Under review as a conference paper at ICLR 2025

RETRIEVAL AUGMENTED TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting uses historical data to predict future trends, leveraging
the relationships between past observations and available features. In this paper,
we propose, RAFT, a retrieval-augmented time series forecasting method to
provide sufficient inductive biases and complement the model’s learning capacity.
When forecasting the subsequent time frames, we directly retrieve historical
data candidates from the training dataset with patterns most similar to the
input, and utilize the future values of these candidates alongside the inputs to
obtain predictions. This simple approach augments the model’s capacity by
externally providing information about past patterns via retrieval modules. Our
empirical evaluations on eight benchmark datasets show that RAFT consistently
outperforms contemporary baselines, an average win ratio of 86% for multivariate
forecasting and 80% for univariate forecasting tasks.

1 INTRODUCTION

Time series forecasting has a wide range of impactful applications and domains such as for climate
modeling (Zhu & Shasha, 2002), energy (Martin et al., 2010), economics (Granger & Newbold,
2014), traffic flow (Chen et al., 2001), and user behavior (Benevenuto et al., 2009). By providing
accurate forecasts, it helps make critical data-driven decisions and policies.

Over the past decade, deep learning models such as CNNs (Bai et al., 2018; Borovykh et al.,
2017) and RNNs (Hewamalage et al., 2021) have proven their effectiveness in capturing patterns
of change in historical observations, leading to the development of various deep learning models
tailored for time series forecasting. Especially, the advent of attention-based Transformers (Vaswani
et al., 2017) has made a significant impact on the time series domain. The architecture has shown
to be effective in modeling dependencies between inputs, resulting in variants like Informer (Zhou
etal., 2021), AutoFormer (Wu et al., 2021), and FedFormer (Zhou et al., 2022). Additionally, recent
methods utilize time series decomposition (Wang et al., 2023), which isolates trends or seasonal
patterns, and multi-periodicity analysis which involves downsampling/upsampling of the series at
various periods (Lin et al., 2024; Wang et al., 2024). Furthermore, lightweight models like multi-
layer perceptrons (MLP) have demonstrated strong performance along with these decomposition
techniques and multi-periodicity analysis (Chen et al., 2023; Zeng et al., 2023; Zhang et al., 2022).

This paper examines a critical open question in time-series forecasting: “do current models possess
the necessary inductive biases and learning capacity to extract generalizable patterns from training
data and achieve high accuracy?” Many existing models operate under assumptions of i.i.d. data, po-
tentially limiting their ability to generalize. Real-world time series exhibit complex, non-stationary
patterns with varying periods and shapes. These patterns may lack inherent temporal correlation
and arise from non-deterministic processes, resulting in infrequent repetitions and diverse distribu-
tions (Kim et al., 2021). This raises concerns about the effectiveness of models in extrapolating
from such infrequent patterns. Moreover, the advantages of indiscriminately memorizing all pat-
terns, including noisy and uncorrelated ones, are questionable in terms of both generalizability and
efficiency (Weigend et al., 1995).

We show an advancement in time-series forecasting models by expanding the models’ capacity
(implicitly via the trained weights) to learn patterns. We directly provide external information about
historical patterns that are complex to learn, as a way of bringing relevant information via the input
to reduce the burden on the forecasting model. Inspired by the retrieval-augmented generation
(RAG) approaches used in large language models (Lewis et al., 2020), our method retrieves similar

Under review as a conference paper at ICLR 2025

Use retrieved results alongside the input

W M
ph

W Forecast

1 1 1 |
Retrieve relevant historical patterns

Figure 1: Illustration of a motivating example of retrieval in time-series forecasting.

historical patterns from the training dataset based on given inputs and utilizes them along with
the model’s learned knowledge to forecast the next time frame (see Figure 1). Our new approach,
Retrieval-Augmented Forecasting of Time-series (RAFT), offers two key advantages: First, by
directly utilizing retrieved information, the useful patterns from the past become explicitly available
at inference time, rather than utilizing them via the learned information in model weights. The
learning hence covers patterns that lack temporal correlation or do not share common characteristics
with other patterns, thereby reducing the learning burden and enhancing the generalizability.
Second, even if a pattern rarely appears in the historical data and is difficult for the model to
memorize, the retrieval module allows the model to easily leverage the historical patterns when they
reappear (Miller et al., 2024; Laptev et al., 2017).

We demonstrate that the proposed judiciously-designed inductive bias, implemented through a
simple retrieval module, enables a straightforward MLP architecture to achieve strong forecasting
performance. Inspired by existing literature that downsamples series at various period intervals (Lin
et al., 2024; Wang et al., 2024), RAFT also generates multiple series by downsampling the given
series at different periods and attaches a retrieval module to each series. This allows effectively
capturing both short-term and long-term patterns for more accurate forecasting. As demonstrated
on eight time-series benchmark datasets, RAFT outperforms other contemporary baselines with
an average win ratio of 86% for multivariate forecasting and 80% for univariate forecasting tasks.
Overall, our contributions can be summarized as follows:

e We propose a retrieval-augmented time series forecasting method, RAFT, which retrieves
observations with similar temporal patterns from the training dataset and effectively leverage
retrieved patterns for future predictions.

e Our empirical studies on eight different benchmark datasets show that RAFT achieves higher
performance with an average win ratio of 86% for multivariate and 80% for univariate
forecasting compared to other contemporary baselines.

e We further explore the scenarios where retrieval modules can be beneficial for forecasting by
conducting analyses using synthetic and real-world benchmark datasets.

2 RELATED WORK

2.1 DEEP LEARNING FOR TIME-SERIES FORECASTING

A large body of research employs deep learning for time-series forecasting. Existing methods can
be broadly categorized based on the employed architecture. Prior to the advent of Transform-
ers (Vaswani et al., 2017), CNNs were commonly used to extract temporally local information from
input time series through kernels (Bai et al., 2018; Borovykh et al., 2017), or RNNs with their recur-
rent structures (Hewamalage et al., 2021). Following the advent of Transformers, several approaches
emerged to better tailor the Transformer architecture for time-series forecasting. For example, Log-
Trans (Li et al., 2019) used a convolutional self-attention layer, while Informer (Zhou et al., 2021)
employed a ProbSparse attention module along with a distilling technique to efficiently reduce net-
work size. Both Autoformer (Wu et al., 2021) and FedFormer (Zhou et al., 2022) decomposed time
series into components like trend and seasonal patterns for prediction.

Under review as a conference paper at ICLR 2025

Despite advancements in Transformer-based models, (Zeng et al., 2023) reported that even a simple
linear model can achieve strong forecasting performance. Subsequently, lightweight MLP-based
time-series models in terms of both forecasting latency and training cost benefits, such as TiDE (Das
et al., 2023), TSMixer (Chen et al., 2023), and TimeMixer (Wang et al., 2024), were introduced.
These models utilize various approaches such as series decomposition similar to Transformer-based
studies (Zeng et al., 2023) or introduced multi-periodicity analysis by downsampling or upsampling
the series at various period intervals (Lin et al., 2024), to accurately extract the relevant information
from time-series for MLPs to effectively fit on them. Recently, several studies have constructed a
large time-series databases to build large foundation models, achieving strong zero-shot and few-
shot performance (Das et al., 2024; Woo et al., 2024).

Our proposed RAFT is based on a simple MLP architecture, following simplicity and efficiency
motivations. Through the retrieval module, the model retrieves patterns most similar to the current
prediction from the training dataset, allowing it to reference past patterns for future predictions
without the burden of memorizing all temporal patterns during training.

