
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECURRENT CONTEXT COMPRESSION: EFFICIENTLY
EXPANDING THE CONTEXT WINDOW OF LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

To extend the context length of Transformer-based large language models (LLMs)
and improve comprehension capabilities, researchers often encounter constraints
stemming from finite computational resources and bounded memory capacities.
This work proposes a novel approach, termed Recurrent Context Compression
(RCC), designed to efficiently expand the context window length of LLMs. Fur-
thermore, we delve into the prevalent issue of degraded model performance when
both instructional prompts and contextual information undergo compression for
downstream tasks. To address this challenge, we propose a novel instruction
reconstruction methodology aimed at mitigating the detrimental effects of this
compression process. The effectiveness of our proposed approach was validated
across multiple tasks while achieving an impressive context compression rate of
at least 32×. On text reconstruction task, we maintain a BLEU-4 score close to
0.95. On passkey retrieval task, we achieve nearly 100% accuracy involving an
extensive sequence length of 1 million tokens. On long-text question-answering
task, we obtain comparable performance with the non-compressed LLM in F1
and Rouge scores. Our method also demonstrated competitive performance in
long-text question-answering tasks compared to non-compressed methods, while
significantly saving storage resources.

1 INTRODUCTION

With the rapid advancement of natural language processing technologies, Transformer-based large
language models (LLMs) have become a key driving force in this field. However, when grappling
with lengthy text inputs that extend beyond a certain scope, LLMs frequently encounter limitations
imposed by their finite context window length capabilities. These limitations stem from several in-
herent factors in the model architecture and training methods. Firstly, during the inference phase,
models are constrained by the pretraining text length, leading to a significant decline in quality when
the generated sequence exceeds the pretrained context window. Secondly, the design of the Trans-
former architecture requires storing information from the entire input sequence, which leads to a
significant memory usage from the KV-Cache during inference. To address these issues, related
works have extended the context window of LLMs (Hochreiter & Schmidhuber, 1997; Child et al.,
2019; Wu et al., 2022; Rae et al., 2019; Bulatov et al., 2022; Liu et al., 2023; Mohtashami & Jaggi,
2023; Beltagy et al., 2020) by optimizing training methods, model structures, and context compres-
sion. Among these, context compression techniques (Rae et al., 2019; Snell et al., 2022; Chevalier
et al., 2023; Wingate et al., 2022; Mu et al., 2023; Ge et al., 2023; Munkhdalai et al., 2024; Ren
et al., 2023; Li et al., 2023) are popular promising because they reduce the length of contexts or
prompts while maintaining performance. This allows for the inference of longer context windows
within limited resources. Figure 1 compares the memory resource consumption of our method with
non-compression methods. Additionally, most compression-based methods can be integrated with
other context window extension techniques to further enhance performance.

However, existing context compression methods face with three major challenges in long-text lan-
guage modeling. Firstly, The current SOTA model, ICAE (Ge et al., 2023), can only achieve up
to 8× compression; beyond that, performance significantly declines. Secondly, most compression
methods still conduct experiments within a 4k context range, which is unable to keep pace with the
development of current large language models (LLMs). For example, GPT-4 has reached a context
length of 128k. Therefore, it is crucial to continue extending the context length further to adapt to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0k 2k 8k 16k 64k
Context Length (k)

0

10000

20000

30000

40000

50000

60000

M
em

or
y 

Us
ag

e 
(M

B)

4078
6322

11752

19914

61928

7664 7788 7910 8182 9302

Memory Usage Comparison between Pythia-1.4b and RCC-1.4x2b
Pythia-1.4b
RCC-1.4x2b

Figure 1: GPU memory Consumption of Different Models with Increasing Length. Left: Pythia-
1.4b, Right: RCC model using Pythia-1.4b for both encoder and decoder. Both models utilize
FlashAttention-2 (Dao, 2023). A more detailed analysis of GPU memory consumption can be found
in Appendix A.

these advancements. Lastly, we observed that context-compressed language models face the issue
of context-instruction confusion in downstream tasks. When both context and instructions are com-
pressed simultaneously, the model often struggles to follow instructions correctly, resulting in lower
performance, as show in Figure 2. This issue has not been addressed in previous studies.

To extend the context length of Transformer-based large language
models (LLMs) and improve comprehension capabilities ...

Context for encoder:

What is the full form of RCC mentioned in the above text?

Prompt & instruction for Decoder:

Decoder Response:
Recurrent Context Compression

.

Decoder response without instruction reconstruction:

Mixed Context and Instruction

The answer is : long-text question-answering task.  

What is the full name of RCC mentioned in the text?
To extend the context length of Transformer-based large language

models (LLMs) and improve comprehension capabilities ... 

Decoder response with instruction reconstruction:
The question is: What is the full name of RCC mentioned in the text?

.The answer is : Recurrent Context Compression. 

Context for encoder:

Separated Context and Instruction

Figure 2: RCC encoder first compressing a long context into short span of vectors. Then the com-
pressed vectors can be conditioned on by the RCC decoder to respond to various prompts. RCC
can deal with complex context with instruction mixed in (Right), while existing methods can only
handle the separated case (Left).

To address the aforementioned issues, this paper makes the following contributions:

Firstly, we propose a context compression model, called Recurrent Context Compression (RCC)
architecture. RCC significantly reduces information loss during the compression process, greatly
enhancing compression efficiency. In experiments, we achieved nearly 0.95 BLEU-4 scores with a
32× compression rate on text reconstruction tasks, as shown in Figure 4.

