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Abstract
A growing number of problems in data analysis and classification involve data that
are non-Euclidean. For such problems, a naive application of vector space analysis
algorithms will produce results that depend on the choice of local coordinates used to
parametrize the data. At the same time,many data analysis and classification problems
eventually reduce to an optimization, in which the criteria being minimized can be
interpreted as the distortion associated with a mapping between two curved spaces.
Exploiting this distortionminimizing perspective, we first show that manifold learning
problems involving non-Euclidean data can be naturally framed as seeking a mapping
between two Riemannian manifolds that is closest to being an isometry. A family of
coordinate-invariant first-order distortion measures is then proposed that measure the
proximity of the mapping to an isometry, and applied to manifold learning for non-
Euclidean data sets. Case studies ranging from synthetic data to human mass-shape
data demonstrate the many performance advantages of our Riemannian distortion
minimization framework.
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1 Introduction

1.1 Motivation and contribution

A growing number of problems in data analysis and classification involve data that are
non-Euclidean in nature. Examples include human shape andmotion data (Vinué et al.
2016; Barahona et al. 2018), data collected from sensor networks, social networks in
computational social sciences (Bronstein et al. 2017), andMRI imaging data (Fletcher
and Joshi 2007). In all these cases it is a priori known that the collected data are drawn
from a space that is not a vector space, but a curved space possessing additional
geometric structure.

Given that most data analysis algorithms are formulated in a vector space setting,
common practice when encountering non-Euclidean data is to ignore the fact that the
data are drawn from a curved space. Instead, standard data analysis algorithms are
applied to appropriate “vectorized” versions of the data in the hope that the algorithm
will “learn” as needed any underlying geometric structure. More often than not, how-
ever, the way in which the data are “vectorized” and measured—more technically, the
choice of local coordinates used to parametrize the data, and the choice of metric used
to measure distances and angles between data points—has a profound effect on the
results.

A more desirable solution is to formulate the analysis problem in a way that is
independent of the choice of local coordinates, in the same way that, e.g., the choice
of basis for a vector space should not affect the solution to a well-defined vector space
analysis problem, or the notion of shortest path on a sphere should not depend on
which coordinates are used to parametrize the sphere. Rather, the only choice to be
made should be an intrinsicmetric that reflects any physical or other intuitive attributes
of the problem, similar to choosing a quadratic form that defines an inner product and
norm for Euclidean space.

Many problems in data analysis and classification also reduce to an optimization
problem. Although not recognized as such, the objective function being minimized is
often a measure of distortion incurred when mapping one curved space into another.
A representative example is manifold learning, which is a widely used technique for
the more general problem of nonlinear dimensionality reduction. In classical man-
ifold learning one is given a set of points in a higher-dimensional space, with the
points assumed to lie on some lower-dimensional manifold embedded in this space;
the objective then is to find a Euclidean parametrization for this manifold that best
preserves distances and angles.1 Existing manifold learning algorithms can in fact
be distinguished by the choice of Euclidean parametrization and distortion measure,
which are mostly ad hoc and in some cases not even coordinate-independent.

1 A useful analogy is the problem of making two-dimensional Cartesian maps of the earth: given a set of
data points sampled from the earth’s surface, a two-dimensional surface—in this case a sphere—is first
fitted to these points, and a Cartesian map of the sphere that best preserves distances and angles is then
sought.
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The main contribution of this paper is a Riemannian geometric framework for
formulating and solving data analysis problems involving non-Euclidean data, all in a
coordinate-invariant way. Our focus will be on manifold learning problems although
many of the concepts and techniques are also applicable to other data analysis and
classification problems. We first introduce a family of coordinate-invariant first-order
measures that capture the distortion of amapping between twoRiemannianmanifolds.
A corresponding set of iterative gradient descent algorithms are also derived for this
family of measures.

Using this geometric framework, we then formulate manifold learning as a Rie-
mannian distortion minimization problem, while involving the case of non-Euclidean
data. Several new criteria and algorithms are introduced that are not only valid for
both non-Euclidean and Euclidean data, but even outperform existing manifold learn-
ing methods for Euclidean problems.We also show that many of the existing manifold
learning methods can be reformulated in terms of our Riemannian distortion perspec-
tive.

The paper is organized as follows. Section 2 presents our Riemannian distortion
framework. Section 3 frames manifold learning for non-Euclidean data as a distortion
minimization problem, with case studies presented in Sect. 4.

1.2 Relation to existing works

Differential geometry is the natural language in which to study non-Euclidean data,
and in Bronstein et al. (2017) a compelling case is made for the need to account
for the geometry of non-Euclidean data, together with an introduction of the most
relevant geometric concepts like Riemannian metrics, minimal geodesics, and the
general importance of coordinate-invariance. One of the first works to frame a class of
supervised learning problems as that of regression between Riemannian manifolds is
Steinke et al. (2010). In their work a specific Hessian-based measure for capturing the
distortion of a mapping between Riemannian manifolds is proposed, and applied to a
point correspondence matching problem between two surfaces. Because the Hessian-
based measure involves second derivatives of the mapping, however, second-order
quantities must be estimated from the data, which is computationally involved and
often highly sensitive to noise.

While there is a growing body of literature on how to generalize, e.g., density
estimation (Pelletier 2005), principal component analysis (Fletcher and Joshi 2007),
convolution (Bronstein et al. 2017), and other common data analysis and classifica-
tion notions to non-Euclidean domains, almost all of the previous work on manifold
learning and dimensionality reduction focus on problems in which the data are given
in vector form with no a priori manifold structure. All of them also try to capture, at
least implicitly, the general intuitive qualities of distortion: the locally linear embed-
ding (Roweis and Saul 2000), Isomap (Tenenbaum et al. 2000), Laplacian eigenmap
(Belkin and Niyogi 2003), diffusion map (Coifman and Lafon 2006), local tangent
space alignment (Zhang and Zha 2004), local coordinates alignment (Zhang et al.
2008), and Hessian eigenmap (Donoho and Grimes 2003) propose different opti-
mization criteria for constructing a lower-dimensional embedded manifold from a set

123



C. Jang et al.

of data points in a high-dimensional Euclidean space, and of obtaining a Euclidean
parametrization of this manifold. Lin et al. (2015) further attempt to classify mani-
fold learning algorithms into Laplacian-based, Hessian-based, and parallel field-based
approaches.

By and large, classical manifold learning algorithms return embeddings that are
far from ideal, with important information such as relative distances and directions
among the data points often distorted (the situation is even worse for non-Euclidean
data). Differential geometrically speaking, the obtainedmappings deviate significantly
from the ideal case of an isometry, i.e., a mapping between two spaces that preserves
distances and angles everywhere.

In this paper, by quantifying and minimizing the deviation of a mapping from an
isometry using our Riemannian distortion framework, we find optimal embeddings
that better preserve the original input data structure. One of the most relevant works
in this regard is the Riemannian relaxation method of McQueen et al. (2016); this
work proposes a multidimensional integral criterion for the more restricted case of a
mapping from a lower-dimensional input Riemannianmanifold—amanifold structure
is extracted with a Riemannian metric estimated from a set of high-dimensional data
points using the projection method described in Perrault-Joncas and Meila (2013)—
into a higher-dimensional Euclidean output space. Our formulation is in fact a more
general one that not only subsumes McQueen et al. (2016) and other related manifold
learning algorithms, but also leads to novel algorithms possessing several desirable
properties. A second important feature of our approach is that it seamlessly extends
our manifold learning methods to non-Euclidean data domains.

