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Revisiting Knowledge Tracing: A Simple and Powerful Model
Anonymous Authors

ABSTRACT
Advances in multimedia technology and its widespread application
in education have made multimedia learning increasingly impor-
tant. Knowledge Tracing (KT) is the key technology for achieving
adaptive multimedia learning, aiming to monitor the degree of
knowledge acquisition and predict students’ performance during
the learning process. Current KT research is dedicated to enhancing
the performance of KT problems by integrating the most advanced
deep learning techniques. However, this has led to increasingly com-
plex models, which reduce model usability and divert researchers’
attention away from exploring the core issues of KT. This paper
aims to tackle the fundamental challenges of KT tasks, including
the knowledge state representation and the core architecture de-
sign, and investigate a novel KT model that is both simple and
powerful. We have revisited the KT task and propose the ReKT
model. First, taking inspiration from the decision-making process
of human teachers, we model the knowledge state of students from
three distinct perspectives: questions, concepts, and domains. Sec-
ond, building upon human cognitive development models, such as
constructivism, we have designed a Forget-Response-Update (FRU)
framework to serve as the core architecture for the KT task. The
FRU is composed of just two linear regression units, making it an
extremely lightweight framework. Extensive comparisons were con-
ducted with 22 state-of-the-art KT models on 7 publicly available
datasets. The experimental results demonstrate that ReKT outper-
forms all the comparative methods in question-based KT tasks, and
consistently achieves the best (in most cases) or near-best perfor-
mance in concept-based KT tasks. Furthermore, in comparison to
other KT core architectures like Transformers or LSTMs, the FRU
achieves superior prediction performance with approximately only
38% computing resources. Through an exploration of the ReKT
model that is both simple and powerful, is able to offer new insights
to future KT research. The code is in the supplementary materials.

CCS CONCEPTS
• Information systems → Data mining; • Applied computing
→ E-learning.

KEYWORDS
adaptive multimedia learning; knowledge tracing; student perfor-
mance prediction; educational data mining
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1 INTRODUCTION
Given the rapid advancement of multimedia technology in edu-
cation, multimedia learning has become indispensable in modern
teachingmethods[41]. This underscores the significance of adaptive
multimedia learning, prioritizing the customization of educational
experiences. At the core of achieving this goal lies Knowledge
Tracing technology. Knowledge Tracing (KT) is the key technol-
ogy for achieving adaptive multimedia learning, aiming to monitor
the degree of knowledge acquisition (knowledge state) and pre-
dict students’ performance during the learning process. Effectively
addressing KT task can assist teachers in gaining insights into stu-
dents’ learning progress, enabling them to tailor teaching strategies
and offer personalized guidance [3].

As shown in Figure 1, the example of KT involves each question
being associated with one or more concepts. Students practice with
different questions, and the aim of KT is to predict the probability
of them answering the next question correctly. Often, due to the
lack of question information in certain datasets, KT can be further
categorized into question-based KT and concept-based KT for uni-
formity. Additionally, to simplify the KT task, multiple concepts
are sometimes amalgamated into a new concept [44]. Many meth-
ods [2, 21, 32] have been proposed for KT, which predict students’
future performance by tracing their knowledge state. Thus, the
key aspect of KT is effectively tracing and representing students’
knowledge state. However, most KT methods exclusively focus on
modeling either question-based KT or concept-based KT, without
exploring their potential in both of these scenarios.

In recent years, with the advancement of deep learning technolo-
gies, KT models based on methods such as Transformers [10, 12],
graph neural networks [37, 38, 43], and contrastive learning [18, 49]
have emerged one after another. Although these works have made
significant contributions to in-depth research on KT, we have ob-
served a strange phenomenon: the current mainstream of KT re-
search seems to rely on cutting-edge technologies from other do-
mains to build complex models, while efforts to delve deeper into
the KT problem itself appear to have made limited progress. While
works like LPKT [32] and LBKT [45] explore the impact of various
behaviors during student learning processes, they often depend on
specialized and intricate architectures, making it challenging for
subsequent research to derive substantial insights from them. We
hope to Revisit Knowledge Tracing (ReKT) and design a model that
is as simple and powerful as possible.

We start by addressing the two fundamental challenges of the KT
task: (1) How to represent a student’s knowledge state from learn-
ing data; (2) How to design a core architecture that is as simple as
possible and suitable for KT. For the first challenge, in fact, long be-
fore we began using KT models to solve this problem, teachers had
already been engaged in a similar process. When teachers assess a
student’s ability to solve a specific question, they consider several
key factors. First, they assess the student’s previous performance
on the same question. Second, they consider the student’s perfor-
mance on similar questions previously. Finally, if the student has

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Question-based KT Concept-based KT

Figure 1: A simple example of knowledge tracing, "Response" indicates the student’s answer.

not encountered this question or similar ones before, the teacher
consider the student’s overall historical performance. Inspired by
this process, we model student’s knowledge state from three dis-
tinct perspectives: questions, concepts, and domains. Regarding
the second challenge, drawing inspiration from human cognitive
development models [4], which emphasizes that changes in human
knowledge state (Response) are mainly affected by two main psy-
chological processes: internalization and forgetting. Internalization
emphasizes the updating (Update) process of knowledge state based
on environmental stimuli, while forgetting (Forget) emphasizes the
natural changing process of knowledge state over time. Therefore,
we model these core processes and design a lightweight core archi-
tecture called FRU (Forget-Response-Update) for KT tasks.

Specifically, we propose ReKT, which is both simple and powerful.
It traces student’s knowledge state from three distinct perspectives:
(1) It traces students’ question knowledge state from interaction
history limited to specific questions, indicating their mastery of
specific questions; (2) It traces students’ concept knowledge state
from interaction history limited to specific concepts (where two
questions with the same concept are considered similar), indicating
their mastery of questions encompassing those specific concepts;
(3) It traces students’ domain knowledge state from their entire
interaction history, indicating their mastery of questions spanning
the entire domain (i.e., overall performance). We combine these
three to comprehensively represent students’ knowledge state. Fur-
thermore, we’ve designed a lightweight core architecture called
FRU for KT tasks. It first calculates the forgetting of the student’s
knowledge state based on the interval time, then responses based
on the knowledge state, and finally updates the knowledge state
based on the learning interaction. It’s worth mentioning that FRU
comprises only two linear regression units. Experimental results
on 7 publicly available datasets, comparing ReKT with 22 state-of-
the-art KT models, including question-based KT and concept-based
KT, show that in most cases, ReKT significantly outperforms other
models. This demonstrates that even without relying on highly
complex models or cutting-edge technologies, by delving deeply
into the characteristics of the KT task, it is possible to construct a
model that is both simple and powerful. We believe that ReKT has
the potential to offer a wealth of new inspiration and insights for
future KT research.