Secondly, we propose a recurrent compression mechanism to extend the model’s ability to compress
texts beyond the encoder’s window length. When training long-text context compression language
models, the length of the context sequence input to the encoder is proportional to the required com-
putational resources, limiting the extension of context length during training. Therefore, we use
a simple yet effective solution: initially, conducting full-parameter training on shorter sequences.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Subsequently, we freeze the encoder and continue training on longer sequences, enabling the ex-
tension of training context length . Our model exhibits excellent extrapolation ability during the
inference stage, with the capability to further extend lengths up to 1M. For more details, please refer
to Section 4.2

Lastly, in downstream text generation tasks, we found that when both context and instruction are
compressed, the model is hard to follow instructions, leading to a decline in response quality. To
mitigate this issue, we leverage the text reconstruction capability of the context compression lan-
guage model, allowing the decoder to reconstruct the instruction from the compressed vectors and
continue generating responses based on the instructions. This significantly improves the output
quality for mixed context and instructions, achieving results close to those obtained by inputting
instructions directly into the encoder.

2 RELATED WORK

Context Compression: Early approaches to context compression aimed to derive sentence repre-
sentation vectors for tasks such as document retrieval. Transformer-based autoencoder architectures
like TSDAE (Wang et al., 2021) and Nugget (Qin & Van Durme, 2023) are relevant to our work. In
TSDAE, noise such as word deletion or swapping is added to input sentences to train sentence em-
bedding vectors. The encoder compresses the corrupted sentence into a fixed-size vector, which the
decoder then reconstructs into the original input text. However, such approaches cannot be directly
applied to text generation tasks. Git(Mu et al., 2023) compresses prompts by fine-tuning LLM.
During training, a specific masking matrix compresses prompts into a few Gist tokens, which can
still prompt the language model for responses. Similar prompt compression work was proposed by
(Wingate et al., 2022). However, these tasks only compress prompts.

Several works (Snell et al., 2022; Chevalier et al., 2023; Ge et al., 2023; Ren et al., 2023; Li et al.,
2023; Jiang et al., 2023b; Munkhdalai et al., 2024) have focused on context compression. ICAE(Ge
et al., 2023) is similar to our work but suffers from lower compression efficiency and lacks exten-
sive research on longer sequences. Additionally, AutoCompressors(Chevalier et al., 2023), which
recursively compress long texts into summary vectors to extend context length, are also relevant to
our approach. Selective context, proposed by (Li et al., 2023), identifies and prunes redundancy
in the input context to enhance LLM inference efficiency, making inputs more compact. Recently,
(Munkhdalai et al., 2024) proposed a similar work combining two attention mechanisms with con-
text compression functionality, showing promising results. However, this new attention mechanism
cannot be directly applied to pre-trained open-source LLMs and faces attention optimization chal-
lenges in practical applications. None of the studies have thoroughly investigated the problem of
instructional confusion that arises when both instructions and contextual information are subjected
to compression. Our work introduces a new solution to mitigate this issue.

Long Context LLM: LLMs typically fix the context window length during training, such as the
Pythia (Biderman et al., 2023), LLaMA (Touvron et al., 2023a;b), and Mistral (Jiang et al., 2023a)
series. Consequently, researchers have explored various methods to extend the context window
length of pre-trained language models. These methods(Chen et al., 2024; Tworkowski et al., 2023;
Chen et al., 2023; Liu et al., 2023; 2024; Yen et al., 2024), which have achieved notable results based
on existing pre-trained models. Our approach can be combined with these methods, applying them
to either the encoder or the decoder to achieve more extended compression effects.

Additionally, our work is inspired by language models with recurrent structures (Hochreiter &
Schmidhuber, 1997; Gu & Dao, 2023; Sun et al., 2023; Peng et al., 2023). These models com-
press historical context within a certain range into the hidden state of a single time step, enabling the
current token to access information from the previous step for inference. They demonstrate strong
competitiveness with Transformer models, indicating that compressing token information over a
certain length can achieve lossless inference.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 DESIGN OF RCC

3.1 RCC MODEL ARCHITECTURE

As shown in Figure 3, the RCC model architecture is similar to ICAE(Ge et al., 2023), consisting
of an encoder and a decoder. In connecting the encoder and decoder, RCC differs from ICAE and
AutoCompressors(Chevalier et al., 2023). While ICAE and AutoCompressors uses the final layer’s
vectors from the encoder as input for the decoder, we utilize the output information from each layer
of the encoder. This information is then using MLP layers and inputed into the decoder. This method
obtains richer feature information. The encoder can be a Transformer-based LLM or an RNN-based
LLM, while the decoder is a Transformer-based LLM. The encoder is responsible for compressing
the information which is utilized by the decoder for inference. The decoder can fully learn the
compressed information vector at any position using the attention mechanism. After training, the
maximum context length of RCC is the decoder context window length multiplied by the encoder
compression rate, e.g., 1M = 2k × 512.

Decoder LLM   Layeri+1 

MLP

Short Context (Stage 1)
Long Context (Stage 2)

Encoder LLM Layeri

h2048... h2049 ... h2560 ... h4096 ... h5120 ... h8192 ...

Compression complete Compressing Waiting for compression

h2048... h2049 ... h2560 ... h4096 ... ...h1 h80 h128 p1 p2 ......

Residual connections

hidden state of instruction or prompt

... ...h1 h80 h128 p1 p2 ......