We conclude this section with some applications of Riemannian distortion that
have been developed in other applications contexts. Park and Brockett (1994) have
suggested a set of dexterity measures for robotic mechanisms based on Riemannian
distortion and applied these to the optimal kinematic design problem. In computer
graphics, different distortion minimization approaches have been proposed to find
two-dimensional mesh parametrizations of discrete three-dimensional surfaces, which
can be thought of as a low-dimensional manifold learning problem (Desbrun et al.
2002; Gu et al. 2004; Mullen et al. 2008). In Belkin et al. (2006) a Laplacian-based
regularization criterion for semi-supervised learning has been proposed for mappings
from a Euclidean-embedded manifold into Euclidean space, producing mappings in
which neighboring points in the input space tend to be adjacent to each other in the
output space.

2 Riemannian distortion

In this section, we show how to formulate global geometric distortion measures for
a smooth mapping between two Riemannian manifolds. We first construct general
coordinate-invariant first-order functionals for a mapping between two Riemannian
manifolds, i.e., the functional is invariantwith respect to the choice of local coordinates
for the source and target Riemannian manifolds. We then examine those functionals
that measure how close the mapping is to being an isometry. We conclude this section
with a discussion of how manifold learning problems can be framed within this Rie-
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Fig. 1 Local coordinates, tangent spaces, and Riemannian metrics for the mapping f : M → N . Local
coordinates are denoted in italics

mannian distortion framework, emphasizing the similarities and differences with the
extant mathematical literature on minimum distortion mappings between Riemannian
manifolds.

2.1 Constructing coordinate-invariant functionals on Riemannianmanifolds

In this section we show how to construct coordinate-invariant functionals for a smooth
mapping between two Riemannian manifolds. For further mathematical details on
differentiable manifolds and Riemannian geometry, we refer the reader to Boothby
(1986) and Dubrovin et al. (1992). Referring to Fig. 1, let M be an m-dimensional
manifold with local coordinates x = (x1, . . . , xm) and Riemannian metric

ds2 =
m∑

i=1

m∑

j=1

gi j (x) dx
idx j . (1)

Let N be an n-dimensional manifold with local coordinates y = (y1, . . . , yn) and
Riemannian metric

dr2 =
n∑

α=1

n∑

β=1

hαβ(y) dyαdyβ. (2)

Throughout we use italics to represent local coordinates, e.g., a point x ∈ M has local
coordinates x ∈ R

m , the mapping f : M → N is represented in local coordinates as
y = f (x). The two metrics will also be denoted in matrix form as G(x) = (

gi j (x)
)

and H(y) = (
hαβ(y)

)
, respectively.

Given a smooth mapping f : M → N , x �→ y = f(x), its differential dfx :
TxM → TyN is denoted in local coordinates by the matrix

J (x) =
(

∂ f i

∂x j
(x)

)
∈ R

n×m . (3)
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At a point x ∈ M, find the characteristic values of the pullback metric J (x)�H( f (x))
J (x) relative to the metric G(x) of M, i.e., the m real roots of the characteristic
polynomial p(λ) = det(J�H J − Gλ) = 0, which are the same as the eigenvalues
of J�H JG−1; apart from their order, these characteristic values are intrinsically
associatedwith J�H J andG. (To seewhy, observe that under a pair of local coordinate
transformations x �→ x ′ = φ(x) and y �→ y′ = ψ(y), G, H , and J transform
according to the following rules: (i) G �→ G ′ = �−�G�−1, where � = ∂φ

∂x ; (ii)

H �→ H ′ = 	−�H	−1, where 	 = ∂ψ
∂ y ; (iii) J �→ J ′ = 	 J�−1, from which

it can be verified that the characteristic values of J ′�H ′ J ′ relative to G ′ remain the
same.)

Let σ(λ1, . . . , λm) be any symmetric function (i.e., a functionwhose value is invari-
ant with respect to permutations of its arguments) of the m roots of the characteristic
polynomial p(λ). Then the integral

∫

M
σ(λ1, . . . , λm)

√
det G dx1 · · · dxm (4)

is an intrinsic quantity, i.e., coordinate-invariant.

2.2 Riemannian distortion and isometry

Based on the above, we now examine choices for σ that capture the intrinsic distortion
of the mapping f. The ideal case of no distortion is achieved when f is an isometry, i.e.,
angles and distances are preserved everywhere.Mathematically the equality J�H J =
G must hold at every x ∈ M. If dim(M) ≤ dim(N ), then for an isometry betweenM
and f(M) ⊆ N J�H JG−1 is the identity, or equivalently, the eigenvalues λ1, . . . , λm
of J�H JG−1 must all identically be one. The most straightforward choice for σ(λ)

is therefore

σ(λ) = 1

2

m∑

i=1

(λi − 1)2 = m

2
+

m∑

i=1

λ2i

2
− λi . (5)

Ignoring the constant term and noting that the sum of a matrix’s eigenvalues is its
trace, while the sum of the squares of a matrix’s eigenvalues is the trace of the squared
matrix, the corresponding global distortion measure can be written

min
∫

M
Tr

(
(J�H JG−1)2 − 2J�H JG−1

) √
det G dx1 · · · dxm . (6)

Closely related to the above is the alternative criterion

min
∫

M
max
i

(λi − 1)2
√
detG dx1 · · · dxm, (7)
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i.e., minimize the spectral norm of J�H JG−1− I .2 A third alternative is to minimize

min
∫

M

m∑

i=1

(log λi )
2

√
detG dx1 · · · dxm, (8)

which happens to correspond to the following widely used formula for measuring
the distance between two symmetric positive-definite matrices A and B (Fletcher and
Joshi 2007):

dist(A, B)2 =
m∑

i=1

(log λi (A, B))2 , (9)

where λi (A, B) here denotes the roots of the polynomial det(B − Aλ) = 0.
There may also arise situations where the isometry requirement can be relaxed,

e.g., preserving either shapes or volumes (but not both) is enough. If σ(λ) =
(log(λ1λ2 · · · λm))2 = (log(det(J�H JG−1)))2, then the corresponding global
distortion functional measures the extent to which volumes are preserved (a volume-
preserving map locally preserves volumes, but not distances and angles). The choice
σ(λ) = λmax/λmin corresponds to the condition number of J�H JG−1; when the con-
dition number attains the minimum possible value of 1, shapes (but not necessarily
their volumes) are preserved.

Since the integrands in all of the above functionals locally measure the deviation
of the mapping f from an isometry, there is no question that their integrals also serve
as global measures of distortion. Even the existence of solutions to these multidi-
mensional calculus of variations problem is difficult to prove, however. In Eells and
Sampson (1964) it is shown that

∫

M
Tr(J�H JG−1)

√
det G dx1 · · · dxm, (10)

which corresponds to the choice σ(λ) = λ1 + . . . + λm , is in fact a valid global
measure of distortion. More specifically, provided the boundary conditions for f are
well-specified (i.e., how the boundary ∂M of the region of integration inMmaps to a
boundary ∂N inN ), solutions are extrema of a global measure of distortion. A useful
physical analogy (Eells and Sampson 1964) is to imagine wrapping a curved object
made of marble (N ) by an elastic sheet (M); harmonic maps, which are extrema
of (10), can be viewed as solutions corresponding to elastic equilibria. As a familiar
example, minimal geodesics onN are special cases of harmonic maps in whichM is
some interval [a, b] ∈ R with endpoint boundary conditions given.

