
l∈[1,Ng ]

e−(xk−Gt
i,l)

2/σ2 , (4)

In this setup, the jth global template of the ith group is considered as a set of signals propagating
outward from the temporal center Gt

i,j . We perceive a global template Gi,j as an anchor with its
initial state defined as Gs

i,j and velocity represented by Gv
i,j . These three matrices are obtained from

the original Gi,j through three separate linear projections.

Furthermore, to assimilate influences from all signals, we use the square of time difference as a
measure to evaluate the importance of each global template and use a Softmax operation to normalize
their weights. A direct advantage of this modeling approach is the ease in appending a new stage
following the current one, by adding a bias term to the Gt

i,j accordingly. Therefore, this method
proves beneficial in both fully-supervised and zero-shot scenarios.

Spatial Independence. In conventional motion generative models [20, 11, 18], the raw motion vectors
are directly inputted into a fully-connected layer to generate a latent representation: F = WF (Θ),
where Θ signifies the raw data of a single motion sequence. F represents the latent representation
following the linear projection performed by WF . This operation, while straightforward and effective,
often overlooks the distinct interpretations of the motion representation. It also merges data from
various body parts, which hampers body part-aware modeling. To overcome this, we manually divide
the raw representation into NS groups, each representing a commonly observed body part. In our
work, we consider seven body parts: head, spine, left arm, right arm, left leg, right leg, and trajectory
of the pelvis joint. We perform linear projection on each part independently and concatenate them
into the latent representation F′ ∈ RNm×NS×Lp , where Lp represents the dimensionality of each
part. Given our aim for each global template group to correspond exactly to one body part, we set
NS = Ng. Additionally, we utilize the Feed Forward Network (FFN) module to process each body
part independently.

In addition, we enforce that features from each body part can only contribute to the corresponding
group of global templates. In situations where our models are trained without detailed descriptions
for each body part, text features from the overall sentence will contribute to each group. However,
in the context of the Fine-grained Spatio-temporal Generation task, where we have multiple texts
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describing different parts, each text feature sequence will only influence the corresponding body part.
This group division approach ensures the preservation of spatial independence.

As a supplement, we introduce the spatial feature refinement here to allow the communication
between different body parts in SAMI:

YS
k,i =

NS∑
j=1

Bk,j · ωi,j , (5)

where Bk,j ∈ RLg is the projected feature from jth body part of kth element. ωk,j ∈ RNS×NS is a
learnable parameter to reflect the relative significance. The value of ω is shared to calculate YS

k,i for
all k and i. It can be explained as a common knowledge to show the correlation between different
body parts.

Sparsely-Activated Mixture-of-Expert The design of spatio-temporal independence decouples
various components of the entire sequence, compelling the model to focus more on local consistency.
This introduces certain complexities to the model’s learning process. To address this, we attempt to
broaden the overall network structure to enhance learning capability. Thus, we employ the Sparsely-
activated Mixture-of-Expert technique, which significantly boosts learning effectiveness at the cost of
marginal inference time increment. It can adaptively extract informative features from the motion
sequence. Specifically, the linear projections we used for calculating Bk,j ,Qi,j ,Ki,j from motion
features are empowered by MoE. The formulation can be written as:

fMoE(x) =

Ne∑
i=1

TOPk(Softmax(W1x)) ·W2ϕ(W3x), (6)

where W1,W2,W3 are learnable parameters. TOPk(·) is a one-hot vector to set all elements to zero
except for the largest k ones. Since text features are unchanged during the denoising process, adaptive
expression is unnecessary for this part.

Module Output. SAMI combines above-mentioned two refined features. The results can be
formulated as Yk,i = YT

k,i +YS
k,i.

3.4 Zero-shot Motion Editing

In Section 3.2, we defined a fine-grained description format to precisely control the actions each
body part should perform at each time interval. Based on this, we can interactively edit with users
through a pretrained Large Language Model (LLM). We use this intermediate format as the current
state corresponding to the action, and the user can input natural instructions. The LLM will modify
this intermediate format according to the input content to get a new fine-grained description as shown
in Figure 2. The motion generation model FineMoGen will then generate a new motion sequence
from scratch based on the modified description, serving as the result of the editing. Such a zero-shot
pipeline, using the fine-grained description and LLM as a medium, translates the user’s natural
instructions into content that the model can understand and accept, thereby achieving the effect of
editing.

The teaser figure in Figure 1 provides an example of this procedure. It begins with the user providing
a detailed description for a two-stage animation. Subsequently, an editing command, such as "I want
the person to wave higher and for a longer duration," is issued to modify the motion description for
both arms in the second stage. Consequently, the motion in the second stage differs from the previous
version. Additionally, the motion in the first stage may also differ from the previous one due to the
re-generation process.

3.5 Training and Inference

In line with the motion diffusion model literature [21, 18], we randomly mask 10% of the text
conditions to approximate p(x0). Our training objective is to reduce the mean square error between
the predicted initial sequence and the actual ground truth. During the training phase, we generally
employ a diffusion process comprising 1000 steps, while a 50-step denoising process is applied at the
inference stage.
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Left & Right upper limb: Raise the arms 
to body sides until parallel to the ground.
Left & Right lower limb: Shift the feet 
alternately to open the legs until the feet 
are 3-4 feet apart.
Pelvis: Shifted downward. 