Context compressed vector

Reccurent  compression

Stage 1 and 2

Figure 3: The structure of the encoder and decoder in RCC layer i. We segment the long sequence
and then iteratively compress each segment. We take the hidden layer vector corresponding to the
last token of each short sequence within a segment as the compression vector. We employ a two-
stage training method. In the first stage, we train on short sequences across all parameters. In the
second stage, we input long sequences and freeze the encoder’s parameters, training only the MLP
and decoder parameters.

3.1.1 RCC ENCODER

The design of RCC’s encoder is inspired by the Mamba-based LLM (Gu & Dao, 2023). Mamba
is essentially a state space model, similar to an RNN. In Mamba, the current token only needs to
access the state vector from the previous timestep to complete the current inference step. However,
as the context length increases, the performance of Mamba deteriorates. This indicates that the state
vector at each time step in Mamba can store only a limited length of historical context information.
Therefore, we propose a compromise: for long sequences, we can divide them into fixed-length short
sequences and iteratively compress each short sequence into a state vector. Finally, we concatenate
the state vectors of each short sequence as the historical state information to be input into the decoder.
This approach retains complete historical information while leveraging the model’s compression
capabilities to save memory. This divide and iteratively compress strategy can also be combined
with transformers. Our experiments show that Transformers also have this capability because a
Transformer can be viewed as a special state space model or RNN (Feng et al., 2024).

The primary task of the RCC encoder is to compress long sequences. The initialized encoder is a
pretrained language model, which can be based on either Mamba or Transformer architectures. By
setting a compression rate, we divide long sequences into fixed-length short sequences and itera-
tively feed these short sequences into the encoder. As illustrated in Figure 3, we find the last token

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of each short sequence, and use these tokens’ output vectors from each layer as compression vectors.
We concatenate these compression vectors, pass them through a linear layer, and finally input them
into the corresponding layer of the decoder. Through this method, the RCC’s encoder accomplishes
the compression modeling of the entire long context.

3.1.2 RCC DECODER

The decoder of the RCC is a Transformer-based language model responsible for the final text in-
ference. Its inputs include the compressed vectors from the encoder and token embedding vectors
related to the prompts. Each layer’s compressed vector from the encoder passes through a linear
layer before being input into the decoder. For the first layer’s mapped vector, we concatenate it with
the decoder’s token embedding vector and then feed it into the first layer of the decoder. Subsequent,
each encoder layer’s output is connected to the corresponding decoder layer’s compressed vector.
This connection is established through residual connections, as shown in Figure 3. It is crucial to
note that only the output vectors corresponding to the compressed information will have residual
connections, while the other output parts remain unchanged. If the number of compressed vector
layers does not match the number of decoder layers, we apply simple rule-based mappings, either
by duplicating to increase the number of layers or averaging to reduce the number of layers.

3.2 MODEL TRAINING

3.2.1 TWO-STAGE APPROACH

We use an iterative segmented computation method to process long sequences. During the model
inference phase, we only need to store the compressed vectors, so memory limitations do not become
a bottleneck for inferring long texts. However, during the training phase, we also need to store the
gradient information of the entire long sequence, which significantly exceeds the memory limit. We
mitigate this issue using a simple yet effective two-stage training method. In the first stage, we
perform full-parameter fine-tuning with a large number of shorter sequences, allowing the encoder
to sufficiently learn how to compress the context into a single vector. Correspondingly, the decoder
learns to infer or reconstruct from the compressed vectors. After the first stage of training, the
encoder can produce stable compressed vectors. At this point, we input longer sequences for training
while freezing the encoder to save memory resources. This approach not only reduces training costs
but also enables the decoder to learn how to handle a larger number of compressed vectors. This
method does not require complex gradient optimization algorithms or substantial GPU memory
resources(Liu et al., 2023; Chevalier et al., 2023; Liu et al., 2023) and can efficiently scale to longer
sequences. We validated the effectiveness of this method on a 1M-length key retrieval task.

3.2.2 RECONSTRUCTION AND CONTINUATION TASKS

For the model training tasks, we require the model to possess both contextual memory and contextual
reasoning abilities. Therefore, we select text reconstruction and text continuation tasks. Traditional
autoencoding text reconstruction tasks (Ge et al., 2023) can only perform holistic reconstruction in
a fixed manner, making it impossible to handle long texts. To address this issue, we propose another
new training task called random prompt text reconstruction task. Specifically, we randomly extract
a short text segment from the encoder’s input text as a prompt to the decoder, requiring the decoder
to reconstruct the content following the prompt by leveraging the compressed information and the
prompt. This task enhances the model’s memory and retrieval ability. Additionally, to maintain the
model’s reasoning ability, we employ text continuation tasks. Relevant formulas can be found in
Appendix B.

3.2.3 INSTRUCTION-AWARE RECONSTRUCTION

Through our experiments, we have discovered that when instructions and context are mixed, they are
treated equally by the compression model. This leads to the model struggling to follow instructions
effectively, resulting in a significant drop in performance. To address the problem we propose an
instruction reconstruction method. During the training phase, we input the instruction as part of the
context to the model’s encoder, with the instruction randomly placed at the beginning or end of the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

100 200 300 400 500
length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bl
eu

-4

RCC-32-transformer
RCC-64-transformer
RCC-64-mamba
RCC-64-transformer-last-hidden-layer

100 200 300 400 500
Length

0.00

0.05

0.10

0.15

0.20

bl
eu

-4

ICAE-64
RCC-128-transformer

Figure 4: Text Reconstruction Scores of Different Models.

context. The decoder is then required to firstly reconstruct the instruction and subsequently answer
the question based on the instruction.