2 RELATEDWORK
KTwas proposed by [9] in 1994. Classic knowledge tracing methods
can be categorized into bayesian-basedmethods such as BKT[14, 50]
and factor analysis-basedmethods such as LFA[5], AFM[6], PFA[28],
KTM[40]. In recent years, with the advancement of deep learning,
an increasing number of methods have been employed to tackle
KT tasks. We categorize the existing methods into the following
two types based on the nature of the KT task:

Concept-based KT: This category of KT methods aims to pre-
dict the student’s mastery of specific concepts. DKT [29] is regarded
as a representative method for concept-based KT, utilizing an LSTM
to construct the student’s knowledge state. DKVMN [51] employs
a dynamic key-value memory network to capture the student’s
knowledge state. SAKT [26] models the relationship between stu-
dents and concepts using self-attention mechanisms to derive the
knowledge state. SKVMN [1] employs an enhanced LSTM for mod-
eling students’ knowledge state and updates it based on students’
responses to relevant questions. GKT [24] propagates a student’s
knowledge state over a graph structure. SKT [38] takes into account
various relationships between concepts to simulate the propagation
of knowledge states. ATKT [13] utilizes adversarial learning to rep-
resent students’ knowledge states in a more robust manner. CL4KT
[18] designs various data augmentation strategies to enhance the
representational capacity of the knowledge state.

Question-based KT: Building upon concept-based KT, this cat-
egory of methods includes additional question information to pre-
dict a student’s performance on specific questions. AKT [12] is
considered a representative method for question-based KT, uti-
lizing a context-aware Transformer architecture to account for
forgetting behavior in tracing students’ knowledge state. SAINT
[8] constructs the student’s knowledge state entirely using the
Transformer framework. GIKT [46] employs GCN[16] to uncover
relationships between questions and concepts, and incorporates an
interactive module to capture students’ knowledge states. DIMKT
[31] extensively mines question difficulty information to model the
student’s knowledge state. simpleKT [21] simplifies AKT to trace
students’ knowledge state. DTransformer [49] employs contrastive
learning to maintain a stable knowledge state. AT-DKT [20] en-
hances knowledge state representation by introducing two extra
tasks related to question design.
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𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝒕−𝜹 𝑿𝒕 𝑬𝒕+𝟏Representation
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…… ……

𝒓𝟐 𝒓𝟑 𝒓𝒕𝒓𝒕−𝜹

𝑿𝟏 𝑿𝟐 𝑿𝒕 𝒉𝒕+𝟏
𝑸…… ……𝑿𝟑 𝑿𝒕−𝜹

Question
knowledge state

FRU

𝑿𝟐 𝒉𝒕+𝟏
𝑪…… ……𝑿𝟑 𝑿𝒕−𝜹

Concept
knowledge state

𝒉𝒕+𝟏
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𝒓𝒕+𝟏

𝒚𝒕+𝟏

𝑳𝒐𝒔𝒔𝑲𝑻

Need to answer

Figure 2: The overall framework of ReKT. ReKT constructs the question and concept knowledge states from the interaction
history limited to the current question and concept. Additionally, it constructs the domain knowledge state using the entire
interaction history.

3 METHOD
Figure 2 showcases ReKT’s framework. We’ll introduce KT’s prob-
lem formulation and then detail ReKT’s modules.

3.1 Problem Formulation
The KT task can be defined as follows: Given a student’s interaction
history sequence 𝐿 = {(𝑞1, 𝑐1, 𝑟1), (𝑞2, 𝑐2, 𝑟2), ..., (𝑞𝑡 , 𝑐𝑡 , 𝑟𝑡 )}, where
𝑞𝑡 is the question at time 𝑡 , 𝑐𝑡 signifies the concept associated with
question 𝑞𝑡 , and 𝑟𝑡 ∈ {0, 1} shows if the student’s response to 𝑞𝑡
is correct. KT’s aim is to predict the probability of the student an-
swering the next question 𝑞𝑡+1 correctly. For concept-based KT,
which lacks specific question data, concepts are treated as equiva-
lent representations of questions[23, 51]. So, the goal is to predict
the probability of the student answering the next concept 𝑐𝑡+1 cor-
rectly. Please note that if a question involves multiple concepts, we
combine them into a new concept[44].

3.2 Representation of questions, concepts and
responses

Effectively representing questions, concepts, and responses is im-
portant for KT, and establishing their relationships forms a highly
effective approach. Let’s denote the feature matrix as follows: 𝑄 ∈
R𝑛×𝑑 for questions, 𝐶 ∈ R𝑚×𝑑 for concepts, and 𝑅 ∈ R2×𝑑 for
responses. Here, 𝑛 represents the total number of questions,𝑚 is
the total number of concepts, and 𝑑 signifies the feature dimension.
Inspired by the classic psychological measurement theory of Rasch
[30], which explicitly employs scalars to represent question diffi-
culty. For the current question 𝑞𝑡+1 and its associated concept 𝑐𝑡+1,
their feature representation 𝐸𝑡+1 = 𝑄𝑞𝑡+1 +𝐶𝑐𝑡+1 + 𝑑𝑖 𝑓 𝑓𝑞𝑡+1 ∗𝑉𝑐𝑡+1 .
Here, 𝑄𝑞𝑡+1 denotes the 𝑞𝑡+1-th row of 𝑄 , 𝐶𝑐𝑡+1 corresponds to the
𝑐𝑡+1-th row of 𝐶 , 𝑑𝑖 𝑓 𝑓𝑞𝑡+1 represents the difficulty of 𝑞𝑡+1 and is a
scalar, and𝑉𝑐𝑡+1 ∈ R1×𝑑 captures the extent of variation of the ques-
tion with respect to its concept. For any given moment 𝑡 within the
interaction history 𝐿, where 𝐿𝑡 = (𝑞𝑡 , 𝑐𝑡 , 𝑟𝑡 ), the feature representa-
tion 𝑋𝑡 for 𝐿𝑡 is calculated as 𝑋𝑡 = 𝐸𝑡 + 𝑅𝑟𝑡 , where 𝑅𝑟𝑡 corresponds
to the 𝑟𝑡 -th row of 𝑅.