Head: Turn to the right. 
Right lower limb: Point the right 
foot to the right. Bend the right knee 
to the right until the thigh is parallel 
to the ground. 
Pelvis: Shifted downward and right.  

Head: Turn to the front. 
Right lower limb: Point the 
right foot to the front. Unbend 
the right knee and straighten 
the right leg.
Pelvis: Shifted upward and left.  

Left upper limb: Put down the arms 
to the sides of the body.
Left & Right lower limb: Shift the 
feet alternately to move the legs 
inwards until they touch each other.
Pelvis: Shifted upward. 

Stage 1 Stage 2 Stage 3 Stage 4

Figure 4: Examples in HuMMan-MoGen dataset. A motion sequence will be divided into multiple
stages. As for each stages, we provide detailed annotation for different body parts.

4 Experiments

4.1 HuMMan-MoGen Datasets

In addition to commonly used dataset, we re-label the HuMMan [3] dataset, serving as a large-
scale benchmark to evaluate Fine-grained Spatio-Temporal Motion Generation quantitatively. The
HuMMan [3] dataset includes a total of 500 types of fitness movements, covering the majority of
actions we perform in our daily lives across various body parts. We selected 2,968 videos from the
160 types of actions in the HuMMan dataset to be annotated in detail. For each type of action, we
first define several standard action phases based on the specifications of that action. We provide
detailed descriptions of the movements for each body part during each phase. Specifically, we
annotated an overall description, and seven more detailed annotations to describe the head, torso,
left arm, right arm, left leg, right leg, and trajectory of the pelvis joint. When annotating each video,
we divide the original video into multiple standard action phases. For each phase, we apply the
pre-defined fine-grained textual descriptions to accurately describe the spatial and temporal aspects
of the captured motion data. Figure 4 show an example of our annotated motion sequence. The total
number of annotations reached 102,336. This fine-grained spatio-temporal description provided by
our data is not available in other datasets. The broad range of actions covered by this dataset makes it
more challenging and valuable as a reference.

4.2 Standard Benchmarks and Evaluation Metrics

Standard Benchmarks. Apart from our collected HuMMan-MoGen dataset, we also evaluate our
proposed pipeline on several leading benchmarks in text-driven motion generation tasks, the KIT-ML
dataset[12], the HumanML3D dataset[7] and the Babel dataset[13]. We use these three benchmarks
for more comparison.

Evaluation Metrics. We employ the same quantitative evaluation measures as used in the literature,
including Frechet Inception Distance (FID), R Precision, Diversity, Multimodality, and Multi-Modal
Distance. The details of these metrics are discussed in supplementary materials.

4.3 Implementation Details

As for all four datasets, we choose almost the same hyperparameters. Regarding the motion encoder,
we utilize a 4-layer transformer, with a latent dimension of 7 * 64. Here, 7 corresponds to the
number of body parts, and 64 represents the dimensionality for each part. For the text encoder,
we build and apply a frozen text encoder found in the CLIP ViT-B/32, supplemented with two
additional transformer encoder layers. In terms of the diffusion model, the variances, denoted as βt,
are predefined to linearly spread from 0.0001 to 0.02, with the total number of noising steps set as
T = 1000. We use the Adam optimizer to train the model, initially setting the learning rate to 0.0002.
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Table 1: Quantitative results on the HumanML3D test set. ‘↑’(‘↓’) indicates that the values are
better if the metric is larger (smaller). We run all the evaluations 20 times and report the average
metric and 95% confidence interval is. The best result are in bold and the second best result are
underlined.

Methods R Precision↑ FID↓ MM Dist↓ Diversity↑ MultiModality↑Top 1 Top 2 Top 3
Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
Guo et al. [6] 0.457±.002 0.639±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

T2M-GPT [19] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MDM [18] - - 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MotionDiffuse [20] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

ReMoDiffuse [21] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

Ours 0.504±.002 0.690±.002 0.784±.002 0.151±.008 2.998±.008 9.263±.094 2.696±.079

Table 2: Quantitative results on the KIT-ML test set.

Methods R Precision↑ FID↓ MM Dist↓ Diversity↑ MultiModality↑Top 1 Top 2 Top 3
Real motions 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
Guo et al. [6] 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

T2M-GPT [19] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.921±.108 1.570±.039

MDM [18] - - 0.396±.004 0.497±.021 9.191±.022 10.847±.109 1.907±.214

MotionDiffuse [20] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

ReMoDiffuse [21] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

Ours 0.432±.006 0.649±.005 0.772±.006 0.178±.007 2.869±.014 10.85±.115 1.877±.093

This learning rate will gradually decay to 0.00002 in accordance with a cosine learning rate scheduler.
Training is performed using one Tesla V100, with the batch size on a single GPU set at 128.

