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Abstract

Large vision-language models (VLMs) have shown significant performance boost in various
application domains. However, adopting them to deal with several sequentially encoun-
tered tasks has been challenging because finetuning a VLM on a task normally leads to
reducing its generalization power and the capacity of learning new tasks as well as causing
catastrophic forgetting on previously learned tasks. Enabling using VLMs in multimodal
continual learning (CL) settings can help to address such scenarios. To improve general-
ization capacity and prevent catastrophic forgetting, we propose a novel prompt-based CL
method for VLMs, namely Cluster-based Modality Fusion Prompt (CluMo). We design a
novel Key-Key-Prompt pair, where each prompt is associated with a visual prompt key
and a textual prompt key. We adopt a two-stage training strategy. During the first stage,
the single-modal keys are trained via K-means clustering algorithm to help select the best
semantically matched prompt. During the second stage, the prompt keys are frozen, the se-
lected prompt is attached to the input for training the VLM in the CL scenario. Experiments
on two benchmarks demonstrate that our method achieves SOTA performance.

1 Introduction

Visual Question Answering (VQA) is a complicated task, where the goal is to answer questions described in
natural language (text) about a given input image. Addressing VQA requires understanding and fusion of
information from both the visual and textual domains to generate accurate responses. Recently, significant
advancements in addressing VQA tasks have emerged due to the development of pre-trained large vision-
language models (VLMs) (Radford et al., 2021b; Kim et al., 2021). However, in real world dynamic scenario
(Li & Hoiem, 2017), as data comes in temporal sequence, the VQA model should generate answers based
on new images and new questions which has different distribution than original data (Qian et al., 2023a),
which lead to the setting of continual learning (CL). In a CL setting, we learn new tasks and aim for
continuously improving the model performance without forgetting previously learned knowledge, also known
as catastrophic forgetting (French, 1999). To address catastrophic forgetting, a group of CL algorithms
are deployed. Regularization-based methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017) constrain the
drastic parameter shift when learning new tasks. Expansion-based methods (Douillard et al., 2022; Cai
et al., 2023) expand the model with small portion of additional weights and use the expanded weights to
learn the new incoming tasks. Rehearsal-based methods (Rebuffi et al., 2017; Rolnick et al., 2019) store a
representative subset of the training dataset for each task into a small memory buffer and replay them back
during the learning of the current task to maintain the encoded knowledge of the previously learned tasks.
More recently, prompt-based methods (Wang et al., 2022b;a) aim to use prompts that contains task-specific
or semantic-specific information to prevent catastrophic forgetting. A prompt is attached to the embedded
features of the input to adapt the model to focus on the specific characteristics of the input task that has
been learned before.

Most existing CL methods consider unimodal, i.e., vision-only or language-only, settings and hence are
sub-optimal to address VQA tasks. Applying uni-modal methods does not take the multimodal nature of
VQA tasks and leads to limited view. Meanwhile, the uni-modal methods may ignore the rich and complex
interaction between modalities and cause deteriorating performance (Qian et al., 2023a). On the other
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Figure 1: Comparison between existing prompt-based CL methods and our proposed method: (a) Uni-modal
based methods use image feature to select prompts from a prompt pool. (b) Multi-modal based methods
use the image features to select image prompts and use the text features to select the text prompts. (c) We
first train the prompt key using a clustering algorithm to form a cluster key and use the combination of the
cluster key from both modalities to select the fusion prompt.

hand, few CL methods are introduced to handle multimodal tasks. Lao et al. (2023); Nikandrou et al.
(2024b) adopt knowledge distillation for CL-VQA, and Qian et al. (2023b); Zhang et al. (2023); Lei et al.
(2022) adopt prompt-style methods as solution. However, none of them explicitly focus on the interaction
between different modalities to boost VQA tasks. To tackle this shortcoming, we propose a novel two-stage
prompt learning-based CL method, namely cluster-based modality fusion prompt (CluMo), with the focus
of modality interaction. Figure 1 visualizes the high-level idea of our approach. Our method adopts a
pre-trained VLM as its backbone and benefits from a clustering-based modal-specific key strategy to boost
generalization capacity and minimize catastrophic forgetting. More specifically, we use a clustering-based
algorithm to train visual-prompt keys and textual-prompt keys during the first stage. During the second
stage, we assign each input image-question pair with well-trained prompt keys to its corresponding visual
keys and textual keys. We then use the combination of two modal-specific keys to find the best-matched
prompt to adapt the model for the input task. We also benefit from knowledge distillation during training
to further improve the performance. Our proposed method outperforms existing alternative methods. Our
specific contribution includes:

• We propose a novel clustering-based prompt learning method for training VLMs in CL settings to
address VQA tasks with vision-and-language inputs.

• We use a two-stage training strategy to train the prompt keys before training the whole model to
guarantee optimal prompt selection that is necessary for generalization on the input.

• We offer extensive experiments to demonstrate that the proposed approach achieves SOTA perfor-
mance against CL existing methods and offer insight about the reason of this improved performance.

2 Related Works

Visual Question Answering Visual Question Answering (VQA) has been a pivotal task at the inter-
section of computer vision and natural language processing which led to advances on more complex tasks.
Initially, VQA was formulated as a classification task in which answers are selected from a predefined set of
answers (Agrawal et al., 2016) and was solved by using CNNs for image feature extraction and RNNs for

2



Under review as submission to TMLR

text processing. With the development of transformer and BERT-like models (Lu et al., 2019a; Li et al.,
2019), performance in VQA tasks has significantly been improved due to the better capacity of capturing
the intricate relationship between two modalities and generating the response in the form of meaningful
and descriptive texts. In recent years, VQA task has become downstream task for pretrained large vision
language model (VLM) (Liu et al., 2023; Radford et al., 2021a; Li et al., 2021; Lu et al., 2019b), which
are initially pretrained on large-scale image-text dataset that are not necessary related to visual question
answering. The pre-trained VLMs are essentially capable for zero-shot VQA, and can also be fine-tuned by
VQA dataset for VQA downstream task specifically.

