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Abstract

We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning
and decision-making in consultative interaction settings. Designed for the agri-
culture domain, MIRAGE captures the full complexity of expert consultations by
combining natural user queries, expert-authored responses, and image-based con-
text, offering a high-fidelity benchmark for evaluating models on grounded reason-
ing, clarification strategies, and long-form generation in a real-world, knowledge-
intensive domain. Grounded in over 35,000 real user-expert interactions and
curated through a carefully designed multi-step pipeline, MIRAGE spans diverse
crop health, pest diagnosis, and crop management scenarios. The benchmark in-
cludes more than 7,000 unique biological entities, covering plant species, pests, and
diseases, making it one of the most taxonomically diverse benchmarks available
for vision-language models, grounded in the real world. Unlike existing bench-
marks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE
features underspecified, context-rich scenarios with open-world settings, requiring
models to infer latent knowledge gaps, handle rare entities, and either proactively
guide the interaction or respond. We evaluate more than 20 closed and open-source
frontier vision-language models (VLMs), using an ensemble of reasoning language
models as evaluators, highlighting the significant challenges posed by MIRAGE.
Despite strong performance on conventional benchmarks, state-of-the-art VLMs
struggle on MIRAGE, particularly in scenarios encountering rare entities and
addressing open-ended user requests. To support model development, we fine-
tune Qwen2.5-VL models on MIRAGE, observing measurable performance gains
and demonstrating MIRAGE’s potential as both a benchmark and a development
suite for in-domain visual reasoning and conversational decision-making in real-
world settings. Our dataset 1 and code 2 are all publicly available. Project Page:
https://mirage-benchmark.github.io/

1 Introduction

Advances in large vision–language models (LVLMs) have significantly improved AI’s ability to
interpret images and generate natural-language responses. However, existing benchmarks predom-
inantly focus on short-form visual question answering [69, 30, 12, 52, 72], captioning [54, 51], or
grounded generation under constrained contexts [29]. These tasks fall short of capturing the interac-
tive, decision-centric nature of real-world expert consultations, where users often present open-ended,
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ambiguous, and visually grounded queries. In knowledge-intensive domains such as agriculture,
medicine, and engineering, expert consultations inherently span multiple modalities [50] and success
hinges not just on perception or language fluency, but on the ability to reason causally, handle
missing context, and make interaction-level decisions. This complex interplay between multimodal
understanding and contextual reasoning in professional settings represents a significant gap in the
current LVLM evaluation frameworks. LLMs and LVLMs are increasingly used in domains like
healthcare, law, and plant care [58, 60, 38, 73, 17, 49, 64], yet current benchmarks underrepresent
knowledge-intensive scenarios involving ambiguous, multimodal queries [30]. Agriculture illustrates
this gap: farmers often seek image-based, expert-level guidance during critical events, but inaccurate
or unsupported model outputs [70, 40, 68] can lead to serious consequences. This highlights the need
for rigorous evaluation frameworks that assess VLMs in more realistic settings.

To address this need, we introduce MIRAGE, a comprehensive benchmark designed around four core
principles. First, underspecification: unlike traditional VQA and multimodal understanding datasets,
MIRAGE presents user turns with latent knowledge gaps, requiring inference of missing context.
Second, multimodality: each task combines natural language, images, and real-world metadata like
location and time, reflecting the inputs experts receive. Third, decision-making: MIRAGE evaluates
not only factual accuracy but also a model’s ability to simulate expert conversational behavior
by deciding whether to ask clarifying questions or provide actionable answers. Lastly, domain
grounding: built from real expert-user conversations, MIRAGE ensures ecological validity and high
relevance for agricultural consultation tasks. It features problems sourced from 37,512 carefully
selected high-quality user-expert conversations distilled from a corpus of 218,000 interactions
collected between 2012 and 2025. Spanning more than 7000 unique biological entities (see Table
4) across plants, pests, and diseases, we evaluate models in two unique challenges absent in current
benchmarks (Figure 1) A.) MIRAGE-MMST (Multimodal Single-Turn): Given a user query and
associated images(s), can a model identify key biological entities, reason about causal symptoms,
and produce actionable management recommendations? B.) MIRAGE-MMMT (Multimodal Multi-
Turn): In an ongoing conversation, can a model decide whether to seek clarification or respond, and
generate the appropriate follow-up utterance?

We evaluate 22 SOTA proprietary and open-source LVLMs covering 6 model families on MIRAGE.
Our key contributions and findings are summarized below:

• MIRAGE-MMST is highly challenging: Even GPT-4.1 achieves only 43.9% Identification
Accuracy.

• There is a pronounced disparity in performance between open-source LVLMs and GPT-4.1.
The highest performing open-source models, such as Qwen2.5-VL-72B achieve approxi-
mately 29.8% in Identification accuracy and 2.47 (out of 4) reasoning score.

• We introduce a novel evaluation framework using an ensemble of reasoning-capable LLMs
as judges, enabling interpretable, reproducible scoring across fine-grained criteria, including
Accuracy, Relevance, Completeness, and Diagnostic Parsimony.

• MIRAGE exposes a substantial generalization gap: Even after LoRA fine-tuning, models like
Qwen2.5-VL-3B achieve up to 28.4% accuracy on seen entities, but only 14.6% on unseen
entities, revealing a persistent 14-point gap that underscores the difficulty of open-world
generalization in long-tail settings.

• Decision-making under partial observability of user goals remains difficult: On MIRAGE-
MMMT, even top models achieve only 63% decision accuracy, with frequent errors in
determining when clarification is necessary.
We believe MIRAGE will serve as a valuable benchmark for building next-generation
multimodal assistants that are not only perceptually grounded but also capable of contextual
reasoning, eliciting missing contextual information, and cautious recommendations in
complex real-world settings.