Although Tr(J�H JG−1) by itself cannot be interpreted as a local measure of
deviation from an isometry, by imposing appropriate boundary conditions (needed
to avoid trivial solutions J = 0, or equivalently f = constant), the solutions do in
fact admit an interpretation as minimum distortion maps. We refer the reader to the

2 Recall the spectral norm of a square matrix A is the positive square root of the maximum eigenvalue of
A�A. It can also be verified that if λi is an eigenvalue of J�H JG−1, then λi − 1 is an eigenvalue of
J�H JG−1 − I .
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n nA

Fig. 2 Manifold learning for non-Euclidean data (e.g., human mass-inertia data composed of symmetric
positive-definite matrices)

extensive literature on the theory and applications of harmonic maps, e.g., Eells and
Lemaire (1978, 1988), Park and Brockett (1994), and Gu et al. (2004).

Finally, if dim(M) > dim(N ), the pullback metric J�H J as well as J�H JG−1

will always be singular. In this case the above distortion measures are still applicable
by using only the nonzero eigenvalues (m − n of the eigenvalues will always be zero).
Isometries are unachievable in this case but the distortion measure is still valid and
physically meaningful.

2.3 Riemannian distortion andmanifold learning

In most of the mathematics literature the source and target Riemannian manifolds
(M,G) and (N , H) are specified, but typical problems in data analysis and classifi-
cation are much less well-defined. In manifold learning, for example, only a collection
of points S in some higher-dimensional space V is given; a Riemannian distortion for-
mulation of manifold learning entails determining some combination of the manifolds
M and N , their respective metrics G and H , as well as the mapping f : M → N .
Often boundary conditions on f, or other constraints are required to avoid trivial solu-
tions (e.g., the mapping f becoming constant when minimizing (10)). The integral
distortion functional on M is also replaced by a weighted summation over a set of
discrete points in M.

Given the numerous tasks involved, existing manifold learning methods for
Euclidean data adopt a divide-and-conquer approach, making explicit a priori choices
for, e.g., the manifolds and metrics for the source and target spaces, assuming certain
parametric forms for the mapping between the source and target manifolds, or using
k-nearest neighbor graphs and geodesic distances to fit a low-dimensional manifold to
the data. Reformulating existing algorithms from our Riemannian distortion perspec-
tive clearly provides a better qualitative understanding of the distinguishing features
of each algorithm, as well as a means for more rigorous quantitative analysis. Our
Riemannian distortion framework also leads to several novel manifold learning algo-
rithms for non-Euclidean data. These issues are further discussed in Sect. 3, with case
studies provided in Sect. 4.
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3 Manifold learning for non-Euclidean data

We now formalize manifold learning for non-Euclidean data. LetA be a geodesically
complete manifold (i.e., a connected manifold in which the existence of minimal
geodesics is guaranteed (Boothby 1986)) of dimension D from which a set of data
points S is drawn. Referring to Fig. 2, the data are assumed to lie on or near an m-
dimensional submanifold M ⊆ A to be determined, with m 
 D. A metric G on
M must first be specified that reflects any features and properties of the data points
S. In the next section we propose a sample-based algorithm that directly estimates
JG−1 J� fromS. The targetmanifoldN is taken to beRn equippedwith the Euclidean
metric H = I , where n ≥ m (if n ≥ 2m, then from the strong version of Whitney’s
embedding theorem, f : M → N can be an isometric immersion). A gradient-based
algorithm for minimizing the general Riemannian distortion measure (4) as well as
the more specific harmonic map-based measure (10) is then presented.

3.1 Estimation of JG−1 J� for non-Euclidean data

In this section we generalize the Laplace–Beltrami operator-basedmethod of Perrault-
Joncas and Meila (2013) for estimating JG−1 J� from a finite set of Euclidean
data points to the case of non-Euclidean data. In Perrault-Joncas and Meila (2013)
the Laplace–Beltrami operator of the submanifold embedded in Euclidean space is
approximated from the Euclidean data points using the normalized graph Laplacian
L ∈ R

N×N (Coifman and Lafon 2006). The inverse metric JG−1 J� is then estimated
at each data point xi using L and the embeddings yi = f (xi ) ∈ R

n , i = 1, . . . , N (we
elaborate further on this below). This method of estimating JG−1 J� is also applied
to Euclidean data manifold learning in McQueen et al. (2016).

To generalize this procedure for estimating JG−1 J� to non-Euclidean data, the
normalized graph Laplacian in Coifman and Lafon (2006) is expanded to approximate
the Laplace–Beltrami operator of a submanifold embedded in Riemannian ambient
space. Let S = {u1, . . . , uN } for ui ∈ M ⊆ A, i = 1, . . . , N , (xi ∈ R

m in local
coordinates) be the finite set of data points. The kernel function in Coifman and Lafon
(2006) is replaced by a kernel function kh : A × A → R of the form

kh(u, v) = k

(
distA(u, v)2

h

)
, (11)

where k(·) is an exponentially decaying function (e.g., k(t) = exp(−t) for t > 0), h is
a bandwidth parameter, and distA(u, v) denotes the length of the minimal geodesic in
A between two points u, v ∈ A.3 Algorithm 1 summarizes our method for obtaining
the normalized graph Laplacian.We note here that for the choice of exponential kernel
function k(t) = e−t , we have c = 1

4 (Perrault-Joncas and Meila 2013). We refer the

3 The kernel function defined on Riemannian manifolds as in (11) is known to not be positive-definite
in general (Jayasumana et al. 2015; Feragen et al. 2015). However, for our manifold learning purposes
that mainly target to capture only the submanifold on which the data points lie, we do not require the
positive-definiteness of the kernel.
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Algorithm 1 The normalized graph Laplacian L

Given: Data points ui ∈ M, i = 1, . . . , N , choice of kernel function k : R → R, kernel bandwidth
parameter h, pairwise distance function distA : A × A → R.

Ki j = kh(ui , u j ) = k

(
distA(ui ,u j )

2

h

)
, i, j = 1, . . . , N .

K = (Ki j ), di = ∑
j Ki j , D = diag(di ).

K̃ = D−1K D−1, d̃i = ∑
j K̃i j , D̃ = diag(d̃i ).

L = D̃−1 K̃−I
c h .

Output: L , (D̃, K̃ if required).

reader to Appendix A in Jang (2019) for a justification of the choice of kernel function
(11).

Wenowprovide a brief reviewof themethod to estimate the inversemetric JG−1 J�
proposed in Perrault-Joncas and Meila (2013). For a point p ∈ R

m (in local coordi-
nates) on themanifoldM, define a function qαβ(x; p) = 1

2 ( f
α(x)− f α(p))( f β(x)−

f β(p)), where f : Rm → R
n is the embedding function in local coordinates satis-

fying yi = f (xi ) for i = 1, . . . , N and f α : Rm → R is a map that extracts the
α-th coordinate of f . Applying the Laplace–Beltrami operator to qαβ(x; p) at x = p
results in

�qαβ(p; p) =
m∑

j=1

m∑

k=1

∂ f α

∂x j

∂ f β

∂xk
g jk

∣∣∣∣
x=p

, (12)

which corresponds to the (α, β) entry of JG−1 J� at x = p.
Given data points ui ∈ M (xi ∈ R

m in local coordinates) for i = 1, . . . , N , the
(α, β) entry of JG−1 J� at x = xi can be approximated using the normalized graph
Laplacian L ∈ R

N×N (obtained from Algorithm 1) as

(JG−1 J�)αβ(xi ) = �qαβ(xi ; xi ) = Li Q
αβ
i , (13)

where Li ∈ R
N is the i-th row of L and Qαβ

i = (qαβ(x1; xi ), . . . , qαβ(xN ; xi )) ∈ R
N .