4 EXPERIMENTS

First, we conduct text compression rate experiments using the random prompt text reconstruction
task, selecting ICAE (Ge et al., 2023) as the baseline model. Subsequently, we evaluate our method’s
performance on long text tasks, including the passkey retrieval task(Mohtashami & Jaggi, 2023)
with 1M sequence length and the long document question-answering benchmark in Longbench (Bai
et al., 2023). For model architecture, we test the effectiveness of Pythia-1.4b ((Biderman et al.,
2023), Apache License 2.0) and Mamba-1.4b ((Gu & Dao, 2023), Apache License 2.0) as encoders.
Both Pythia-1.4b and Mamba-1.4b only support a 2048 context window. The decoder was pythia-
1.4b. We randomly sampled about 5 billion tokens from the pile ((Gao et al., 2020), MIT License)
dataset as the training set, concatenating these tokens into a continuous ultra-long one-dimensional
array. The learning rate was set to 1e-4. We only training for one epoch, typically completing within
30 hours on a server with 8 A800 GPUs.

4.1 TEXT RECONSTRUCTION

In the Pre-training phase, we use a combination of random prompt text reconstruction tasks and text
continuation tasks, with a ratio of 9:1. Afterwards, we fine-tune the model using a small amount
of random prompt text reconstruction tasks data. The input sequence length for the encoder is set
to 2048 tokens, while the uncompressed part of the decoder had an input length of 512 tokens. For
the random prompt text reconstruction task, the decoder needs to reconstruct the content following
a given prompt. The prompt and the content to be reconstructed are a subsequence of the com-
pressed sequence. The prompts begin this subsequence and are excluded from the loss calculation
during training. The loss was calculated only for the reconstructed text following the prompts. In
the text continuation task, the decoder’s uncompressed input sequence was the continuation of the
compressed sequence. We evaluated the model’s compression performance using the BLEU-4 score,
comparing the reconstructed text to the actual text. We created 100 encoder input samples, each with
a token length of 2048. To ensure fairness in the scores, we selected 5 text segments as prompts for
the decoder at every 300-token interval from the sample. Each decoder then calculated the recon-
struction score for prompts at 5 different positions, and we averaged these scores. The prompt text
length was about 10 tokens, and the reconstruction text length was about 500 tokens. Reconstruction
examples can be found in Appendix D.

As shown in Figure 4, we compared different models under a 64× compression rate. Both RCC-64-
mamba and RCC-64-transformer achieved a BLEU-4 score close to 0.8, but mamba’s training time
was nearly 1.5 times that of transformer. RCC-64-transformer-last-hidden-layer, which uses only
the encoder’s last layer compression vectors, achieved a BLEU-4 score of approximately 0.6. This
approach, common in traditional autoencoder models (Wang et al., 2021; Qin & Van Durme, 2023;
Ge et al., 2023), retains less textual information compared to using compression vectors from all
layers. Additionally, ICAE performed poorly under a 64× compression rate, with a BLEU-4 score

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of about 0.1, confirming our method’s effectiveness in preserving text information. At the same time,
we tested reconstruction performance under different compression rates. At a 32× compression rate,
the BLEU-4 score reached 0.95. At a 64× compression rate, the score dropped to between 0.8
and 0.85. At a 128× compression rate, We encountered an issue where the loss failed to converge,
preventing BLEU-4 score computation. This indicates that higher compression rates increase the
difficulty of text reconstruction.

Model 32K 128K 256K 512K 1M
Infini-Transformer-FT 100/100/100 100/100/100 100/100/100 97/99/100 96/94/100
RCC-Mamba-FT-8k 98/100/97 96/98/94 95/93/89 94/95/96 94/96/96
RCC-Transformer-FT-8k 97/95/96 96/97/96 92/96/96 92/89/95 97/96/96
RCC-Mamba-FT-32k 100/100/100 100/100/100 100/100/100 100/100/100 100/99/100
RCC-Transformer-FT-32k 99/100/100 100/100/100 100/100/100 98/100/100 100/100/100

Table 1: The performance of the different models on the passkey retrieval tasks ranging from 32k to
1M sequence lengths, RCC-512-FT-8k denotes that the RCC model is trained with full parameters
on a fine-tuning dataset with a length of 8k. RCC-512-FT-64K is trained on a fine-tuning dataset
with a length of 64K based on RCC-512-FT-8k, while in this case, we freeze the encoder.

4.2 PASSKEY RETRIEVAL TASK

We utilize the passkey retrieval task (Mohtashami & Jaggi, 2023) to validate the effectiveness of the
two-stage approach mentioned in section 3.2.1. Additionally, we observe that our method exhibits
certain length extrapolation capabilities. This enables it to handle compressed vector lengths dur-
ing inference that far exceed those seen during training. This indicates that the compressed vectors
generated by our method can be reliably recognized by the encoder, with minimal influence from
positional encoding. Passkey retrieval task involves embedding a random number into a long se-
quence composed of repeated fixed short phrases. The task requires the model to accurately retrieve
the hidden number from these long sequences. Detailed construction methods for passkey retrieval
task samples are provided in Appendix C. In this task, we employed a compression rate of 512×.
Although this compression rate might not be effective for reconstruction tasks, experiments show
that the fine-tuned RCC model performs well in the passkey retrieval task. The model was first
pre-trained on a dataset containing only the random prompt text reconstruction task, with an en-
coder input length set to 8k and a non-compressed decoder input length of 512. After pre-training,
we constructed nearly 30,000 passkey retrieval task samples with context lengths of 8k and 32k,
respectively. These samples formed the fine-tuning dataset. We conducted a two-stage fine-tuning
process. In the first stage, we fine-tuned the entire parameter set using the 8k context length samples.
After completing the first stage, we proceeded to the second stage with the 32k context length sam-
ples. During this stage, we froze the encoder parameters to accommodate the constraints of limited
available memory.