3.3 Representation of knowledge state
The representation of a student’s knowledge state is the most
fundamental issue in KT, and ReKT constructs three types of
knowledge states for a student from the interaction history 𝐿 =

(𝑞1, 𝑐1, 𝑟1), (𝑞2, 𝑐2, 𝑟2), ..., (𝑞𝑡 , 𝑐𝑡 , 𝑟𝑡 ): question, concept, and domain
knowledge state. For the current question 𝑞𝑡+1 and its correspond-
ing concept 𝑐𝑡+1:

For the aspect of question knowledge state: We construct it from
the interaction history 𝐿

𝑄

𝑡+1 limited to the current question 𝑞𝑡+1.
Here, 𝐿𝑄

𝑡+1 =
⋃
𝑗 𝐿𝑗 , if 𝑞 𝑗 == 𝑞𝑡+1, 𝑗 < 𝑡 + 1.⋃ represents the union

operation. The feature representation of 𝐿𝑄
𝑡+1 is denoted as 𝑋𝑄

𝑡+1,
as shown in Figure 2, where 𝑋𝑄

𝑡+1 = {𝑋3, 𝑋𝑡−𝛿 }. As shown in the
example, they all include the current question 3. Thus, the question
knowledge state ℎ𝑄

𝑡+1 = FRU (𝑋𝑄
𝑡+1 ∪ 𝑋𝑡+1). The FRU architecture

is shown in Figure 3, and we’ll provide a detailed explanation of it
in the next section. Note the inclusion of an added term, 𝑋𝑡+1, here.
This serves the purpose of informing the FRU about the current
time, i.e., 𝑡 + 1.

For the aspect of concept knowledge state: We construct it from
the interaction history 𝐿𝐶

𝑡+1 limited to the current concept 𝑐𝑡+1.
Here, 𝐿𝐶

𝑡+1 =
⋃
𝑗 𝐿𝑗 ,if 𝑐 𝑗 == 𝑐𝑡+1, 𝑗 < 𝑡 + 1. The feature repre-

sentation of 𝐿𝐶
𝑡+1 is denoted as 𝑋𝐶

𝑡+1, as shown in Figure 2, where
𝑋𝐶
𝑡+1 = {𝑋1, 𝑋3, 𝑋𝑡−𝛿 }. As shown in the example, they all include

the current concept 2. Therefore, the concept knowledge state
ℎ𝐶
𝑡+1 = FRU (𝑋𝐶

𝑡+1 ∪ 𝑋𝑡+1). The inclusion of 𝑋𝑡+1 here also aims to
inform the FRU about the current moment. The FRU here is distinct
from the earlier mentioned FRU parameter.

For the aspect of domain knowledge state: We construct it
from the entire interaction history 𝐿. The feature representa-
tion of 𝐿 is denoted as 𝑋 , as shown in Figure 2, where 𝑋 =

{𝑋1, 𝑋2, 𝑋3, . . .𝑋𝑡−𝛿 , . . . , 𝑋𝑡 }. Therefore, the domain knowledge
state ℎ𝐷

𝑡+1 = FRU (𝑋 ∪ 𝑋𝑡+1). Consistent with the above, here 𝑋𝑡+1
is used to inform the FRU of the current moment, and the FRU
parameters here are independent of the previous FRU’s parameters.
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3.4 FRU framework
Inspired by human cognitive development models [4], we design a
lightweight core architecture called FRU (Forget-Response-Update)
for KT tasks, as shown in Figure 3. It first takes into account the pro-
cess of students forgetting their knowledge state, then responses to
specific questions based on knowledge state, and ultimately updates
the knowledge state based on response accuracy. Specifically, let the
current moment be 𝑡 , the last relevant moment is 𝑡 − 𝛼 (this allows
FRU to handle time series with varying intervals), 𝑍𝑡−𝛼 ∈ R1×𝑑
represents the knowledge state at the time 𝑡 −𝛼 . First, we remember
that the interval time 𝛼 is represented by features as 𝐼𝛼 ∈ R1×𝑑 ,
then at the current moment 𝑡 , the degree of forgetting of 𝑍𝑡−𝛼 can
be calculated as 𝑓𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ( [𝑍𝑡−𝛼 ⊕ 𝐼𝛼 ]𝑊1 + 𝑏1), where𝑊1 and
𝑏1 are all learnable parameters. Then the knowledge state of the
current response 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 = 𝑓𝑡 ∗𝑍𝑡−𝛼 . Finally, the student will up-
date the knowledge state according to the feature representation𝑋𝑡
of current interaction, then the student’s current knowledge state
𝑍𝑡 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 + 𝑇𝑎𝑛ℎ( [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ⊕ 𝑋𝑡 ]𝑊2 + 𝑏2), Among them,
𝑊2 and 𝑏2 are all learnable parameters. The subsequent processing
flow can be deduced by analogy.

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡−𝛼 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡+𝛽
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Figure 3: FRU framework.

We record the interaction sequence input by FRU as 𝑋
𝜉
𝑡 =

{..., 𝑋𝑡−𝛼 , 𝑋𝑡 }, then FRU can be abstracted as: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 = FRU
(𝑋 𝜉𝑡 ). Clearly, the FRU framework is very lightweight, as it consists
of only two linear regression units. However, it aligns remarkably
well with students’ cognitive learning processes, and subsequent
experiments will demonstrate its effectiveness.

