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ABSTRACT

Time series forecasting uses historical data to predict future trends, leveraging
the relationships between past observations and available features. In this paper,
we propose, RAFT, a retrieval-augmented time series forecasting method to
provide sufficient inductive biases and complement the model’s learning capacity.
When forecasting the subsequent time frames, we directly retrieve historical
data candidates from the training dataset with patterns most similar to the
input, and utilize the future values of these candidates alongside the inputs to
obtain predictions. This simple approach augments the model’s capacity by
externally providing information about past patterns via retrieval modules. Our
empirical evaluations on eight benchmark datasets show that RAFT consistently
outperforms contemporary baselines, an average win ratio of 86% for multivariate
forecasting and 80% for univariate forecasting tasks.

1 INTRODUCTION

Time series forecasting has a wide range of impactful applications and domains such as for climate
modeling (Zhu & Shasha, 2002), energy (Martı́n et al., 2010), economics (Granger & Newbold,
2014), traffic flow (Chen et al., 2001), and user behavior (Benevenuto et al., 2009). By providing
accurate forecasts, it helps make critical data-driven decisions and policies.

Over the past decade, deep learning models such as CNNs (Bai et al., 2018; Borovykh et al.,
2017) and RNNs (Hewamalage et al., 2021) have proven their effectiveness in capturing patterns
of change in historical observations, leading to the development of various deep learning models
tailored for time series forecasting. Especially, the advent of attention-based Transformers (Vaswani
et al., 2017) has made a significant impact on the time series domain. The architecture has shown
to be effective in modeling dependencies between inputs, resulting in variants like Informer (Zhou
et al., 2021), AutoFormer (Wu et al., 2021), and FedFormer (Zhou et al., 2022). Additionally, recent
methods utilize time series decomposition (Wang et al., 2023), which isolates trends or seasonal
patterns, and multi-periodicity analysis which involves downsampling/upsampling of the series at
various periods (Lin et al., 2024; Wang et al., 2024). Furthermore, lightweight models like multi-
layer perceptrons (MLP) have demonstrated strong performance along with these decomposition
techniques and multi-periodicity analysis (Chen et al., 2023; Zeng et al., 2023; Zhang et al., 2022).

This paper examines a critical open question in time-series forecasting: “do current models possess
the necessary inductive biases and learning capacity to extract generalizable patterns from training
data and achieve high accuracy?” Many existing models operate under assumptions of i.i.d. data, po-
tentially limiting their ability to generalize. Real-world time series exhibit complex, non-stationary
patterns with varying periods and shapes. These patterns may lack inherent temporal correlation
and arise from non-deterministic processes, resulting in infrequent repetitions and diverse distribu-
tions (Kim et al., 2021). This raises concerns about the effectiveness of models in extrapolating
from such infrequent patterns. Moreover, the advantages of indiscriminately memorizing all pat-
terns, including noisy and uncorrelated ones, are questionable in terms of both generalizability and
efficiency (Weigend et al., 1995).

We show an advancement in time-series forecasting models by expanding the models’ capacity
(implicitly via the trained weights) to learn patterns. We directly provide external information about
historical patterns that are complex to learn, as a way of bringing relevant information via the input
to reduce the burden on the forecasting model. Inspired by the retrieval-augmented generation
(RAG) approaches used in large language models (Lewis et al., 2020), our method retrieves similar
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Forecast

Retrieve relevant historical patterns

Use retrieved results alongside the input

Figure 1: Illustration of a motivating example of retrieval in time-series forecasting.

historical patterns from the training dataset based on given inputs and utilizes them along with
the model’s learned knowledge to forecast the next time frame (see Figure 1). Our new approach,
Retrieval-Augmented Forecasting of Time-series (RAFT), offers two key advantages: First, by
directly utilizing retrieved information, the useful patterns from the past become explicitly available
at inference time, rather than utilizing them via the learned information in model weights. The
learning hence covers patterns that lack temporal correlation or do not share common characteristics
with other patterns, thereby reducing the learning burden and enhancing the generalizability.
Second, even if a pattern rarely appears in the historical data and is difficult for the model to
memorize, the retrieval module allows the model to easily leverage the historical patterns when they
reappear (Miller et al., 2024; Laptev et al., 2017).

We demonstrate that the proposed judiciously-designed inductive bias, implemented through a
simple retrieval module, enables a straightforward MLP architecture to achieve strong forecasting
performance. Inspired by existing literature that downsamples series at various period intervals (Lin
et al., 2024; Wang et al., 2024), RAFT also generates multiple series by downsampling the given
series at different periods and attaches a retrieval module to each series. This allows effectively
capturing both short-term and long-term patterns for more accurate forecasting. As demonstrated
on eight time-series benchmark datasets, RAFT outperforms other contemporary baselines with
an average win ratio of 86% for multivariate forecasting and 80% for univariate forecasting tasks.
Overall, our contributions can be summarized as follows:

• We propose a retrieval-augmented time series forecasting method, RAFT, which retrieves
observations with similar temporal patterns from the training dataset and effectively leverage
retrieved patterns for future predictions.

• Our empirical studies on eight different benchmark datasets show that RAFT achieves higher
performance with an average win ratio of 86% for multivariate and 80% for univariate
forecasting compared to other contemporary baselines.

• We further explore the scenarios where retrieval modules can be beneficial for forecasting by
conducting analyses using synthetic and real-world benchmark datasets.

2 RELATED WORK

2.1 DEEP LEARNING FOR TIME-SERIES FORECASTING

A large body of research employs deep learning for time-series forecasting. Existing methods can
be broadly categorized based on the employed architecture. Prior to the advent of Transform-
ers (Vaswani et al., 2017), CNNs were commonly used to extract temporally local information from
input time series through kernels (Bai et al., 2018; Borovykh et al., 2017), or RNNs with their recur-
rent structures (Hewamalage et al., 2021). Following the advent of Transformers, several approaches
emerged to better tailor the Transformer architecture for time-series forecasting. For example, Log-
Trans (Li et al., 2019) used a convolutional self-attention layer, while Informer (Zhou et al., 2021)
employed a ProbSparse attention module along with a distilling technique to efficiently reduce net-
work size. Both Autoformer (Wu et al., 2021) and FedFormer (Zhou et al., 2022) decomposed time
series into components like trend and seasonal patterns for prediction.
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Despite advancements in Transformer-based models, (Zeng et al., 2023) reported that even a simple
linear model can achieve strong forecasting performance. Subsequently, lightweight MLP-based
time-series models in terms of both forecasting latency and training cost benefits, such as TiDE (Das
et al., 2023), TSMixer (Chen et al., 2023), and TimeMixer (Wang et al., 2024), were introduced.
These models utilize various approaches such as series decomposition similar to Transformer-based
studies (Zeng et al., 2023) or introduced multi-periodicity analysis by downsampling or upsampling
the series at various period intervals (Lin et al., 2024), to accurately extract the relevant information
from time-series for MLPs to effectively fit on them. Recently, several studies have constructed a
large time-series databases to build large foundation models, achieving strong zero-shot and few-
shot performance (Das et al., 2024; Woo et al., 2024).