2 The MIRAGE Benchmark

We introduce MIRAGE (Multimodal Information-seeking and Reasoning in AGricultural Expert-
Guided conversations), a benchmark purpose-built to evaluate vision-language models on expert-level
reasoning and decision-making in real-world in-domain consultations. It is a multimodal benchmark
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Figure 1: An overview of the MIRAGE benchmark, detailing its components. The benchmark
includes: (1) The Multimodal Singleturn (MMST) Benchmark, with 8,184 interactions featuring
6,856 biological entities across seven agronomic categories. (2) The Multimodal Multiturn (MMMT)
Benchmark, a corpus of 861 dialogues for evaluating ’clarify-or-respond’ decision-making. Addition-
ally, MIRAGE contains the MMST Contextual Benchmark, a specialized single-turn set of 3,934
interactions where expert responses are related to time and location metadata.

derived from over 200,000 raw interactions between real users and certified agronomy experts from
AskExtension 3. In addition to supporting studies on agricultural and knowledge-intensive LVLMs,
MIRAGE uniquely assesses models across multimodal perception, causal reasoning, and clarification
strategy in realistic, user-initiated scenarios.

2.1 Overview of MIRAGE

MIRAGE comprises two components: MMST, with a total corpus of over 29,000 single-turn expert-
user interactions, and MMMT, a multi-turn corpus of 6,306 dialogues ( 12,000 turns) requiring
clarify-or-respond decisions. Figure 1 provides a visual overview of the evaluation benchmarks
derived from this corpus. Tasks span identification, diagnostic reasoning, and issue management
guidance across seven agronomic categories (Table 4). The MMST evaluation benchmark includes
Standard (8,184 interactions) and Contextual (3,934 interactions) subsets (Section 3, Appendix
C), while the MMMT benchmark contains 861 dialogues. A fine-grained evaluation framework
assesses both accuracy and utility. With over 7,600 biological entities in the full corpus (6,856 in the
benchmark set), including thousands of unseen species in the evaluation set, MIRAGE introduces a
challenging open-world generalization setting for LVLMs. Refer Appendix C for more details.

2.2 Benchmark Comparison and Positioning

MIRAGE builds on a growing body of benchmarks in agriculture and multimodal reasoning, yet
fills a critical gap left by prior efforts. Datasets like MMMU [69] focus on generalist multimodal
reasoning but rely on constrained multiple-choice formats. AgMMU [30] targets agriculture, yet

3Ask Extension is an online service that connects the public with research-based answers from Cooperative
Extension and university experts at U.S. Land-Grant institutions, offering guidance on agriculture, gardening,
food safety, and more through a simple online form. https://ask.extension.org/
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Dataset Type Multimodal Training Set Expert
Domain Factuality Expert

Authored
Multi
Turn

iNat21 [59] CLS ✗ ✓ ✓ – – –
TreeOfLife [55] CLS ✓ ✓ ✓ – – –
SimpleQA [62] OEQ ✗ ✗ ✗ ✓ – –
MMMU [69] MCQ ✓ ✗ ✓ ✗ ✗ ✗

AgMMU [30] MCQ+OEQ ✓ ✓ ✓ ✓ ✗ ✗

CROP [71] LFQ/Conv ✗ ✓ ✓ ✓ ✓ ✓

MIRAGE LFQ/Conv ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of MIRAGE with existing benchmarks across key characteristics. CLS =
Classification, MCQ = Multiple Choice Questions, OEQ = Open-Ended Questions, LFQ = Long-Form
Question Answering, Conv = Conversational multi-turn interactions. MIRAGE uniquely combines
multimodality, expert-authored long-form responses, and multi-turn conversations grounded in factual
and domain-specific reasoning.

uses synthetic short-form MCQs that are not representative of real expert-user interactions. Domain-
specific datasets such as TreeOfLife [55] and iNat21 [59] emphasize fine-grained image classification
but operate in closed-world, non-interactive settings. The CROP benchmark [71] introduces multi-
turn crop science QA, but is limited to two crops, lacks visual input, and is fully text-based. In
contrast, MIRAGE is the only benchmark constructed from large-scale, real-world agricultural
consultations and supports both multimodal single-turn and multi-turn tasks grounded in naturally
underspecified user queries. As summarized in Table 1, MIRAGE includes contextual question
answering, real user-submitted images with varied quality and lighting, and domain-expert-authored
responses as ground truth. It spans diverse query types—including identification, causal reasoning,
and management—and introduces goal-state modeling, clarify-or-respond decision policies, and
a multidimensional evaluation framework that moves beyond correctness to assess identification
accuracy, causal justification, response quality, and diagnostic parsimony. These features make
MIRAGE a uniquely realistic and challenging testbed for evaluating LVLMs in real-world consultation
scenarios.

3 MIRAGE-MMST: Multimodal Singleturn Benchmark

MIRAGE-MMST is a benchmark designed to assess expert-level, single-turn reasoning in multi-
modal agricultural consultations. The task setup is similar to a Long-form VQA task [37]. Each
instance consists of a natural language question paired with one or more user-provided images and
associated metadata (e.g., timestamp, location). Each instance consists of a natural language question
q, an associated image set I = {i1, . . . , im}, and metadata meta ∈ M. Formally, a single-turn
instance is represented as a triplet (q, I,meta) ∈ Q × Im × M, and the model must generate a
structured response r = (e, c ∨m), where e denotes identified entities (e.g., crop, pest, disease), c is
a causal explanation, and m is a management recommendation, if requested. The task evaluates the
model’s ability to reason causally about visual symptoms, identify relevant agronomic entities, and,
when prompted, generate detailed management recommendations grounded in the observed evidence.