Prompt-Based Learning Prompt learning, firstly introduced in NLP tasks (Petroni et al., 2019), is based
on providing a fixed function to condition a pre-trained model so that it gets extra information token which
specializes it to perform the down-stream task. It is more memory-efficient than using Adapters (Pfeiffer
et al., 2021) or LoRA (Hu et al., 2021) and has been used successfully to guide responses of VLMs for a
particular task. In general, prompts are not only considered fixed texts, eg. "A photo of", but also can be
trainable soft-vectors for both image and text modalities (Lester et al., 2021; Li & Liang, 2021). Zhou et al.
(2022) introduces learnable text context, composed of trainable vectors, to replace the fixed textual input.
Wang et al. (2022b) adopts trainable vectors append to image input to add additional knowledge to visual
input. Our method adopts trainable vector as prompt based on both image and text input.

Prompt Learning for Continual Learning Prompt learning has been used in CL to prevent catas-
trophic forgetting when a large pre-trained models is trained on a stream of sequentially encountered tasks.
It allows a single model to quickly adapt to new tasks in the stream without needing extensive retrain-
ing. It allows scalability to learning a large number of tasks since each task primarily requires learning or
generating new prompts rather than retraining the entire model. L2P (Wang et al., 2022b) pioneered to
connect prompt-based learning and CL. Instead of having a single shared prompt to learn all tasks, L2P
introduced the concept of “prompt pool” to maintain prompts for different tasks independently from each
other. DualPrompt (Wang et al., 2022a) extended the idea of prompt pool in l2p by introducing task-specific
prompt and task-agnostic prompt. S-Prompt (Wang et al., 2023) applied clustering to build the prompt pool
with domain-specific prompts. These prompt learning methods for CL only consider single-modality, i.e.,
vision-only or text-only, and hence are sub-optimal for tasks with multi-modal inputs such VQA when the
modalities are related. Our method benefits from the specific properties of multi-modal data to address
VQA in CL settings using prompt learning and leads to performance improvements against these methods.

3 Problem Description

Consider a set of VQA tasks, {Ti}T
i=1, which are encountered sequentially and each of them is from different

domain. For each of the tasks, a labeled training dataset Di = {⟨(Ij
i , T j

i )i, yj
i ⟩Ni

j=1} is accessible, Ni denotes
the size of dataset, Ij

i ∈ RH×W ×C denotes the input image, T j
i ∈ RL×|V | denotes the input text, and yj

i

denotes the text-typed discrete label. The order in which the VQA tasks are observed is not known in
advance and the training data points are assumed to be drawn iid from a task-specific joint distribution
pt

i(·, ·, ·). Upon learning each task, the model moves forward to learn the next task. Since all the previously
learned tasks can be encountered at any time during testing in the future, the model should learn new tasks
such that its knowledge of previously learned tasks is maintained, i.e., by preventing catastrophic forgetting.

We formulate our problem in a domain-diverse domain-incremental learning setting (Van de Ven & Tolias,
2019) which assumes all the tasks are from different domains and the boundaries between them are known
during training and inference time. Task identities are not known during inference. We consider that
each task can be learnt individually by adapting a pre-trained large multimodal transformer f i

θM (·, ·) via
minimizing a suitable discrimination loss L, e.g., cross entropy. In our approach, all the model parameters,
except the final classifier layer θcls, are frozen during training to preserve the generalizability of the model.
We benefit from prompt learning to enable using a single model to learn all tasks. To prevent catastrophic
forgetting, a trainable task-specific prompt pool, which contains several task-specific prompts, is attached
to the model f i

θM (·, ·) such that the best-semantically-matched prompt is selected based on image and text
inputs for task specialization. The prompt is then pre-pended to the input vectors so that the output is
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Figure 2: Block diagram of the proposed approach: Left: the backbone contains a pre-trained frozen visual
encoder, a textual encoder, and a multimodal encoder. The answer decoder shares the same architecture
as multimodal encoder. During the training phase, the fixed number of visual prompt keys, textual prompt
keys, and a prompt pool will be added for each new task. Right: the procedure of visual prompt key training
consists of training the modal-specific prompt key by a sequence of randomly selected batches of training
data from current task until convergence is reached. Same procedure for textual prompt key.

generated based on specialization. Our method is rehearsal-free and does not need any memory buffer similar
to prior approaches (Lopez-Paz & Ranzato, 2022; Rebuffi et al., 2017).

4 Proposed Architecture

Our architecture, named Cluster-based Modality fusion prompt (CluMo), contains two unimodal task-
specific cluster-based keys for vision and text embeddings and one prompt pool. The combination of the
selections from both keys is then used to select the best matched prompt from the prompt pool. A high-level
diagram of our approach is presented in Figure 2. In this section, we first introduce the preliminaries such
as backbone model and prompt pool-based method in 4.1, and modality fusion prompt in Sec. 4.2, then the
cluster-based prompt key is described in Sec. 4.3, and the training and the inference strategy is discussed in
Sec. 4.4.

4.1 Preliminary

Backbone The base multimodal transformer contains three encoders: the visual encoder Ev, the textual
encoder Et, and the multimodal fusion encoder Ef . Given a image input I, i.e., a single image, and a textual
input T , i.e., a question, the data processing pipeline for the model is:

ŷ(I, T ) = F(Ef ([Ev(I); Et(T )])), (1)

where F(·) is the classifier to predict the answer, and ŷ is the predicted answer.