Our proposed RAFT is based on a simple MLP architecture, following simplicity and efficiency
motivations. Through the retrieval module, the model retrieves patterns most similar to the current
prediction from the training dataset, allowing it to reference past patterns for future predictions
without the burden of memorizing all temporal patterns during training.

2.2 RETRIEVAL AUGMENTED MODELS

A typical retrieval-augmented model operates as follows: (1) Given an input, it retrieves instances
relevant to the input from an accessible dataset, such as the training data or an external corpus, and
(2) it combines the input with the retrieved instances to make a model prediction. One actively
researched area that employs this scheme is the natural language domain, particularly in retrieval-
augmented generation (RAG) (Lewis et al., 2020; Guu et al., 2020). RAG retrieves document chunks
from external corpora that are relevant to the input task, helping large language models (LLMs)
generate responses related to the task without hallucination (Shuster et al., 2021; Borgeaud et al.,
2022). This not only supplements the LLM’s limited prior knowledge but also enables the LLM
to handle complex, knowledge-intensive tasks more effectively by providing additional information
from the retrieved documents (Gao et al., 2023).

Beyond natural language processing, retrieval-augmented models have also been used to solve struc-
tured data problems. The simplest example is the K-nearest neighbor model (Zhang, 2016). Other
approaches have introduced kernel-based neighbor methods (Nader et al., 2022), prototype-based
approaches (Arik & Pfister, 2020), or considered all training samples as retrieved instances (Kossen
et al., 2021). More recently, models leveraging attention-like mechanisms have incorporated the sim-
ilarity between retrieved instances and the input into the prediction, achieving superior performance
compared to traditional deep tabular models (Gorishniy et al., 2024). There also exists a method that
has explored the potential of retrieving similar entities in time-series forecasting, involving multiple
time series entities (Iwata & Kumagai, 2020; Yang et al., 2022).

In this paper, we aim to demonstrate that retrieval can be effective, even when applied to time-series
data. Similar to how RAG supplements LLMs with additional information for knowledge-intensive
tasks, our approach seeks to reduce the learning complexity in time-series forecasting. Instead of
forcing the model to learn every possible complex pattern, the retrieval module provides information
that simplifies the learning process.

3 METHOD

3.1 OVERVIEW

Problem formulation. Given a time series S ∈ RC×T of length T with C observed variates (i.e.,
channels), RAFT utilizes historical observation x ∈ RC×L and the entire time series S to predict
future values y ∈ RC×F that is close to the actual future values y0 ∈ RC×F . L denotes look-back
window size and F denotes forecasting window size.

Given an input x, RAFT utilizes a retrieval module to find the most relevant patch from S. Then, the
subsequent patches of the relevant patch are retrieved as additional information for forecasting. The
retrieval process follows an attention-like structure, where the importance weights are calculated
based on the similarity between the input and the patches, and the retrieved patches are aggregated
through a weighted sum (Sec. 3.2). The main difference of our model from attention-based
forecasting models, such as transformers, lies in its ability to retrieve relevant data from the
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Figure 2: Illustration of retrieval module architecture. First, we consider consecutive time frames
from the entire time series S as key-value pairs and construct a candidate set using a sliding window
approach. Given an input time series as the query, the retrieval module computes the similarity
between the query and the keys in the candidate set that do not overlap temporally. Based on the
similarity, the top-m candidates are selected, and attention weights are calculated via SoftMax. The
final result is obtained through a weighted sum of the corresponding values.

entire time series rather than relying on a fixed lookback window. Since the time series shows
distinct characteristics across periods, we utilize the retrieval modules into multiple periods. RAFT
generates multiple time series by downsampling the time series S with different periods and applies
the retrieval module to each time series. The retrieval results from multiple series are processed
through linear projection and aggregated by summation. Finally, the input and the aggregated
retrieval result are concatenated and passed through a linear model to produce the final prediction
(Sec. 3.3). Details of each component are described below.

3.2 RETRIEVAL MODULE ARCHITECTURE

We transform the time series S to be appropriate for the retrieval. First, we find all key patches
within S that are to be compared with given x ∈ RC×L. Using the sliding window method of stride
11, we extract patches of window size L and define this collection as K = {k1, ...,kT−(L+F )+1},
where i indicates the the starting time step of the patch ki ∈ RC×L. Note that any patch that
overlaps with the given x must be excluded from K during training phase. Then, we find all value
patches that sequentially follows each key patch ki ∈ K in the time series. We define the collection
of value patches as V ∈ {v1, ...,vT−(L+F )+1}, where each vi ∈ RC×F sequentially follows after
ki in the time series.

After preparation of key patch setK and value patch set V for retrieval, we use the input x as a query
to retrieve similar key patches along with their corresponding value patches with following steps.
We first account for the distributional deviation between the query, key, and value patches used in the
retrieval process. Let us define x = {xt}t∈{1,...,L}, where xt ∈ RC denotes the values of C variates
at t-th time step within the input x (i.e., xt = {xt1, ..., xtC}). Inspired by existing literature (Zeng
et al., 2023), we treat the final time step value in each patch as an offset and subtract this value from
the patch as a form of preprocessing to make the patterns more meaningful to compare:

x̂ = {xt − xL}t∈{1,...,L}, (1)

where x̂ represent the input queries with the offset subtracted. Similarly, we subtract offset from all
key patches ki ∈ K and vi ∈ V , denoting them as k̂i ∈ K̂ and v̂i ∈ V̂ , respectively. Then, we
calculate the similarity ρi between given x̂ and all key patches in K̂ using similarity function s:

ρi = s(x̂, k̂i), k̂i ∈ K̂. (2)

Here, we use Pearson correlation as the similarity function s, instead of other measures, to exclude
the effects of scale variations and value offsets in the time series, focusing on capturing the increas-

1The stride can be adjusted according to the demand of computational efficiency.
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Figure 3: Illustration of the proposed architecture, RAFT. The input time series x and the entire
past observed time series S are first downsampled to generate multiple series with different periods.
Then, a retrieval module is applied to each series to retrieve information relevant to the current input.
The retrieved results are projected to the same dimension via a linear layer, and the results from dif-
ferent periods are summed to aggregate the information. Finally, the input time series is concatenated
with the aggregated retrieved results, and a linear layer is applied to produce the final prediction.

ing and decreasing tendencies2. We then retrieve the patches with top-m correlation values:

J = arg top-m ({ρi | 1 ≤ i ≤ |K̂|}), (3)

where J denotes the indices of top-m patches. Given temperature τ , we calculate the weight of
value patches with following equation:

wi =

{
exp (ρi/τ)∑

j∈J exp (ρj/τ)
, if i ∈ J

0. otherwise
(4)

Note that this is equivalent to conduct SoftMax only with top-m correlation values. Finally, we
obtain the final retrieval result ṽ ∈ RC×F as the weighted sum of value patches:

ṽ =
∑

i∈{1,...,|V̂|}

wi · v̂i. (5)

Figure 2 illustrates the architecture of our retrieval module.