3.5 Prediction and training
For the question 𝐸𝑡+1 that needs to be answered after feature rep-
resentation and the students’ three knowledge states ℎ𝑄

𝑡+1, ℎ
𝐶
𝑡+1

and ℎ𝐷
𝑡+1, then the student’s current final knowledge state 𝐻𝑡+1 =

ℎ
𝑄

𝑡+1 ⊕ ℎ𝐶
𝑡+1 ⊕ ℎ𝐷

𝑡+1. It’s worth noting that here we use concatena-
tion rather than attention mechanisms to combine them, as we
consider that different knowledge states play distinct roles. Finally,
based on the student’s current knowledge state 𝐻𝑡+1, we predict
the student’s response 𝑦𝑡+1 for answering 𝐸𝑡+1, in other words,
𝑦𝑡+1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊4𝑅𝑒𝐿𝑈 (𝑊3 [𝐸𝑡+1 ⊕ 𝐻𝑡+1] + 𝑏3) + 𝑏4), where𝑊3,
𝑏3,𝑊4 and 𝑏4 are all learnable parameters. The knowledge tracing
loss 𝐿𝑜𝑠𝑠𝐾𝑇 is computed as follows:

𝐿𝑜𝑠𝑠𝐾𝑇 = −
𝑇−1∑︁
𝑡=1

(𝑟𝑡+1𝑙𝑜𝑔𝑦𝑡+1 + (1 − 𝑟𝑡+1)𝑙𝑜𝑔(1 − 𝑦𝑡+1))

Here, 𝑇 represents the total number of time steps, and 𝑟𝑡+1 de-
notes the actual response result from the student at time step 𝑡 + 1.
We use Adam[15] to optimize model parameters.

4 EXPERIMENTS
4.1 Datasets
We evaluated the performance of ReKT on 7 publicly available
commonly used datasets: ASSIST091, ASSIST122, ASSIST153, AS-
SIST174, Statics20115, EdNet6, and Eedi7. The statistical information
for these datasets is provided in supplementary materials. Based
on previous research, for the ASSIST series datasets, we removed
scaffold questions and records without concepts[12]. Additionally,
multiple concepts were merged into new concepts[44]. For the AS-
SIST15 dataset, records with an "isCorrect" field not equal to 0 or
1 were removed[1]. In the case of Statics2011, original question
indexes and step indexes were combined into a new question in-
dex. If the same question was answered consecutively, only the
first answer was retained. Moreover, due to the large scale of AS-
SIST12, EdNet, and Eedi datasets, and limitations in computational
resources, we randomly sampled records from 5000 students[19, 46].

4.2 Baseline
To evaluate ReKT’s performance, we compared it to baseline models
of concept-based KT and question-based KT.

4.2.1 Concept-based KT baseline. BKT[9]: The first knowledge
tracing method employs hidden markov models to trace students’
knowledge states. DKT[29]: The first deep learning-based knowl-
edge tracing model that employs LSTM to trace students’ knowl-
edge states. DKVMN[51]: Utilizes a dynamic key-value memory
network to model students’ knowledge states.DKT+[48]: Enhances
DKT by addressing inconsistent knowledge states. KQN[17]: Pre-
dicts students’ performance using knowledge states and concept en-
coders. DeepIRT[47]: Introduces IRT[42] to DKVMN for improved
interpretability of predictions. DKT+forgetting[23]: Enhancing
DKT by incorporating students’ forgetting behaviors. SAKT[26]:
The first self-attention mechanism-based knowledge tracing model
that attempts to capture the relationship between students and con-
cepts. GKT[24]: The first graph-based knowledge tracing model
that propagates students’ knowledge states within the proposed
graph. AKT-concept[12]: A variant of AKT where inputs are lim-
ited to concepts. SAINT-concept[8]: A variant of SAINT where in-
puts are limited to concepts. ATKT[13]: Maintaining stable knowl-
edge states through adversarial learning. CL4KT[18]: Introduces
multiple data augmentation strategies and employs contrastive
learning to alleviate sparsity in student-interaction data.

4.2.2 Question-based KT baseline. KTM[40]: Modeling students’
knowledge states using FactorizationMachines.AKT[12]: Proposes
a context-aware Transformer architecture to simulate students’ for-
getting behavior for knowledge state tracing. SAINT[8]: Fully em-
ploys a Transformer [39] architecture to model students’ knowledge
states. PEBG+DKT[19]: Enhances DKT by deeply exploring the

1https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data
2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
3https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-
data
4https://sites.google.com/view/assistmentsdatamining/dataset
5https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
6https://github.com/riiid/ednet
7https://eedi.com/projects/neurips-education-challenge
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Table 1: Comparison of ReKT-concept and concept-based KT baseline on 7 datasets. Best results in bold, next best underlined.

Model ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

BKT 0.7180 0.6922 0.6613 0.7096 0.6739 0.7423 0.6519 0.6290 0.7444 0.7973 0.6737 0.7018 0.6828 0.6680
DKT 0.7684 0.7297 0.7328 0.7367 0.7323 0.7536 0.7188 0.6673 0.8483 0.8275 0.7006 0.7129 0.7629 0.7182

DKVMN 0.7629 0.7266 0.7228 0.7329 0.7310 0.7540 0.7142 0.6639 0.8363 0.8224 0.6975 0.7120 0.7590 0.7162
DKT+ 0.7783 0.7337 0.7373 0.7350 0.7304 0.7542 0.7095 0.6622 0.8718 0.8270 0.7028 0.6698 0.7484 0.7079
KQN 0.7546 0.7249 0.7230 0.7330 0.7263 0.7544 0.7065 0.6611 0.8031 0.7969 0.6909 0.7117 0.7583 0.7143

DeepIRT 0.7657 0.7279 0.7253 0.7345 0.7283 0.7530 0.7174 0.6647 0.8408 0.8262 0.6997 0.7124 0.7609 0.7173
DKT+forgetting 0.7717 0.7295 0.7362 0.7359 0.7529 0.7607 0.7165 0.6665 0.8467 0.8182 0.7018 0.7159 0.7642 0.7186

SAKT 0.7564 0.7192 0.7296 0.7348 0.7436 0.7558 0.7079 0.6596 0.8092 0.8111 0.6956 0.7115 0.7556 0.7123
GKT 0.7666 0.7290 0.7261 0.7333 0.7289 0.7528 0.7203 0.6685 0.8384 0.8224 0.6943 0.7104 0.7618 0.7170

AKT-concept 0.7668 0.7280 0.7384 0.7390 0.7312 0.7557 0.7157 0.6637 0.8384 0.8204 0.6987 0.7111 0.7626 0.7166
SAINT-concept 0.7487 0.7140 0.7289 0.7353 0.7365 0.7572 0.7013 0.6560 0.7598 0.7940 0.6974 0.7096 0.7589 0.7130

ATKT 0.7735 0.7332 0.7347 0.7363 0.7311 0.7555 0.7198 0.6699 0.8175 0.7991 0.7027 0.7109 0.7663 0.7195
CL4KT 0.7626 0.7275 0.7236 0.7331 0.7310 0.7549 0.7139 0.6615 0.8251 0.8170 0.6965 0.7118 0.7583 0.7147

ReKT-concept 0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208

Table 2: Comparison of ReKT and question-based KT baseline on 6 datasets. Best results in bold, next best underlined.