Prompt Pool As an adoption of prompt learning in continual learning, a prompt pool is a set of trainable
key-value (k-p) pair, in which k ∈ R1×D denotes the “prompt key”, and p ∈ RLp×D is the prompt. Lp

and D denote the length and dimension of the prompt. Given an input image I, we compute image feature
vector VI = Ev(I) ∈ RLv×D, where Lv is the dimension of the features, after passing the image through the
visual encoder. VI [0] is matched with all the keys k within the prompt pool via similarity score, such as L2
similarity, to find the most similar ki. In general condition, the corresponding pi is selected and prepend
to I as I ′ = [pi; I]. Parameters of k and p are updated through back-propagation during the training.
However, in our setting, the prompt is prepended to the image feature vector V′

I = [pi; VI ], and
we adopt a two stage training strategy that prompt keys are trained before model and prompts.
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4.2 Modality Fusion Prompt

Previous prompt-based CL methods such as L2P (Wang et al., 2022b) associate each prompt in the prompt
pool with a single prompt key to form Key-Value pair. In practice, the prompt keys in prompt-based CL
can be considered as cluster centers. These cluster encode a notion of similarity between the prompts. The
input feature vectors that form a cluster in the feature space can be assigned to these cluster centers, which
are prompt keys. The intuition behind this idea is that feature vectors with small geometric distance
in the feature space are semantically similar (Wang et al., 2023).

However, such a key-value pair design considers only single modality without tasks with multimodal inputs.
The reason is that different input modalities contain different or complementary semantic information.
Hence, having prompt keys that associate with each modality can help guiding prompt selection, which is
more comprehensive and representative in term of semantic properties of each modality. Thus, we propose
a task-specific prompt pool architecture, namely Modality Fusion Prompt, which is composed of the
visual prompt keys Kv, the textual prompt keys Kt, and the prompt pool P as following:

Kt = [kt1 , kt2 , ..., ktSt
],

Kv = [kv1 , kv2 , ..., kvSv
],

P = [p1, p2, ..., pSp
],

kti ∈ RD, kvj ∈ RD, pk ∈ RLp×D,

(2)

where St , Sv, and Sp are the sizes of textual prompt key, the visual prompt key, and the prompt pool,
respectively. Lp is the length of each prompt and D is the hidden dimension of the transformer backbone.
The prompt pool size Sp is then determined as Sp = Sv × St. Each prompt is associated with the unique
combination of one visual prompt key and one textual prompt key. Given a specific visual prompt key Kvm

and a specific textual prompt key Ktn
, the Key-Key-Value pair is defined as the following:

(kvi , ktj) → pi∗Sv+j (3)

As modality fusion prompt is task-specific, new visual prompt keys, textual prompt keys and a prompt
pool will be initialized for each of the new coming task. The previous ones are frozen during training. Based
on our experiment setting, the backbone contains 290.3M parameters, while the modality fusion prompt only
contains 73728 parameters for every task, which is only 0.025% the size of original backbone model.

4.3 Cluster-based Prompt Key

K-means clustering has been widely adopted in machine learning algorithms for semantic separation and un-
derstanding, where data from different domains can be explicitly separated via clustering in an unsupervised
way (Wang et al., 2023) (Cohn & Holm, 2021). However, even though the data from single task belong to
the same domain, they can still be further divided into sub-domains based on the semantic property. To
make each prompt key be the semantically cluster center of the sub-domains for both vision and text inputs,
we adopt mini-batch K-means clustering algorithm on prompt keys of Kv and Kt to make each prompt key
diverse and representative. Let B = (I, T ) be the random batch from the training dataset. We extract the
image feature vector vI and the text feature vector vT as follows:

VI = Ev(I), VT = Et(T ), (4)

where VI ∈ RB×LI ×D and VT ∈ RB×LT ×D, B is the batch size, LI and LT are the length of vectors
for image and text features, represent the embedded image and text input respectively. For visual prompt
key clustering, each image feature vector, VIn

, is set by taking mean along second the dimension such that
V̂In

∈ RB×D, and V̂In
is used to compare with every prompt key in Kv:

similarity(n, m) = ||V̂In − Kvm ||2, (5)

and the prompt key with highest similarity is assigned to match VIn . After calculation of the whole batch B,
the prompt keys are then updated by calculating the mean of all V̂In assigned to that specific visual prompt
key. We repeat the above step until the convergence. The procedure of updating the text prompt key Kt is
similar to updating the image prompt keys. Algorithm 1 summarizes our approach for prompt key training.
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Algorithm 1 PromptKeyTraining
Require: Dataset D, Image Prompt Key Pool Kv, Text Prompt Key Pool Kt, Image Prompt Size Si, Text

Prompt Size St

while Not Converge do
Random Select batch of image I, text T from D
V̂Im = mean(Ev(I), dim = 1)
V̂Tm = mean(Et(T ), dim = 1)
ClusterI = dictionary()
ClusterT = dictionary()
for i, t in V̂Im

, V̂Tm
do

Keyimg = image key with top similarity(i, Kv)
Keytxt = text key with top similarity(t, Kt)
ClusterI [Keyimg].append(i)
ClusterT [Keytxt].append(t)

end for
for i in Si do

Kv[i] = mean(ClusterI [i])
end for
for i in St do

Kt[i] = mean(ClusterT [i])
end for

end while

Figure 3: Naive Example of Prompt Selection. Consider a naive animal VQA dataset which only contains
dog and cat images and questions only about "what" and "where". During the first stage training, the visual
prompt keys and textual prompt keys are learnt to represent "dog"/"cat" and "where"/"what" respectively
(in realistic settings the keys will learn the implicit cluster instead of explicit category). Given a test
image-question pair, the image and question are projected to their modality-specific feature space through
the encoders. The nearest prompt keys, which are keys represent "dog" and "what" are selected. The
combination of the two prompt keys lead to "prompt3" which is finally selected.
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4.4 Training and Inference

Algorithm 2 Continual Learning Procedure
Require: Datasets D, Pretrained Model M

Freeze M except M.classifier
M.CluMoList = dict()
for dataset Di in D do

Initialize new CluMo Ci

M.CluMoList[Di] = Ci

PromptKeyTraining(Di,Ci)
Freeze visual key and textual key of Ci

for Batch B in Di do
for img i,txt t in B do

Select Keyimg based on i from Ci

Select Keytxt based on t from Ci

Find prompt P by Keyimg and Keytxt from Ci

end for
loss = Train(M,B,P )
loss.backward()

end for
end for

During training, we adopt a two-stage training strategy to ensure that the prompt keys are correctly
settled before learning the current task. In the first stage of learning each task Ti, we random select batches
from the current task’s dataloader to train minibatch k-means Cluster on the visual and the textual prompt
key Kv and Kt until reaching the convergence of the clustering algorithm. During the second stage, the
trained Kv and Kt are frozen. Within the iteration of training dataloader, each training instance is assigned
to its nearest prompt key using k-nearest neighbor (KNN) algorithm to find the best match prompt pk from
the prompt pool P. pk is then attached to the model pipeline. Inspired by Wang et al. (2022a), we also add
a shared general prompt, pg, with has the same dimension of pk for maintaining cross-task knowledge:

ŷ(I, T ) = F(Ef ([pg; pk; Ev(I); Et(T )])) (6)

During the second stage, we also use knowledge distillation to further boost the performance. Before the
training of task T , we keep a frozen copy of model after finishing T − 1, denoted as MT −1. To prevent
significant parameter shift, we pass the same input image and question to both MT and MT −1 and add the
difference between the two model’s output to the loss:

LKD(I, T ) = MSE(ŷMT
(I, T ), ŷMT −1(I, T )). (7)

The final objective loss function would be:

L = Lce(ŷ(I, T ), y) + LKD (8)

Where Lce is the same cross entropy loss. The overall training procedure for all tasks come in sequence is
presented in Algorithm 2.

During inference, the model is frozen and we follow a task-agnostic procedure to let the test instance select
the best matched prompt across all prompt pools. The text image-text pair is sent to all the task-specific
prompt pool and the image input is aligned with the best-matched image prompt key while the text input
is aligned with the best-matched text prompt key within each pool. After getting the best-matched keys,
we select the pair of image/text prompt key with the top sum of text similarity and image similarity. The
combination of prompt keys is deployed to find the corresponding prompt, which is pre-pend to the output of
multimodal encoder. To help better understand the procedure of prompt selection, an visualization example
is provided in Figure 3.
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CLOVE-scene
Method abcdef dbafec bdcafe acbefd caefdb bafedc

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 34.03 34.28 34.89 34.99 38.83 21.65 34.45 35.14 34.42 34.47 33.95 35.67

EWC 37.49 28.04 37.00 29.10 37.95 27.46 37.99 29.68 37.13 28.63 37.83 27.97
LwF 38.18 26.82 35.03 32.84 37.31 29.11 37.85 29.87 37.94 28.15 38.21 27.48

ER 41.05 19.92 42.09 17.12 42.37 18.09 41.91 20.28 41.11 19.65 42.08 20.52
GEM 41.52 18.33 43.14 14.73 42.89 17.43 42.54 20.13 41.90 20.88 43.11 19.86

MAFED 42.72 17.23 43.48 16.53 44.22 16.90 43.53 18.12 43.03 17.21 44.68 18.04
VQACL 43.46 16.94 44.03 14.18 44.87 16.24 44.85 17.91 43.77 16.90 45.01 16.85

L2P 43.01 18.22 45.84 15.03 44.64 17.41 45.63 14.96 44.78 17.99 46.58 14.85
DualPrompt 45.51 15.86 46.58 13.49 45.83 16.48 46.27 15.45 46.21 15.89 47.01 13.16

S-Prompt 45.73 14.11 45.93 14.17 46.99 14.38 46.68 14.77 47.53 12.19 44.09 22.32

CluMo 48.23 9.69 47.52 9.55 48.18 9.57 48.00 8.78 47.97 11.17 47.68 11.06

CLOVE-function
Method soarkl rsaolk osrlak oarlks skaolr ksoarl

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 31.55 53.76 37.34 39.64 23.34 57.32 24.09 62.79 16.34 74.82 17.50 84.46

EWC 35.70 47.92 37.82 41.55 38.92 40.48 40.74 33.89 37.53 37.22 40.85 32.32
LwF 37.18 46.86 36.81 44.12 39.21 39.81 36.81 41.29 30.49 53.11 29.17 55.84

ER 42.22 32.97 39.78 38.62 41.22 35.79 37.14 33.38 33.41 48.99 38.23 38.01
GEM 44.58 30.87 41.43 29.46 40.87 32.98 39.81 28.77 36.88 39.14 40.26 31.87

MAFED 43.48 31.01 40.62 34.12 42.70 30.17 40.23 26.41 35.15 44.39 40.08 34.74
VQACL 44.36 18.28 42.89 27.45 43.58 26.86 41.25 23.53 38.67 40.31 41.84 28.65

L2P 44.80 16.38 43.39 21.26 43.27 21.97 42.54 19.18 40.4 31.92 43.37 24.19
DualPrompt 45.01 15.90 44.26 17.43 44.66 18.50 43.69 15.31 39.32 34.78 45.65 20.54

S-Prompt 45.45 13.47 45.01 14.76 45.27 14.29 42.98 20.20 42.85 25.82 44.09 22.32

CluMo 46.72 11.14 46.29 11.28 45.13 13.52 46.55 8.21 47.04 11.15 45.77 11.69

Table 1: Comparative experimental results: the accuracy and forgetting rate for different task order. For
each task sequence, A ↑ indicates the accuracy of the method, while F ↓ is the forgetting rate of each.

5 Experiments

Our implementation code is available as a supplement. Please refer to the code to reproduce the results.

5.1 Experiment Setup

Backbone We used the public pre-trained large multimodal transformer, ALBEF Li et al. (2021), as our
backbone for VQA task. It consists of an image encoder, a text encoder, a multimodal encoder, which uses
cross-attention between the two modalities. Specifically for VQA tasks, an pre-trained answer decoder is
append after the multimodal encoder, which has same architecture as multimodal encoder.