To support varying levels of difficulty and contextual grounding, MIRAGE-MMST is divided into
two subsets: a Standard subset, consisting of self-contained questions that can be answered using
only the provided text and image, and a Contextual subset, where successful interpretation depends
on implicit information such as time, location, or agricultural context not present in the input. The
Standard subset further includes two task types—MMST-ID (Identification), which focuses on visual
reasoning and recognizing entities, and MMST-MG (Management), which involves reasoning and
generating recommendation-based responses. In contrast, the Contextual subset contains queries with
latent information gaps and elliptical language, requiring models to reconstruct missing context using
external priors. We first manually annotated a seed set of contextual examples and then adopted an
automated classifier to separate the full dataset. See Appendix C.3 for details.
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MIRAGE-MMST serves as a diagnostic tool to benchmark the capabilities of language and vision-
language models in grounded agricultural reasoning. Evaluation focuses on the model’s ability to
perform fine-grained entity recognition, generate causal explanations, and provide accurate and
contextually appropriate management advice, when applicable.

3.1 Dataset Curation

Our dataset was collected from Ask Extension4, an online platform where users submit agricultural
queries and receive expert responses from trained volunteers and professionals. We aggregated 218K
single-turn dialogues from December 2012 to April 2025. To ensure high dataset quality and relevance,
we implemented a rigorous four-step curation process as shown in Figure 5 (1) Data Cleaning,
removing incomplete or unsuitable dialogues; (2) Data Categorization, organizing dialogues into
two primary subsets, Subset 1: Identification (Plant Identification, Insect and Pest Identification,
Plant Disease Identification) and Subset 2: Management (Plant Disease Management, Insect and Pest
Management, Plant Care and Gardening Guidance, Weeds/Invasive Plants Management), extracting
and collecting main entity name, and labeling context-aware responses; (3) Data Reformatting,
involving the removal of personal information, enhancing questions with supplementary content from
expert-provided URLs using GPT-4.1, and reconstructing Identification task answers with visual
enhancements through GPT-4.1-mini to ensure consistent formatting, detailed visual descriptions, and
comprehensive reasoning chains; and (4) Data Splitting, partitioning the curated dataset into Standard
Benchmark (8,184 dialogues), Standard Training (17,532 dialogues), and Contextual Benchmark
(3,934 dialogues) based on contextual labeling. Further curation details are provided in the Appendix
C.2.

4 MIRAGE-MMMT: Multimodal Multiturn Benchmark

MIRAGE-MMMT is a multimodal decision-making task, grounded in real-world agricultural consul-
tations. Users pose complex, often image-supported questions about plant health, pest identification,
growing conditions, and other agronomic concerns. Each dialogue reflects a practical scenario in
which the expert must reason over conversation history and visual context to decide: (1) whether to
respond with guidance based on what is known, or (2) whether to pause and seek additional input to
resolve a knowledge gap. This introduces a decision-making challenge tightly coupled with natural
language generation.

Task Formulation: We formalize this as a joint decision making-generation task: Given a multi-
turn dialogue D = {(s1, u1), . . . , (sn, un)}, where si ∈ {user, expert} and ui are utterances,
and an associated image set I = {i1, . . . , im}, the model must jointly predict a decision a ∈
{Clarify,Respond} and generate the corresponding utterance r.

The model infers the user’s goal G and a goal state SG = (known, missing). It selects:

a =

{
Clarify, if ∃f ∈ missing essential for achieving G

Respond, if missing = ∅ or non-essential

Then it generates:

r =

{
a clarification question, if a = Clarify
an expert response, if a = Respond

The model is evaluated on decision quality and generation utility via LLM-as-a-Judge.

Domain-General Task Modeling Framework: While MIRAGE-MMMT is instantiated in the
agricultural domain, the underlying task formulation, where an expert must decide between seeking
clarification or issuing a response based on evolving multimodal dialogue context, generalizes to a
broad class of consultative, decision-oriented interactions. This includes domains such as healthcare
triage, customer support, legal advising, technical troubleshooting, and educational tutoring. Crucially,
our framework is dataset-agnostic: given any multi-turn consultation corpus with follow-up user inputs
(text and/or images), our pipeline can be applied to generate structured <Clarify> or <Respond>
training data.

4https://ask.extension.org/
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4.1 Dataset Curation

The goal of MIRAGE-MMMT is to model the decision-making process of an expert who must decide,
based on the evolving multimodal context, whether to respond with actionable guidance or clarify by
seeking more information. To simulate this, we extract segments of each dialogue such that the input
context ends with a user utterance, and a later user message, typically written in response to an earlier
expert query, is treated as a revealed fact. This allows us to reconstruct the decision point at which
the expert, based on available context and images, would determine whether the current information
is sufficient to respond or whether a clarification is necessary. We prompt a powerful LLM (e.g.,
GPT-4o) to generate a structured task instance consisting of dialogue context, referenced images, and
metadata such as geographic location and topic. To ensure data safety, we perform automated PII
sanitization while preserving domain relevance. (see Appendix G.2 for more details)

5 Experiments

We evaluate a diverse set of models on both MIRAGE-MMST and MIRAGE-MMMT benchmarks
to assess expert-level multimodal reasoning as well as their ability to make accurate clarify-or-respond
decisions and generate goal-consistent, grounded responses.

5.1 Model Selection

The LVLMs we evaluated can be divided into two groups: 1.) Proprietary Models: this group
comprises SOTA GPT models (4.1, 4.1-mini, 4o, 4o-mini) [7], Claude-3 (3.5v2 Sonnet, 3.7 Sonnet, 3
Haiku) [11] available through API service. 2.) Open-Source Models: this group includes LLaMa-4
Scout-17B [45], LLaVa (7B mistral, 7B qwen2) [41], Qwen 2.5 VL models (3B, 7B, 32B, 72B) [5],
Gemma 3 models (4b, 12, 27b) [57] and Intern VL3 (2B, 8B, 14B, 38B, 72B) [75]. 3.) Finetuned
Models We perform multi-image multimodal fine-tuning of the Qwen 2.5 VL models on the MMST
dataset. All experiments were conducted with NVIDIA A100-40GB/H200-141GB GPUs.