Model ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

KTM 0.7190 0.7020 0.7093 0.7245 0.7248 0.6686 0.8157 0.8071 0.7583 0.7293 0.7035 0.6792
AKT 0.7850 0.7429 0.7830 0.7599 0.7572 0.6916 0.8718 0.8376 0.7616 0.7372 0.7882 0.7340
SAINT 0.7515 0.7134 0.7643 0.7477 0.7537 0.6894 0.8279 0.8110 0.7621 0.7370 0.7866 0.7293

PEBG+DKT 0.7738 0.7329 0.7518 0.7495 0.7619 0.6949 0.8655 0.8368 0.7571 0.7366 0.7853 0.7310
GIKT 0.7726 0.7301 0.7672 0.7506 0.7723 0.6989 0.8834 0.8428 0.7640 0.7366 0.7924 0.7362
CDKT 0.7733 0.7297 0.7720 0.7547 0.7709 0.7019 0.8872 0.8510 0.7645 0.7386 0.7920 0.7360
DIMKT 0.7704 0.7310 0.7621 0.7484 0.7682 0.6993 0.8897 0.8501 0.7623 0.7368 0.7908 0.7338
QIKT 0.7801 0.7377 0.7707 0.7529 0.7645 0.6985 0.8817 0.8482 0.7579 0.7327 0.7932 0.7363

simpleKT 0.7772 0.7315 0.7786 0.7571 0.7570 0.6899 0.8614 0.8350 0.7627 0.7373 0.7885 0.7307
AT-DKT 0.7671 0.7293 0.7425 0.7405 0.7265 0.6702 0.8687 0.8386 0.7039 0.7136 0.7649 0.7180

DTransformer 0.7646 0.7223 0.7672 0.7515 0.7538 0.6898 0.8686 0.8513 0.7501 0.6954 0.7531 0.7315
ReKT 0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397

relationship between questions and concepts to obtain pre-trained
question representations. GIKT[46]: Utilizes GCN[16] to aggre-
gate relationships between questions and concepts. CDKT[11]:
Enhances DKT by employing contrastive learning to learn infor-
mative question representations. DIMKT[31]: Explores question
difficulty information and its relationship with students’ knowledge
states. QIKT[7]: Designs question-sensitive cognitive representa-
tions for modeling student knowledge states. simpleKT[21]: A
simplified version of AKT, which simplifies the architecture of
AKT without sacrificing too much performance. AT-DKT[20]: En-
hances DKT by introducing two additional question-related tasks.
DTransformer[49]: Proposing a novel architecture to trace stu-
dents’ patterns of learning activities

4.3 Experimental setting
We implemented ReKT using PyTorch[27]. For each dataset, we split
80% of all the sequences as the training set, 20% as the test set[46, 49].
The learning rate was set to 0.002, batch size to 80, and feature
dimension 𝑑 to 128. Additionally, we applied L2 regularization to
the model weights with a decay coefficient of 1e-5. Sequences with
a length of less than 3 were removed. To handle variable sequence
lengths, all sequences were padded to a consistent length of 200.
To mitigate overfitting, we introduced a dropout rate of 0.4. ReKT
was trained on a Linux server with two 2.00GHz Intel(R) Xeon(R)
CPUs and a Nvidia Tesla P100-PCIE-16GB GPU. Consistent with

prior research[25, 33, 34, 36, 52], we employed the Area Under
the Curve (AUC) as the primary evaluation metric, with Accuracy
(ACC) serving as the secondary metric. We repeated the experiment
five times and reported the average performance[2, 35].

4.4 Experimental results
In this section, we compared ReKT with other baseline methods.

4.4.1 Concept-based KT Performance. We modify ReKT by remov-
ing question from its input, changing from (𝑞𝑡 , 𝑐𝑡 , 𝑟𝑡 ) to (𝑐𝑡 , 𝑟𝑡 ).
Here, 𝐸𝑡 = 𝐶𝑐𝑡 . As questions are absent, question knowledge state
isn’t traced in this setup. We call this adapted version ReKT-concept.
We compare its performance with the concept-based KT baseline, as
shown in Table 1. We can found: (1) Compared with other concept-
based KT baseline models, ReKT-concept consistently achieves
the best (in most cases) or nearly the best performance across all
datasets. This underscores ReKT’s remarkable capability in effec-
tively tracing the knowledge states of students; (2) Notably, the
performance of DKT+ excels on certain datasets (e.g., ASSIST09
and Statics2011), attributed to its assumption of uniform recent
responses among students. However, this assumption doesn’t truly
capture the students’ knowledge states; rather, it observes a cer-
tain response pattern. While DKT+’s performance thrives when a
dataset adheres to this pattern, its efficacy substantially declines
when the dataset deviates from it (as seen in ASSIST17 and Eedi).
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Table 3: Performance comparison of ReKT ablation study. "Q" means question knowledge state, "C" means concept knowledge
state, and "D" means domain knowledge state. Best results in bold.