Baselines for comparison We use seven methods for comparison. We include algorithms from major CL
approaches. We include two regularization-based methods: EWC (Kirkpatrick et al., 2017) and LwF (Li
& Hoiem, 2017), four rehearsal-based methods: ER (Rolnick et al., 2019), GEM (Su et al., 2021), MAFED
(Nikandrou et al., 2024a) and VQACL (Zhang et al., 2023). We also include three SOTA prompt-based
continual learning methods, L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a), and S-Prompt
(Wang et al., 2023). We also include finetuning to demonstrate the positive effect of CL. Following the
original setting of each method, we leave the whole backbone model unfrozen for non-prompt-based methods
and freeze the whole backbone model for prompt-based methods except for the classifier. To make the fair
comparison, we fit all the continual learning methods into our backbone, ALBEF, instead of using the original
model proposed in each method. Detailed description of each baseline method is presented in Appendix A.5.
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Figure 4: Cluster distribution on all training image data of CLOVE-Scene’s six sub-tasks before and after
applying mini-batch k-means clustering algorithm with visual key size of 3 using PCA. Color of more
diversity indicates more even distribution of key selection.

CL Tasks We evaluate our method on tasks built using the CLOVE (Lei et al., 2022) dataset which is
a VQA-based continual learning dataset. The benchmark contains two seperate benchmarks for different
scenario, including scene-incremental setting benchmark, CLOVE-scene, and function-incremental setting
benchmark, CLOVE-function. Each of the task sets contains six tasks which are domain-specific and
diverse from each other. For more details about CLOVE and the tasks we use, please refer to the Appendix
A.6 and Table 9.

CluMo Hyper-parameter In all of our comparative experiments, for every task, we set the visual prompt
key size and textual prompt key size to be 3, with dimension 1×768 for each. We set the length of prompt to
be 10, hence each prompt has dimension 10 × 768. All the choice of hyper-parameters are made by selecting
the best-performed ones from multiple analytic experiments.

Metrics for comparison We use the average accuracy and the average forgetting rate on all tasks to
evaluate the performance of our method and its ability to tackle catastrophic forgetting. Different from
dataset such as VQAv2 (Goyal et al., 2017b), where each question is paired with different ground truth
answers, questions in CLOVE dataset only contains exactly one correct answer for each question. Thus, the
accuracy is simply calculated by y == ŷ for every training and testing data instance. On the other hand,
the forgetting rate is calculated as:

F = Ai − Aij

Ai
(9)

where Ai is the accuracy of task i, and Aij is the accuracy of task i after the model is trained on task j. For
details about the optimization and implementation processes, please refer to the Appendix.

5.2 Comparative Results

We conduct the comparison experiments on both the CLOVE-scene and CLOVE-function task sets
with a randomly selected task order. In table 1, the task order abcdef represents the CL tasks:
ShopAndDining, WorkPlace, HomeOrHotel, Transportation, SportAndLeisure, Outdoors in sequence. The
oarlks in CLOVE-function represents tasks: ObjectRecognition, AttributeRecognition, RelationReasoning,
LogicReasoning, KnowledgeReasoning and SceneTextRecognition.

We observe in Table 1 that our method outperforms all the baselines across all task order sets in terms
of both average accuracy and average forgetting rates. We also observe that the performance of different
method within the same group tend to be similar. The regularization-based methods, EWC and LwF,
obtain the sub-optimal accuracy and forgetting rate besides. The reason is that the domain for each task in
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Figure 5: Cluster distribution on all training text data of CLOVE-Scene’s six sub-tasks before and after
applying mini-batch k-means clustering algorithm with textual key size of 3 using PCA.

Table 2: Ablative Experiments
Methods Accuracy Forgetting

Full Method 48.23 9.69
Ablative KD 46.67 12.97

Ablative Clustering 47.36 10.09
Ablative Textual Key 47.45 10.05
Ablative Visual Key 47.23 10.54

the dataset is significantly different from the rest of tasks and hence regularization methods fail to capture
the common space of the parameter distribution. This challenge makes it difficult to maintain the accuracy
of the current task and previous tasks at the same time using regularization. The replay methods, ER,
GEM, MAFED and VQACL, achieve better performance than regularization-based methods. This can
be explained by the fact that replaying the data from previous task is an efficient way to remind the model and
adjust its parameter distribution not too diverse from previous ones. However, because we need to rely on a
memory buffer to store samples for replay, these methods are memory-consuming and thus not space-efficient.
Moreover, replay-based methods are still limited by the upper-bound of joint training, as they generally can
only reduce catastrophic forgetting without boosting the accuracy of individual tasks. On the other hand,
the prompt-based methods, namely L2P, DualPrompt, and SPrompt, achieve superior performances
compared to more traditional CL methods. Rather than tuning the whole model with regularization, prompt-
based methods store the prior knowledge in trainable prompts, which are smaller and more efficient than
memory buffer, and keep the main body of backbone model frozen. With the combination of generalization
capacity of pre-trained model and specific previous knowledge stored in prompt, prompt-based method can
outperform other methods. Among all the methods, our method achieve the best performance.

Compared with the baseline prompt-based methods which only consider visual modality for prompt selecting
and updating, CluMo takes care of both the visual and textual modalities, as well as the fusion of the two
for selecting the prompt which deploys the given information more comprehensively to process the prompt.
Our design thus fits better in multimodal learning scenario than other existing continual learning methods.

5.3 Ablation Experiments

To offer a better insight about our method, we perform an ablation study for each component of CluMo to
study the positive contribution of each component. We study the effect of the following:

10



Under review as submission to TMLR

Figure 6: Accuracy of the first task after the model trained on the following tasks. The leading performance
of CluMo indicates its leading capacity of prevent catastrohpic forgetting.

• Visual Prompt Key, key to separate the inner-task image features by their semantic property.

• Textual Prompt Key, key to separate the inner-task text features by their semantic property.

• Minibatch k-means Clustering which train the prompt keys as centers of clustering algorithm
to better fit the semantic meaning.

• Knowledge Distillation, to prevent the drastic parameter shift of unfrozen classifier.

We conduct ablation experiment on CLOVE-scene dataset with the task order abcdef. We set the size
for both the visual prompt key and the textual prompt key to be three. For ablative text experiments, we
remove the text prompt keys and change the size of visual prompt keys to 9 to achieve the same total prompt
size. We also removed the visual prompt key which is the same for ablative visual experiments.