Using the matrix representation of the embeddings Y = [
y1, . . . , yN

] ∈ R
n×N to

express Qαβ
i and gathering (13) for α, β = 1, . . . , n, the inverse metric JG−1 J� at

x = xi can then be written

JG−1 J�(xi ) = 1

2
Y (diag(Li ) − ei e

�
i L − L�ei e�

i )Y�, (14)

where ei = (0, . . . , 1, . . . , 0) ∈ R
N is a standard basis vector whose i-th component is

one. The inversemetric JG−1 J�(xi ) in (14) is guaranteed to be positive semi-definite:

Proposition 1 For the normalized graph Laplacian L ∈ R
N×N obtained from Algo-

rithm 1 and any embeddings Y = [
y1, . . . , yN

] ∈ R
n×N , the inverse metric JG−1 J�

at x = xi in (14) is positive semi-definite for all i = 1, . . . , N.
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Algorithm 2 Estimating JG−1 J� (Perrault-Joncas and Meila 2013)

Given: The normalized graph Laplacian L ∈ R
N×N obtained from Algorithm 1.

Input: Current embedding Y ∈ R
n×N .

Iteration:
for α, β = 1, . . . , n do

(JG−1 J�)αβ = 1

2
(L(Yα · Yβ) − Yα · (LYβ) − Yβ · (LYα)) ∈ R

N ,

where (JG−1 J�)αβ denotes an N -dimensional vector comprised of the (α, β) entry

of JG−1 J�(xi ) for i = 1, . . . , N , Yα ∈ R
N denotes the α-th row of Y , and · denotes

the element-wise product.
for j = 1, . . . , n, k = 1, . . . , N do

∂(JG−1 J�)αβ

∂Y jk
= 1

2

(
δα j

(
L(ek · Yβ) − ek · (LYβ) − Yβ · (Lek )

)

+ δβ j (L(Yα · ek ) − Yα · (Lek ) − ek · (LYα))
)
,

where Y jk denotes the ( j, k) entry of Y , and δα j = 1 if α = j and 0 otherwise.
end for

end for

Output: JG−1 J�,
∂(JG−1 J�)αβ

∂Y jk
for all points ui .

We refer the reader to Appendix A.1 for the proof of Proposition 1. The algorithm for
estimating JG−1 J� and its gradient is summarized in Algorithm 2.

3.2 Gradient-based optimization

Minimizing (4) is amultidimensional calculus of variations problem. Herewe consider
direct numerical gradient-based methods for their optimization. The integral in the
objective function is approximated by a finite weighted sum of the integrand over a set
of discrete points ui ∈ M (or xi ∈ R

m in local coordinates), with weights d̃i obtained
fromAlgorithm 1, i = 1, . . . , N . 4 Themapping f can be parametrically approximated
using the actual embedding function values yi = f (xi ) ∈ R

n for the purpose of
manifold learning; in this case the JG−1 J�(xi ) also need to be evaluated togetherwith
the yi . The optimization parameter θ is set to θ = (y1, . . . , yN ) ∈ R

p � R
n×· · ·×R

n

(an N -fold product of Rn , i.e., p = nN ).

4 Such a choice for weights is based on the approximation d̃i ≈ c′
√
detG
ρ (xi ) for a constant c

′ > 0, where
ρ : M → R is the underlying probability density generating data xi , satisfying ρ(x) ≥ 0 for all x ∈ R

m

and
∫
M ρ(x) dx = 1. We refer the reader to equation (A.1.27) in Appendix A.1 of Jang (2019) for this

approximation.
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Algorithm 3 Gradient-Based Minimization Algorithm

Given: Data points ui ∈ M ⊆ A (in local coordinates, xi ∈ R
m ), corresponding weights d̃i ∈ R obtained

from Algorithm 1, i = 1, . . . , N , the parameter vector θ = (y1, . . . , yN ) ∈ R
p (yi = f (xi ) ∈ R

n ),
evaluation methods for JG−1 J�(xi ) and its gradient with respect to θ (Algorithm 2), output manifold
Riemannian metric H = I ∈ R

n×n , objective function σ(λ1, . . . , λm ).
Input: Initial parameter value (or initial embeddings) θ0 = (y1,0, . . . , yN ,0) ∈ R

p .
Initialize: Set θ = θ0.
Iteration:
while not converged do

(y1, . . . , yN ) ← θ

for i = 1, . . . , N do
(JG−1 J�)i = JG−1 J�(xi ) using Algorithm 2.
∂(JG−1 J�)i

∂θ j
= ∂

∂θ j

(
JG−1 J�(xi )

)
, j = 1, . . . , p, using Algorithm 2.

end for
∂D(θ)

∂θ
= ∑N

i=1
∂σ(λ)i

∂θ
d̃i according to (16).

Determine update direction V ∈ R
p based on the gradient ∂D(θ)

∂θ

(e.g., from steepest descent, V ← − ∂D(θ)
∂θ

).
Perform line search along the update direction to obtain stepsize ε ≥ 0.
Update along the update direction with the stepsize ε, i.e., θ ← θ + �θ , where �θ = εV .

end while
Output: Optimized parameter value θopt = θ .

The minimization of (4) is now approximated by minimizing, over θ ∈ R
p, an

objective function of the form

D(θ) =
N∑

i=1

σ(λ1,i (θ), . . . , λm,i (θ)) d̃i , (15)

where λk,i (θ) denotes the k-th eigenvalue of J�H JG−1 (or equivalently JG−1 J�H )
at xi . Note that some choices of σ(λ), e.g., (7), (8), require explicit calculation of the
eigenvalues, while others, e.g., (6), (10), do not. In the latter case, the gradient of the
objective function is simply

∂D
∂θ

=
N∑

i=1

∂σ(λ)i

∂θ
d̃i , (16)

where σ(λ)i denotes the value of σ(λ) at xi . We refer the reader to Jang (2019) for
cases where gradients of the eigenvalues of J�H JG−1 are required, e.g., σ(λ) in (7),
(8).

The gradient-based iterative numerical algorithm is summarized in Algorithm 3.
The algorithm for the choice σ(λ) = ∑

i (λi − 1)2 in (6) is referred to as the least-
squares spectral distortion algorithm. For the choice σ(λ) = ∑

i λi corresponding to
the harmonicmapping distortion (10), additional boundary conditions that are imposed
on the mapping f require a modified gradient-based algorithm as explained in the
following section.
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3.3 Harmonic mapping distortion

For the special case of the harmonic mapping distortion measure (10), the bound-
ary condition f(∂M) = ∂N is additionally imposed on the mapping f, requiring
a modification of Algorithm 3. Given data points ui ∈ M ⊆ A with embeddings
yi ∈ R

n , i = 1, . . . , N , suppose Nb of the ui are boundary points, denoted ub( j) for
j = 1, . . . , Nb, with b( j) ∈ {1, . . . , N } all distinct. Let yb( j) be the n-dimensional
embeddings for ub( j), Yb ∈ R

n×Nb be the matrix with yb(1), . . . , yb(Nb) as its columns,
Yr ∈ R

n×(N−Nb) be thematrixwith the yi corresponding to the interior (non-boundary)
points as its columns, and Y = [

Yb Yr
] ∈ R

n×N . The discretized version of the har-
monic mapping distortion minimization (10) then admits a closed-form solution:

Proposition 2 For H = I , the discrete formulationof the harmonicmappingdistortion
minimization reduces to the following optimization with respect to Yr :

min
Yr

Tr(Y (D̃ − K̃ )Y�)=Tr(Yb(D̃bb− K̃bb)Y
�
b −2Yb K̃brY

�
r +Yr (D̃rr − K̃rr )Y

�
r ),

(17)

where D̃ and K̃ (obtained from Algorithm 1) are rearranged and partitioned as

D̃ =
[
D̃bb 0
0 D̃rr

]
and K̃ =

[
K̃bb K̃br

K̃�
br K̃rr

]
,

and Yb is a constantmatrix specified by the boundary condition. A closed-form solution
exists for Yr , given by Yr = YbW with W = K̃br (D̃rr − K̃rr )

−1 ∈ R
Nb×(N−Nb). Y is

then of the form
Y = Yb

[
I W

]
. (18)

Furthermore, assume that K̃i j = K̃ ji ≥ 0 for all i, j = 1, . . . , N, a graph with
K̃rr as its adjacency matrix is connected, and K̃br is not a zero matrix. Then every
entry of W is non-negative, with the entries of each column of W summing to one, i.e.,∑Nb

i=1 Wi j = 1 for j = 1, . . . , (N − Nb).