3.3 FORECAST WITH RETRIEVAL MODULE

Single period. Consider the given input x ∈ RC×L and the retrieved patch ṽ ∈ RC×F . Similar to
the retrieval module, we subtract the offset from x and define x̂ as the input with the offset removed.
Next, we concatenate f(x̂) with g(ṽ), and process concatenated result through h to obtain ŷ:

ŷ = h(f(x̂)⊕ g(ṽ)), (6)

where linear projection f maps RL to RF , g maps RF to RF , h maps R2F to RF , and ⊕ represents
concatenation operation.

Multiple periods. Time series at different periods display unique characteristics – patterns in a small
time window typically reveal local patterns, while patterns in a large time window might correspond
to global trends. We propose extension of utilization of retrieval to consider n periods P . For each
p ∈ P , we downsample the query x, all key patches in K, and all value patches in V of period 1

by average pooling with period p. This results in x(p) ∈ RC×b
L
p c, K(p), and V(p) as the respective

query, key patch set, and value patch set for period p, where a key patch k
(p)
i ∈ RC×b

L
p c and a value

patch v
(p)
i ∈ RC×b

F
p c. Then, we conduct the retrieval process described in Sec. 3.2 using x(p),K(p),

and V(p), and obtain the retrieval result ṽ(p) ∈ RC×b
F
p c for each p. Each ṽ(p) is processed through

2See Appendix C.1 for comparison results with different similarity metrics.
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a linear layer g(p) to project all retrieval results in the same embedding space, mapping Rb
F
p c to RF ,

respectively. Finally, we concatenate x̂ with sum of linear projections and process it through linear
predictor h, which replaces Eq. 6 to following equation:

ŷ = h(f(x̂)⊕
∑
p∈P

g(p)(ṽ(p))) (7)

Denoting ŷt as the value at the t-th time step within ŷ, we restore the original offset by adding xL

to ŷ, resulting in the final forecast y:

y = {ŷt + xL}t∈{1,...,F}. (8)

We train the model by minimizing the following MSE loss L:

L = MSE(y, y0) (9)

Figure 3 illustrates our model’s forecasting process with multiple periods of retrieval.

4 EXPERIMENTS

We evaluate RAFT across multiple time-series benchmark datasets for the forecasting task. We
analyze how our proposed retrieval module contributes to performance improvement in time series
forecasting, and in which scenarios retrieval is particularly beneficial. Due to space constraints, the
full results, visualizations, and additional analyses of our model are provided in the Appendix.

4.1 EXPERIMENTAL SETTINGS

Datasets. We consider ten different benchmark datasets, each with a diverse range of variates,
dataset lengths, and frequencies: (1-4) The ETT dataset contains 2 years of electricity transformer
temperature data, divided into four subsets—ETTh1, ETTh2, ETTm1, and ETTm2 (Zhou et al.,
2021); (5) The Electricity dataset records household electric power consumption over approximately
4 years (Trindade, 2015); (6) The Exchange dataset includes the daily exchange rates of eight coun-
tries over 27 years (1990–2016) (Lai et al., 2018); (7) The Illness dataset includes the weekly ratio
of patients with influenza-like illness over 20 years (2002-2021)3; (8) The Solar dataset contains
10-minute solar power forecasts collected from power plants in 2006 (Liu et al., 2022a); (9) The
Traffic dataset contains hourly road occupancy rates on freeways over 48 months4; and (10) The
Weather dataset consists of 21 weather-related indicators in Germany over one year5. A summary
of the datasets is provided in the Appendix A.

Baselines. We compare against 9 contemporary time-series forecasting baselines, including: (1)
Autoformer (Wu et al., 2021), (2) Informer (Zhou et al., 2021), (3) Stationary (Liu et al., 2022b), (4)
Fedformer (Zhou et al., 2022), and (5) PatchTST (Nie et al., 2023), all of which use Transformer-
based architectures; (6) DLinear (Zeng et al., 2023), which are lightweight models with simple linear
architectures; (7) MICN (Wang et al., 2023), which leverages both local features and global correla-
tions through a convolutional structure; (8) TimesNet (Wu et al., 2023), which utilizes Fourier Trans-
formation to decompose time-series data within a modular architecture; and (9) TimeMixer (Wang
et al., 2024), which utilizes decomposition and multi-periodicity for forecasting.

Implementation details. RAFT employs the retrieval module with following detailed settings.
The periods are set to {1, 2, 4} (n = 3), following existing literature (Wang et al., 2024), and the
temperature τ is set to 0.1. Batch size is set to 32. The initial learning rate, number of patches used in
retrieval (m), and look back window size (L) are determined via grid search based on performance
on the validation set, following the prior work (Wang et al., 2024). For fair comparison, hyper-
parameter tuning was performed for both our model and all baselines using the validation set. The
learning rate is chosen from 1e-5 to 0.05, look back window size from {96, 192, 336, 720}, and the
number of patches used in retrieval m from {1, 5, 10, 20}. The chosen values of each setting are
presented in the Appendix B. For implementation, we referred to the publicly available time-series

3https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
4https://pems.dot.ca.gov/
5https://www.bgc-jena.mpg.de/wetter/
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Table 1: Comparison of RAFT and baseline methods across 10 datasets using MSE. For all datasets
except Illness, results are averaged over forecasting horizons of 96, 192, 336, and 720. For the
Illness dataset, forecasting horizons of 24, 36, 48, and 60 are used. Best performances are bolded,
and our framework’s performances, when second-best, are underlined.

Methods RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 0.420 0.447 0.516 0.495 0.475 0.461 0.498 0.570 0.496 1.040
ETTh2 0.359 0.364 0.391 0.414 0.574 0.563 0.437 0.526 0.450 4.431
ETTm1 0.348 0.381 0.406 0.400 0.423 0.404 0.448 0.481 0.588 0.961
ETTm2 0.254 0.275 0.290 0.291 0.353 0.354 0.305 0.306 0.327 1.410
Electricity 0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311
Exchange 0.441 0.386 0.564 0.416 0.315 0.643 1.195 0.461 1.447 2.478
Illness 2.097 2.024 1.480 2.139 2.664 2.169 2.847 2.077 3.006 5.137
Solar 0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.586 0.331
Traffic 0.434 0.484 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764
Weather 0.241 0.240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634

repository (TSLib)6. For all experiments, the average results from three runs are reported, with each
experiment conducted on a single NVIDIA A100 40GB GPU.

Evaluation. We consider two metrics for evaluation: MSE and MAE. We varied the forecasting
horizon length to measure performance (i.e., F = 96, 192, 336, 720), and each experiment setting
was run with three different random seeds to compute the average results. For the Illness dataset,
forecasting horizons of 24, 36, 48, and 60 are used, following the prior work (Nie et al., 2023;
Wang et al., 2024). The evaluation was conducted in multivariate settings, where both the input and
forecasting target have multiple channels.