Results for this experiment is presented in Table 2. We observe that despite having the same number of
prompts, the performance values of Ablative Textual Key and Ablative Visual Key are lower than our full
pipeline. This result verifies our hypothesis that both modalities should be used to guide the prompt selection
and the missing of any will cause information lost and lead to sub-optimal performance. In other words,
current approaches for unimodal settings do not use all the information we have in multimodal scenarios.
We also observe that without the clustering algorithm, the performance of ablative clustering is the lowest
among all the settings which indicate the significance of doing cluster training for learning the prompt keys.

5.4 Analytic Experiments

Effect of clustering To show the effect of clustering algorithm, we empirically show the correlation
between the clustering error and the downstream accuracy. As we apply Euclidean distance as metric to
learn the clusters, we record the average distance between each point to its assigned cluster center for every
task, and take the average for all the tasks:

E = Avg(
N∑

i=1
Avg(

M∑
j=1

||xj − ck||2)) (10)

where i represent the number of tasks, j represent the training data from task i and k is the kth cluster center.
We consider both the visual prompt key training and the textual prompt key training in this experiment.
Table 4 presents the results. Same as our expectation, we observe a negative correlation between the
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Figure 7: CluMo-BLIP architecture

CLOVE-scene

Method abcdef dbafec acbefd caefdb
A ↑ F ↓ A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 40.78 22.23 41.59 23.28 38.32 25.54 40.80 20.21

EWC 42.08 17.23 42.44 20.7 40.86 18.69 41.02 19.6
LwF 41.32 19.8 42.07 19.25 42.35 17.88 41.67 18.20

ER 44.43 7.90 44.72 12.84 42.82 13.15 43.87 11.83
GEM 45.34 9.78 46.01 9.39 43.11 11.49 44.23 10.04

L2P 44.37 10.67 43.15 11.69 44.64 9.58 44.31 11.04
DualPrompt 45.91 5.27 45.72 8.08 46.00 6.92 46.35 7.88

S-Prompt 46.94 4.19 47.36 4.08 46.12 5.34 47.17 3.52

CluMo 47.60 12.32 48.62 10.98 47.86 12.67 48.85 9.13

Table 3: Comparison Experiment on CLOVE_scene dataset with BLIP as backbone.

clustering error and the performance accuracy, in another word, lower E for image and text prompt keys
leads to a higher accuracy. Without the clustering component, we observe E to be as high as 42.38 and 42.8
for image prompt key and text prompt key, respectively. After applying clustering algorithm, E drops below
20, which can be considered significant, for both modalities and the accuracy improves 2.97%.

Additional Backbone In comparative experiments, we adopt ALBEF (Li et al., 2021) as our back bone,
leveraging its architecture for a consistent foundation across our experiments. While only testing the baselines
with a single backbone transformer might be biased and to further show CluMo’s generalizablity to other
VLMs, we evaluate CluMo’s performance on BLIP, a different transformer architecture than ALBEF, (Li
et al., 2022). Without multimodal encoder that takes in both visual and textual feature, architecture such
as BLIP send visual feature into text encoder and fuse it with cross-attention block. As the architecture is
different, we present the adoption of CluMo to BLIP in Figure 7. Similar to the comparative experiments in
main sections, we choose CLOVE-scene dataset as benchmark and randomly select 4 difference task orders
to perform experiments. The results are presented in Table 3. As BLIP is more recent and SOTA model
than ALBEF, we observe that the overall performance of BLIP’s experiments get higher accuracy than
those of ALBEF, except for prompt-based methods. During experiments, we found that with ALBEF,
attaching prompts to input features can naturally improve the accuracy of given tasks. In the case of BLIP,
attaching the same prompt will harm the accuracy, which makes the performance of BLIP’s prompt-based
methods similar to ALBEF’s results. However, even though we observe a deficiency, in some extent, of
prompt-based to BLIP, CluMo still obtains the best accuracy and forgetting rate compared with all the
baselines.

Cluster Visualization To show the effect of clustering on prompt key more intuitively, we visualize the
visual prompt key selection distribution and textual prompt key selection distribution on the visual and
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textual portion of the training data for CLOVE-Scene in Figure 4 and Figure 5. Since we use three
visual prompt keys for each task, the vector features of visual data are split into three groups, which are
the green, blue and red points in Figure 4. We observe that without using clustering, visual data are more
likely to overlap on the same cluster center which means they would lead to select the same visual prompt
key. After performing clustering, we observe that the distribution becomes more evenly, and every cluster of
data is diverse and separated from the others which means that the visual data can be separated explicitly.
The diversity of prompt key selection indicates each input image can find the "correct" prompt which is
semantically closer to it, which contains more specific knowledge about the sub-domain the given image
belongs to. The visualization of textual prompt keys indicates similar observation.

Table 4: Acc. with different clustering error
E . Image E . Text Accuracy

15.40 10.72 48.23
15.74 12.22 47.89
17.21 12.53 47.21
42.38 42.8 47.06

Table 5: Acc. with different prompt key size
Simg × Stxt Accuracy

1 × 1 46.01
2 × 2 47.49
3 × 3 48.23
4 × 4 47.71
5 × 5 47.45

10 × 10 48.12

Table 6: Acc. with length/number trade-off
Sv × St × Lp Accuracy

2 × 2 × 22 47.82
3 × 3 × 10 48.23
4 × 4 × 6 47.45

Table 7: Acc. with different freezing layer
Freeze Num. Accuracy

6 48.23
5 44.66
3 47.46
0 37.48

Tracking the Accuracy for the First Task To take a closer look into the effect on preventing catas-
trophic forgetting and increasing the accuracy in CL, we track the accuracy of the first task while learning the
task sequence. The result is shown in Figure 6. We see that the accuracy drops until task 4, and then slightly
increases until task 6. Although it is not our main focus, this behavior shows a trend of forward transfer
between the tasks. Among all the baseline methods, we notice that prompt-based methods, SPrompt,
DualPrompt and L2P, significantly outperform other methods which verifies the SOTA status of prompt
learning in CL and its success in preventing catastrophic forgetting. Our method CluMo, on the other
hand, still outperform all prompt-based baseline methods. We observe that using the cluster-based prompts,
the accuracy on the first task is superior compared to the other methods at the very beginning. Similar to
other prompt-based method, our method’s accuracy slightly drops until task 4 and improves subsequently.
As the accuracy of our proposed method is higher than others at all time steps, our method has the leading
performance in terms of both accuracy and backward transfer.