From (18), the optimal embeddings for the interior (non-boundary) points can be
interpreted as a weighted average of the boundary point embeddings. We refer the
reader to Appendix A.3 for the proof of Proposition 2.

When the boundary ∂N is unspecified, i.e., Yb is not given, trivial solutions must be
excluded in order for the harmonicmapping functional to bemeaningful. Alternatively,
∂N canbedeterminedbyminimizing, e.g., (6), (7), (8), or anyof the previous distortion
measures in which the integrand is a valid local measure of deviation from an isometry.
For example, the objective function (6) can be minimized via Algorithm 3 with θ =
(yb(1), . . . , yb(Nb)). Note from (18) that the derivatives with respect to the boundary
points can be calculated via simple chain rule:

∂s

∂Yb,ab
=

n∑

i=1

N∑

j=1

∂s

∂Yi j

∂Yi j
∂Yb,ab

=
N∑

j=1

∂s

∂Yaj

[
I W

]
bj , (19)
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where s is any scalar function on Y , a = 1, . . . , n, and b = 1, . . . , Nb.

3.4 Reformulation of some existing algorithms via Riemannian distortion

In addition to leading to novel manifold learning algorithms, our Riemannian distor-
tion framework can also be used to reformulate existing algorithms as theminimization
of a corresponding distortion measure. Rearranging the objective functions of existing
algorithms according to the distortion formulation (4), fundamental geometric proper-
ties about the corresponding distortionmeasure can be revealed, and subtle differences
among the various methods explained in a geometrically revealing way.

For example, the Riemannian relaxation (RR) method of McQueen et al. (2016)
corresponds tominimizing the distortionmeasureσ(λ) = maxi (λi−1)2 in (7), accord-
ing to the reformulation (using our Riemannian distortion framework) provided in
Appendix A.2. A crucial difference between the RR algorithm and our method is that
in the RRmethod, the input manifoldM is confined to be a submanifold embedded in
the Euclidean ambient spaceRD , i.e., only Euclidean data are considered. Our method
in contrast allows for non-Euclidean data sampled from an ambient Riemannian man-
ifold A. Moreover, their choice of the objective function (7) is computationally more
involved than the least-squares spectral distortion of (6), since it requires performing
eigenvalue decomposition on the metrics estimated at each data point to compute the
objective function and gradient.

In the case of some well-known locality-preserving manifold learning algorithms,
e.g., the locally linear embedding (Roweis and Saul 2000), Laplacian eigenmap
(Belkin and Niyogi 2003), and diffusion map methods (Coifman and Lafon 2006),
the algorithms share the same form as the harmonic mapping distortion (10), i.e.,
σ(λ) = λ1 + · · · + λm ; the primary differences among these methods can be traced
to the construction of the (pseudo-)metric G, the choice of volume element, and the
constraints imposed on the map f : M → N . More explicit details of the differences
among these methods are provided in Jang (2019).

4 Manifold learning case studies

This section presents detailed case studies of our manifold learning algorithms for
non-Euclidean data sets. We begin however with a well-known Euclidean data set,
the Swiss roll with hole, to demonstrate that our Riemannian framework outperforms
existing state-of-the-art methods for even Euclidean data. We then consider synthetic
data on the manifold P(2) of 2 × 2 symmetric positive-definite matrices, and human
mass-inertia data.

4.1 Example: Swiss roll

Using N non-uniformly sampled points with N = 1500 for the Swiss roll with
hole shown in Fig. 3a, we obtain embeddings for the least-squares spectral distor-
tion (LS) and harmonic mapping distortion (HM) via Algorithm 3. For the harmonic
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Fig. 3 Manifold learning results obtained for Swiss roll with hole. a Swiss roll with hole in R
3 and its

unfolded version in R2; b Embeddings obtained from LLE, DM, HLLE, Isomap, LS, and HMLS

mapping distortion (HM), the boundary ∂N is assumed unspecified; the bound-
ary points are determined to minimize the least-squares spectral distortion over
θ = (yb(1), . . . , yb(Nb)), with b( j) given for j = 1, . . . , Nb; this method is denoted
HMLS. We refer the reader to Appendix B.1 for further experimental details. Results
of the manifold learning are shown in Fig. 3b, together with results obtained for the
locally linear embedding (LLE; Roweis and Saul 2000), diffusion map (DM; Coifman
and Lafon 2006), Hessian eigenmap (HLLE; Donoho and Grimes 2003), and Isomap
(Tenenbaum et al. 2000). The embeddings obtained from the LLE, DM, and HLLE
methods fail to capture the original unfolded data manifold of Fig. 3a, as the data man-
ifold does not fit well the algorithm constraints, which usually force the embeddings
to be isotropic (Goldberg et al. 2008). Isomap embeddings also result in a distorted
shape, by preserving the pairwise graph distances that are overestimated due to the
hole. In contrast, LS and HMLS clearly produce less distorted versions of the original
unfolded data of Fig. 3a.

4.2 Synthetic P(2) data

We now consider manifold learning for a set of data points drawn from P(2), the
three-dimensional manifold of 2×2 symmetric positive-definite matrices. The affine-
invariant Riemannian metric on P(n) leading to the distance metric (9) is chosen,
i.e., the distance between two P(n) matrices A and B is given by dist(A, B)2 =∑n

i=1(log λi )
2, where λi , i = 1, . . . , n, are the eigenvalues of A−1B. For the data

set, 1,000 points are sampled from the two-dimensional submanifold of P(2) shown
in Fig. 4a. The submanifold is depicted in (p, q, θ)-coordinates defined in Appendix
B.2.1.

Choosing N = R
2 with Euclidean metric H = I , Algorithm 3 is used to find

the embeddings for the least-squares spectral distortion (LS), and also the harmonic
mapping distortion with boundary ∂N chosen to minimize LS (HMLS). The metric
G projected onto the submanifold is represented by black ellipses along the backbone
curve shown in Fig. 4a. The analytic form of the projected metric G as well as further
details about the submanifold are provided in Appendix B.2.1.
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Fig. 4 Manifold learning results obtained for P(2) data. a A two-dimensional submanifold of P(2) data
represented in (p, q, θ)-coordinates; b Embeddings obtained from DM, PGA, Isomap, LS, and HMLS

Table 1 Manifold learning results obtained for P(2) data

Embedding DM PGA Isomap LS HMLS

Distance error (q < 0) 0.296 0.704 0.256 0.161 0.0658

Distance error (q ≥ 0) 0.352 0.771 0.0353 0.113 0.0822

Angle error 0.290 0.498 0.380 0.326 0.142

Bold values indicate the best performing algorithms and their values for the given criterion

For HMLS, we assume the data set boundary (i.e., b( j), j = 1, . . . , Nb described
in Sect. 3.3) is specified, with the optimization parameters for the boundary points
on ∂N set to θ = (yb(1), . . . , yb(Nb)) and Nb = 300. The embedding obtained from
Isomap is used as the initial guess for the optimization.