5.2 Evaluation Methodology

To facilitate consistent, interpretable, and reproducible evaluation of model outputs, we implement a
structured LLM-as-a-Judge protocol. Rather than relying on single-model, single-pass assessments,
we leverage an ensemble of reasoning-capable language models: DeepSeek-R1-Distilled [34], Qwen3-
32B [5], and Phi-4-Reasoning [6], as judges. Each candidate’s response is evaluated across three
independent generations, with every generation scored by the full ensemble, resulting in nine total
evaluations per sample. This design captures both linguistic variability across generations and scoring
consistency across evaluators. To validate the fidelity of this framework, we quantify inter-rater
agreement using Fleiss’ κ for categorical scoring and Kendall’s W for ordinal coherence, ensuring
both statistical reliability and scoring consistency across the ensemble. Fleiss’ κ scores for the ID
task (binary classification) generally fall within the 0.75–0.88 range, indicating “good” to “excellent”
agreement by standard interpretation guidelines. Full details, scoring rubrics, and agreement statistics
are provided in Appendix D.1.1. The prompt for evaluation is showed in Figure 14.

Figure 30 illustrates our evaluation framework in action. The judge model is given the expert-authored
gold response and systematically evaluates both the correctness of the model’s prediction and the
quality of its explanation. By reasoning step-by-step, the judge produces an interpretable “judgment
trace” that makes the evaluation process transparent and highlights where the model’s output aligns
with, or diverges from, the expert’s reasoning.

5.3 MIRAGE-MMST Results

We evaluate model performance on the MMST-ID task using two complementary metrics: 1.)
Identification Accuracy which is a binary metric that measures whether the entity identified by the
model matches the expert’s answer. A response is scored as correct (1) if the predicted entity string
exactly matches any of the reference fields: entity name, scientific name, or common names;
otherwise, it receives a score of 0. Reasoning Score, evaluates the quality of the model’s visual
and linguistic justification for its prediction. It is graded on a 0–4 scale by the judges, based on the
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presence of key visual clues, descriptive specificity, and causal coherence. Higher scores reflect more
complete, interpretable, and expert-aligned justifications.

To evaluate model outputs on the MMST-MG task, we adopt a multidimensional scoring framework
that assesses both factual correctness and communication quality. Each model response is rated
on a 0–4 scale across the following four dimensions the judges: 1.) Accuracy: which measures
the factual alignment with the expert’s response. A perfect score (4) is awarded when the facts,
terminologies, and recommendations fully align with the expert response. Relevance measures the
ability of the model to stay on-topic with the user’s original query and avoid tangential information.
Completeness assesses whether the model covers all key information provided by the expert, and
Parsimony, inspired by Occam’s Razor; this score captures the conciseness, clarity, and actionability
of the model response. We aggregate these scores in a 2:1:1:1 ratio. See Appendix D for more details.

5.4 Performance Comparison

MMST-ID: Table 2 presents the results of zero-shot prompting across 22 LVLMs on the MMST-ID
task. All models are evaluated without task-specific fine-tuning, allowing for a fair comparison of out-
of-the-box reasoning and grounding capabilities. We observe a consistent gap between closed-source
and open-source models. GPT-4.1 achieves the highest Average Identification Accuracy (43.9%) and
the top Reasoning Score (3.0), with other proprietary models like Claude 3 and GPT-4o performing
competitively. In contrast, the best open-source model, Qwen2.5-VL-72B, reaches only 29.83%
accuracy and 2.47 reasoning score.

MMST-MG: For cross-model comparisons, we compute a weighted aggregate score over the four
evaluation metrics. Table 2 and Figure 3 indicate GPT-4.1 consistently outperforms all models across
judges and metrics, achieving the highest scores in Accuracy (3.24) and Parsimony (3.01). Among
open-source models, Qwen2.5-VL-32B and Gemma-3-27B perform best.

Performance improves steadily with model scale within families, especially for open models as seen
in Figure 9. However, scaling gains are not uniform across families and show early saturation in
some cases. Qwen2.5-VL series show the strongest scaling behavior, Gemma and InternVL3 also
improve with size, but lag behind Qwen, particularly in identification accuracy, suggesting weaker
visual grounding. None of the open models approach GPT-4.1 performance, which retains a sizable
lead in both accuracy and reasoning. Notably, reasoning improvements appear to saturate earlier
(32B), indicating that scale alone may not bridge the gap without better visual-linguistic alignment or
task supervision. Open-source models still lag by 0.1–0.15 in weighted score compared to GPT-4.1,
especially due to verbosity (low parsimony) and subtle factual gaps (accuracy).

Model Finetuning: We utilize the MMST training dataset to fine-tune Qwen 2.5 VL models (3B,
7B, 32B) and evaluate performance on both MMST-ID & MMST-MG tasks. Figure 2 illustrates
the effects of LoRA-based fine-tuning on Qwen2.5-VL-3B model across four checkpoints vs the
base model (base-Instruct). Our results indicate consistent improvements in seen entity accuracy on
MMST-ID after fine-tuning, rising from 22.3% (base-Instruct) to a peak of 28.4% (epoch 6). Across
model sizes, as seen in Figure 10, we see a consistent convergence behavior across epochs, with 32B
achieving the strongest peak performance (37.6% at epoch 6) and reasoning score (3.04). However,
models struggle to generalize, as accuracy on unseen entities remains stagnant. On the MMST-MG
task, from the base-Instruct model to LoRA-ep6, we observe steady improvement across all four
metrics as well. Relevance is the highest-scoring metric throughout, indicating the model’s ability
to remain on-topic is strong even in zero-shot, and improves further with tuning. Parsimony also
improves consistently, indicating models can learn concise delivery of recommendations.