2.2 RETRIEVAL AUGMENTED MODELS

A typical retrieval-augmented model operates as follows: (1) Given an input, it retrieves instances
relevant to the input from an accessible dataset, such as the training data or an external corpus, and
(2) it combines the input with the retrieved instances to make a model prediction. One actively
researched area that employs this scheme is the natural language domain, particularly in retrieval-
augmented generation (RAG) (Lewis et al., 2020; Guu et al., 2020). RAG retrieves document chunks
from external corpora that are relevant to the input task, helping large language models (LLMs)
generate responses related to the task without hallucination (Shuster et al., 2021; Borgeaud et al.,
2022). This not only supplements the LLM’s limited prior knowledge but also enables the LLM
to handle complex, knowledge-intensive tasks more effectively by providing additional information
from the retrieved documents (Gao et al., 2023).

Beyond natural language processing, retrieval-augmented models have also been used to solve struc-
tured data problems. The simplest example is the K-nearest neighbor model (Zhang, 2016). Other
approaches have introduced kernel-based neighbor methods (Nader et al., 2022), prototype-based
approaches (Arik & Pfister, 2020), or considered all training samples as retrieved instances (Kossen
etal., 2021). More recently, models leveraging attention-like mechanisms have incorporated the sim-
ilarity between retrieved instances and the input into the prediction, achieving superior performance
compared to traditional deep tabular models (Gorishniy et al., 2024). There also exists a method that
has explored the potential of retrieving similar entities in time-series forecasting, involving multiple
time series entities (Iwata & Kumagai, 2020; Yang et al., 2022).

In this paper, we aim to demonstrate that retrieval can be effective, even when applied to time-series
data. Similar to how RAG supplements LLMs with additional information for knowledge-intensive
tasks, our approach seeks to reduce the learning complexity in time-series forecasting. Instead of
forcing the model to learn every possible complex pattern, the retrieval module provides information
that simplifies the learning process.

3 METHOD

3.1 OVERVIEW

Problem formulation. Given a time series S € RE*” of length T with C observed variates (i.e.,
channels), RAFT utilizes historical observation x € RE*L and the entire time series S to predict
future values y € RE* ¥ that is close to the actual future values yo € R, L denotes look-back
window size and F' denotes forecasting window size.

Given an input x, RAFT utilizes a retrieval module to find the most relevant patch from S. Then, the
subsequent patches of the relevant patch are retrieved as additional information for forecasting. The
retrieval process follows an attention-like structure, where the importance weights are calculated
based on the similarity between the input and the patches, and the retrieved patches are aggregated
through a weighted sum (Sec. 3.2). The main difference of our model from attention-based
forecasting models, such as transformers, lies in its ability to retrieve relevant data from the

Under review as a conference paper at ICLR 2025

Time Series (S)

Values{" v} (%)
v"\“" ANy W \ m) | p¥ haY. ' ‘

V\Sliding window L ’ Attention
A‘wu\,\,u H Iy weight Retrieved

Results
A " ‘ M : Key
iy T “\\,”‘v Vi : Value Input I
Y query I
Candidate Set

Figure 2: Illustration of retrieval module architecture. First, we consider consecutive time frames
from the entire time series S as key-value pairs and construct a candidate set using a sliding window
approach. Given an input time series as the query, the retrieval module computes the similarity
between the query and the keys in the candidate set that do not overlap temporally. Based on the
similarity, the top-m candidates are selected, and attention weights are calculated via SoftMax. The
final result is obtained through a weighted sum of the corresponding values.

Top-m selection
+ SoftMax

Retrieval module

entire time series rather than relying on a fixed lookback window. Since the time series shows
distinct characteristics across periods, we utilize the retrieval modules into multiple periods. RAFT
generates multiple time series by downsampling the time series S with different periods and applies
the retrieval module to each time series. The retrieval results from multiple series are processed
through linear projection and aggregated by summation. Finally, the input and the aggregated
retrieval result are concatenated and passed through a linear model to produce the final prediction
(Sec. 3.3). Details of each component are described below.

3.2 RETRIEVAL MODULE ARCHITECTURE

We transform the time series S to be appropriate for the retrieval. First, we find all key patches
within S that are to be compared with given x € R“*~. Using the sliding window method of stride
1!, we extract patches of window size L and define this collection as K = {ki, ..., kr_(r+ F)+1},
where i indicates the the starting time step of the patch k; € RE*L. Note that any patch that
overlaps with the given x must be excluded from K during training phase. Then, we find all value
patches that sequentially follows each key patch k; € K in the time series. We define the collection
of value patches as V € {vy, ..., vT,(L+F)+1}, where each v; € RE*¥ sequentially follows after
k; in the time series.

After preparation of key patch set K and value patch set V for retrieval, we use the input x as a query
to retrieve similar key patches along with their corresponding value patches with following steps.
We first account for the distributional deviation between the query, key, and value patches used in the
retrieval process. Let us define x = {xt}te{lp._, Ly, where xt € RY denotes the values of C variates
at t-th time step within the input x (i.e., x* = {2}, ...,z }). Inspired by existing literature (Zeng
et al., 2023), we treat the final time step value in each patch as an offset and subtract this value from
the patch as a form of preprocessing to make the patterns more meaningful to compare:

X = {Xt - XL}tG{l,...,L}7 (1)

where X represent the input queries with the offset subtracted. Similarly, we subtract offset from all
key patches k; € K and v; € V, denoting them as k; € K and v; € V, respectively. Then, we
calculate the similarity p; between given x and all key patches in /C using similarity function s:

pPi = S()A(7 l;i)a lA{'L € ’6 (2)

Here, we use Pearson correlation as the similarity function s, instead of other measures, to exclude
the effects of scale variations and value offsets in the time series, focusing on capturing the increas-

"The stride can be adjusted according to the demand of computational efficiency.

Under review as a conference paper at ICLR 2025

: Key } Retrieval
: Value } Module Projection
: Input

Retrieval Linear Linear

Prediction
\ TORETPRN S Retricval
\ - \ { } Module Projection
: :
Projection

Figure 3: Illustration of the proposed architecture, RAFT. The input time series x and the entire
past observed time series S are first downsampled to generate multiple series with different periods.
Then, a retrieval module is applied to each series to retrieve information relevant to the current input.
The retrieved results are projected to the same dimension via a linear layer, and the results from dif-
ferent periods are summed to aggregate the information. Finally, the input time series is concatenated
with the aggregated retrieved results, and a linear layer is applied to produce the final prediction.

ing and decreasing tendencies®. We then retrieve the patches with top-m correlation values:

J =argtop-m ({p; | 1 <i < |K[}), 3)

where J denotes the indices of top-m patches. Given temperature 7, we calculate the weight of
value patches with following equation:

w; = 2jesexp(pi/T)’ ifieJ “
0 otherwise

Note that this is equivalent to conduct SoftMax only with top-m correlation values. Finally, we
obtain the final retrieval result v € R*¥ as the weighted sum of value patches:

V= > wivi 5)

ie{l,...,|V|}

Figure 2 illustrates the architecture of our retrieval module.

3.3 FORECAST WITH RETRIEVAL MODULE

Single period. Consider the given input x € R®*’ and the retrieved patch v € RC*¥. Similar to

the retrieval module, we subtract the offset from x and define X as the input with the offset removed.
Next, we concatenate f(X) with g(v), and process concatenated result through h to obtain y:

y =h(f(x) @ g(v)), (6)

where linear projection f maps R” to R, g maps RF to R¥", h maps R%f" to R, and @ represents
concatenation operation.

Multiple periods. Time series at different periods display unique characteristics — patterns in a small
time window typically reveal local patterns, while patterns in a large time window might correspond
to global trends. We propose extension of utilization of retrieval to consider n periods P. For each
p € P, we downsample the query x, all key patches in X, and all value patches in V of period 1
by average pooling with period p. This results in x®) € REX L%J, K®), and V(P) as the respective
query, key patch set, and value patch set for period p, where a key patch kl(p) € RO*L%) and a value
patch v'*’

and V), and obtain the retrieval result v(?) ¢ R¢> L%) for each p. Each v() is processed through

€ R~ L5 . Then, we conduct the retrieval process described in Sec. 3.2 using x(P)),

2See Appendix C.1 for comparison results with different similarity metrics.