4.2 EXPERIMENTAL RESULTS ON FORECASTING BENCHMARKS

Table 1 presents comparisons between the performance of time series forecasting methods and
RAFT. The results represent the average MSE performance evaluated across different forecasting
horizon lengths. We observe that our model consistently outperforms other contemporary baselines
on average, supporting the effectiveness of retrieval in time series forecasting. Full results and
comparisons using a different evaluation metric (i.e., MAE) are provided in Appendix H.

5 DISCUSSIONS

In this section, we explore scenarios where retrieval shows substantial advantage by empirically
analyzing its effect, using both benchmark datasets and synthetic time series datasets.

5.1 BETTER RETRIEVAL RESULTS LEAD TO BETTER PERFORMANCE.

Two criteria are important for our retrieval method to enhance the forecasting performance. First,
the value patches V identified through the similarity between the input query x and key patches K
should closely match the actual future value y0 which sequentially follows the input query. Second,
the model should efficiently leverage the information in the value patches for forecasting. From
these, we can draw the insight that higher similarity between input query and key patches (i.e., key
similarity) will lead to the higher similarity between the actual value and value patches (i.e., value
similarity), eventually resulting in better performance.

Figure 4 presents the correlation analysis conducted on the ETTh1 dataset. Figure 4a shows that
retrieving key patches with higher similarity leads to value patches that are more closely aligned
with the actual future value. Figure 4b illustrates that the value patches with greater similarity
to the actual future values tend to improve RAFT’s performance more significantly. This trend
is also consistent across datasets; datasets with higher key similarity show higher value similarity,
resulting in larger performance gains. Spearman’s correlation coefficient validate this trend, showing
a correlation of 0.60 between key similarity and value similarity, and a correlation of−0.54 between

6https://github.com/thuml/Time-Series-Library

7

https://github.com/thuml/Time-Series-Library


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Scatter plot of key and value similarity (b) Scatter plot of value similarity and MSE change (%)

Figure 4: Analysis of the correlation between (a) the key similarity and value similarity, and (b) the
value similarity and model performance changes measured by MSE (%). Key similarity refers to the
average similarity between input query (x) and all retrieved key patches (K). Value similarity refers
to the average similarity between actual future value (y0) and all retrieved value patches (V). The
analysis is conducted on the ETTh1 dataset.

value similarity and performance gain across datasets. The negative correlation with performance is
due to the use of MSE as the metric (lower the better). These results demonstrate that better retrieval
results from the retrieval module lead to improved performance of RAFT.

5.2 RETRIEVAL IS PARTICULARLY HELPFUL WHEN RARE PATTERNS REPEAT.

RAFT can complement scenarios where a particular pattern does not frequently appear in the train-
ing dataset, making it difficult for the model to memorize. By utilizing retrieved information, the
model can overcome this challenge. To analyze this effect, we conducted experiments using syn-
thetic time series datasets.

Synthetic data generation with autoregressive model. The synthetic time series was created by
combining three different components. Two of these components represent trend and seasonality,
which exhibit long-term consistent patterns throughout the entire time series. The third component
represents event-based short-term patterns. To generate the trend and seasonality components, we
synthesized sinusoidal functions with varying periods, amplitudes, and offsets. On the other hand,
the short-term patterns were generated using an autoregressive model. Specifically, the value of the
next time step was determined by the previous 20 time steps, following the equation below:

xt =

20∑
i=1

ϕixt−i + εt, (10)

where ϕi represents the parameters in the autoregressive model, and εt is the noise. The parameter
values and noise are sampled from a uniform distribution. The length of the short-term pattern was
set to 200. To examine whether retrieval is effective for rare patterns, we created three different
short-term patterns and varied their frequency of occurrence (i.e., rarity) in the training dataset. To
eliminate other potential confounding factors, we varied the trend and seasonality components and
randomized the order of the short-term patterns during repeated experiments. We then measured
and compared the average forecasting accuracy (i.e., MSE) when each pattern appeared in the test
set, with both the input and the forecasting horizon lengths fixed at 96. Additional details and
example figures of the synthetic dataset can be found in Figure 5a and in the Appendix F.

Results. Table 2 presents the number of occurrences of the short-term patterns and the correspond-
ing performance of RAFT with and without retrieval. Note that, in this experiment, we did not
consider multiple periods in order to isolate the effect of retrieval, so RAFT without retrieval has
an identical structure to the NLinear baseline (Zeng et al., 2023). The results show that our model,
utilizing retrieval, consistently outperformed the model without retrieval on the synthetic dataset;
9.2∼14.7% increase in performance depending on the pattern occurrences. Notably, as the pat-
tern occurrences decreased, the reduction in MSE was more significant. When we also visualize
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(a) Example plot of the synthetic time series

Ground Truth w/o Retrieval with Retrieval

(b) Predictions with and without retrieval module

Figure 5: Visualization of a synthetic time series with short-term patterns and the corresponding
predictions over the rare short-term pattern from models with and without the retrieval module. MSE
of predictions in this example without retrieval is 0.087, while with retrieval, it improves to 0.035.

Table 2: Analysis between forecasting accuracy and the rarity of the pattern over the synthetic
time series with an autoregressive model. Forecasting accuracy was evaluated using MSE, averaged
across 120 different time series and short-term patterns. The numbers in parentheses indicate the
ratio by which the MSE decreases when retrieval is appended.

Pattern occurrences 1 2 4

RAFT without Retrieval 0.2590 0.2310 0.2344
RAFT with Retrieval 0.2209 (-14.7%) 0.2064 (-10.7%) 0.2128 (-9.2%)

the predictions of models with and without retrieval modules over the rare pattern (see Figure 5b),
the model utilizing retrieval aligns well with the pattern’s periodicity and offset during forecasting,
while the model relying solely on learning fails to capture these aspects. This suggests that the model
struggles to learn rare patterns, and the retrieval module effectively complements this deficiency.

5.3 RETRIEVAL IS HELPFUL WHEN PATTERNS ARE TEMPORALLY LESS CORRELATED.

If short-term patterns are very similar across time, there’s less unique information for the model
to learn, making it easier to achieve accurate predictions. On the other hand, if the short-term
patterns in time series data are similar to a random walk without any specific temporal correlation,
the model would need to memorize all changes within short-term pattern for accurate forecasting.
Based on this hypothesis, we expect the retrieval module to be especially helpful when patterns are
temporally less correlated, as retrieval can easily detect similarities between patterns that temporal
correlation alone cannot capture. We again use the synthetic dataset for validation.

Synthetic data generation with random walk model. Instead of generating short-term patterns
using the autoregressive model as before, we utilize random walk-based change patterns, following
the equation:

xt = xt−1 + εt. (11)

The step size for the walk εt was sampled from a uniform distribution within the range of [-20,
20]. The generated short-term patterns were then inserted into the training data, as in the previous
synthetic time-series approach.