From Table 1, we can observe that even with the encoder using only an 8k context window. The
model achieves almost 90% accuracy in passkey retrieval tasks up to 1M, demonstrating the strong
length extrapolation capabilities of our model. After the second stage of fine-tuning with sequences
up to 32k, the model achieves nearly 100% accuracy on passkey retrieval tasks up to 1M, proving
the effectiveness of our two-stage training method, even with the encoder parameters frozen at this
stage. Table 1 also shows that Compared to the model Infini-attention (Munkhdalai et al., 2024)
which requires re-pretraining, our model has also achieved similar performance. Unlike Infini-
attention, our method can be fine-tuned on existing open-source LLMs with a small amount of data,
without requiring the reconstruction of the LLM model and pre-training with hundreds of billions
of tokens.

4.3 LONG-TEXT BENCHMARK EVALUATION

4.3.1 EVALUATION DATASET

LongBench (Bai et al., 2023) is a benchmark designed to evaluate the capabilities of large language
models in understanding long contexts. To evaluate our model’s performance on texts of different

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

lengths, we selected the LongBench-E set. This dataset evenly covers test samples of various length
ranges, allowing us to analyze the impact of length variation on performance. Due to limitations
in the fine-tuning dataset, our work focuses on using the single-document QA and multi-document
QA tasks for evaluation. These two document QA tasks consist of four subtasks, with each task
containing between 150 to 300 samples. Detailed information on the evaluation dataset can be
found in Appendix E.

4.3.2 INSTRUCTION FINE-TUNING

First, we conducted pretraining on the random prompt text reconstruction task and the text continua-
tion task with a ratio of 1:9. We use two-stage approach for training, the first stage involves training
with full parameters on texts with a length of 2k. In the second stage, the encoder is frozen, and
training is conducted on texts with a length of 16k. For question answering instruction fine-tuning,
we used the Prompt-with-Context (PwC) (Ge et al., 2023) and hotpotQA (Yang et al., 2018) datasets.
These datasets include context with instructions and outputs, teaching the model to use context for
answering questions rather than relying solely on internal knowledge. We concatenated the instruc-
tions and context as the encoder’s input, while the instructions and output text were concatenated
as the decoder’s uncompressed input. We repeated the instructions twice to train the decoder to
reconstruct instructions, enhancing mixed instruction and context effectiveness during inference.
The PwC dataset has 240k samples, and hotpotQA has 90k samples. Additionally, to improve in-
struction reconstruction and maintain the decoder’s instruction-following capability, we randomly
selected 50k instruction samples from the orca dataset (Mukherjee et al., 2023). These samples lack
explicit context fields and typically mix instructions with context. We set the context of the orca
dataset to be empty and then processed it in the same way as PwC. During fine-tuning, the encoder’s
input context length was set to 2048 tokens. The uncompressed part of the decoder’s input was
specified as 512 tokens, while maintaining a compression rate of 32.

4.3.3 EVALUATION

We fine-tuned Pythia-1.4b with instruction pairs constructed from PwC, hotpotQA, and some orca
data to ensure it follows instructions. We evaluated the fine-tuned Pythia-1.4b while our model using
LongBench’s(Bai et al., 2023) automated evaluation tools, covering two document QA tasks. More
information related to the evaluation datasets can be found in Appendix E.

Method 0-2k 2-4k 4-8k 8k+ average
Pythia-SFT 30.54 - - - -
Pythia-No-SFT 4.41 - - - -
RCC-Ins-Reconstruction 28.12 23.37 21.24 17.72 22.61
RCC-Ins-Human 25.36 25.15 23.63 20.48 23.15
RCC-Ins-Compress 18.77 21.36 20.02 18.14 19.61

Table 2: Scores of different models on the task of Document QA.

As shown in Table 2, the fine-tuned pythia-1.4b significantly improved in following instructions.
Notably, Pythia-1.4b supports a maximum sequence length of 2048 tokens, so we only used samples
under 2k tokens for its evaluation. Our method supports LongBench’s maximum input length of 15k
tokens within the effective window length of the decoder. We further evaluated the following types
for our method:

RCC-Ins-Reconstruction, which reconstructs instructions from compressed vectors, scored 28.12
at a length of 2k. It uses the reconstructed instructions to generate responses. This score is com-
parable with Pythia-sft, demonstrating that RCC can maintain high-quality inference even with a
compression ratio of up to 32×. This method’s average score surpasses that of RCC-Ins-Compress,
which compresses both instructions and context, verifying the effectiveness of instruction recon-
struction. Due to the fine-tuning dataset being limited to 2k tokens, RCC-Ins-Reconstruction per-
forms poorly in instruction reconstruction when handling longer samples.

RCC-Ins-Human directly inputs real instruction texts into the decoder. Compared to the perfor-
mance fluctuations of RCC-Ins-Reconstruction with increasing sample length, RCC-Ins-Human ex-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

hibits more stable performance, especially maintaining efficient inference at lengths beyond 8k. We
attribute this to the decline in instruction reconstruction quality in RCC-Ins-Reconstruction for long
texts, whereas RCC-Ins-Human employs fixed instructions, unaffected by length.