Under review as a conference paper at ICLR 2025

a linear layer ¢(P) to project all retrieval results in the same embedding space, mapping RLF) o RF ,
respectively. Finally, we concatenate x with sum of linear projections and process it through linear
predictor h, which replaces Eq. 6 to following equation:

y=n(fx) @Yy ¢? ")) (7)
peEP

Denoting ¥ as the value at the ¢-th time step within ¥, we restore the original offset by adding x”
to y, resulting in the final forecast y:

y={y"+ XL}te{l,...,F}- (8)
We train the model by minimizing the following MSE loss L:
£ = MSE(y, yo))

Figure 3 illustrates our model’s forecasting process with multiple periods of retrieval.

4 EXPERIMENTS

We evaluate RAFT across multiple time-series benchmark datasets for the forecasting task. We
analyze how our proposed retrieval module contributes to performance improvement in time series
forecasting, and in which scenarios retrieval is particularly beneficial. Due to space constraints, the
full results, visualizations, and additional analyses of our model are provided in the Appendix.

4.1 EXPERIMENTAL SETTINGS

Datasets. We consider ten different benchmark datasets, each with a diverse range of variates,
dataset lengths, and frequencies: (1-4) The ETT dataset contains 2 years of electricity transformer
temperature data, divided into four subsets—ETTh1, ETTh2, ETTm1, and ETTm2 (Zhou et al.,
2021); (5) The Electricity dataset records household electric power consumption over approximately
4 years (Trindade, 2015); (6) The Exchange dataset includes the daily exchange rates of eight coun-
tries over 27 years (1990-2016) (Lai et al., 2018); (7) The Illness dataset includes the weekly ratio
of patients with influenza-like illness over 20 years (2002-2021)3; (8) The Solar dataset contains
10-minute solar power forecasts collected from power plants in 2006 (Liu et al., 2022a); (9) The
Traffic dataset contains hourly road occupancy rates on freeways over 48 months*; and (10) The
Weather dataset consists of 21 weather-related indicators in Germany over one year’. A summary
of the datasets is provided in the Appendix A.

Baselines. We compare against 9 contemporary time-series forecasting baselines, including: (1)
Autoformer (Wu et al., 2021), (2) Informer (Zhou et al., 2021), (3) Stationary (Liu et al., 2022b), (4)
Fedformer (Zhou et al., 2022), and (5) PatchTST (Nie et al., 2023), all of which use Transformer-
based architectures; (6) DLinear (Zeng et al., 2023), which are lightweight models with simple linear
architectures; (7) MICN (Wang et al., 2023), which leverages both local features and global correla-
tions through a convolutional structure; (8) TimesNet (Wu et al., 2023), which utilizes Fourier Trans-
formation to decompose time-series data within a modular architecture; and (9) TimeMixer (Wang
et al., 2024), which utilizes decomposition and multi-periodicity for forecasting.

Implementation details. RAFT employs the retrieval module with following detailed settings.
The periods are set to {1,2,4} (n = 3), following existing literature (Wang et al., 2024), and the
temperature 7 is set to 0.1. Batch size is set to 32. The initial learning rate, number of patches used in
retrieval (m), and look back window size (L) are determined via grid search based on performance
on the validation set, following the prior work (Wang et al., 2024). For fair comparison, hyper-
parameter tuning was performed for both our model and all baselines using the validation set. The
learning rate is chosen from le-5 to 0.05, look back window size from {96, 192, 336, 720}, and the
number of patches used in retrieval m from {1,5,10,20}. The chosen values of each setting are
presented in the Appendix B. For implementation, we referred to the publicly available time-series

*https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
‘nttps://pems.dot.ca.gov/
‘https://www.bgc-jena.mpg.de/wetter/

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://pems.dot.ca.gov/
https://www.bgc-jena.mpg.de/wetter/

Under review as a conference paper at ICLR 2025

Table 1: Comparison of RAFT and baseline methods across 10 datasets using MSE. For all datasets
except Illness, results are averaged over forecasting horizons of 96, 192, 336, and 720. For the
Illness dataset, forecasting horizons of 24, 36, 48, and 60 are used. Best performances are bolded,
and our framework’s performances, when second-best, are underlined.

Methods RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 0.420 0.447 0.516 0495 0475 046l 0.498 0.570 0.496 1.040
ETTh2 0.359 0.364 0.391 0.414 0574 0.563 0.437 0.526 0.450 4.431

ETTml1 0.348 0.381 0.406 0.400 0423 0.404 0.448 0.481 0.588 0.961
ETTm2 0.254 0.275 0.290 0.291 0.353 0.354 0.305 0.306 0.327 1.410
Electricity 0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311
Exchange 0.441 0.386 0.564 0416 0315 0.643 1.195 0.461 1.447 2478

IlIness 2.097 2.024 1.480 2,139 2.664 2.169 2.847 2.077 3.006 5.137
Solar 0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.586 0.331
Traffic 0.434 0.484 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764
Weather 0.241 0.240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634

repository (TSLib)®. For all experiments, the average results from three runs are reported, with each
experiment conducted on a single NVIDIA A100 40GB GPU.

Evaluation. We consider two metrics for evaluation: MSE and MAE. We varied the forecasting
horizon length to measure performance (i.e., F' = 96, 192, 336, 720), and each experiment setting
was run with three different random seeds to compute the average results. For the Illness dataset,
forecasting horizons of 24, 36, 48, and 60 are used, following the prior work (Nie et al., 2023;
Wang et al., 2024). The evaluation was conducted in multivariate settings, where both the input and
forecasting target have multiple channels.

4.2 EXPERIMENTAL RESULTS ON FORECASTING BENCHMARKS

Table 1 presents comparisons between the performance of time series forecasting methods and
RAFT. The results represent the average MSE performance evaluated across different forecasting
horizon lengths. We observe that our model consistently outperforms other contemporary baselines
on average, supporting the effectiveness of retrieval in time series forecasting. Full results and
comparisons using a different evaluation metric (i.e., MAE) are provided in Appendix H.

5 DISCUSSIONS

In this section, we explore scenarios where retrieval shows substantial advantage by empirically
analyzing its effect, using both benchmark datasets and synthetic time series datasets.

5.1 BETTER RETRIEVAL RESULTS LEAD TO BETTER PERFORMANCE.

Two criteria are important for our retrieval method to enhance the forecasting performance. First,
the value patches V identified through the similarity between the input query x and key patches K
should closely match the actual future value y, which sequentially follows the input query. Second,
the model should efficiently leverage the information in the value patches for forecasting. From
these, we can draw the insight that higher similarity between input query and key patches (i.e., key
similarity) will lead to the higher similarity between the actual value and value patches (i.e., value
similarity), eventually resulting in better performance.

Figure 4 presents the correlation analysis conducted on the ETTh1 dataset. Figure 4a shows that
retrieving key patches with higher similarity leads to value patches that are more closely aligned
with the actual future value. Figure 4b illustrates that the value patches with greater similarity
to the actual future values tend to improve RAFT’s performance more significantly. This trend
is also consistent across datasets; datasets with higher key similarity show higher value similarity,
resulting in larger performance gains. Spearman’s correlation coefficient validate this trend, showing
a correlation of 0.60 between key similarity and value similarity, and a correlation of —0.54 between

Shttps://github.com/thuml/Time-Series-Library

https://github.com/thuml/Time-Series-Library

Under review as a conference paper at ICLR 2025

1.0
501
ey S
5 0.5/ P
B g
» £ B
g 0.0 Y
g 2
-0.5 . =501
0.5 1.0 -0.5 0.0 0.5 1.0
Key Similarity Value Similarity
(a) Scatter plot of key and value similarity (b) Scatter plot of value similarity and MSE change (%)

Figure 4: Analysis of the correlation between (a) the key similarity and value similarity, and (b) the
value similarity and model performance changes measured by MSE (%). Key similarity refers to the
average similarity between input query (x) and all retrieved key patches (K). Value similarity refers
to the average similarity between actual future value (yo) and all retrieved value patches ())). The
analysis is conducted on the ETTh1 dataset.

value similarity and performance gain across datasets. The negative correlation with performance is
due to the use of MSE as the metric (lower the better). These results demonstrate that better retrieval
results from the retrieval module lead to improved performance of RAFT.