The obtained embeddings are shown in Fig. 4b. For comparison we also plot the
results obtained from the diffusion map (DM) with kernel function (11), principal
geodesic analysis (PGA; Fletcher and Joshi 2007), and Isomap. As evident from the
figures, both the LS andHMLS embeddings better capture the geometry of the subman-
ifold, more accurately reflecting variations along the backbone curve of Fig. 4a with
respect to the horizontal axis, and variations in the projected metrics along the vertical
axis. In contrast, the DM embedding fails to separate such variations in an orthogonal
manner, while the PGA embedding also is not successful in unfolding the nonlin-
ear submanifold onto a plane. The Isomap embedding results in a partially collapsed
structure as a side-effect of preserving pairwise graph distances globally. Table 1 lists
the pairwise distance errors among points inside the regions corresponding to q < 0
and q ≥ 0, and also the tangent vector angle errors among 30 nearest neighbors (as
described in Appendix B.2.2). The embedding for HMLS more accurately preserves
the local structure of the submanifold.

4.3 Humanmass-inertia data

As shown in Wensing et al. (2018) and Lee and Park (2018), the mass-inertial param-
eters of a N -link multibody system can be described by a set of N elements of P(4).

123



A Riemannian geometric framework for manifold learning of…

Fig. 5 Principal components (PCs) of the human mass-inertia data obtained from PGA and vector space
PCA. a–b respectively depict the first two PCs obtained from PGA for the range of ±4 standard deviations
from the mean; c–d respectively depict the first two PCs obtained from PCA for different range of standard
deviations from the mean

Following these ideas, we define themanifold of human inertial parameters I as an Nl -
fold product of P(4), i.e.,I � P(4)Nl , where Nl denotes the number of links comprising
the human body. Since P(4) is a ten-dimensional manifold, the total dimensionality
of human mass-inertia data is 10Nl . The Riemannian metric on I is straightforwardly
defined as the direct product of the affine-invariant metrics assigned for each link.

For this case study, human-mass inertia are extracted from the shape data of 1000
human subjects reported in Yang et al. (2014) (see Appendix B.3.1 for the details).
We first qualitatively identify the principal variations in body shapes by performing a
principal geodesic analysis (PGA) of the data set with respect to theRiemannianmetric
on I. These results are then compared to a principal component analysis (PCA) of
the vector space representation of the data, i.e., an Nl -fold product of ten-dimensional
inertial parameter vectors.

The variations corresponding to the first two principal components of PGA are
shown in Fig. 5a–b. Inertial parameters for each link are plotted as ellipsoids. It can be
observed that the first principal component captures the overall thickness of the body,
while the second principal component captures a combination of height and upper
body thickness.

For comparison, the variations corresponding to the first two principal components
of vector space PCA are shown in Fig. 5c–d. The variations near the mean are qual-
itatively similar to those obtained for PGA. However, it can be observed that the
positive-definiteness requirement is violated even for data points just 0.2 standard
deviations away from the mean for both the first two principal components, i.e., the
inertial parameters displayed in the dashed red ellipses of Fig. 5c–d, in which the ellip-
soids for the infeasible inertial parameters collapse. We refer the reader to Appendix
B.3.2 for the higher order principal components.

The variances along the principal components for both PGA and PCA are shown in
Fig. 6; the values are normalized with respect to the variances along the first principal
components for each method. Note that the relative values obtained for PCA are
extremely small; while this may seem to imply that only variations corresponding to
the first principal component are dominant, meaningful variations can still be observed
along the second principal component in Fig. 5d. This shows another pitfall of using
vector space representations that fails to take into account the underlying geometry of
the space of mass-inertia parameters.

We now perform manifold learning for the human mass-inertia data set taking into
account the Riemannian structure of I. Embeddings of the human mass-inertia data
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Fig. 6 The normalized variances along the principal components of embeddings obtained from PGA, vector
space PCA, LS, and HMLS

Fig. 7 Manifold learning results obtained for human inertia data. a Embedding fromDM (used as the initial
guess); b PGA; c Isomap; d LS; e HMLS. The red ellipses represent the estimated metric (JG−1 J�)

set are obtained that minimize the least-squares spectral distortion (LS) and also the
harmonic mapping distortion with boundary ∂N chosen to minimize LS (HMLS).
Algorithm 3 is applied with G chosen to be the metric on I projected ontoM, i.e., the
submanifold embedded in I formed by the data set. We set the dimension of the target
manifold to four, i.e., N = R

4, with H = I . For HMLS, the data set boundary (i.e.,
the b( j), j = 1, . . . , Nb described in Sect. 3.3) is specified by choosing increasingly
larger values of d̃i with Nb = 500. The embedding from the diffusion map (DM) is
used as the initial guess for the optimization.

Figure 7 plots the first two axes of the embeddings of the human mass-inertia
data obtained from the diffusion map, PGA, Isomap, LS, and HMLS (the variances
along each axis of the embeddings are plotted in Fig. 6). The curved shape of the

123



A Riemannian geometric framework for manifold learning of…

Table 2 Manifold learning results obtained for human inertia data

Embedding DM PGA Isomap LS HMLS

Distance error (k = 50) 0.483 0.337 0.283 0.198 0.246

Angle error (k = 30) 0.817 0.226 0.283 0.209 0.242

Bold values indicate the best performing algorithms and their values for the given criterion

initial diffusion map embedding is flattened and more evenly distributed along the
vertical axis for both the LS and HMLS embeddings. A qualitative comparison of the
distortion for each embedding can also be obtained by comparing the estimated metric
(14). The red ellipses in Fig. 7 represent the estimated JG−1 J� projected to two-
dimensional space. Compared to the identity metric (represented by the black circle),
the metrics estimated for the diffusion map embedding show the highest eccentricity,
while those of PGA and Isomap vary in size from point to point. The LS and HMLS
embeddings show more uniform values of JG−1 J� over the range of data points,
with less eccentricity and similar areas of the ellipses.

Pairwise distance errors and tangent vector angle errors are compared in Table 2
for each of the embeddings, where the errors are computed in a similar manner as
described in Appendix B.2.2 with appropriate modifications to reflect the metric on
I. Since ground truth values for these errors are not available, we perform only a local
comparison, i.e., the pairwise distance values and the angle between tangent vectors
among k-nearest neighbors in the ambient space of I are set as the reference values.
The diffusion map embedding has the largest errors, while the embedding obtained
from PGA also shows substantial pairwise distance errors (the projection to a low-
dimensional subspace causes distances to be underestimated). The Isomap algorithm
tends to overestimate the pairwise graph distances in this case, inducing a more distant
embedding and higher pairwise distance errors. The embeddings from both LS and
HMLS show reduced errors compared to the initial diffusion map embedding. The
embedding obtained from LS achieves the best performance in preserving local pair-
wise distances and angles between tangent vectors of the ambient space, demonstrating
the performance advantages of our framework.