Performance on Contextual Subset: The contextual subset of MIRAGE-MMST reveals that
inferring latent context remains a major bottleneck for current LVLMs. Even top-tier models like
GPT-4.1 perform well but not well, and the gap to open-source models is significant. Compared to the
standard subset, scores are consistently lower across the board, indicating that reasoning under partial
observability and implicit context reconstruction are significant failure points for current models, as
seen in Table 8. We also observe that current LVLMs make limited use of metadata, such as location
and time, despite their importance in real-world agricultural reasoning see Table 10 for comparison
with and without the meta-data. Across both proprietary and open-source models, the inclusion of
metadata yields minimal improvements in identification accuracy (e.g., +1.6% for GPT-4.1, +0.6%
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Table 2: Performance of large vision–language models on the MMST Standard benchmark, av-
eraged over three open-source reasoning judges (DeepSeek-R1-Distill-Llama-70B, Qwen3-32B,
Phi-4-reasoning). ID task: Acc (Identification Accuracy, 0–1) and Reason (Reasoning Score, 0–4).
MG task: Acc (Answer Accuracy), Rel (Relevance), Comp (Completeness), Pars (Parsimony), all
0–4. Composite score W-Sum is computed as W -Sum = (2 ∗ Acc + Rel + Comp + Pars)/20 and
ranges 0–1.

Model MMST-ID Task MMST-MG Task

Acc (%) Reason Acc Rel Comp Pars W-Sum

gpt-4.1 43.9 3.01 3.24 3.60 3.22 3.01 0.82
gpt-4.1-mini 34.6 2.75 2.94 3.37 2.83 2.98 0.75
gpt-4o 39.3 2.49 2.77 3.16 2.43 3.00 0.71
gpt-4o-mini 22.4 2.18 2.65 3.02 2.28 2.78 0.67
claude-3-7-sonnet 33.9 2.64 2.82 3.23 2.69 2.88 0.72
claude-3-5-sonnet 32.0 2.51 2.75 3.17 2.57 2.92 0.71
claude-3-haiku 17.6 1.79 2.40 2.89 2.05 2.84 0.63

Llama-4-Scout-17B-16E-Instruct 20.1 2.11 2.51 2.93 2.27 2.61 0.64
llava-v1.6-mistral-7b-hf 7.1 1.34 2.20 2.50 1.86 2.20 0.55
llava-onevision-qwen2-7b-ov-hf 9.4 1.59 2.23 2.57 1.94 2.23 0.56

Qwen2.5-VL-3B-Instruct 17.2 1.48 2.09 2.38 1.78 2.08 0.52
Qwen2.5-VL-7B-Instruct 22.1 1.85 2.38 2.72 2.14 2.31 0.60
Qwen2.5-VL-32B-Instruct 25.1 2.43 2.87 3.19 2.88 2.43 0.71
Qwen2.5-VL-72B-Instruct 29.8 2.47 2.72 3.09 2.56 2.61 0.69

gemma-3-4b-it 10.4 1.84 2.28 2.71 2.32 2.16 0.59
gemma-3-12b-it 15.9 1.98 2.63 3.00 2.74 2.30 0.67
gemma-3-27b-it 18.9 2.22 2.77 3.14 2.87 2.43 0.70

InternVL3-2B 9.0 1.65 2.09 2.41 1.80 2.15 0.53
InternVL3-8B 11.9 1.77 2.35 2.71 2.10 2.46 0.60
InternVL3-14B 14.2 1.91 2.49 2.85 2.21 2.66 0.64
InternVL3-38B 19.2 2.12 2.56 2.95 2.28 2.75 0.66
InternVL3-78B 22.4 2.24 2.60 2.98 2.31 2.87 0.67

Scores are averaged over the three judge models. Closed-source rows are red/light-red, open-source rows
blue/light-blue. Bold purple numbers mark the overall best for each metric.

for Qwen2.5-VL-72B) and virtually no gains in reasoning scores. In some cases, performance even
degrades slightly, suggesting that models may treat metadata as irrelevant or distracting.

5.5 MIRAGE-MMMT Results

Before presenting experimental results, we first outline the structure of the decision task and its
dependence on input observability. Under full observability, where the model is given access to
an oracle goal state that explicitly enumerates known and missing information, a rule-based oracle
achieves 98.45% decision accuracy. This illustrates that the challenge lies in the model’s ability to
infer missing context from dialogue history. In real-world settings, such goal states are unavailable at
inference time. MIRAGE is therefore designed to evaluate models under partial observability, where
decisions must be made using only the dialogue history. To study the effect of structured supervision,
we trained logistic regression classifiers with progressively enriched inputs (Table 26). Performance
improves modestly with access to the user-stated goal (69.79% → 71.34%), and substantially with
access to the oracle goal state (89.27%), confirming that inferring implicit context is the key difficulty
in this task.
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Figure 2: LoRA fine-tuning results on identification and management tasks. Left: ID Accuracy (%)
on seen entities and unseen entities for Qwen2.5-VL-3B at epochs: Instruct (0), LoRA-ep-2, 4, 6, 8.
The grey line marker • traces the Reasoning Score (0–4 scale) on seen entities. Right: Finetuning
performance on management task across four metrics.

Figure 3: Mean performance of closed-source and leading open-source LVLMs on the Standard-MG
(Left) and Contextual-MG (Right) subsets. Each bar is the average over three judges (Scorem,k =
1
3

∑3
r=1 Judger(m, k)) for Accuracy (Acc), Relevance (Rel), Completeness (Com), and Parsimony

(Par) on a 0–4 scale.