Effect of Frozen Decoder Layers Although previous prompt-based methods keep all the transformer
layers frozen during the training, we still conduct experiment on freezing different number of transformer
layers to check effect of it. The results are presented in Table 7. We observe keeping whole transformer
layers frozen achieve the best performance, and unfreeze all gets the worst. However, freezing 5 layers get
worse result than freezing 3 layers. Our hypothesis is that freezing 5 layers makes the model vulnerable
to parameter shift yet not flexible enough to learn new knowledge through the trainable transformer layer
and only freezing 3 layers makes the model capable for adopting new knowledge with three unfrozen layers.
Overall, freezing all the transformer layers achieves the best accuracy and the result matches the choice of
freezing model for L2P, DualPrompt and SPrompt.

Effect of Prompt Key Size We also conduct an experiment to study the effect of prompt pool size to
show the stability of our method with respect to this hyper-parameter. In Table 5, we choose different visual
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prompt key and textual prompt key sizes 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 10 × 10, corresponding to 1,
4, 9, 16, 25, and 100 prompt pool sizes. When we have prompt key size of 1, which indicates every task
has no choice but only one prompt, the accuracy drops significantly. Other than prompt size 1, we find
that choosing prompt size 3 has the best result, 47.23. We also observe that having larger prompt size than
3 results in decreasing of performance. This observation possibly indicate that dividing a single task into
four sub-domains is specific enough for prompts to learn fine-grained sub-domain information, as the key
size continues increasing, the more-detailed information the prompts learnt won’t boost the performance
significantly. Further explanation can be found in Appendix A.4.

Prompt Length and Prompt Size In the experiment setting, we utilize 3 visual keys and 3 textual
keys, and each prompt has length of 10. In sum, we have 3 × 3 × 10 = 90 total prompt length for each
task. We conduct experiments to show the trade-off of prompt length and prompt numbers given the fixed
total prompt length. To make a fair comparison, we keep the visual key and textual key the same size, and
choose the closest integer prompt length to let the multiplication of the three be around 90 . Within table
??, among the three different combination, we find that the current setting, which is the most balanced one,
obtains the best result. Regarding the rest of the two, the higher prompt length has the better performance.

6 Conclusion

We introduced a novel prompt-based continual learning method for learning multimodal tasks. While most
of existing methods apply simple prompts on a single modality, our method proposes modal-specific visual
prompt keys and textual prompt keys and train them to capture the semantic properties of the training
dataset using K-means clustering algorithm. We use the combination of both the visual prompt key and
the textual prompt key to select prompts, which enable the prompt to better boost the performance. Our
experiments show that our method achieves the state-of-the-art performance in continual VQA tasks in
different domains compared to other regularization-based, rehearsal-based and prompt-based CL methods.
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COCOQA-OKVQA-VQAv2-TEXTQA-GQA
Method COVTG VGOCT OGCTV

A ↑ F ↓ A ↑ F ↓ A ↑ F ↓

Finetune 28.11 38.41 34.84 34.27 31.02 19.97

EWC 29.94 33.02 36.00 29.10 34.41 16.72
LwF 30.72 31.93 35.03 32.84 33.65 18.08

ER 32.33 24.68 36.25 27.12 35.87 15.31
GEM 34.07 20.19 37.62 19.28 36.52 14.61

MAFED 34.65 18.68 38.22 17.41 36.23 15.15
VQACL 35.89 16.50 39.83 15.31 37.08 13.22

L2P 34.90 21.56 38.70 17.11 35.90 14.69
DualPrompt 35.21 22.07 39.23 16.36 37.15 12.88

S-Prompt 36.08 19.41 40.17 13.85 37.95 11.97

CluMo 39.90 8.62 40.83 12.60 38.29 13.63

Table 8: Comparison experiments on dataset consists of C:COCQA, O:OKVQA, V:VQAv2, T:TEXTQA
and G:GQA with different task orders.

A Appendix

A.1 Extra Experiments

To further evaluate CluMo compares to other baseline methods, and should the generalizability of CluMo
to other data, we introduces extra dataset as supplement experiments. We design VQA-continual learning
setting with five datasets: COCOQA (Ren et al., 2015), OKVQA (Marino et al., 2019), VQAv2 (Goyal
et al., 2017a), TEXTQA (Singh et al., 2019), GQA Ainslie et al. (2023). Due to the computational limit
and the unbalance of each task’s size , we restrict each training dataset size to 20K, and each testing dataset
size to 3K by selecting the top 20K/3K data from the dataset and thus form it in a way similar to the
scale of CLOVE dataset. The comparison result is presented in table 8. From the table, we observe that
task order has a relatively significant effect on the performance, which, based on our hypothesis, is due to
the difference similarity between each task. For example, COCOQA and VQAv2 has similar benchmark
design, while TextQA specifically focuses on understanding the text in within the image. When learning
similar tasks, the forward transfer is more likely to happen and the forgetting rate will drop. On the other
hand, learning dis-similar tasks in sequence will cause forgetting rate to increase. CLUMO still beats other
baseline methods with different task orders.

A.2 Hardware Setup and Hyper-parameter

All experiments were conducted using a single Nvidia A40 GPU. We employed the AdamW optimizer across
all experiments, utilizing a cosine learning rate scheduler, and set the initial learning rate to lr = 3 × 10−4.
The models were trained for 5 epochs with a batch size of 16.

For EWC, we set the fisher sample percentage to be 0.1 and ewc loss weight equals to 0.1 as well.

For Experiment Replay, we store 1% of data from each tasks into the memory buffer. During the training
of the current task, we randomly select a batch of data from the memory buffer to train the model for every
100 batches of current data training.