5 Conclusion

This paper has presented a unified geometric framework for capturing the distor-
tion of mappings between Riemannian manifolds in a coordinate-invariant way, and
shown how manifold learning problems can be formulated within this framework. We
have shown how to construct general coordinate-invariant functionals of mappings
between Riemannian manifolds, and proposed a family of functionals that measures
the proximity of the mapping to an isometry. Based on this framework, we formu-
late Riemannian distortion measures for manifold learning for non-Euclidean data,
together with gradient-based optimization algorithms.

Drawing upon non-Euclidean data examples from human mass-inertia parameter
identification as well as a range of synthetic data case studies, we show that our
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Riemannian distortion framework is applicable to any manifold learning problem in
which the data are known to be drawn from a Riemannian manifold. We emphasize
that the results do not depend on the choice of local coordinates used to parametrize
the data, and in many cases offer better physical insight into the underlying features
that are captured by the embedding.

How to choose meaningful Riemannian metrics appropriate to the problem at
hand, and to efficiently calculate and optimize the corresponding Riemannian dis-
tortion measures, remain topics of further investigation. Moreover, expanding the set
of applications of our Riemannian distortion framework to involve other data analysis
and classification tasks is another intriguing area of future research.

Appendix

A: Further mathematical details of manifold learning algorithms

A.1 Proof of Proposition 1

Proof The inverse metric JG−1 J� at x = xi is obtained in (14) as

JG−1 J�(xi ) = 1

2
Y (diag(Li ) − ei e

�
i L − L�ei e�

i )Y�,

where Y = [
y1, . . . , yN

] ∈ R
n×N is the matrix representation of the embeddings,

L = 1
ch (D̃−1 K̃ − I ) ∈ R

N×N is the normalized graph Laplacian (D̃, K̃ ∈ R
N×N are

obtained from Algorithm 1 and both c, h > 0), Li ∈ R
N is the i-th row of L , and

ei = (0, . . . , 1, . . . , 0) ∈ R
N is a standard basis vector whose i-th component is one.

To see if JG−1 J�(xi ) is positive semi-definite, it suffices to see if

Mi ≡ c h
(
diag(Li ) − ei e

�
i L − L�ei e�

i

)
∈ R

N×N (20)

is positive semi-definite. For any v = (v1, . . . , vN ) ∈ R
N ,

v�Miv = c h

⎛

⎝
N∑

j,k=1

(
diag(Li ) − ei e

�
i L − L�ei e�

i

)

jk
v jvk

⎞

⎠ (21)

= c h

⎛

⎝
N∑

j=1

Li jv
2
j − 2Li jviv j

⎞

⎠ (22)

= v2i +
N∑

j=1

(D̃ii )
−1 K̃i j (v

2
j − 2viv j ) (23)

=
N∑

j=1

(D̃ii )
−1 K̃i j (vi − v j )

2 ≥ 0, (24)
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where Li j denotes the (i, j) entry of L in (22). In deriving (23)-(24), we use the
equalities Li j = 1

ch ((D̃ii )
−1 K̃i j − δi j ) (δi j = 1 if i = j and 0 otherwise) and∑N

j=1(D̃ii )
−1 K̃i j = 1, and also the inequality K̃i j ≥ 0 for i, j = 1, . . . , N . Since

the inequality v�Miv ≥ 0 holds for any v ∈ R
N , Mi is positive semi-definite; then

JG−1 J�(xi ) = 1
2ch Y MiY� also becomes positive semi-definite for all i = 1, . . . , N .

��

A.2 Riemannian relaxation

In the Riemannian relaxation method of McQueen et al. (2016),M is chosen to be an
m-dimensional submanifold of Euclidean ambient spaceRD , with Riemannian metric
G corresponding to the Euclidean metric on RD projected toM. The target manifold
N is set to be Rn for some a priori chosen dimension n ≥ dim(M); the Riemannian
metric on N is set to H = I .

Given Euclidean data points ui ∈ R
D , i = 1, . . . , N (xi ∈ R

m in local coordinates),
denote their n-dimensional embeddings by yi ∈ R

n . The embedding is then obtained
as the solution to the following optimization:

min
yi

N∑

i=1

‖JG−1 J�(ui ) − I‖2αi , (25)

where JG−1 J�(ui ) denotes the JG−1 J� estimated on ui using themethod presented
in Perrault-Joncas and Meila (2013), ‖ · ‖ denotes the matrix spectral norm, and αi are
weights. If n > dim(M), I in (25) is replaced by RmR�

m , where Rm = [r1, . . . , rm] ∈
R
n×m with ri ∈ R

n the i-th singular vector of JG−1 J�.
From the perspective of our Riemannian distortion framework, assuming the rank

of JG−1 J� is m and the weights αi in (25) are set to d̃i (obtained from Algorithm 1),
the objective function in (25) can be expressed as

min
f

D( f ) =
∫

M
max
i

(λi − 1)2
√
detG dx1 · · · dxm, (26)

where the λi are them nonzero eigenvalues of JG−1 J�, which are identical to those of
J� JG−1. Since in practice the numerical estimation of JG−1 J� ∈ R

n×n may yield
a rank higher than m when n > dim(M), one solution is to impose a soft constraint
on the rank of JG−1 J�, e.g., in McQueen et al. (2016) the optimization is formulated
as

min
f

D( f ) =
∫

M
max

(
max
i∈Im

(λi − 1)2, max
i /∈Im

(
λi

ε

)2
)√

detG dx1 · · · dxm, (27)

where λi are the eigenvalues of JG−1 J�, Im denotes the set of indices of them largest
eigenvalues, and ε > 0 is a scalar parameter intended to suppress the smaller (n −m)

eigenvalues.
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A.3 Proof of Proposition 2

Proof For H = I , the discretized formulation of the harmonic mapping distortion in
the form of (15) is obtained as follows:

D(Y ) =
N∑

i=1

Tr(JG−1 J�(xi )) d̃i (28)

= 1

2

N∑

i=1

Tr
(
Y (diag(Li ) − ei e

�
i L − L�ei e�

i )Y�)
d̃i (29)

= 1

2
Tr

(
Y (diag(1�

N D̃L) − D̃L − L� D̃)Y�)
(30)

= 1

c h
Tr(Y (D̃ − K̃ )Y�), (31)

where K̃ , d̃i , D̃ are obtained from Algorithm 1, L = 1
c h (D̃−1 K̃ − I ) ∈ R

N×N is the
graph Laplacian from Algorithm 1, Li is the i-th row of L , ei = (0, . . . , 1, . . . , 0) ∈
R

N is a standard basis vector whose i-th component is one, and 1N ∈ R
N denotes an

N -dimensional vector whose components are all one. In deriving (28)–(31), the esti-
mate of JG−1 J� at xi in (14), and the equalities Tr(J�H JG−1) = Tr(JG−1 J�H)

and 1�
N D̃L = 0 are used.

Given a constant matrix Yb specified by the boundary condition, minimizing (31)
for Yr reduces to

min
Yr

Tr(Y (D̃ − K̃ )Y�) = Tr(Yb(D̃bb − K̃bb)Y
�
b − 2Yb K̃brY

�
r + Yr (D̃rr − K̃rr )Y

�
r ).