Results. Table 3 shows the results of applying the same experiment as in Table 2, but with different
synthetic time-series data. Again, the retrieval module improves performance across all cases, par-
ticularly for rare patterns. Furthermore, the performance improvement is more significant for tem-
porally less correlated patterns (16.0∼31.5% decrease of MSE depending on pattern occurrences),
compared to temporally more correlated ones shown in Table 2 (9.2∼14.7%). This confirms that
the proposed retrieval module is more beneficial when dealing with temporally less correlated or
near-random patterns that are more challenging for the model to learn.

9
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Table 3: Forecasting accuracy over the rarity of the pattern. Synthetic time series with random
walk based patterns (temporally less correlated) is used. Forecasting accuracy was evaluated using
MSE, averaged across 120 different time series and short-term patterns. The numbers in parentheses
indicate the ratio by which the MSE decreases when retrieval is appended.

Pattern occurrences 1 2 4

RAFT without retrieval 0.2694 0.2649 0.1894
RAFT with retrieval 0.1845 (-31.5%) 0.1818 (-31.4%) 0.1592 (-16.0%)

6 CONCLUSION

In this paper, we introduce RAFT, a time-series forecasting method that leverages retrieval from
training data to augment the input. Our retrieval module lessens the model to absorb all unique
patterns in its weights, particularly those that lack temporal correlation or do not share common
characteristics with other patterns. This overall is demonstrated as an effective inductive bias for
deep learning architectures for time-series. Our extensive evaluations on numerous real-world and
synthetic datasets confirm that RAFT achieves performance improvements over contemporary base-
lines. As various retrieval-based models are being proposed, there remains room for improvement in
retrieval techniques specifically tailored for time-series data (beyond the simple approaches used),
including determining when, where, and how to apply retrieval based on dataset characteristics and
capture more complex similarity measures that depend on nonlinear and nonstationary characteris-
tics. Our work is expected to open new avenues in the time-series forecasting field through the use
of retrieval-augmented approaches.
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APPENDIX

A DATASET DETAILS

In this work, we use widely-used 10 time series datasets. The detailed information of each dataset
are shown in Table 4. The dataset size is presented in (Train, Validation, Test). The targets used
in the univariate setting are as follows: oil temperature for the ETTh1, ETTh2, ETTm1, ETTm2
datasets; the consumption of a client for the Electricity dataset; the exchange rate of Singapore for
the Exchange Rate dataset; the weekly ratio of patients for Illness dataset; 10-minute solar power
forecasts collected from power plants for the Solar dataset; the road occupancy rates measured by a
sensor for the Traffic dataset; and CO2 (ppm) for the Weather dataset.

Table 4: Basic information of datasets used for evaluation.

Dataset # of variates Dataset Size Frequency

ETTh1 7 (8449, 2785, 2785) Hourly
ETTh2 7 (8449, 2785, 2785) Hourly
ETTm1 7 (34369, 11425, 11425) 15 min
ETTm2 7 (34369, 11425, 11425) 15 min
Electricity 321 (18221, 2537, 5165) Hourly
Exchange Rate 8 (5120, 665, 1422) Daily
Illness 7 (485, 2, 98) Weekly
Solar 137 (36601, 5161, 10417) 10 min
Traffic 862 (12089, 1661, 3413) Hourly
Weather 21 (36696, 5175, 10444) 10min

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

RAFT employs a retrieval module with the following detailed settings. The periods are set to 1, 2, 4
(n = 3), following existing literature (Wang et al., 2024). The temperature τ is set to 0.1. The
remaining settings, including the look back window size L, the learning rate, and the number of
patches used in retrieval m are determined through grid search based on validation set performance,
consistent with prior work (Wang et al., 2024). The effect of hyper-parameters (L, m, τ ) on the
performance are analyzed in the Section C.3-C.4.

Table 5 provides the parameter settings of our model for each dataset. We observed that some
parameters vary across different datasets.

Table 5: The chosen parameter values of each setting via grid search over the validation set.

Forecasting horizon size Look back window size Learning rate Number of retrievals

ETTh1 96 720 1.00E-03 20
192 720 1.00E-02 20
336 720 1.00E-02 20
720 720 1.00E-04 20

ETTh2 96 720 1.00E-02 10
192 720 1.00E-03 10
336 720 1.00E-03 20
720 720 1.00E-04 20

ETTm1 96 720 1.00E-02 1
192 720 1.00E-03 20
336 720 1.00E-03 20
720 720 1.00E-02 20

ETTm2 96 720 1.00E-03 5
192 720 1.00E-03 20
336 720 1.00E-04 20
720 720 1.00E-04 20

Electricity 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Exchange 96 720 1.00E-04 1
192 720 1.00E-03 1
336 720 1.00E-03 10
720 720 1.00E-04 20

Illness 96 96 1.00E-02 1
192 96 1.00E-02 1
336 96 1.00E-02 20
720 96 1.00E-02 20

Solar 96 720 1.00E-03 1
192 720 1.00E-02 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Traffic 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Weather 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1
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C COMPONENT ANALYSIS

In this section, we analyze the impact of each component of RAFT on performance.

C.1 DIFFERENT SIMILARITY METRICS FOR RETRIEVAL

We compared RAFT using various similarity metrics, including Pearson’s correlation, cosine simi-
larity, cosine similarity with projection, and negative L2 distance. Cosine similarity with projection
employs a trainable linear projection head for the input query and key vectors, respectively, and
measures cosine similarity between the embeddings after projection rather than between the raw
query and key. Table 6 presents the comparison results across datasets, where Pearson’s correlation
shows the best performance among the various similarity metrics. We also observe that the linear
projection does not provide a benefit compared to measuring similarity with the raw query and key.

Table 6: Comparison of various similarity metrics with RAFT in the univariate setting.

Pearson’s Correlation Cosine Similarity Cosine Sim with Projection Negative L2 Distance

ETTh1 0.0559 0.0561 0.0562 0.0562
ETTh2 0.1231 0.1235 0.1298 0.1271
ETTm1 0.0299 0.0298 0.0294 0.0296
ETTm2 0.0647 0.0649 0.0699 0.0666
Electricity 0.3307 0.3343 0.3981 0.3388
Exchange Rate 0.0915 0.0917 0.0933 0.0922
Traffic 0.2737 0.2773 0.2943 0.2925
Weather 0.0118 0.0129 0.0026 0.0278

C.2 ABLATION STUDY ON RETRIEVAL MODULE

To thoroughly analyze the impact of the proposed retrieval design on performance, we conducted
an ablation study on the retrieval module. The ablations were as follows: (1) Random Retrieval –
Key patches are retrieved randomly, without considering similarity to the query; (2) Without Atten-
tion – When aggregating value patches, we use equal weights instead of similarity-based weights
(Eq. 5); (3) Without Retrieval – Retrieval is entirely removed, leaving only the linear predictor. The
experiments were conducted under identical hyper-parameter and learning settings and evaluated on
multivariate forecasting tasks. Table 7 presents the MSE results for each dataset across the ablations.
As shown in the results, our model with all components included consistently achieved the best per-
formance compared to the baselines across all datasets. Notably, we observed that when retrieval
was conducted randomly or without attention, performance was sometimes even worse than without
retrieval, which demonstrates that retrieving relevant data is crucial for achieving high performance.