5.6 Performance Comparison

We evaluate the model’s high-level decision and its alignment with user goals in three complementary
ways. First, Decision Accuracy captures how often the model’s chosen action, whether to ask a
clarification question or to respond directly, matches the gold annotation; To ensure that when the
model generates an utterance, it is doing so meaningfully, we measure Clarify Relevance: for every
turn labeled <Clarify> or Respond Relevance for all turns labeled <Respond> using the LLM judges.

We conduct experiments under Zero-Shot and COT [61] prompt settings on MMMT shown in
Table 3. In the zero-shot setting, GPT-4o achieves the highest Decision Accuracy (62.98%) and
leads in both Clarify Goal Relevance (70.75%) and Respond Goal Relevance (77.07%), showing
strong overall reasoning and generation alignment. Open models like LLaMA 4 Maverick and
LLaMA 4 Scout perform competitively, reaching 53–49% decision accuracy. Introducing chain-of-
thought (CoT) reasoning consistently improves performance across models. GPT-4o gains +2.5%
in Decision Accuracy (to 65.5%) and improves goal relevance in both Clarify (+2%) and Respond
(+1.5%) settings. Other models, especially Claude 3.7 and Qwen 72B, benefit more substantially
(improvements in clarify goal relevance by +10.5%).

6 Conclusion

We introduce MIRAGE, a high-fidelity benchmark for evaluating vision-language models (VLMs) in
expert-level agricultural consultations. MIRAGE addresses key limitations of existing benchmarks
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Table 3: Comparison of Zero-Shot and CoT-Reasoning Performance on MIRAGE-MMMT. The table
shows Decision Accuracy (Acc%), Clarify Goal Relevance, and Respond Goal Relevance. Arrows
(↑/↓) indicate change from Zero-Shot prompting. Absolute ∆ values are reported on the right.

Model Zero-Shot CoT ∆ (CoT–ZS)

Acc% Clarify Respond Acc% Clarify Respond Acc Clarify Respond

GPT-4o 62.98 70.75 77.07 65.50↑ 72.80↑ 78.50↑ 2.52 2.05 1.43
Claude 3.7 Sonnet 57.80 24.39 23.45 62.40↑ 34.90↑ 28.70↑ 4.60 10.51 5.25

LLaMA 4 Maverick 17B 53.75 65.08 70.65 59.80↑ 69.10↑ 74.20↑ 6.05 4.02 3.55
LLaMA 4 Scout 17B 49.81 61.79 68.67 56.00↑ 66.40↑ 71.30↑ 6.19 4.61 2.63
LLaMA 3.2 90B 45.09 52.43 62.27 50.40↑ 56.20↑ 65.10↑ 5.31 3.77 2.83
Qwen 72B 31.33 58.76 75.00 37.40↑ 63.90↑ 76.50↑ 6.07 5.14 1.50

by incorporating real-world, multimodal, and context-rich interactions grounded in domain-specific
decision-making. Despite these strengths, MIRAGE has a few limitations. It does not yet simulate
interactive dialogue with real users or user simulators, limiting evaluation of adaptation and dialogue
flow over time. Visual follow-ups are also not modeled; user turns beyond the initial user turn are
assumed to be text-only. Looking ahead, MIRAGE opens several promising directions for advancing
multimodal reasoning and conversational capabilities of models in knowledge-intensive domains.
Improving performance on unseen entities will require better open-world generalization strategies,
such as retrieval-augmented generation, compositional reasoning, or domain-adaptive pretraining.
Limited gains from metadata highlight the need for explicit context modeling, including structured
encodings of time, location, and integration with external knowledge bases capturing seasonal and
biological priors. Persistent challenges in clarify-or-respond decision-making point to a need for
models that can infer latent user goals and reason about missing information. We hope this benchmark
enables the development of more context-sensitive, knowledge-intensive VLMs. MIRAGE is publicly
released to support the development of vision-language systems that go beyond narrow question
answering, toward models capable of engaging in natural interactions that involve ambiguity, a
need for clarification, visual understanding, and decision-making when critical context is implicit or
missing, addressing common challenges in real-world expert consultations.

7 Limitations & Future Work

While MIRAGE provides a comprehensive evaluation framework for multimodal expert-level reason-
ing within agricultural consultations, several opportunities for future improvement remain. Currently,
the benchmark primarily reflects smallholder and backyard gardening scenarios, largely derived
from the AskExtension database. In future work, we aim to expand its scope to better represent
large-scale industrial agricultural practices and the broader logistical, economic, and environmental
challenges characteristic of commercial farming operations. Moreover, agriculture is inherently
multidisciplinary, encompassing soil science, agricultural engineering, economics, environmental
sustainability, and policy considerations. Future iterations of MIRAGE will extend coverage across
these dimensions to better capture the full breadth of agricultural reasoning. In the multi-turn scenario
(MMMT), our present design assesses models’ ability to reason over dialogue context, but it does not
yet fully simulate dynamic, interactive exchanges between models and users. To address this, future
versions will incorporate agentic capabilities that enable models to leverage time- and location-based
context, as well as respond adaptively to evolving user input. Such extensions will allow MIRAGE to
better evaluate interactive conversational reasoning, including conversational repairs, user feedback
integration, and contextually grounded decision-making.
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8 Impact Statement