5.2 RETRIEVAL IS PARTICULARLY HELPFUL WHEN RARE PATTERNS REPEAT.

RAFT can complement scenarios where a particular pattern does not frequently appear in the train-
ing dataset, making it difficult for the model to memorize. By utilizing retrieved information, the
model can overcome this challenge. To analyze this effect, we conducted experiments using syn-
thetic time series datasets.

Synthetic data generation with autoregressive model. The synthetic time series was created by
combining three different components. Two of these components represent trend and seasonality,
which exhibit long-term consistent patterns throughout the entire time series. The third component
represents event-based short-term patterns. To generate the trend and seasonality components, we
synthesized sinusoidal functions with varying periods, amplitudes, and offsets. On the other hand,
the short-term patterns were generated using an autoregressive model. Specifically, the value of the
next time step was determined by the previous 20 time steps, following the equation below:

20
Ty = Z PiTi—i + €, (10)
i=1

where ¢; represents the parameters in the autoregressive model, and ¢, is the noise. The parameter
values and noise are sampled from a uniform distribution. The length of the short-term pattern was
set to 200. To examine whether retrieval is effective for rare patterns, we created three different
short-term patterns and varied their frequency of occurrence (i.e., rarity) in the training dataset. To
eliminate other potential confounding factors, we varied the trend and seasonality components and
randomized the order of the short-term patterns during repeated experiments. We then measured
and compared the average forecasting accuracy (i.e., MSE) when each pattern appeared in the test
set, with both the input and the forecasting horizon lengths fixed at 96. Additional details and
example figures of the synthetic dataset can be found in Figure 5a and in the Appendix F.

Results. Table 2 presents the number of occurrences of the short-term patterns and the correspond-
ing performance of RAFT with and without retrieval. Note that, in this experiment, we did not
consider multiple periods in order to isolate the effect of retrieval, so RAFT without retrieval has
an identical structure to the NLinear baseline (Zeng et al., 2023). The results show that our model,
utilizing retrieval, consistently outperformed the model without retrieval on the synthetic dataset;
9.2~14.7% increase in performance depending on the pattern occurrences. Notably, as the pat-
tern occurrences decreased, the reduction in MSE was more significant. When we also visualize

Under review as a conference paper at ICLR 2025

= Ground Truth - w/o Retrieval with Retrieval
100 —-0.2
0 -0.4
-100 -0.6
-200 —0.8
-1.0

0 500 1000 1500 0 20 40 60 80
(a) Example plot of the synthetic time series (b) Predictions with and without retrieval module

Figure 5: Visualization of a synthetic time series with short-term patterns and the corresponding
predictions over the rare short-term pattern from models with and without the retrieval module. MSE
of predictions in this example without retrieval is 0.087, while with retrieval, it improves to 0.035.

Table 2: Analysis between forecasting accuracy and the rarity of the pattern over the synthetic
time series with an autoregressive model. Forecasting accuracy was evaluated using MSE, averaged
across 120 different time series and short-term patterns. The numbers in parentheses indicate the
ratio by which the MSE decreases when retrieval is appended.

Pattern occurrences 1 2 4

RAFT without Retrieval 0.2590 0.2310 0.2344
RAFT with Retrieval 0.2209 (-14.7%) 0.2064 (-10.7%) 0.2128 (-9.2%)

the predictions of models with and without retrieval modules over the rare pattern (see Figure 5b),
the model utilizing retrieval aligns well with the pattern’s periodicity and offset during forecasting,
while the model relying solely on learning fails to capture these aspects. This suggests that the model
struggles to learn rare patterns, and the retrieval module effectively complements this deficiency.

5.3 RETRIEVAL IS HELPFUL WHEN PATTERNS ARE TEMPORALLY LESS CORRELATED.

If short-term patterns are very similar across time, there’s less unique information for the model
to learn, making it easier to achieve accurate predictions. On the other hand, if the short-term
patterns in time series data are similar to a random walk without any specific temporal correlation,
the model would need to memorize all changes within short-term pattern for accurate forecasting.
Based on this hypothesis, we expect the retrieval module to be especially helpful when patterns are
temporally less correlated, as retrieval can easily detect similarities between patterns that temporal
correlation alone cannot capture. We again use the synthetic dataset for validation.

Synthetic data generation with random walk model. Instead of generating short-term patterns
using the autoregressive model as before, we utilize random walk-based change patterns, following
the equation:

Ty = Tp_1 + €. (11)

The step size for the walk e; was sampled from a uniform distribution within the range of [-20,
20]. The generated short-term patterns were then inserted into the training data, as in the previous
synthetic time-series approach.

Results. Table 3 shows the results of applying the same experiment as in Table 2, but with different
synthetic time-series data. Again, the retrieval module improves performance across all cases, par-
ticularly for rare patterns. Furthermore, the performance improvement is more significant for tem-
porally less correlated patterns (16.0~31.5% decrease of MSE depending on pattern occurrences),
compared to temporally more correlated ones shown in Table 2 (9.2~14.7%). This confirms that
the proposed retrieval module is more beneficial when dealing with temporally less correlated or
near-random patterns that are more challenging for the model to learn.

Under review as a conference paper at ICLR 2025

Table 3: Forecasting accuracy over the rarity of the pattern. Synthetic time series with random
walk based patterns (temporally less correlated) is used. Forecasting accuracy was evaluated using
MSE, averaged across 120 different time series and short-term patterns. The numbers in parentheses
indicate the ratio by which the MSE decreases when retrieval is appended.

Pattern occurrences 1 2 4

RAFT without retrieval 0.2694 0.2649 0.1894
RAFT with retrieval 0.1845 (-31.5%) 0.1818 (-31.4%) 0.1592 (-16.0%)

6 CONCLUSION

In this paper, we introduce RAFT, a time-series forecasting method that leverages retrieval from
training data to augment the input. Our retrieval module lessens the model to absorb all unique
patterns in its weights, particularly those that lack temporal correlation or do not share common
characteristics with other patterns. This overall is demonstrated as an effective inductive bias for
deep learning architectures for time-series. Our extensive evaluations on numerous real-world and
synthetic datasets confirm that RAFT achieves performance improvements over contemporary base-
lines. As various retrieval-based models are being proposed, there remains room for improvement in
retrieval techniques specifically tailored for time-series data (beyond the simple approaches used),
including determining when, where, and how to apply retrieval based on dataset characteristics and
capture more complex similarity measures that depend on nonlinear and nonstationary characteris-
tics. Our work is expected to open new avenues in the time-series forecasting field through the use
of retrieval-augmented approaches.

REFERENCES

Sercan O Arik and Tomas Pfister. Protoattend: Attention-based prototypical learning. Journal of
Machine Learning Research, 21(210):1-35, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Fabricio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgilio Almeida. Characterizing user
behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on
Internet Measurement, pp. 49-62, 2009.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206-2240. PMLR, 2022.

Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional time series forecasting
with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation research record, 1748
(1):96-102, 2001.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. Tsmixer:
An all-mlp architecture for time series forecast-ing. Transactions on Machine Learning Research,
2023.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

10

Under review as a conference paper at ICLR 2025

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and Artem
Babenko. Tabr: Tabular deep learning meets nearest neighbors. In The Twelfth International
Conference on Learning Representations, 2024.