Q C D ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

√
0.6801 0.6745 0.7056 0.7208 0.7251 0.6641 0.7915 0.8120 0.7423 0.7275 0.6608 0.6584√
0.7694 0.7285 0.7691 0.7504 0.7455 0.6834 0.8603 0.8325 0.7390 0.7272 0.7467 0.7053√
0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385

√ √
0.7701 0.7274 0.7691 0.7502 0.7462 0.6840 0.8592 0.8335 0.7459 0.7296 0.7449 0.7035√ √
0.7815 0.7380 0.7780 0.7582 0.7803 0.7094 0.8955 0.8562 0.7745 0.7444 0.7946 0.7382√ √
0.7915 0.7440 0.7846 0.7607 0.7793 0.7093 0.8962 0.8566 0.7689 0.7426 0.7965 0.7394

√ √ √
0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397

Table 4: Performance comparison of ReKT-concept ablation study. "C" means concept knowledge state, and "D" means domain
knowledge state. Best results in bold.

C D ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

√
0.7493 0.7157 0.7159 0.7267 0.7395 0.7570 0.6771 0.6392 0.8044 0.8084 0.6722 0.7060 0.7134 0.6887√
0.7680 0.7321 0.7295 0.7354 0.7271 0.7544 0.7156 0.6653 0.8513 0.8293 0.7041 0.7132 0.7661 0.7187

√ √
0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208

In contrast, ReKT-concept consistently performs well across all
datasets, indicating its genuine ability to trace students’ knowledge
states; (3) The promising DKT+forgetting performance emphasizes
the essential role of incorporating knowledge state forgetting mech-
anisms in KT models; (4) In most scenarios, AKT-concept outper-
forms SAINT-concept, implying that the sole application of the
Transformer architecture yields marginal improvements for KT.
The context-aware Transformer architecture introduced by AKT
more effectively captures students’ knowledge states; (5) The im-
pressive performance of ATKT indicates that adversarial training
enhances KT models’ generalization capability.

4.4.2 Question-based KT Performance. Table 2 presents a perfor-
mance comparison between ReKT and other question-based KT
baseline models. Due to the unavailability of question data in AS-
SIST15, it is not applicable to question-based KT. We can draw the
following conclusions from Table 2: (1) Compared to other question-
based KT baseline models, ReKT demonstrates significantly supe-
rior performance. This highlights the excellence of ReKT, despite
its inherent simplicity; (2) It is evident that AKT demonstrates
powerful performance, but it relies on a specialized architecture:
Context-Aware Transformer. However, this architecture is highly
complex. In comparison, FRU is particularly simple; (3) The impres-
sive performance of GIKT and CDKT underscores the advantageous
role of effectively representing questions in enhancing the perfor-
mance of KT models; (4) Overall sound performance of DIMKT
suggests the utility of incorporating question difficulty informa-
tion within the KT framework; (5) The consistent performance of
QIKT indicates the effectiveness of modeling students’ knowledge
state around the questions; (6) Comparing ReKT with simpleKT,
despite the simplicity of simpleKT in comparison, ReKT notably
outperforms simpleKT and strikes a balance between efficiency and
simplicity in its architecture, a characteristic lacking in simpleKT.

4.5 Ablation Study
In this section, we explore the influence of various knowledge states
on ReKT. Specifically, in question, concept, and domain knowledge

states, we select one or two of them as variants to contrast with
ReKT for ablation experiments. The ablation experiments for ReKT
are shown in Table 3, while the ablation experiments for the ReKT-
concept are shown in Table 4. Please note that ReKT-concept, as it
does not include questions, does not trace the question knowledge
state. We can observe: (1) When tracing only one knowledge state,
the performance of question, concept, and domain knowledge states
shows an increasing trend. This is evident as the interaction history
data they utilize also increases in the same order. The model evi-
dently benefits from more data, thus leading to better performance
with domain knowledge state; (2) Tracing two knowledge states, as
opposed to one, results in a notable performance improvement. Fur-
thermore, the performance of question + domain knowledge state
is not always inferior to concept + domain knowledge state (as ob-
served in ASSIST17 and EdNet). This indicates that across different
datasets, each knowledge state plays a significant role; (3) Tracing
all three of these knowledge states (ReKT) yields significant im-
provements in performance across all datasets compared to tracing
only one or two knowledge states. This undoubtedly demonstrates
the effectiveness of these three knowledge states and validates the
effectiveness of the proposed multi-perspective modeling.

4.6 Core architecture performance for KT
In this section, we will explore the performance of different core ar-
chitectures on KT. Specifically, we will compare FRU with four com-
monly used core architectures in KT: LSTM, GRU, Transformer, and
AKT-Transformer [12], while only tracing domain knowledge state
(as is the practice in most KT research). The results for question-
based KT are shown in Table 5, and the results for concept-based KT
can be found in Table 6. We can conclude the following: (1) In terms
of an overall performance comparison, in question-based KT, FRU
as the core architecture achieves the best performance in most cases.
In concept-based KT, FRU also demonstrates commendable perfor-
mance. This suggests that the proposed FRU architecture is highly
suitable for KT; (2) When comparing the number of parameters and
computing resources, FRU requires significantly fewer parameters
and computing resources. FRU achieves excellent performance with



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Revisiting Knowledge Tracing: A Simple and Powerful Model ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Performance of different core architectures for question-based KT. "AKT-Transformer" means context-aware Trans-
former architecture in AKT, which modifies the calculation of basic Transformer attention scores to consider the forgetting
behavior of students based on contextual information. "Rank" reports the average rank across all datasets. Best results in bold.

Core Architecture ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi Rank # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

LSTM 0.7811 0.7384 0.7747 0.7566 0.7723 0.7033 0.8791 0.8451 0.7650 0.7382 0.7951 0.7377 2.5 165.121K 2.643G
GRU 0.7837 0.7381 0.7762 0.7558 0.7720 0.7035 0.8785 0.8461 0.7658 0.7383 0.7957 0.7368 2.0 132.097K 2.115G

Transformer 0.7635 0.7231 0.7648 0.7483 0.7594 0.6944 0.8638 0.8382 0.7612 0.7362 0.7808 0.7267 5.0 627.841K 9.963G
AKT-Transformer 0.7738 0.7336 0.7765 0.7567 0.7623 0.6935 0.8768 0.8454 0.7615 0.7363 0.7903 0.7344 3.7 627.841K 9.963G

FRU 0.7823 0.7388 0.7771 0.7570 0.7740 0.7045 0.8950 0.8561 0.7647 0.7385 0.7945 0.7385 1.8 98.817K 1.567G

Table 6: Performance of different core architectures for concept-based KT. Refer to Table 5 for a detailed explanation.