MIRAGE introduces a high-fidelity benchmark that addresses a critical gap in evaluating vision-
language models (VLMs) for real-world, expert-level decision-making in knowledge-intensive do-
mains. By grounding tasks in over 35,000 authentic agricultural consultations involving multimodal,
context-rich queries, MIRAGE pushes the boundaries of current LVLM capabilities beyond perception
and language generation to include causal reasoning, clarification strategies, and open-world general-
ization. It provides both a rigorous testbed and a development suite for building safer, more reliable
AI assistants in domains where decision quality has tangible real-world consequences. However,
caution is advised in fully relying on MIRAGE results: the benchmark, while comprehensive, does
not yet simulate dynamic user interactions or evolving contexts, and agriculture itself encompasses a
vast range of specialized knowledge not fully captured in this dataset. Thus, models performing well
here may still face significant challenges in broader, real-world agricultural deployments, particularly
in novel or unforeseen scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In our abstract and introduction we introduce the MIRAGE benchmark and
highlight the findings on VLMs. We present our work on the same in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we highlight the limitations of our work in the concluding part of the
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper is highly empirical, and as such, we don’t propose any theories or
propose theoretical findings in this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release the dataset and code associated with this work for reproducibility
purposes. This benchmark will be completely open-sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release our data on huggingface and code on github with extensive docu-
mentation on how to setup environments and run experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We share our experimental settings in detail in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Given the nature of this work, we conduct several statistical tests to ensure the
significance of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on which compute machines were used for our experimen-
tation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the work conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the paper addresses the broader implications of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: To prevent data leakage we adopt a release protocol.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have made sure that the work is credited appropriately.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have discussed in detail about the source, curation and schema of our
dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We didn’t do human experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We didn’t do any experiments with human subjects/participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22



MIRAGE: A Benchmark for Multimodal Information-Seeking
and Reasoning in Agricultural Expert-Guided Conversations

Supplementary Material

Table of Contents in Appendix

A Data Source 25

B Related Works 25

C MIRAGE-MMST 27

C.1 Benchmark Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.2 Data Curation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.3 Manual Check and Model Selection for Data Sanitation . . . . . . . . . . . . . . . 30

C.4 Biological Entity Synonymy Collection . . . . . . . . . . . . . . . . . . . . . . . 31

D MMST Evaluation Criteria 31

D.1 Reasoning LLM-as-Judge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.2 Reliability and Robustness of Multi-Judge Evaluation . . . . . . . . . . . . . . . . 32

D.3 Management (MG) Evaluation Criteria and W-Sum Score . . . . . . . . . . . . . . 34

D.4 Diagnostic Parsimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E Additional MMST Benchmark Results 36

E.1 MMST Benchmark Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

E.2 Model Scaling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E.3 With/Without Meta Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

E.4 Fine-Turning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

F Error Analysis 41

F.1 Tier 1: Fundamental Domain Challenges . . . . . . . . . . . . . . . . . . . . . . . 41

F.2 Tier 2: Open-Source Model Systematic Failures . . . . . . . . . . . . . . . . . . . 41

F.3 Quantitative Error Pattern Summary . . . . . . . . . . . . . . . . . . . . . . . . . 41

F.4 Performance on Common and Rare Entities . . . . . . . . . . . . . . . . . . . . . 41

F.5 Category-Wise Breakdown Results . . . . . . . . . . . . . . . . . . . . . . . . . . 44

G MIRAGE-MMMT 56

G.1 Benchmark Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

G.2 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

G.3 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

G.4 Data Curation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

G.5 Additional MIRAGE-MMMT Results . . . . . . . . . . . . . . . . . . . . . . . . 59

23



H Prompts 60

H.1 Evaluation Prompts for MIRAGE-MMST . . . . . . . . . . . . . . . . . . . . . . 60

H.2 Evaluation Prompts for MIRAGE-MMMT . . . . . . . . . . . . . . . . . . . . . . 62

I Case Study 63

I.1 Category-Wise Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

I.2 Examples of Reasoning LLM as a Judge . . . . . . . . . . . . . . . . . . . . . . . 75

24



A Data Source

The MIRAGE benchmark is constructed from a large-scale archive of real-world agricultural consulta-
tions obtained from Ask Extension [25], a U.S. national digital platform maintained by the Extension
Foundation. Ask Extension is part of the broader Cooperative Extension System, a federally supported
network of land-grant universities that delivers science-based, community-oriented education and
services across the United States. The platform connects members of the public, such as farmers,
gardeners, or homeowners, with university-affiliated experts who provide timely, research-backed
responses to their questions.

Inquiries submitted through the Ask Extension portal are answered by a diverse pool of domain
specialists, including university faculty, Extension educators, and trained volunteers such as Master
Gardeners. These responses reflect both academic rigor and region-specific expertise, leveraging
a unique model of public scholarship that blends localized agricultural knowledge with the latest
findings from land-grant institutions. This institutional provenance ensures that the answers used in
our dataset are highly reliable, authored by qualified experts, and grounded in scientifically validated
practices.

We collected approximately 285,393 interactions (218,431 for single-turn; 66,962 for multi-turn) from
the Ask Extension platform, spanning from December 2012 to April 2025. Each entry captures a real
question from a user, along with the corresponding expert response, and may include user-uploaded
images, time of submission, and geographic metadata.

39%35.5%

25.5%

30%

70%

Figure 4: Filtered AskExtension data—(left) number of images per user question, (center) number of
URLs per expert answer, and (right) distribution of total URL content length.

As seen in Figure 4, Our filtered AskExtension dialogues are strongly multimodal and reference-rich.
Users typically include one to three images in their questions, about 35% of turns have a single
image, 26% include two, and 39% include three. Experts in turn ground their advice in external
sources: roughly 70% of answers cite a single URL, while the remaining 30% provide two. The total
amount of content fetched from those links spans from about 2 000 up to 10 000 tokens per response,
indicating that experts draw on substantial external context to support their guidance.