As for the HumanML3D and KIT-ML datasets, we follow Guo et al [6], where pose states mainly
contain seven different parts: (rva, rvx, rvz, rh, jp, jv, jr). Here Y-axis is perpendicular to the ground.
rva, rvx, rvz ∈ R denotes the root joint’s angular velocity along Y-axis, linear velocity along X-axis
and Z-axis, respectively. rh ∈ R is the height of the root joint. jp, jv ∈ RJ×3 are the position and
linear velocity of each joint, where J is the number of joints. jr ∈ RJ×6 is the 6D rotation of each
joint. Specifically, J is 22 in HumanML3D and 21 in KIT-ML. Tuning to the BABEL dataset and our
proposed HuMMan-MoGen, we follow TEACH [2] and converts SMPL parameters to a 6D rotation
representation together with root translation.

4.4 Quantitative Results

We begin by assessing our proposed method on the standard task of text-driven motion generation.
As depicted in Table 1 and Table 2, FineMoGen yields results that are competitive with those from
existing methods. It’s worth noting that while FineMoGen isn’t specifically designed for this task, it
still achieves satisfactory performance in comparison to other methods.

Table 3 displays the performance of temporal composition on both the BABEL dataset and the
HuMMan-MoGen dataset. Our FineMoGen significantly surpasses existing methods in terms of
accuracy. This underscores FineMoGen’s ability to synthesize motion sequences that are not only
more natural but also more aligned with the provided text conditions.

4.5 Qualitative Results

Please kindly refer to the supplementary material for qualitative comparison and more demos about
both fine-grained motion generation and editing. From the demo video, we can observe the following:
1) Our method demonstrates a better understanding of the provided textual context compared to
other approaches. Whether it’s single-action generation or continuous action generation, our method
generates motion sequences that are more consistent with the text. 2) Due to mathematically coherent
temporal modeling, in continuous action generation, the transitions in our generated results are
natural, with no apparent artifacts.
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Table 3: Quantitative results of temporal composition on the BABEL test set and HuMMan-
MoGen test set.

Methods BABEL HuMMan-MoGen
R Precision↑ FID↓ Diversity → MultiModality↑ R Precision↑ FID↓ Diversity → MultiModality↑

Real motions 0.62 0.004 8.51 3.57 0.49 0.007 7.28 2.15
TEACH [2] 0.46 1.12 8.28 7.14 0.38 1.59 7.04 6.37
PriorMDM [15] 0.43 1.04 8.14 7.39 0.31 1.43 6.89 6.45
Ours (zero-shot) 0.51 0.84 8.01 7.28 0.41 1.34 6.87 6.41
Ours (fully-supervised) 0.56 0.73 7.94 7.17 0.43 1.21 6.71 6.28

Table 4: Ablation study on HuMMan-MoGen test set. All methods use zero-shot setting, it means
that they are not trained on the temporal composition data.

Methods Spatial Dependence Temporal Dependence MoE R Precision↑ FID↓ Diversity → MultiModality↑
Real Motions - - - 0.49 0.007 7.28 2.15
Baselines - - - 0.24 3.79 7.10 6.95

✓ - - 0.21 4.51 7.29 7.03
- ✓ - 0.34 2.48 7.05 6.72
- - ✓ 0.27 3.09 6.97 6.84

FineMoGen ✓ ✓ ✓ 0.41 1.34 6.87 6.41

4.6 Ablation Study

Table 4 presents the ablation study conducted on the HuMMan-MoGen dataset. For consistency, we
consider only temporal composition in alignment with the results shown in Table 3. The outcomes
suggest that both Temporal Dependence and MoE components contribute positively to the overall
performance. Conversely, spatial dependence poses challenges for fitting the distribution. We concede
that in a temporal composition setting, this module may not be necessary. We also provide ablation
analysis on spatial combination in the supplementary material, which indicate consistent conclusions.

5 Conclusion and Limitation

In this work, we introduce the task of Fine-grained Spatio-temporal Motion Generation, where more
detailed textual descriptions allow users to control and edit the desired actions with greater flexibility.
To address this task, we propose a new framework, FineMoGen, which decouples the influence of
body parts and time on the feature refinement process in the attention mechanism. This results in
superior performance in both fully-supervised and zero-shot scenarios compared to previous works.
Given the lack of text-motion datasets specifically designed for fine-grained descriptions, we have
compiled a dataset based on the HuMMan dataset. This dataset includes a wide range of actions and
an abundance of descriptions segmented by time and body part. These data enable us to analyze and
test the effects of different algorithms more effectively.

Limitation. While this study proposes a method for spatial decoupling, it is still heavily reliant on a
specific fine-grained format, which to a certain extent limits its application scenarios. On the other
hand, the efficacy of the motion editing component is strongly tied to the capability of the pre-trained
Large Language Model (LLM). In practical use, it sometimes struggles to interpret user requirements
accurately. Instruction tuning should be incorporated into the framework in the future, enabling the
LLM to better understand instructions related to motion editing.

Boarder Impact. The ability to generate fine-grained human motion not only enhances the productiv-
ity of the animation industry, but also has potential benefits for helping medical research, improving
training athletes and dancers, and providing more realistic interactive experiences in virtual reality.
However, it may also be used for illegal activities such as generating fighting motions to create violent
videos, or fraud and dissemination of false information.
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