RCC-Ins-Compress compresses both context and instructions simultaneously. The encoder re-
ceives concatenated texts, and the decoder is only prompted with brief information, such as ”Answer
is:”. This strategy’s limited ability to understand instructions and context gives it a low average score
of 19.61. It particularly underperforms compared to RCC-Ins-Human and RCC-Ins-Reconstruction
in samples under 8k. However, with ultra-long samples (8k+), its performance becomes comparable
to RCC-Ins-Reconstruction. This is likely due to the latter’s deficiencies in instruction reconstruc-
tion at extreme lengths. Specific model generation results can be found in Appendix E.

4.3.4 MORE POWERFUL BASE MODEL

To delve into the potential of RCC, we have employed the LLaMA2-7B (Touvron et al., 2023b)
model, which possesses a larger parameter size, as both the encoder and decoder for RCC. In order to
accommodate the constraints of training resources, we utilized the LoRA (Hu et al., 2021) approach
to efficiently fine-tune the LLaMA2-7B model. Table 3 presents the experimental results, which
indicate that the more powerful LLaMA2-7B model outperforms the Pythia-1.4b model. As the
text length exceeds 8k, the performance of the Pythia-1.4b model significantly degrades, whereas
the LLaMA2-7B model remains less affected. This outcome demonstrates that RCC can be readily
scaled to more robust base models, thereby achieving superior performance.

Length RCC-Pythia-1.4b RCC-LLaMA2-7B ∆

0-2k 32.15 44.68 +12.53
2-4k 33.11 35.07 +1.96
4-8k 29.96 31.15 +1.19
8k+ 23.38 30.78 +7.4

Table 3: The table presents the average scores of the 1.4b and 7b models across various text lengths
on the 2wikimqa and HotpotQA datasets. The results indicate a clear performance superiority of the
7b model over the 1.4b model, particularly in the 0-2k and 8k+ text length categories. It is worth
noting that both models were fine-tuned using data from the training set of HotpotQA.

Method Context Length (MiB)

0 2k 16k 64k 92k 1024k 1350k

CEPE 18000 18300 20888 46968 78894 – –
RCC 18198 18694 19302 21180 22058 55858 75686

Table 4: The table compares the memory consumption of RCC and CEPE when processing long
texts. CEPE uses an encoder with 0.4B parameters and cross-attention weights of 1.4B. RCC uses
the Llama model with 1.8B parameters as the encoder. Both RCC and CEPE use LLaMA2-7B as
the decoder.

4.3.5 MEMORY USAGE ANALYSIS

In Figure 1, we observe when RCC processes text up to 2k tokens, the GPU memory usage only
increases by approximately 0.1 GB. In contrast, the original Pythia-1.4b experiences a 2 GB increase
in memory usage for 2k token. When processing 16k token text, The total memory usage of Pythia-
1.4b will be double that of RCC. Since we use a compression rate of 32 ×, RCC can save up to
nearly 32 × in storage space as text length increases. We also conducted a comparative analysis
of the CEPE model, which is another approach aimed at extending the context window of LLMs.
The CEPE model consists of an encoder and a decoder. To facilitate efficient inference of long
contexts, the CEPE model has significantly reduced the number of parameters in its encoder, while
maintaining a substantial parameter count in its cross-attention and decoder modules. In contrast to
the RCC architecture, the CEPE (Yen et al., 2024) encoder does not compress the context length,
leading to a significantly shorter context length that can be processed within the same memory

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

limitations. This is illustrated in Table 4, where CEPE’s capacity for handling context length is
shown to be inferior to that of the RCC architecture. More information on additional memory
consumption can be found in Appendix A.

5 CONCLUSION

Utilizing compression techniques to mitigate challenges in long-text training and inference has
proven to be a highly promising strategy. Our work quantitatively analyzes the impact of differ-
ent context lengths on compression performance. It also achieves higher compression rates than
previous methods, significantly enhancing the ability of LLM to handle long texts. To address the
substantial resource consumption of long-text training, we proposed a two staged training strat-
egy that further improved the efficiency of the model in processing long-text training. RCC model
demonstrated outstanding performance across multiple tasks, including context compression recon-
struction, long-document question answering, and passkey retrieval tasks with sequences up to 1
million tokens. Additionally, we analyzed the issues arising from simultaneous compression of con-
text and instructions and propose an instruction reconstruction method that effectively alleviated
these problems.

The RCC method has significantly advanced text compression efficiency. It has also improved long-
document question answering, but it has limitations. Although the parameter count of RCC’s en-
coder and decoder is twice that of Pythia, the impact of the model’s parameter count on storage
space significantly diminishes with increased text length. Additionally, the lack of long-text in-
struction fine-tuning data has caused performance bottlenecks for RCC. Our experiments show the
critical impact of training data on the model’s performance. The effectiveness of language models
fine-tuned with instructions depends largely on the quality and coverage of those instructions. These
issues provide clear directions for our future research.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 11079–11091. Curran Associates, Inc., 2022.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3829–3846,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.232. URL https://aclanthology.org/2023.emnlp-main.232.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

10

https://aclanthology.org/2023.emnlp-main.232


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, and
Greg Mori. Attention as an rnn, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020.

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for context com-
pression in a large language model. In International Conference on Learning Representations,
2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 11 1997. ISSN 0899-7667.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,
2021. URL https://arxiv.org/abs/2106.09685.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression, 2023b.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance in-
ference efficiency of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 6342–6353, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.391. URL https://aclanthology.org/2023.
emnlp-main.391.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
language with blockwise ringattention, 2024.

Amirkeivan Mohtashami and Martin Jaggi. Random-access infinite context length for transformers.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 54567–54585. Curran Associates, Inc.,
2023.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 19327–19352. Curran Associates, Inc., 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden
Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang
Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the
transformer era, 2023.