Clive William John Granger and Paul Newbold. Forecasting economic time series. Academic press,
2014.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929-3938.
PMLR, 2020.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388-427, 2021.

Tomoharu Iwata and Atsutoshi Kumagai. Few-shot learning for time-series forecasting. arXiv
preprint arXiv:2009.14379, 2020.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. Self-
attention between datapoints: Going beyond individual input-output pairs in deep learning. Ad-
vances in Neural Information Processing Systems, 34:28742-28756, 2021.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95-104, 2018.

Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series extreme event forecast-
ing with neural networks at uber. In International conference on machine learning, volume 34,
pp. 1-5. sn, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with* 1k* parameters. In Forty-first International Conference
on Machine Learning, 2024.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816-5828, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881-9893, 2022b.

Luis Martin, Luis F Zarzalejo, Jesus Polo, Ana Navarro, Ruth Marchante, and Marco Cony. Predic-
tion of global solar irradiance based on time series analysis: Application to solar thermal power
plants energy production planning. Solar Energy, 84(10):1772-1781, 2010.

John A Miller, Mohammed Aldosari, Farah Saeed, Nasid Habib Barna, Subas Rana, I Budak
Arpinar, and Ninghao Liu. A survey of deep learning and foundation models for time series
forecasting. arXiv preprint arXiv:2401.13912, 2024.

11

Under review as a conference paper at ICLR 2025

Youssef Nader, Leon Sixt, and Tim Landgraf. Dnnr: Differential nearest neighbors regression. In
International Conference on Machine Learning, pp. 16296-16317. PMLR, 2022.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. arXiv preprint arXiv:2104.07567, 2021.

Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998-6008, 2017.

Huiqgiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
scale local and global context modeling for long-term series forecasting. In The eleventh interna-
tional conference on learning representations, 2023.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024.

Andreas S Weigend, Morgan Mangeas, and Ashok N Srivastava. Nonlinear gated experts for time
series: Discovering regimes and avoiding overfitting. International journal of neural systems, 6
(04):373-399, 1995.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Forty-first International
Conference on Machine Learning, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419-22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023.

Sitan Yang, Carson Eisenach, and Dhruv Madeka. Mg-retcnn: Multi-horizon time series forecasting
with retrieval-augmentation. In 8th SIGKDD International Workshop on Mining and Learning
from Time Series — Deep Forecasting: Models, Interpretability, and Applications, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Zhongheng Zhang. Introduction to machine learning: k-nearest neighbors. Annals of translational
medicine, 4(11), 2016.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268-27286. PMLR, 2022.

12

Under review as a conference paper at ICLR 2025

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data streams
in real time. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pp. 358-369. Elsevier, 2002.

13

Under review as a conference paper at ICLR 2025

APPENDIX

A DATASET DETAILS

In this work, we use widely-used 10 time series datasets. The detailed information of each dataset
are shown in Table 4. The dataset size is presented in (Train, Validation, Test). The targets used
in the univariate setting are as follows: oil temperature for the ETTh1, ETTh2, ETTml, ETTm2
datasets; the consumption of a client for the Electricity dataset; the exchange rate of Singapore for
the Exchange Rate dataset; the weekly ratio of patients for Illness dataset; 10-minute solar power
forecasts collected from power plants for the Solar dataset; the road occupancy rates measured by a
sensor for the Traffic dataset; and CO2 (ppm) for the Weather dataset.

Table 4: Basic information of datasets used for evaluation.

Dataset # of variates Dataset Size Frequency
ETThl 7 (8449, 2785, 2785) Hourly
ETTh2 7 (8449, 2785, 2785) Hourly
ETTml 7 (34369, 11425, 11425) 15 min
ETTm2 7 (34369, 11425, 11425) 15 min
Electricity 321 (18221, 2537, 5165) Hourly
Exchange Rate 8 (5120, 665, 1422) Daily
Illness 7 (485, 2, 98) Weekly
Solar 137 (36601, 5161, 10417) 10 min
Traffic 862 (12089, 1661, 3413) Hourly
Weather 21 (36696, 5175, 10444) 10min

14

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

RAFT employs a retrieval module with the following detailed settings. The periods are set to 1,2, 4
(n = 3), following existing literature (Wang et al., 2024). The temperature 7 is set to 0.1. The
remaining settings, including the look back window size L, the learning rate, and the number of
patches used in retrieval m are determined through grid search based on validation set performance,
consistent with prior work (Wang et al., 2024). The effect of hyper-parameters (L, m, 7) on the
performance are analyzed in the Section C.3-C.4.

Table 5 provides the parameter settings of our model for each dataset. We observed that some
parameters vary across different datasets.

Table 5: The chosen parameter values of each setting via grid search over the validation set.

\ Forecasting horizon size Look back window size Learning rate Number of retrievals

ETThl 96 720 1.00E-03 20
192 720 1.00E-02 20
336 720 1.00E-02 20
720 720 1.00E-04 20
ETTh2 96 720 1.00E-02 10
192 720 1.00E-03 10
336 720 1.00E-03 20
720 720 1.00E-04 20
ETTml 96 720 1.00E-02 1
192 720 1.00E-03 20
336 720 1.00E-03 20
720 720 1.00E-02 20
ETTm2 96 720 1.00E-03 5
192 720 1.00E-03 20
336 720 1.00E-04 20
720 720 1.00E-04 20
Electricity 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1
Exchange 96 720 1.00E-04 1
192 720 1.00E-03 1
336 720 1.00E-03 10
720 720 1.00E-04 20
Illness 96 96 1.00E-02 1
192 96 1.00E-02 1
336 96 1.00E-02 20
720 96 1.00E-02 20
Solar 96 720 1.00E-03 1
192 720 1.00E-02 1
336 720 1.00E-03 1
720 720 1.00E-03 1
Traffic 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1
Weather 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1

15

Under review as a conference paper at ICLR 2025

C COMPONENT ANALYSIS
In this section, we analyze the impact of each component of RAFT on performance.

C.1 DIFFERENT SIMILARITY METRICS FOR RETRIEVAL

We compared RAFT using various similarity metrics, including Pearson’s correlation, cosine simi-
larity, cosine similarity with projection, and negative L2 distance. Cosine similarity with projection
employs a trainable linear projection head for the input query and key vectors, respectively, and
measures cosine similarity between the embeddings after projection rather than between the raw
query and key. Table 6 presents the comparison results across datasets, where Pearson’s correlation
shows the best performance among the various similarity metrics. We also observe that the linear
projection does not provide a benefit compared to measuring similarity with the raw query and key.

Table 6: Comparison of various similarity metrics with RAFT in the univariate setting.

Pearson’s Correlation ~ Cosine Similarity Cosine Sim with Projection Negative L2 Distance

ETThl 0.0559 0.0561 0.0562 0.0562
ETTh2 0.1231 0.1235 0.1298 0.1271
ETTml1 0.0299 0.0298 0.0294 0.0296
ETTm2 0.0647 0.0649 0.0699 0.0666
Electricity 0.3307 0.3343 0.3981 0.3388
Exchange Rate 0.0915 0.0917 0.0933 0.0922
Traffic 0.2737 0.2773 0.2943 0.2925
Weather 0.0118 0.0129 0.0026 0.0278

C.2 ABLATION STUDY ON RETRIEVAL MODULE

To thoroughly analyze the impact of the proposed retrieval design on performance, we conducted
an ablation study on the retrieval module. The ablations were as follows: (1) Random Retrieval —
Key patches are retrieved randomly, without considering similarity to the query; (2) Without Atten-
tion — When aggregating value patches, we use equal weights instead of similarity-based weights
(Eq. 5); (3) Without Retrieval — Retrieval is entirely removed, leaving only the linear predictor. The
experiments were conducted under identical hyper-parameter and learning settings and evaluated on
multivariate forecasting tasks. Table 7 presents the MSE results for each dataset across the ablations.
As shown in the results, our model with all components included consistently achieved the best per-
formance compared to the baselines across all datasets. Notably, we observed that when retrieval
was conducted randomly or without attention, performance was sometimes even worse than without
retrieval, which demonstrates that retrieving relevant data is crucial for achieving high performance.