(32)

A closed-form solution for Yr is obtained as

Yr = Yb K̃br (D̃rr − K̃rr )
−1 = YbW , (33)

where W = K̃br (D̃rr − K̃rr )
−1 ∈ R

Nb×Nr .
Assume that K̃i j = K̃ ji ≥ 0 for all i, j = 1, . . . , N , a graph with K̃rr as its

adjacency matrix is connected, and K̃br is not a zero matrix. Then the matrix (D̃rr −
K̃rr ) becomes positive-definite, so that W always exists. The positive-definiteness of
(D̃rr − K̃rr ) can be shown from the following inequality: for any v = (v1, . . . , vNr ) �=
0 ∈ R

Nr ,

v�(D̃rr − K̃rr )v =
Nr∑

i, j=1

(D̃rr − K̃rr )i jviv j (34)

=
∑

i

= 1 =Nr (D̃rr )i iv
2
i −

Nr∑

i, j=1

(K̃rr )i jviv j (35)
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=
Nr∑

i=1

⎛

⎝
Nb∑

k=1

(K̃br )ki

⎞

⎠ v2i + 1

2

Nr∑

i, j=1

(K̃rr )i j (vi − v j )
2 > 0, (36)

where we use the fact that (D̃rr )i i = ∑Nb
k=1(K̃br )ki + ∑Nr

k=1(K̃rr )ki in deriving (36).
From the direct application of Cramer’s rule, it can be shown that each entry of (D̃rr −
K̃rr )

−1 is non-negative. Since every entry of K̃br is non-negative, all the entries of W
are also non-negative. Furthermore, W satisfies the equation 1�

Nr
= 1�

Nb
W from the

equality D̃rr1Nr = K̃rr1Nr + K̃�
br1Nb ; hence the entries of each column of W sum

to one. ��

B: Experimental details for Section 4

B.1 Swiss roll

Here we explain further experimental details for the case study performed in Sect. 4.1.
The data points are non-uniformly sampled; referring to the unfolded manifold in
Fig. 3a, the density is set to oscillate along the horizontal axis, while uniform along the
vertical axis. When choosing the initial parameter value θ0 for Algorithm 2, locality-
preserving embeddings are preferable. As a choice for such an initial parameter value,
we use two-dimensional embedding obtained from the Isomap (Tenenbaum et al.
2000). Any other embeddings that preserve locality can also be used as an initial guess,
e.g., those from locally linear embedding (LLE; Roweis and Saul 2000), Laplacian
eigenmap (LE; Belkin and Niyogi 2003), diffusion map (DM; Coifman and Lafon
2006), Hessian eigenmap (HLLE; Donoho and Grimes 2003), or local tangent space
alignment (LTSA; Zhang and Zha 2004).

For the embedding obtained from the Isomap method, we test its five different
scalings as the initial parameter value θ0 for Algorithm 3; we then choose the output
embeddings that show the best match to the pairwise distances between ten nearest
neighbors in the ambient space. Also note that the kernel bandwidth parameter h for
the approximation of the graph Laplacian in Algorithm 2 is chosen to have the same
order to the averaged nearest neighbor distance from each of the data points according
to Lafon (2004).

B.2 Synthetic P(2) data

B.2.1 Details for the submanifold considered in Section 4.2

The tangent space of P(n) at any P ∈ P(n) can be identified with S(n), the space of
n×n symmetric matrices. Given X ,Y ∈ S(n), the affine-invariant Riemannian metric
at P is defined by the inner product

〈X ,Y 〉P = Tr(P−1X P−1Y ). (37)
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Consider the following orthogonal decomposition of P ∈ P(2):

P = RSR�, (38)

where R =
[
cos θ − sin θ

sin θ cos θ

]
∈ SO(2) with θ ∈ [0, π

2 ), and S = diag(ep, eq) for

scalar p, q. A local coordinate chart can be defined in terms of (p, q, θ) on an open
subset U = {P ∈ P(2) | P �= cI for c > 0}. The affine-invariant Riemannian metric
in (37) is then represented in (p, q, θ)-coordinates (at p �= q) as

ds2 = Tr((P−1dP)2) = dp2 + dq2 + 2
(
ep−q + eq−p − 2

)
dθ2. (39)

For the case study in Sect. 4.2, the data set shown in Fig. 4a is generated by
joining two cylinders (with a hole) C1 and C2 in (p, q, θ)-coordinates, where C1 =
{(p, q, θ) | p = sin θS, q = −1 + cos θS, θS ∈ [

0, 4
3π

]
, θ ∈ [

0, π
4

]} and C2 =
{(p, q, θ) | p = sin θS, q = 1 − cos θS, θS ∈ [− 4

3π, 0
]
, θ ∈ [

0, π
4

]} (see Fig. 4a;
the backbone curve in the figure corresponds to the direction along which θS varies).
The affine-invariant Riemannian metric on this submanifold (at θS �= 0) is obtained
in terms of coordinates (θ, θS), θS �= 0, as

ds2 = dθ2S + 2
(
e1+

√
2 sin(|θS |− π

4 ) + e−1−√
2 sin(|θS |− π

4 ) − 2
)
dθ2. (40)

Because of the nonzero Riemannian curvature of this submanifold, isometric embed-
dings in two-dimensional Euclidean space do not exist.

B.2.2 Evaluation of the pairwise distance and tangent vector angle errors

For data points xi ∈ P(2) and corresponding embeddings yi ∈ R
2, i = 1, . . . , N , the

pairwise distance error for k nearest points is defined as

Pairwise distance error = 1

kN

N∑

i=1

∑

j∈{NNk (i)}

(‖yi − y j‖ − dist(xi , x j )
)2

, (41)

where yi denotes the optimal embedding of xi , NNk(i) denotes the set of indices of
k nearest neighbor points to xi , and dist(xi , x j ) denotes the ground truth distance
between xi and x j , i.e., the geodesic distance measured on the submanifold. To mea-
sure angles, the tangent vectors are approximated by the difference between nearest
neighbors. The tangent vector angle error is defined as

Tangent vector angle error

= 2

k(k − 1)N

N∑

l=1

∑

i, j∈{NNk (l)}

(
acos(〈vi , v j 〉) − acos(〈Vi , Vj 〉)

)2
, (42)
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where vi , Vi respectively denote the tangent vector from the l-th data point to the i-th
data point in the optimal embeddings and the original data points, and 〈·, ·〉 denotes
the inner product.

When reporting the final manifold learning results in Table 1, for the reference
values to evaluate the pairwise distance error, we numerically obtain the minimal
geodesic distances on the submanifolds. Also, the inner product in (37) is used to
calculate the reference values for the angles between tangent vectors.

B.3 Humanmass-inertia data

B.3.1 Synthesizing humanmass-inertia data

Since mass-inertial parameter data for humans are not readily available, we use human
shape data from Yang et al. (2014) to synthesize this data set; specifically, assuming
uniformmass density, we integrate the volumes of the human body shapes to construct
mass-inertial parameter data for the corresponding Nl = 10 links.

B.3.2 Further principal components of humanmass-inertia data

As a supplement of Fig. 5 in Sect. 4.3, here we provide the third and fourth principal
components of the human mass-inertia data obtained from both principal geodesic
analysis (PGA) and vector space principal component analysis (PCA). The variations
corresponding to the third and fourth principal components of PGA are shown in
Fig. 8a–b. Principal component 3 captures variations in the height and torso thickness,
and principal component 4 captures variations mainly in the height.

In the case of vector space PCA shown in Fig. 8c–d, the variations near the mean
are qualitatively similar to those obtained for PGA. However, the positive-definiteness
requirement is violated even for data points just 0.5 standard deviations away from
the mean. The ellipsoids for those inertial parameters collapse and can be observed in
the dashed red ellipses of Fig. 8c–d.

Fig. 8 Principal components (PCs) of the human mass-inertia data obtained from PGA and vector space
PCA. a–b respectively depict the third and fourth PCs obtained from PGA for the range of ±4 standard
deviations from the mean; c–d respectively depict the third and fourth PCs obtained from PCA for different
range of standard deviations from the mean
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