For GEM, we also store 1% of data to memory buffer, which is randomly picked from each tasks.

For CluMo framework, we configured the visual prompt key size (Sv) and the text prompt key size (St)
both to 3, with the prompt length (Lp) set to 10.

For L2P, we set the prompt pool size equals to 20 and prompt length to be 5.

For DualPrompt, the G-Prompt was inserted into layers 0 and 1 of the visual encoder, while the E-Prompt
was integrated into layers 2, 3, and 4.
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For S-Prompt, we set the prompt length to be 10 and prompt pool size to be 30.

Furthermore, for prompt-based techniques such as L2P, DualPrompt, and SPrompt, we opted to freeze the
entire backbone model, allowing only the final classifier layer to remain trainable. Conversely, for all other
baseline methods, no parameters were frozen, ensuring the entire network was fine-tuned during training.

A.3 Time Complexity Analysis

Given that the model is trained on each task for 5 epochs in our experiment setting, the total time to train
a task with CluMo is about 1600 seconds, among that the training of the cluster takes about 60 seconds in
total. While fine-tuning the ALBEF model on the same task is about 1450 seconds, which is about 10%
slower than directly fine-tuning the model.

A.4 Further Explanation of Prompt Key Size

In main section, we observe that the performance of CluMo is not significantly affected by prompt key size.
Based on the results, we propose further hypothesis that: each prompt should keep the balance between
“general” knowledge and “specific” knowledge to improve the result. Without sub-domain division, the
prompt learns mostly the general knowledge across the task. Letting each prompt match a sub-domain of the
task can improve the accuracy by focusing on sub-domain-specific knowledge, but further separating the task
into smaller sub-domains may harm the learning of “general” knowledge, which prevents the improvement
of the model’s performance or even harm the performance a little bit.

A.5 Baseline Methods Description

We provide the detailed description for the function of every baseline method here to present more compre-
hensive understandings for the comparison experiments.

EWC works by slowing down the changes to the important parameters for previous tasks when training
on new tasks. The importance of each parameter is calculated through Fisher Information Matrix, the
larger the fisher value, the more critical the parameter is. It achieves this by adding a regularization term
to the loss function that penalizes large updates to these critical weights.

LwF works by preserving knowledge from previous tasks using a knowledge distillation approach, where
"soft targets" from the previous task act as a regularizer when learning new tasks. While training on new
task, LwF freezes a copy of model trained on previous tasks, serving as teacher model, and apply a "soft
prediction" using teacher model as an additional regularizer to prevent forgetting.

ER works by maintaining a memory buffer to store a limited number of samples or intermediate features
from previously learned tasks. These stored samples are then reused when learning new tasks with specific
frequency. The buffer usually has a fixed size, and new experiences replace older ones once the buffer is full.

GEM works by using a memory buffer, named "episodic memory" to store a subset of examples from
previously learned tasks. During training, it computes gradients for both the current task data and the
stored examples and ensures that the gradient update for the current task does not increase the loss on the
examples from the previous tasks to prevent the catastrophic forgetting.

L2P works by maintaining a shared uni-modal pool of prompts across all the tasks that are used to
condition the model when learning new tasks. These prompts act as a kind of "memory" that encodes
relevant information from previous tasks and domains. Each task is assigned one or more prompts from the
pool, and these prompts are selected based on their relevance to the new task at hand.

DualPrompt works by maintaining two kind of uni-modal prompts, Expert Prompts (task-specific
prompt), designed to handle knowledge that is unique to specific tasks, and General Prompts, designed
to handle general knowledge that can be transferred across multiple tasks. During training, the model
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Table 9: size of each task in CLOVE
task training size testing size image source

ShopAndDining 20K 3K MS-COCO
WorkPlace 20K 3K MS-COCO

HomeOrHotel 20K 3K MS-COCO
Transportation 20K 3K MS-COCO

SportAndLeisure 20K 3K MS-COCO
Outdoors 20K 3K MS-COCO

ObjectRecognition 20K 3K MS-COCO
AttributeRecognition 20K 3K MS-COCO

RelationReasoning 20K 3K MS-COCO
LogicReasoning 20K 3K MS-COCO

KnowledgeReasoning 20K 3K MS-COCO
SceneTextRecognition 16.8K 2.4K VG

dynamically selects Expert Prompts and General Prompts to help process new tasks while maintaining
performance on previously learned tasks to balance both task performance and overall generalization.

S-Prompt works by maintaining an uni-modal prompt pool across different domain of tasks. Within
the prompt pool, the prompts from same domain are aligned closer in the feature space with K-mean
clustering algorithm. While new task comes in, new set of prompts are added into the prompt and trained
to be separated from other prompts via K-mean clustering. During inference stage, the prompts with best
alignment with input visual feature is dynamically selected.

A.6 CLOVE dataset detail description

In the CLOVE-Scene and CLOVE-Function datasets, all tasks have a uniform distribution of training
and testing data, with the exception of the SceneTextRecognition task, which comprises 16.8K training
samples and 2.4K testing samples. The remaining tasks within these datasets contain 20K training samples
and 3K testing samples each. It is reflected in the Table 6.

To provide a deeper understanding of the CLOVE dataset, we offer additional details here. We have
included visualizations in Figure 8 and Figure 9 to showcase two sample images from each task within the
datasets, emphasizing the distinctiveness of each domain. From these samples, it is evident that the images
in the CLOVE-Scene dataset vary significantly across tasks, even though the questions associated with
them are similar in structure, differing primarily based on the content depicted in the images.

On the other hand, the CLOVE-Function dataset presents a different scenario. While the images across
various tasks may appear to belong to similar or overlapping domains, making it challenging to distinguish
one task from another based solely on visual content, the diversity becomes apparent when considering the
questions. Each task within the CLOVE-Function dataset involves distinct types of reasoning, as reflected
in the varied nature of the questions posed, which are tailored to serve different reasoning purposes.
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Figure 8: CLOVE-scene dataset samples
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Figure 9: CLOVE-function dataset samples
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