Table 7: Ablation study on retrieval module in the multivariate setting.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Rate Traffic Weather

RAFT 0.367 0.276 0.302 0.164 0.133 0.091 0.378 0.165
Random Retrieval 0.382 0.282 0.305 0.171 0.150 0.092 0.413 0.188
Without Attention 0.379 0.281 0.300 0.165 0.148 0.090 0.409 0.172
Without Retrieval 0.379 0.282 0.306 0.167 0.143 0.089 0.410 0.182
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C.3 EFFECT OF LOOK BACK WINDOW SIZE (L)

We analyze the effect of look back window size (L) on forecasting performance. Keeping all other
experimental settings fixed, we varied the look back window size between 96, 192, 336, and 720 to
observe performance changes. The experiments were conducted in a multivariate setting across four
datasets, with the prediction length set to 96. Table 8 compares the MSE results for different look
back window sizes. Consistent with prior works (Wang et al., 2024; Zeng et al., 2023), we observed
that RAFT, based on a linear model, also achieves better forecasting performance as the look back
window size increases.

Table 8: Comparison results over different look back window size.

Look back window size (L) 96 192 336 720

ETTh1 0.387 0.390 0.386 0.367
ETTh2 0.296 0.292 0.281 0.276
ETTm1 0.348 0.310 0.306 0.302
ETTm2 0.179 0.171 0.166 0.164

C.4 HYPER-PARAMETER ANALYSIS

RAFT has two key internal model parameters. The first is the number of patches retrieved by
the retrieval module, and the second is the temperature τ used in the softmax function to calcu-
late weights. Each hyper-parameter is optimally tuned for each dataset based on the validation set.
Table 9-10 below illustrates examples of performance variations (MSE) across four datasets with
different hyper-parameter values. As shown, the optimal values of the hyper-parameters vary de-
pending on the dataset.

Table 9: Effect of the number of retrievals (m) on performance.

The number of retrievals (m) 1 5 10 20

ETTh1 0.370 0.368 0.367 0.367
ETTh2 0.280 0.278 0.276 0.275
ETTm1 0.302 0.300 0.298 0.297
ETTm2 0.164 0.164 0.164 0.164

Table 10: Effect of the temperature (τ ) on performance.

Temperature (τ ) 0.01 0.1 1 10

ETTh1 0.383 0.367 0.378 0.381
ETTh2 0.285 0.276 0.280 0.281
ETTm1 0.303 0.302 0.300 0.304
ETTm2 0.165 0.164 0.165 0.167
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D RAFT AS AN ADD-ON MODULE OVER TRANSFORMER-VARIANTS

In this paper, we demonstrate the effectiveness of the proposed retrieval module using the simple
linear architecture. However, the retrieval module can be seamlessly integrated into other archi-
tectures. To explore its extensibility, we combine the retrieval module into a Transformer-based
architecture, specifically AutoFormer. As shown in Table 11, our retrieval module successfully en-
hances the forecasting performance of the Transformer-based model, highlighting its potential for
broader applicability to other architectures.

Table 11: Performance comparison between AutoFormer and AutoFormer with our proposed re-
trieval module. The average MSE across different forecasting horizon lengths is reported.

ETTh1 ETTh2 ETTm1 ETTm2

Autoformer 0.496 0.450 0.588 0.327
+ Retrieval 0.471 0.444 0.454 0.326
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E COMPUTATIONAL COMPLEXITY FOR RETRIEVAL

Our model incorporates a retrieval process to find similar patches in the given data. For effi-
cient training, the retrieval process is pre-computed for the training and validation data, requiring
computation only once during training. We analyzed the wall time (in seconds) for retrieval pre-
computation, training, and inference on the ETTm1 dataset (see Table 12). The lookback window
size was set to 720, and the forecasting horizon length was set to 96.

Table 12: Wall time for each process of RAFT over ETTm1.

Pre-computation Training time per epoch Total Inference time

Wall time (sec) 42.2 7.3 1.9

The pre-computation speed for retrieval of our model is O(N2), where N denotes the size of the
time-series in the training data. To reduce this time, one approach is to increase the stride of the
sliding window beyond 1, speeding up the search process. Table 13 records the changes in wall time
as the stride of the sliding window increases. As the stride increases, the time required for the search
process decreases significantly.

Table 13: Wall time across different number of strides over ETTm1.

Stride 1 2 4 8

Wall time for pre-computation (sec) 42.2 19.8 9.3 4.7

Lastly, we examined the impact of increasing the stride on forecasting performance. Table 14
presents the changes in MSE across four datasets (ETTh1, ETTh2, ETTm1, ETTm2) as the stride
increases. While increasing the stride introduced a performance trade-off, we observed that the
decrease in performance was not significant.

Table 14: MSE changes of RAFT over four datasets across the different number of strides.

Stride 1 2 4 8

ETTh1 0.367 0.379 0.381 0.383
ETTh2 0.276 0.279 0.279 0.280
ETTm1 0.302 0.298 0.299 0.300
ETTm2 0.164 0.164 0.165 0.165
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F SYNTHETIC DATASET GENERATION DETAILS

The synthetic time series was created by combining three different components. Two of these com-
ponents represent trend and seasonality, which exhibit long-term consistent patterns throughout the
entire time series. The third component represents event-based short-term patterns. The generation
details for each component are as follows:

Trend and seasonality components. To generate the trend and seasonality components, we synthe-
sized sinusoidal functions with varying periods, amplitudes, and offsets. The total length of the time
series was set to 18,000. The period of the sinusoidal function for the trend was sampled from a uni-
form distribution between [1000, 4000], while the period for seasonality was shorter, sampled from
[500, 1000]. The amplitude of each component was randomly chosen from the ranges [200, 300]
for the trend and [100, 200] for the seasonality. Offsets were sampled from the range [100, 200].

Short-term patterns from the autoregressive model. The length of each short-term pattern was
set to 200. In the case of the autoregressive model, the value of the next time step was determined
by the previous 20 time steps, following the equation below:

xt =

20∑
i=1

ϕixt−i + εt, (12)

where ϕi represents the parameters in the autoregressive model, and εt is the noise. The parameters
were sampled from a uniform distribution within [-5, 5], and the noise was sampled from a uniform
distribution within [-10, 10]. The length of the short-term pattern was set to 200. To prevent the
short-term patterns from producing extreme values compared to the trend and seasonal components,
we clamped the values within the range [-100, 100].