Table 7: Ablation study on retrieval module in the multivariate setting.

ETThl ETTh2 ETTml ETTm2 Electricity Exchange Rate Traffic ~Weather

RAFT 0.367 0.276 0.302 0.164 0.133 0.091 0.378 0.165
Random Retrieval ~ 0.382 0.282 0.305 0.171 0.150 0.092 0.413 0.188
Without Attention 0.379 0.281 0.300 0.165 0.148 0.090 0.409 0.172
Without Retrieval ~ 0.379 0.282 0.306 0.167 0.143 0.089 0.410 0.182

16

Under review as a conference paper at ICLR 2025

C.3 EFFECT OF LOOK BACK WINDOW SIZE (L)

We analyze the effect of look back window size (L) on forecasting performance. Keeping all other
experimental settings fixed, we varied the look back window size between 96, 192, 336, and 720 to
observe performance changes. The experiments were conducted in a multivariate setting across four
datasets, with the prediction length set to 96. Table 8 compares the MSE results for different look
back window sizes. Consistent with prior works (Wang et al., 2024; Zeng et al., 2023), we observed
that RAFT, based on a linear model, also achieves better forecasting performance as the look back
window size increases.

Table 8: Comparison results over different look back window size.

Look back window size (L) 96 192 336 720

ETThl 0.387 0390 0.386 0.367
ETTh2 0.296 0.292 0.281 0.276
ETTml 0.348 0.310 0.306 0.302
ETTm?2 0.179 0.171 0.166 0.164

C.4 HYPER-PARAMETER ANALYSIS

RAFT has two key internal model parameters. The first is the number of patches retrieved by
the retrieval module, and the second is the temperature 7 used in the softmax function to calcu-
late weights. Each hyper-parameter is optimally tuned for each dataset based on the validation set.
Table 9-10 below illustrates examples of performance variations (MSE) across four datasets with
different hyper-parameter values. As shown, the optimal values of the hyper-parameters vary de-
pending on the dataset.

Table 9: Effect of the number of retrievals (m) on performance.

The number of retrievals (m) 1 5 10 20

ETThl 0.370 0.368 0.367 0.367
ETTh2 0.280 0.278 0.276 0.275
ETTml 0.302 0.300 0.298 0.297
ETTm2 0.164 0.164 0.164 0.164

Table 10: Effect of the temperature (7) on performance.

Temperature (7) 0.01 0.1 1 10

ETThl 0.383 0367 0.378 0.381
ETTh2 0.285 0.276 0.280 0.281
ETTml1 0.303 0.302 0.300 0.304
ETTm?2 0.165 0.164 0.165 0.167

17

Under review as a conference paper at ICLR 2025

D RAFT As AN ADD-ON MODULE OVER TRANSFORMER-VARIANTS

In this paper, we demonstrate the effectiveness of the proposed retrieval module using the simple
linear architecture. However, the retrieval module can be seamlessly integrated into other archi-
tectures. To explore its extensibility, we combine the retrieval module into a Transformer-based
architecture, specifically AutoFormer. As shown in Table 11, our retrieval module successfully en-
hances the forecasting performance of the Transformer-based model, highlighting its potential for
broader applicability to other architectures.

Table 11: Performance comparison between AutoFormer and AutoFormer with our proposed re-
trieval module. The average MSE across different forecasting horizon lengths is reported.

ETThl ETTh2 ETTml ETTm2

Autoformer 0.496 0.450 0.588 0.327
+ Retrieval ~ 0.471 0.444 0.454 0.326

18

Under review as a conference paper at ICLR 2025

E COMPUTATIONAL COMPLEXITY FOR RETRIEVAL

Our model incorporates a retrieval process to find similar patches in the given data. For effi-
cient training, the retrieval process is pre-computed for the training and validation data, requiring
computation only once during training. We analyzed the wall time (in seconds) for retrieval pre-
computation, training, and inference on the ETTm1 dataset (see Table 12). The lookback window
size was set to 720, and the forecasting horizon length was set to 96.

Table 12: Wall time for each process of RAFT over ETTml.

Pre-computation Training time per epoch Total Inference time
Wall time (sec) 42.2 7.3 1.9

The pre-computation speed for retrieval of our model is O(N?), where N denotes the size of the
time-series in the training data. To reduce this time, one approach is to increase the stride of the
sliding window beyond 1, speeding up the search process. Table 13 records the changes in wall time
as the stride of the sliding window increases. As the stride increases, the time required for the search
process decreases significantly.

Table 13: Wall time across different number of strides over ETTm]1.

Stride 1 2 4 8
Wall time for pre-computation (sec) 42.2 19.8 93 4.7

Lastly, we examined the impact of increasing the stride on forecasting performance. Table 14
presents the changes in MSE across four datasets (ETTh1l, ETTh2, ETTm1, ETTm?2) as the stride
increases. While increasing the stride introduced a performance trade-off, we observed that the
decrease in performance was not significant.

Table 14: MSE changes of RAFT over four datasets across the different number of strides.

Stride 1 2 4 8

ETThl 0367 0379 0.381 0.383
ETTh2 0276 0.279 0.279 0.280
ETTml 0302 0.298 0.299 0.300
ETTm2 0.164 0.164 0.165 0.165

19

Under review as a conference paper at ICLR 2025

F SYNTHETIC DATASET GENERATION DETAILS

The synthetic time series was created by combining three different components. Two of these com-
ponents represent trend and seasonality, which exhibit long-term consistent patterns throughout the
entire time series. The third component represents event-based short-term patterns. The generation
details for each component are as follows:

Trend and seasonality components. To generate the trend and seasonality components, we synthe-
sized sinusoidal functions with varying periods, amplitudes, and offsets. The total length of the time
series was set to 18,000. The period of the sinusoidal function for the trend was sampled from a uni-
form distribution between [1000, 4000], while the period for seasonality was shorter, sampled from
[500, 1000]. The amplitude of each component was randomly chosen from the ranges [200, 300]
for the trend and [100, 200] for the seasonality. Offsets were sampled from the range [100, 200].

Short-term patterns from the autoregressive model. The length of each short-term pattern was
set to 200. In the case of the autoregressive model, the value of the next time step was determined
by the previous 20 time steps, following the equation below:

20
Te= Y pimii + €, (12)
=1

where ¢; represents the parameters in the autoregressive model, and ¢, is the noise. The parameters
were sampled from a uniform distribution within [-5, 5], and the noise was sampled from a uniform
distribution within [-10, 10]. The length of the short-term pattern was set to 200. To prevent the
short-term patterns from producing extreme values compared to the trend and seasonal components,
we clamped the values within the range [-100, 100].

Short-term patterns from the random-walk model. In the case of the random-walk model, the
length of the short-term pattern was also fixed at 200. Unlike the autoregressive model, in the
random-walk model, the value of the next time step depends only on the previous time step, as
described by the equation:

Ty = Ty—1 + €, (13)

where the step size for the walk was sampled from a uniform distribution within the range of [0, 20].
Again, to prevent the short-term patterns from producing extreme values compared to the trend and
seasonal components, we clamped the values within the range [-100, 100].

Finally, the trend, seasonality, and short-term patterns were combined to create the synthetic time
series. Example visualizations of the autoregressive short-term pattern, the random-walk pattern,
and the resulting synthetic time series can be seen in Figure 6.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

100

50

=50

-100

0 50 100 150

(a) Autoregressive short-term pattern

200

50

25

-25

-50

0 50 100 150

(c) Random-walk short-term pattern

200

21

100

—100

—200

0 500 1000 1500

(b) Synthetic data with autoregressive patterns

100

—100

—200

0 500 1000 1500

(d) Synthetic data with random-walk patterns

Figure 6: Visualization of an example synthetic time series with short-term patterns.