Core Architecture ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi Rank # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

LSTM 0.7684 0.7297 0.7328 0.7367 0.7323 0.7536 0.7188 0.6673 0.8483 0.8275 0.7006 0.7129 0.7629 0.7182 2.4 165.121K 2.643G
GRU 0.7674 0.7314 0.7389 0.7397 0.7331 0.7568 0.7192 0.6686 0.8428 0.8258 0.7037 0.7136 0.7654 0.7180 2.0 132.097K 2.115G

Transformer 0.7487 0.7140 0.7289 0.7353 0.7365 0.7572 0.7013 0.6560 0.7598 0.7940 0.6974 0.7096 0.7589 0.7130 4.4 627.841K 9.963G
AKT-Transformer 0.7668 0.7280 0.7384 0.7390 0.7312 0.7557 0.7157 0.6637 0.8384 0.8204 0.6987 0.7111 0.7626 0.7166 3.6 627.841K 9.963G

FRU 0.7680 0.7321 0.7295 0.7354 0.7271 0.7544 0.7156 0.6653 0.8513 0.8293 0.7041 0.7132 0.7661 0.7187 2.6 98.817K 1.567G

Table 7: Performance of different core architectures for ReKT. "AKT-Transformer" means context-aware Transformer archi-
tecture in AKT, which modifies the calculation of basic Transformer attention scores to consider the forgetting behavior of
students based on contextual information. Model names are formed from core architecture initials. Best results in bold.

Model Core Architecture ASSIST09 ASSIST12 ASSIST17 Statics2011 EdNet Eedi # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ReKT-L LSTM 0.7874 0.7443 0.7794 0.7591 0.7766 0.7061 0.8825 0.8486 0.7722 0.7435 0.7968 0.7383 0.592M 9.425G
ReKT-G GRU 0.7933 0.7465 0.7835 0.7607 0.7790 0.7073 0.8823 0.8493 0.7745 0.7441 0.7982 0.7404 0.461M 7.332G
ReKT-T Transformer 0.7629 0.7238 0.7536 0.7420 0.7638 0.6958 0.8322 0.8254 0.7679 0.7387 0.7793 0.7205 1.454M 23.078G
ReKT-A AKT-Transformer 0.7702 0.7318 0.7669 0.7510 0.7656 0.6965 0.8602 0.8381 0.7680 0.7409 0.7892 0.7338 1.454M 23.078G

ReKT(ours) FRU 0.7917 0.7449 0.7852 0.7609 0.7814 0.7102 0.8967 0.8568 0.7752 0.7447 0.7971 0.7397 0.263M 4.175G

Table 8: Performance of different core architectures for ReKT-concept. Refer to Table 7 for a detailed explanation.

Model Core Architecture ASSIST09 ASSIST12 ASSIST15 ASSIST17 Statics2011 EdNet Eedi # params FLOPsAUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ReKT-concept-L LSTM 0.7685 0.7316 0.7352 0.7366 0.7493 0.7603 0.7196 0.6680 0.8363 0.8233 0.7080 0.7150 0.7679 0.7199 0.379M 6.034G
ReKT-concept-G GRU 0.7724 0.7328 0.7343 0.7368 0.7511 0.7618 0.7212 0.6687 0.8330 0.8182 0.7084 0.7149 0.7704 0.7229 0.296M 4.724G
ReKT-concept-T Transformer 0.7627 0.7271 0.7243 0.7323 0.7287 0.7553 0.7101 0.6574 0.7987 0.8100 0.6992 0.7125 0.7587 0.7144 1.239M 19.662G
ReKT-concept-A AKT-Transformer 0.7689 0.7306 0.7339 0.7367 0.7316 0.7561 0.7169 0.6656 0.8335 0.8220 0.7014 0.7121 0.7653 0.7183 1.239M 19.662G

ReKT-concept(ours) FRU 0.7737 0.7340 0.7359 0.7385 0.7531 0.7624 0.7237 0.6690 0.8546 0.8319 0.7096 0.7153 0.7693 0.7208 0.181M 2.871G

approximately 38% of the computing resources compared to other
core architectures (the following sections will present the calcula-
tion process). This undoubtedly proves the lightweight nature of
FRU and highlights its simplicity and effectiveness as the core archi-
tecture; (3) Considering the average rank, FRU performs the best in
question-based KT and ranks relatively well in concept-based KT.
This indicates that FRU maintains strong competitiveness through-
out, despite it is very simple (details on the computing resources
and ranking methodology are clarified in the following sections).

4.6.1 Computing Resources. We use the number of parameters
and FLOPs as reference computing resources. Additionally, we
compare the resource utilization of FRU with two widely used core
structures in knowledge tracing: LSTM and Transformer (LSTM
is more commonly used than GRU in recurrent neural networks
for KT). Therefore, the computing resources required for FRU are
approximately ((98.817/165.121+1.567/2.643)/2+(98.817/627.841+
1.567/9.963))/2 ≈ 38% times that of the other architectures.

4.6.2 Rank. We use AUC as the ranking metric, taking the average
ranking of each core architecture across all datasets.

4.7 Different Core Architectures for ReKT
In this section, we discuss the impact of different core architectures
on ReKT. Specifically, we compare four commonly used core archi-
tectures in KT: LSTM, GRU, Transformer, and AKT-Transformer,
and their performance is shown in Table 7. The same experiments
on ReKT-concept are presented in Table 8. Please note the difference
between this experiment and the previous one: this experiment, in
the context of ReKT, traces students’ knowledge states from multi-
ple perspectives, while the previous experiment, like most research,
only traced domain knowledge states. We can draw the following
conclusions: (1) Their performance follows the order of FRU, GRU,
LSTM, AKT-Transformer, and Transformer in descending order,
clearly demonstrating the effectiveness of FRU. In addition, simpler
methods appear to be more effective. This could be attributed to the
introduction of multiple perspectives, which provides more compre-
hensive information for these simplified models, while excluding
unnecessary information or noise; (2) It also indicates that LSTM
modeling outperforms AKT-Transformer or Transformer, consis-
tent with much research [21, 22] showing that architectures based
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on LSTM tend to perform better than those based on Transformers.
This may be because LSTM aligns better with the characteristics
of knowledge states: continuity and dynamic updates. (3) AKT-
Transformer consistently outperforms Transformer, highlighting
the importance of considering student knowledge forgetting be-
havior. (4) When comparing parameters and FLOPs, ReKT achieves
optimal performance with minimal resources, highlighting its sim-
plicity and effectiveness.