Short-term patterns from the random-walk model. In the case of the random-walk model, the
length of the short-term pattern was also fixed at 200. Unlike the autoregressive model, in the
random-walk model, the value of the next time step depends only on the previous time step, as
described by the equation:

xt = xt−1 + εt., (13)

where the step size for the walk was sampled from a uniform distribution within the range of [0, 20].
Again, to prevent the short-term patterns from producing extreme values compared to the trend and
seasonal components, we clamped the values within the range [-100, 100].

Finally, the trend, seasonality, and short-term patterns were combined to create the synthetic time
series. Example visualizations of the autoregressive short-term pattern, the random-walk pattern,
and the resulting synthetic time series can be seen in Figure 6.
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(b) Synthetic data with autoregressive patterns
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(c) Random-walk short-term pattern
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(d) Synthetic data with random-walk patterns

Figure 6: Visualization of an example synthetic time series with short-term patterns.
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G QUALITATIVE ANALYSIS ON RETRIEVAL

In this section, we provide examples of our retrieval results. Figure 7-9 illustrate a comparison
between the input query and the retrieved key patch, as well as a comparison between the ground
truth and the retrieved value patch, with retrievals by 1, 2, and 4 periods. Note that we retrieve the
key patch with the top-1 similarity and its following value patch. The results demonstrate that our
retrieval module effectively delivers useful information for forecasting future predictions.

Query Retrieved Key Ground Truth Retrieved Value
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0.0

0.5

1.0

(a) Input query and retrieved key patch (period 1)

0 20 40 60 80
0.5

0.0

0.5
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(b) Ground truth and retrieved value patch (period 1)
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0.5
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(c) Input query and retrieved key patch (period 2)

0 20 40 60 80
0.5

0.0
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(d) Ground truth and retrieved value patch (period 2)
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(e) Input query and retrieved key patch (period 4)
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0.0

0.5
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(f) Ground truth and retrieved value patch (period 4)

Figure 7: The example of our retrieval results on ETTh1 dataset. The key patches retrieved by
period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value patches
retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respectively. Note
that the figures in the right side sequentially follows after the figures in the left side within the time
series.
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(b) Ground truth and retrieved value patch (period 1)
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(c) Input query and retrieved key patch (period 2)

0 20 40 60 80
0.5

0.0

0.5

1.0

1.5
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(e) Input query and retrieved key patch (period 4)
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(f) Ground truth and retrieved value patch (period 4)

Figure 8: The example of our retrieval results on Exchange Rate dataset. The key patches retrieved
by period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value
patches retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respec-
tively. Note that the figures in the right side sequentially follows after the figures in the left side
within the time series.
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(c) Input query and retrieved key patch (period 2)
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(f) Ground truth and retrieved value patch (period 4)

Figure 9: The example of our retrieval results on Traffic dataset. The key patches retrieved by
period 1, 2, and 4 are compared with input query in (a), (c), and (e), respectively. The value patches
retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f), respectively. Note
that the figures in the right side sequentially follows after the figures in the left side within the time
series.
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H FULL RESULTS

H.1 EVALUATION RESULTS WITH MSE

Table 15: Full evaluation results with MSE are provided, with some baseline results excerpted from
prior works (Wang et al., 2024; Nie et al., 2023).

Methods Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.367 0.375 0.460 0.384 0.426 0.397 0.395 0.513 0.449 0.865
192 0.411 0.429 0.512 0.436 0.454 0.446 0.469 0.534 0.500 1.008
336 0.436 0.484 0.546 0.638 0.493 0.489 0.530 0.588 0.521 1.107
720 0.467 0.498 0.544 0.521 0.526 0.513 0.598 0.643 0.514 1.181

Avg 0.420 0.447 0.516 0.495 0.475 0.461 0.498 0.570 0.496 1.040

ETTh2 96 0.276 0.289 0.308 0.340 0.372 0.340 0.358 0.476 0.346 3.755
192 0.347 0.372 0.393 0.402 0.492 0.482 0.429 0.512 0.456 5.602
336 0.376 0.386 0.427 0.452 0.607 0.591 0.496 0.552 0.482 4.721
720 0.436 0.412 0.436 0.462 0.824 0.839 0.463 0.562 0.515 3.647

Avg 0.359 0.365 0.391 0.414 0.574 0.563 0.437 0.526 0.450 4.431

ETTm1 96 0.302 0.320 0.352 0.338 0.365 0.346 0.379 0.386 0.505 0.672
192 0.329 0.361 0.390 0.374 0.403 0.382 0.426 0.459 0.553 0.795
336 0.355 0.390 0.421 0.410 0.436 0.415 0.445 0.495 0.621 1.212
720 0.406 0.454 0.462 0.478 0.489 0.473 0.543 0.585 0.671 1.166

Avg 0.348 0.381 0.406 0.400 0.423 0.404 0.448 0.481 0.588 0.961

ETTm2 96 0.164 0.175 0.183 0.187 0.197 0.193 0.203 0.192 0.255 0.365
192 0.219 0.237 0.255 0.249 0.284 0.284 0.269 0.280 0.281 0.533
336 0.275 0.298 0.309 0.321 0.381 0.382 0.325 0.334 0.339 1.363
720 0.359 0.391 0.412 0.408 0.549 0.558 0.421 0.417 0.433 3.379

Avg 0.254 0.275 0.290 0.291 0.353 0.354 0.305 0.306 0.327 1.410

Electricity 96 0.133 0.153 0.190 0.168 0.180 0.210 0.193 0.169 0.201 0.274
192 0.149 0.166 0.199 0.184 0.189 0.210 0.201 0.182 0.222 0.296
336 0.161 0.185 0.217 0.198 0.198 0.223 0.214 0.200 0.231 0.300
720 0.197 0.225 0.258 0.220 0.217 0.258 0.246 0.222 0.254 0.373

Avg 0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311

Exchange 96 0.091 0.095 0.084 0.107 0.102 0.081 0.148 0.111 0.197 0.847
192 0.205 0.201 0.180 0.226 0.172 0.157 0.271 0.219 0.300 1.204
336 0.353 0.350 0.510 0.367 0.272 0.305 0.460 0.421 0.509 1.672
720 1.115 0.898 1.480 0.964 0.714 0.643 1.195 1.092 1.447 2.478

Avg 0.441 0.386 0.564 0.416 0.315 0.297 0.519 0.461 0.613 1.550

Illness 24 2.076 1.896 1.319 2.317 2.684 2.215 3.228 2.294 3.483 5.764
36 2.183 1.928 1.579 1.972 2.667 1.963 2.679 1.825 3.103 4.755
48 2.073 2.132 1.553 2.238 2.558 2.130 2.622 2.010 2.669 4.763
60 2.058 2.141 1.470 2.027 2.747 2.368 2.857 2.178 2.770 5.264