Under review as a conference paper at ICLR 2025

G QUALITATIVE ANALYSIS ON RETRIEVAL

In this section, we provide examples of our retrieval results. Figure 7-9 illustrate a comparison
between the input query and the retrieved key patch, as well as a comparison between the ground
truth and the retrieved value patch, with retrievals by 1, 2, and 4 periods. Note that we retrieve the
key patch with the top-1 similarity and its following value patch. The results demonstrate that our
retrieval module effectively delivers useful information for forecasting future predictions.

— Query — Retrieved Key
1.0
0.5
0.0
W\\ v\,\/
-0.5
0 20 40 60 80

(a) Input query and retrieved key patch (period 1)
1.0

0.5

0.0

T T

-0.5

0 20 40 60 80

(c) Input query and retrieved key patch (period 2)
1.0

0.5

0.0

x\—\jm\—b =

-0.5

0 20 40 60 80

(e) Input query and retrieved key patch (period 4)

= Ground Truth

1.0
/V\\/\v /_f V\J/J\/
W P
A

0 20

== Retrieved Value

0.5

0.0

-0.5

40 60 80

(b) Ground truth and retrieved value patch (period 1)

W\m

0 20

0.5

0.0

-0.5

40 60 80

(d) Ground truth and retrieved value patch (period 2)

1.0
aah e
S

0 20

0.5

0.0

-0.5

40 60 80

(f) Ground truth and retrieved value patch (period 4)

Figure 7: The example of our retrieval results on ETTh1 dataset. The key patches retrieved by
period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value patches
retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respectively. Note
that the figures in the right side sequentially follows after the figures in the left side within the time

series.

22

Under review as a conference paper at ICLR 2025

= Query = Retrieved Key — Ground Truth — Retrieved Value
1.5 1.5
1.0 1.0
0.5 0.5
0.0 0.0
-0.5 -0.5
0 20 40 60 80 0 20 40 60 80

(a) Input query and retrieved key patch (period 1) (b) Ground truth and retrieved value patch (period 1)

1.5 15
1.0 1.0
0.5 0.5
0.0 0.0
5 20 40 60 80 2 20 40 60 80

(c) Input query and retrieved key patch (period 2) (d) Ground truth and retrieved value patch (period 2)

1.5 1.5
1.0 1.0
05 0.5
0.0 0.0
5 20 40 60 80 2 20 20 60 80

(e) Input query and retrieved key patch (period 4) (f) Ground truth and retrieved value patch (period 4)

Figure 8: The example of our retrieval results on Exchange Rate dataset. The key patches retrieved
by period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value
patches retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respec-
tively. Note that the figures in the right side sequentially follows after the figures in the left side
within the time series.

23

Under review as a conference paper at ICLR 2025

= Query = Retrieved Key
4
2 4
O 4
—2
0 20 40 60 80

(a) Input query and retrieved key patch (period 1)

4

2

0

-2

0 20 40 60 80

(c) Input query and retrieved key patch (period 2)

4

2

0

=2

0 20 40 60 80

(e) Input query and retrieved key patch (period 4)

= Ground Truth — Retrieved Value

0 20 40 60 80

(b) Ground truth and retrieved value patch (period 1)

4

2

0

-2

0 20 40 60 80

(d) Ground truth and retrieved value patch (period 2)

4

2

0

-2

0 20 40 60 80

(f) Ground truth and retrieved value patch (period 4)

Figure 9: The example of our retrieval results on Traffic dataset. The key patches retrieved by
period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value patches
retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respectively. Note
that the figures in the right side sequentially follows after the figures in the left side within the time

series.

24

Under review as a conference paper at ICLR 2025

H FULL RESULTS
H.1 EVALUATION RESULTS WITH MSE

Table 15: Full evaluation results with MSE are provided, with some baseline results excerpted from
prior works (Wang et al., 2024; Nie et al., 2023).

Methods | Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETThl 96 [0.367 0.375 0.460 0.384 0426 0.397 0.395 0.513 0.449 0.865
19210.411 0.429 0.512 0.436 0.454 0.446 0.469 0.534 0.500 1.008
336(0.436 0.484 0.546 0.638 0.493 0.489 0.530 0.588 0.521 1.107
72010.467 0.498 0.544 0.521 0.526 0.513 0.598 0.643 0.514 1.181

|Avg|0.420 0.447 0.516 0.495 0475 0.461 0.498 0.570 0.496 1.040

ETTh2 96 |0.276 0.289 0.308 0.340 0.372 0.340 0.358 0.476 0.346 3.755
19210.347 0.372 0.393 0.402 0492 0.482 0.429 0.512 0.456 5.602
336/0.376 0.386 0.427 0.452 0.607 0.591 0.496 0.552 0.482 4.721
72010.436 0412 0.436 0.462 0.824 0.839 0.463 0.562 0.515 3.647

|Avg|0.359 0.365 0.391 0.414 0.574 0.563 0.437 0.526 0.450 4.431

ETTml 96 10.302 0.320 0.352 0.338 0.365 0.346 0.379 0.386 0.505 0.672
19210.329 0.361 0.390 0374 0.403 0.382 0.426 0.459 0.553 0.795
336(0.355 0.390 0.421 0.410 0436 0.415 0.445 0.495 0.621 1.212
720|0.406 0.454 0.462 0.478 0.489 0.473 0.543 0.585 0.671 1.166

|Avg|0.348 0.381 0.406 0.400 0.423 0.404 0.448 0.481 0.588 0.961

ETTm2 96 [0.164 0.175 0.183 0.187 0.197 0.193 0.203 0.192 0.255 0.365
19210.219 0.237 0.255 0.249 0.284 0.284 0.269 0.280 0.281 0.533
33610.275 0.298 0.309 0.321 0.381 0.382 0.325 0.334 0.339 1.363
72010.359 0.391 0412 0.408 0.549 0.558 0.421 0.417 0.433 3.379

|Avg|0.254 0275 0.290 0291 0.353 0.354 0.305 0.306 0.327 1.410

Electricity | 96 {0.133 0.153 0.190 0.168 0.180 0.210 0.193 0.169 0.201 0.274
19210.149 0.166 0.199 0.184 0.189 0.210 0.201 0.182 0.222 0.296
336(0.161 0.185 0.217 0.198 0.198 0.223 0.214 0.200 0.231 0.300
72010.197 0.225 0.258 0.220 0.217 0.258 0.246 0.222 0.254 0.373

|Avg|0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311

Exchange | 96 [0.091 0.095 0.084 0.107 0.102 0.081 0.148 0.111 0.197 0.847
19210.205 0.201 0.180 0226 0.172 0.157 0.271 0.219 0.300 1.204
336(0.353 0.350 0.510 0.367 0.272 0.305 0.460 0.421 0.509 1.672
720 1.115 0.898 1.480 0964 0.714 0.643 1.195 1.092 1.447 2.478
|Avg|0.441 0.386 0.564 0416 0315 0.297 0.519 0.461 0.613 1.550

Illness 24 |12.076 1.896 1.319 2317 2.684 2215 3.228 2.294 3.483 5.764
36 (2.183 1.928 1.579 1972 2.667 1.963 2.679 1.825 3.103 4.755
48 [2.073 2.132 1.553 2238 2.558 2.130 2.622 2.010 2.669 4.763

60 |2.058 2.141 1.470 2.027 2747 2368 2.857 2.178 2.770 5.264
|Avg|2.097 2.024 1.480 2.139 2.664 2.169 2.847 2.077 3.006 5.137
Solar 96 [0.192 0.189 0.265 0373 0.257 0.290 0.286 0.321 0.456 0.287
19210.247 0.222 0.288 0.397 0.278 0.320 0.291 0.346 0.588 0.297