11

https://arxiv.org/abs/2106.09685
https://aclanthology.org/2023.emnlp-main.391
https://aclanthology.org/2023.emnlp-main.391


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guanghui Qin and Benjamin Van Durme. Nugget: neural agglomerative embeddings of text. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019.

Siyu Ren, Qi Jia, and Kenny Zhu. Context compression for auto-regressive transformers with sen-
tinel tokens. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 12860–12867, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
794. URL https://aclanthology.org/2023.emnlp-main.794.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context. In International Confer-
ence on Learning Representations, 2022.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Szymon Tworkowski, Konrad Staniszewski, Mikoł aj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Mił oś. Focused transformer: Contrastive training for context scaling. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 42661–42688. Curran Associates, Inc., 2023.

Kexin Wang, Nils Reimers, and Iryna Gurevych. TSDAE: Using transformer-based sequen-
tial denoising auto-encoderfor unsupervised sentence embedding learning. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021, pp. 671–688, Punta Cana, Dominican Re-
public, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
findings-emnlp.59. URL https://aclanthology.org/2021.findings-emnlp.59.

David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
conditioning for controllability and toxicity reduction in language models. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pp. 5621–5634, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.412. URL
https://aclanthology.org/2022.findings-emnlp.412.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in

12

https://aclanthology.org/2023.emnlp-main.794
https://aclanthology.org/2021.findings-emnlp.59
https://aclanthology.org/2022.findings-emnlp.412


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.
In International Conference on Learning Representations, 2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel con-
text encoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 2588–2610, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.142. URL https://aclanthology.org/2024.
acl-long.142.

A GPU MEMORY CONSUMPTION ANALYSIS

We ran the model on an A800 GPU using HuggingFace’s Transformers library (Wolf et al., 2020)
and tested the GPU memory consumption of different models. As shown in Figure 5, the GPU
memory usage of Pythia-1.4b increases rapidly with the length of the input context. When the
context window reaches 64k, the model’s GPU memory usage exceeds 60GB. RCC-1.4 x 2b, where
both the encoder and decoder are Pythia-1.4b models with a compression rate of 32, shows that
when its GPU memory usage exceeds 60GB, it processes a context length close to 2048k tokens.
This is 30 times the length Pythia-1.4b can handle, nearly matching the compression rate.

8 16 32 64
Context Length (k)

0

10000

20000

30000

40000

50000

60000

M
em

or
y 

Us
ag

e 
(M

B)

11752

19914

33240

61928
Pythia-1.4b - 8-64k

Pythia-1.4b - 8-64k

64 256 1024 2048
Context Length (k)

0

10000

20000

30000

40000

50000

60000

M
em

or
y 

Us
ag

e 
(M

B)

9302
13300

29944

64858
RCC-1.4x2b - 64-2048k

RCC-1.4x2b - 64-2048k

Figure 5: When the GPU memory approaches 60GB, the memory occupation of different models.
Left: Pythia-1.4b, Right: RCC model using Pythia-1.4b for both encoder and decoder. Both models
utilize FlashAttention-2 (Dao, 2023).

B RANDOM PROMPT TEXT RECONSTRUCTION TASKS

The random prompt text reconstruction tasks involves an original text sequence (w1, . . . , wn), where
the encoder compresses the entire original text and produces a compressed hidden vector (H). The
decoder then needs to reconstruct the text that follows the random prompt word in the original text
based on the encoder’s input vector and the random prompt word from a segment of the original
text. The prompt word is a substring of the original text (wi, . . . , wj), denoted as p, and the target
sentence to be reconstructed, which follows the prompt word, is (wj , . . . , wx), denoted as c.

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/D18-1259
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.142


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

LRAE = max
h,...,p

P (c | h, . . . , p; ΘLLM )

In the text continuation task, the prompt is no longer a substring of the encoder’s input text but is the
immediately following segment of text, and the target sentence is still the text that comes right after
the prompt. The formula for the text continuation task is the same as that for the random prompt text
reconstruction task.

C FORMAT OF PASSKEY RETRIEVAL

We follow the text format for passkey retrieval from existing works (Chen et al., 2024; Mohtashami
& Jaggi, 2023). The format of the document is as follows:

There is an important info hidden inside a lot of irrelevant text.
Find it and memorize them. I will quiz you about the important
information there.

The grass is green. The sky is blue. The sun is yellow. Here we
go. There and back again. (repeat M times)

The pass key is 56994. Remember it. 56994 is the pass key. The
grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. (repeat N times)

What is the pass key? The pass key is

D EFFECTS OF TEXT RECONSTRUCTION

The example of our method’s reconstruction effect at 32× compression rate is shown below. As the
table 5 indicates, our method has almost completely reconstructed the context.