Avg 2.097 2.024 1.480 2.139 2.664 2.169 2.847 2.077 3.006 5.137

Solar 96 0.192 0.189 0.265 0.373 0.257 0.290 0.286 0.321 0.456 0.287
192 0.247 0.222 0.288 0.397 0.278 0.320 0.291 0.346 0.588 0.297
336 0.240 0.231 0.301 0.420 0.298 0.353 0.354 0.357 0.595 0.367
720 0.246 0.223 0.295 0.420 0.299 0.357 0.380 0.375 0.733 0.374

Avg 0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.593 0.331

Traffic 96 0.378 0.462 0.526 0.593 0.577 0.650 0.587 0.612 0.613 0.719
192 0.391 0.473 0.522 0.617 0.589 0.598 0.604 0.613 0.616 0.696
336 0.402 0.498 0.517 0.629 0.594 0.605 0.621 0.618 0.622 0.777
720 0.434 0.506 0.552 0.640 0.613 0.645 0.626 0.653 0.660 0.864

Avg 0.402 0.485 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764

Weather 96 0.165 0.163 0.186 0.172 0.198 0.195 0.217 0.173 0.266 0.300
192 0.211 0.208 0.234 0.219 0.239 0.237 0.276 0.245 0.307 0.598
336 0.260 0.251 0.284 0.246 0.285 0.282 0.339 0.321 0.359 0.578
720 0.327 0.339 0.356 0.365 0.351 0.345 0.403 0.414 0.419 1.059

Avg 0.241 0.240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634
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H.2 EVALUATION RESULTS WITH MAE

Table 16: Full evaluation results with MAE are provided, with some baseline results excerpted from
prior works (Wang et al., 2024; Nie et al., 2023).

Methods Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.397 0.400 0.447 0.402 0.446 0.412 0.424 0.491 0.459 0.713
192 0.427 0.421 0.477 0.429 0.464 0.441 0.470 0.504 0.482 0.792
336 0.442 0.458 0.496 0.469 0.487 0.467 0.499 0.535 0.496 0.809
720 0.478 0.482 0.517 0.500 0.526 0.510 0.544 0.616 0.512 0.865

Avg 0.436 0.440 0.484 0.450 0.481 0.458 0.484 0.537 0.487 0.795

ETTh2 96 0.344 0.341 0.355 0.374 0.424 0.394 0.397 0.458 0.388 1.525
192 0.393 0.392 0.405 0.414 0.492 0.479 0.439 0.493 0.452 1.931
336 0.425 0.414 0.436 0.452 0.555 0.541 0.487 0.551 0.486 1.835
720 0.473 0.434 0.450 0.468 0.655 0.661 0.474 0.560 0.511 1.625

Avg 0.409 0.395 0.412 0.427 0.532 0.519 0.449 0.516 0.459 1.729

ETTm1 96 0.349 0.357 0.374 0.375 0.387 0.374 0.419 0.398 0.475 0.571
192 0.367 0.381 0.393 0.387 0.408 0.391 0.441 0.444 0.496 0.669
336 0.383 0.404 0.414 0.411 0.431 0.415 0.459 0.464 0.537 0.871
720 0.413 0.441 0.449 0.450 0.462 0.451 0.490 0.516 0.561 0.823

Avg 0.378 0.396 0.408 0.406 0.422 0.408 0.452 0.456 0.517 0.734

ETTm2 96 0.256 0.258 0.270 0.267 0.296 0.293 0.287 0.274 0.339 0.453
192 0.296 0.299 0.314 0.309 0.361 0.361 0.328 0.339 0.340 0.563
336 0.336 0.340 0.347 0.351 0.429 0.429 0.366 0.361 0.372 0.887
720 0.392 0.396 0.404 0.403 0.522 0.525 0.415 0.413 0.432 1.338

Avg 0.320 0.323 0.334 0.333 0.402 0.402 0.349 0.347 0.371 0.810

Electricity 96 0.232 0.247 0.296 0.272 0.293 0.302 0.308 0.273 0.317 0.368
192 0.247 0.256 0.304 0.322 0.302 0.305 0.315 0.286 0.334 0.386
336 0.259 0.277 0.319 0.300 0.312 0.319 0.329 0.304 0.443 0.394
720 0.297 0.310 0.352 0.320 0.330 0.350 0.355 0.321 0.361 0.439

Avg 0.259 0.273 0.318 0.304 0.309 0.319 0.327 0.296 0.364 0.397

Exchange 96 0.209 0.214 0.203 0.234 0.235 0.203 0.278 0.237 0.323 0.752
192 0.324 0.320 0.302 0.344 0.316 0.293 0.380 0.335 0.369 0.895
336 0.431 0.427 0.531 0.448 0.407 0.414 0.500 0.476 0.524 1.036
720 0.801 0.702 0.959 0.746 0.658 0.601 0.841 0.769 0.941 1.310

Avg 0.441 0.416 0.499 0.443 0.404 0.378 0.500 0.454 0.539 0.998

Illness 24 0.956 0.860 0.754 0.934 1.112 1.081 1.260 0.945 1.287 1.677
36 1.008 0.910 0.870 0.920 1.068 0.963 1.080 0.848 1.148 1.467
48 0.972 0.956 0.815 0.940 1.052 1.024 1.078 0.900 1.085 1.469
60 0.974 0.956 0.788 0.928 1.110 1.096 1.157 0.963 1.125 1.564

Avg 0.977 0.920 0.807 0.931 1.086 1.041 1.144 0.914 1.161 1.544

Solar 96 0.251 0.259 0.323 0.358 0.325 0.378 0.341 0.380 0.446 0.323
192 0.323 0.283 0.332 0.376 0.354 0.398 0.337 0.369 0.561 0.341
336 0.300 0.292 0.339 0.380 0.375 0.415 0.416 0.387 0.588 0.429
720 0.311 0.285 0.336 0.381 0.379 0.413 0.437 0.424 0.633 0.431

Avg 0.296 0.280 0.333 0.374 0.358 0.401 0.383 0.390 0.557 0.381

Traffic 96 0.273 0.285 0.347 0.321 0.350 0.396 0.366 0.338 0.388 0.391
192 0.277 0.296 0.332 0.336 0.356 0.370 0.373 0.340 0.382 0.379
336 0.282 0.296 0.334 0.336 0.358 0.373 0.383 0.328 0.337 0.420
720 0.297 0.313 0.352 0.350 0.361 0.394 0.382 0.355 0.408 0.472

Avg 0.282 0.298 0.341 0.336 0.356 0.383 0.376 0.340 0.379 0.416

Weather 96 0.222 0.209 0.227 0.220 0.261 0.252 0.296 0.223 0.336 0.384
192 0.264 0.250 0.265 0.261 0.299 0.295 0.336 0.285 0.367 0.544
336 0.302 0.287 0.301 0.337 0.336 0.331 0.380 0.338 0.395 0.523
720 0.355 0.341 0.349 0.359 0.388 0.382 0.428 0.410 0.428 0.741

Avg 0.286 0.272 0.286 0.294 0.321 0.315 0.360 0.314 0.382 0.548
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