33610.240 0.231 0.301 0.420 0.298 0.353 0.354 0.357 0.595 0.367
72010.246 0.223 0.295 0.420 0.299 0.357 0.380 0.375 0.733 0.374

|Avg|0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.593 0.331

Traffic 96 [0.378 0.462 0.526 0.593 0.577 0.650 0.587 0.612 0.613 0.719
19210.391 0473 0.522 0.617 0.589 0.598 0.604 0.613 0.616 0.696
33610.402 0.498 0.517 0.629 0.594 0.605 0.621 0.618 0.622 0.777
72010.434 0.506 0.552 0.640 0.613 0.645 0.626 0.653 0.660 0.864

|Avg|0.402 0.485 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764

Weather | 96 |0.165 0.163 0.186 0.172 0.198 0.195 0.217 0.173 0.266 0.300
19210.211 0.208 0.234 0.219 0.239 0.237 0.276 0.245 0.307 0.598
33610.260 0.251 0.284 0246 0.285 0.282 0.339 0.321 0.359 0.578
72010.327 0.339 0.356 0.365 0.351 0.345 0.403 0.414 0.419 1.059

|Avg|0.241 0240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634

25

Under review as a conference paper at ICLR 2025

H.2 EVALUATION RESULTS WITH MAE

Table 16: Full evaluation results with MAE are provided, with some baseline results excerpted from
prior works (Wang et al., 2024; Nie et al., 2023).

Methods ‘ Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETThl 96 [0.397 0.400 0.447 0.402 0446 0412 0.424 0.491 0.459 0.713
19210.427 0.421 0.477 0.429 0464 0.441 0.470 0.504 0.482 0.792
336(0.442 0.458 0.496 0.469 0.487 0.467 0.499 0.535 0.496 0.809
72010.478 0.482 0.517 0.500 0.526 0.510 0.544 0.616 0.512 0.865

|Avg|0.436 0.440 0.484 0.450 0.481 0.458 0.484 0.537 0.487 0.795

ETTh2 96 [0.344 0.341 0.355 0374 0424 0.394 0.397 0.458 0.388 1.525
19210.393 0.392 0.405 0414 0492 0.479 0.439 0.493 0.452 1.931
336(0.425 0414 0.436 0.452 0.555 0.541 0.487 0.551 0.486 1.835
72010.473 0434 0.450 0.468 0.655 0.661 0.474 0.560 0.511 1.625

|Avg|0.409 0.395 0.412 0.427 0.532 0.519 0.449 0.516 0.459 1.729

ETTml 96 10.349 0.357 0.374 0375 0.387 0.374 0.419 0.398 0.475 0.571
19210.367 0.381 0.393 0.387 0.408 0.391 0.441 0.444 0.496 0.669
336(0.383 0.404 0.414 0411 0431 0415 0.459 0.464 0.537 0.871
720(0.413 0.441 0.449 0.450 0462 0.451 0.490 0.516 0.561 0.823

|Avg|0.378 0.396 0.408 0.406 0.422 0.408 0.452 0.456 0.517 0.734

ETTm2 96 [0.256 0.258 0.270 0.267 0.296 0.293 0.287 0.274 0.339 0.453
19210.296 0.299 0.314 0.309 0.361 0.361 0.328 0.339 0.340 0.563
336(0.336 0.340 0.347 0351 0429 0.429 0.366 0.361 0.372 0.887
72010.392 0.396 0.404 0.403 0.522 0.525 0.415 0.413 0.432 1.338

|Avg|0.320 0.323 0.334 0.333 0402 0.402 0.349 0.347 0.371 0.810

Electricity | 96 [0.232 0.247 0.296 0.272 0.293 0.302 0.308 0.273 0.317 0.368
19210.247 0.256 0.304 0322 0.302 0.305 0.315 0.286 0.334 0.386
33610.259 0.277 0.319 0.300 0312 0.319 0.329 0.304 0.443 0.394
72010.297 0310 0.352 0.320 0.330 0.350 0.355 0.321 0.361 0.439

|Avg|0.259 0.273 0.318 0.304 0309 0.319 0.327 0.296 0.364 0.397

Exchange | 96 [0.209 0.214 0.203 0.234 0.235 0.203 0.278 0.237 0.323 0.752
19210.324 0.320 0.302 0.344 0316 0.293 0.380 0.335 0.369 0.895
336(0.431 0427 0.531 0.448 0.407 0.414 0.500 0.476 0.524 1.036
72010.801 0.702 0.959 0.746 0.658 0.601 0.841 0.769 0.941 1.310

|Avg|0.441 0416 0.499 0.443 0404 0.378 0.500 0.454 0.539 0.998

Illness 24 10956 0.860 0.754 0934 1.112 1.081 1.260 0.945 1.287 1.677
36 |1.008 0.910 0.870 0920 1.068 0.963 1.080 0.848 1.148 1.467

48 10972 0.956 0.815 0940 1.052 1.024 1.078 0.900 1.085 1.469

60 |0.974 0.956 0.788 0928 1.110 1.096 1.157 0.963 1.125 1.564

|Avg|0.977 0.920 0.807 0931 1.086 1.041 1.144 0914 1.161 1.544

Solar 96 [0.251 0.259 0.323 0.358 0.325 0.378 0.341 0.380 0.446 0.323

19210.323 0.283 0.332 0376 0.354 0.398 0.337 0.369 0.561 0.341
336(0.300 0.292 0.339 0.380 0.375 0.415 0.416 0.387 0.588 0.429
720]0.311 0.285 0.336 0.381 0.379 0.413 0.437 0.424 0.633 0.431

|Avg|0.296 0.280 0.333 0.374 0.358 0.401 0.383 0.390 0.557 0.381

Traffic 96 [0.273 0.285 0.347 0.321 0.350 0.396 0.366 0.338 0.388 0.391
19210.277 0.296 0.332 0336 0.356 0.370 0.373 0.340 0.382 0.379
336(0.282 0.296 0.334 0.336 0.358 0.373 0.383 0.328 0.337 0.420
72010.297 0.313 0.352 0.350 0.361 0.394 0.382 0.355 0.408 0.472

|Avg|0.282 0.298 0.341 0336 0.356 0.383 0.376 0.340 0.379 0.416

Weather | 96 [0.222 0.209 0.227 0.220 0.261 0.252 0.296 0.223 0.336 0.384
19210.264 0.250 0.265 0.261 0.299 0.295 0.336 0.285 0.367 0.544
336(0.302 0.287 0.301 0.337 0336 0.331 0.380 0.338 0.395 0.523
72010.355 0.341 0.349 0.359 0.388 0.382 0.428 0.410 0.428 0.741

|Avg|0.280 0.272 0.286 0.294 0321 0.315 0.360 0.314 0.382 0.548

26

	Introduction
	Related Work
	Deep learning for time-series forecasting
	Retrieval augmented models

	Method
	Overview
	Retrieval module architecture
	Forecast with retrieval module

	Experiments
	Experimental settings
	Experimental results on forecasting benchmarks

	Discussions
	Better retrieval results lead to better performance.
	Retrieval is particularly helpful when rare patterns repeat.
	Retrieval is helpful when patterns are temporally less correlated.

	Conclusion
	Dataset Details
	Implementation Details
	Component Analysis
	Different Similarity Metrics for Retrieval
	Ablation Study on Retrieval Module
	Effect of Look Back Window Size (L)
	Hyper-Parameter Analysis

	RAFT as an Add-On Module Over Transformer-Variants
	Computational Complexity for Retrieval
	Synthetic Dataset Generation Details
	Qualitative Analysis on Retrieval
	Full Results
	Evaluation Results with MSE
	Evaluation Results with MAE