E FINE-TUNING DATASETS AND MODEL-GENERATED CASES

Table 6 displays information such as the sources, average lengths, and computational metrics for
various tasks. Below is a sample data entry for document question answering, primarily consisting
of three parts: ’input’, ’context’, and ’answers’. The ’input’ represents the prompt or instruction,
the ’context’ is the surrounding text the model needs to search through, which is often lengthy, and
the ’answers’ represent the possible answers derived from the context. Example:

input: "Which park is further south within Spain, Picos de Europa
National Park or Timanfaya National Park?"

context: ’Passage 1:Lake Ercina Lake Ercina is a small highland
lake ... The population is 47 (INE 2016).’

answers: [’Timanfaya National Park’]

When using RCC-Ins-Reconstruction for instruction reconstruction inference, we concatenate the
’context’ and ’input’ parts of the sample with a newline character and input them into the model’s
encoder for compression. Simultaneously, the decoder’s input is a fixed prompt:

prompt: "system: You are a helpful assistant. user: "

The decoder, starting with this prompt, first reconstructs the instruction and then answers the ques-
tion based on it. The content generated by the model is shown in blue font:

"system: You are a helpful assistant. user: Which park is
further south within Spain, Picos de Europa National Park or
Timanfaya National Park? assistant: Timanfaya National Park"

The model accurately reconstructed the instruction and provided the correct answer, ’Timanfaya
National Park’.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Our Result on RCC-32-Transformer Standard Result
The Access nodes and storage daemons
make up a data plane, while the core provides
its control plane. Also: How IBM Watson
is revolutionizing 10 industries TechRepub-
lic So, what does all mean for customers?
Itś multi-cloud storage management, which
enables allows you to manage, deploy, and
migrate data storage across private and ma-
jor public clouds. This includes Alibaba,
AWS, Azure, and Google Cloud. Itś easy
to see why Red Hat values this. It gives
their customers a way to manage storage
without sweating the details across multi-
ple platforms. As Ranga Rangachari, Red
Hatś vice president of Storage and Hyper-
converged Infrastructure, said in a statement:
”Data portability is a key imperative for or-
ganizations building and deploying cloud-
native applications across private and multi-
ple clouds. NooBaaś technologies will aug-
ment our portfolio and strengthen our ability
to meet the needs of developers in todayś hy-
brid and multicloud world. We are thrilled to
welcome a technical team of nine to the Red
Hat family as we work together to further so-
lidify Red Hat as a leading provider of open
hybrid-cloud technologies.” Related stories:
Kidderminster-based Renault UK Clio Cup
ace Dan Rowbottom will join Ciceley Mo-
torsport for the 2019 British Touring Car
Championship. Backed by Cataclean, the
lead valuable additive to clean and fuel en-
gine restore and exhaust systems, Rowbot-
tom will graduate from the Renault UK Clio
Cup into one of Ciceley’s Mercedes-Benz A-
Class cars for the forthcoming campaign. He
was a triple race winner last season his way
to fourth place

The Access nodes and storage daemons
make up a data plane, while the core provides
its control plane. Also: How IBM Watson
is revolutionizing 10 industries TechRepub-
lic So, what does all mean for customers?
Itś multi-cloud storage management, which
enables allows you to manage, deploy, and
migrate data storage across private and ma-
jor public clouds. This includes Alibaba,
AWS, Azure, and Google Cloud. Itś easy
to see why Red Hat values this. It gives
their customers a way to manage storage
without sweating the details across multi-
ple platforms. As Ranga Rangachari, Red
Hatś vice president of Storage and Hyper-
converged Infrastructure, said in a statement:
”Data portability is a key imperative for or-
ganizations building and deploying cloud-
native applications across private and multi-
ple clouds. NooBaaś technologies will aug-
ment our portfolio and strengthen our ability
to meet the needs of developers in todayś hy-
brid and multicloud world. We are thrilled to
welcome a technical team of nine to the Red
Hat family as we work together to further so-
lidify Red Hat as a leading provider of open
hybrid-cloud technologies.” Related stories:
Kidderminster-based Renault UK Clio Cup
ace Dan Rowbottom will join Ciceley Motor-
sport for the 2019 British Touring Car Cham-
pionship. Backed by Cataclean, the leading
fuel additive to clean and restore engine fuel
and exhaust systems, Rowbottom will grad-
uate from the Renault UK Clio Cup into one
of Ciceley’s Mercedes-Benz A-Class cars for
the forthcoming campaign. He was a triple
race winner last season his way to fourth
place

Table 5: Random prompt text reconstruction case.

Dataset Task Source Avg len Metric count
Qasper Single-Document QA Science 4,620 F1 224
MultiFieldQA Single-Document QA Multi-field 4,558 F1 150
HotpotQA Multi-Doc QA Wikipedia 6,657 F1 300
2WikiMultihopQA Multi-Doc QA Wikipedia 6,146 F1 300

Table 6: LongBench-E Information

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Additionally, we tested the RCC-Ins-compress model. The input to the RCC-Ins-compress encoder
is identical to that of the RCC-Ins-Reconstruction, but the decoder’s prompt is:

Prompt: "Response of system:"

Since RCC-Ins-compress has not been trained on instruction reconstruction tasks, it does not re-
construct the instruction in its output. Instead, it directly answers the question based on the mixed
compressed context and instruction, which may result in the model failing to follow the instruc-
tion.The content generated by the model is shown in blue font:

"Response of system: Panic of 1797"

It can be seen that the model made an error in following the instructions.

16


	Introduction
	Related Work
	Design of RCC
	RCC Model Architecture
	RCC Encoder
	RCC Decoder

	Model Training
	Two-Stage Approach 
	Reconstruction and Continuation Tasks
	Instruction-Aware Reconstruction


	Experiments
	Text Reconstruction
	Passkey Retrieval Task
	Long-Text Benchmark Evaluation
	Evaluation Dataset
	Instruction Fine-Tuning
	Evaluation
	More Powerful Base Model
	Memory Usage Analysis


	Conclusion
	GPU Memory Consumption Analysis
	Random Prompt Text Reconstruction Tasks
	Format of Passkey Retrieval
	Effects of Text Reconstruction
	Fine-Tuning Datasets and Model-Generated Cases