4.8 The time and space complexity of FRU
In this section, we will conduct a thorough analysis of the time
and space complexity of FRU, which will aid us in gaining a deeper
understanding of FRU. FRU is shown in Figure 3.We denote the time
step as 𝑇 , and for simplicity, we set the hidden layer dimension to
be consistent as 𝑑 . For any time step 𝑡 ∈ [1,𝑇 ], 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ∈ R1×𝑑 ,
𝑋𝑡 ∈ R1×𝑑 , 𝑍𝑡 ∈ R1×𝑑 , 𝐼𝛼 ∈ R1×𝑑 .

Learnable parameters of FRU: The parameters that FRU learn
are only𝑊1 ∈ R2𝑑×𝑑 , 𝑏1 ∈ R1×𝑑 ,𝑊2 ∈ R2𝑑×𝑑 , 𝑏2 ∈ R1×𝑑 , then the
total number of learnable parameters of FRU is 2𝑑 ∗ 𝑑 + 1 ∗ 𝑑 + 2𝑑 ∗
𝑑 + 1 ∗ 𝑑 = 4𝑑2 + 2𝑑 .

Time complexity of FRU: The complexity of calculating 𝑓𝑡 is
𝑂 (1 ∗ 2𝑑 ∗ 𝑑 + 1 ∗ 𝑑), the complexity of calculating 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 is
𝑂 (1 ∗ 𝑑), and the complexity of calculating the update value (that
is,𝑇𝑎𝑛ℎ( [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ⊕𝑋𝑡 ]𝑊2 +𝑏2)) is𝑂 (1 ∗ 2𝑑 ∗𝑑 + 1 ∗𝑑), and the
complexity of calculating 𝑍𝑡 is 𝑂 (1 ∗ 𝑑). Then the complexity of
one time step is𝑂 ((2𝑑2 +𝑑) +𝑑 + (2𝑑2 +𝑑) +𝑑), that is,𝑂 (4𝑑2 + 4𝑑).
Then the time complexity of FRU is 𝑂 (4𝑇𝑑2 + 4𝑇𝑑).

Space complexity of FRU: The space complexity of 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡 ,
𝑋𝑡 , 𝑍𝑡 , and 𝐼𝛼 is all 𝑂 (1 ∗ 𝑑). Considering the total time step, their
combined space complexity is 𝑂 (𝑇 ∗ 4 ∗ 1 ∗ 𝑑). In addition, the
number of learnable parameters of FRU is 4𝑑2 + 2𝑑 , so the space
complexity of FRU is 𝑂 (4𝑇𝑑 + 4𝑑2 + 2𝑑).

4.9 Visual Analysis
One of the most interesting applications of knowledge tracing
is probably tracing students’ knowledge states. Once a student’s
knowledge state is accurately captured, teachers can provide tar-
geted guidance to address their weaknesses in understanding. In
this section, we randomly selected students’ interaction sequences
on the ASSIST17 dataset for 15 time steps to compare the tracing
of students’ knowledge states between DKT-Q and ReKT. DKT-Q
is a variant of DKT where the input is changed from concepts to
questions, as shown in Figure 4 and Figure 5. The y-axis represents
specific questions, differentiated by different colored circles. The
x-axis represents student interactions (time step, question and ques-
tion related concept). If the student answered the current question
correctly, the corresponding circle is displayed. If the student an-
swered incorrectly, an additional white circle is added to indicate
the difference. The value of each element in the matrix represents
the student’s mastery of a specific question at the corresponding
time step. As shown in Figure 4, DKT-Q can hardly trace themastery
of question 785 by the student (indicated by minimal changes in
the student’s mastery of question 785). This is because there is only
one interaction about it in the interaction sequence (at time step
𝑡 = 13). However, considering that question 785 is related to con-
cept 78, and the student has actually practiced numerous exercises
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Figure 4: A case study of DKT-Q for tracing knowledge state.
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Figure 5: A case study of ReKT for tracing knowledge state.

related to concept 78 (at time steps 𝑡 = 3, 5, 7, 8, 9, 11), it is intuitive
to expect that the student’s understanding of question 785 should
improve. However, DKT-Q cannot capture this, whereas ReKT can
trace the improvement in the student’s mastery of question 785
as they continuously practice exercises related to concept 78 (as
shown in Figure 5). In addition, during time steps 𝑡 = 5, 7, 9, 11, the
student practices question 786 continuously. Intuitively, regardless
of whether the student answers correctly or incorrectly, the student
should gain knowledge from it (improving the mastery of question
786). However, DKT-Q shows a decrease in the student’s mastery
of question 786 at time steps 𝑡 = 9, 11, which goes against intuition.
On the other hand, ReKT can continuously traces the improvement
in the student’s mastery of question 786. This shows the advan-
tage of ReKT in tracing students’ knowledge state. Through the
visualization results, teachers can clearly understand the student’s
mastery of certain questions and provide targeted exercises.

5 CONCLUSION
In this paper, we revisit knowledge tracing and propose a simple
and powerful model, ReKT. Firstly, inspired by the decision-making
process of human teachers, we model students’ knowledge states
from three distinct perspectives: questions, concepts, and domains.
Secondly, drawing inspiration from human cognitive development
models, we design a lightweight FRU architecture as the core frame-
work for KT tasks, comprising only two linear regression units.
When compared to 22 state-of-the-art KT models on 7 publicly
available datasets, the results indicate that ReKT achieves opti-
mal performance in most cases, whether in question-based KT or
concept-based KT. This underscores that, even without relying on
complex models or cutting-edge technology, by delving deeper into
the characteristics of KT tasks, one can design models that are both
simple and powerful. We believe that ReKT has the potential to offer
a wealth of new inspiration and insights for future KT research.
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