B Related Works

Multimodal Large Language Models: Recent advances in multimodal large language models
(LLMs) have markedly expanded vision–language reasoning capabilities. Proprietary models such
as GPT-4 [8], Claude 3 Sonnet [10], and Google’s Gemini [56] demonstrate strong capabilities
in unifying visual and textual modalities, achieving notable success across diverse multimodal
benchmarks. Concurrently, open-source models—including Qwen-VL 2.5 [14], Gemma 3 [57], and
InternVL-3 [75] have narrowed the performance gap while remaining publicly accessible. Although
these models excel on general-domain benchmarks, they underperform in agriculture: they lack
fine-grained visual expertise, agronomic terminology, and the ability to reason about rare biological
entities and management practices. MIRAGE is designed to expose these weaknesses by providing
domain-specific, multimodal tasks that require expert-level diagnosis and advice.
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Multimodal Agricultural Benchmarks: Agricultural benchmarks [19, 26, 31] have progressed
from controlled, image-only datasets to more realistic vision–language corpora. Early resources such
as PlantVillage [36] and PlantDoc [53] emphasise leaf-level disease classification under laboratory
and in-field conditions, respectively. The AgMMU [30] benchmark augments field images with
farmer–expert dialogues, yet its evaluation is dominated by short, synthetic multiple-choice questions
that limit open-ended reasoning. The recent Crop Disease Domain Multimodal (CDDM) [43] corpus
contributes 137k crop–disease images paired with 1 M single-turn QA pairs, but it focuses narrowly on
disease identification and management. In contrast, MIRAGE is derived from large-scale, real-world
consultations covering more than 7000 biological entities; it offers both single-turn and multi-turn
tasks, explicitly models clarify-or-respond decisions, and scores long-form answers along multiple
dimensions of reasoning quality, thereby providing a far more ecologically valid and challenging test
bed.

Long-Form Question Answering Evaluation: Lexical-overlap metrics such as ROUGE [39], BLEU
[47], and BERTScore [74] are ill-suited to evaluating open-ended, knowledge-intensive answers,
as they correlate poorly with human judgements. Recent work therefore adopts LLM-as-Judge
paradigms, exemplified by AlpacaEval [22], MT-Bench [13], and G-Eval [44], in which powerful
LLMs are prompted to assess responses along axes such as factuality, coherence, and completeness.
While these methods better align with human preferences, single-model evaluations remain vulner-
able to bias and opacity. MIRAGE employs an interpretable ensemble of reasoning-focused LLM
judges DeepSeek-R1-Distilled [34], Qwen 3-32B [5], and Phi-4-Reasoning [6] and by conducting
three independent generation–evaluation passes per sample. This multi-model, multi-run protocol
enhances robustness, enables variance analysis, and provides publicly inspectable rationales, yielding
transparent and reproducible long-form QA evaluation.

State Tracking in Dialogue Systems: State tracking has been a central component in task-oriented
dialogue systems [16, 42], where it plays a critical role in maintaining a representation of user
intent and progress toward the user’s goal throughout the interaction. Dialogue state tracking
(DST) typically involves predicting a belief state, a structured representation of slot-value pairs
reflecting the current user intent at every turn. The widespread adoption of state tracking in dialogue
systems has enabled robust multi-turn interactions, improved task success rates, and enhanced user
satisfaction. Benchmarks like MultiWOZ [15, 24, 67] and Schema-Guided Dialogue (SGD) [48]
have been instrumental in shaping the field by introducing multi-domain, open-schema challenges
that pushed models to become more generalizable and scalable. These successes in dialogue suggest
that structured, continuously updated representations of task progress can be highly beneficial in
other interactive or sequential decision-making settings. Building on this insight, we introduce Goal
State Tracking (GST), a mechanism that explicitly monitors whether all user-provided information
is sufficient to generate a sound consultative recommendation; when gaps remain, GST triggers the
agent to pose targeted clarifying questions, ensuring that advice is delivered only once the requisite
context is complete.
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C MIRAGE-MMST

C.1 Benchmark Details

We summarize the key statistics of MIRAGE-MMST dataset in Table 4, which forms the single-turn
evaluation component of the MIRAGE benchmark. The dataset is partitioned into three subsets:
Standard, Contextual, and Standard Training Data, each designed to support different evaluation and
training objectives.

Table 4: Statistics for MIRAGE-MMST
Overall Statistics Standard Contextual Standard Training Data

Total Samples 8 184 3 934 17 532
Total Images 15 069 8 069 33 120

Per-Sample Statistics

Avg. Question Words 69.57 80.94 67.53
Avg. Answer Words 163.13 222.97 171.18
Avg. Number of Images 1.84 2.05 1.89

Category Statistics

Total IDENTIFICATION TASKS 4 324 - 7 398
Plant Identification 2 600 - 3 919
Insect and Pest Identification 1 146 - 2 131
Plant Disease Identification 578 - 1 348

Total MANAGEMENT TASKS 3 860 3 934 8 957
Plant Care and Gardening Guidance 1 609 1 797 3 707
Insect and Pest Management 725 641 1 689
Plant Disease Management 1 047 1 184 2 445
Weeds / Invasive Plants Management 479 312 1 116

Others - - 1 177

Entity Statistics

Plant Entities 4 485 999 1 725
Insect / Pest Entities 1 732 306 840
Plant Disease Entities 639 200 320

Overall Composition: The dataset comprises a total of 29,650 high-quality user-expert interactions
and over 56,000 user-submitted images. The Standard Benchmark subset contains 8,184 samples,
while the Contextual Benchmark includes 3,934 samples that explicitly rely on implicit context (e.g.,
location-related, timing-related) not explicitly derivable from image or user query and metadata. An
additional 17,532 samples are used for training and pre-tuning models.

Per-Sample Characteristics: Each sample includes both user and expert turns along with image
inputs. On average, standard samples contain 69.6 words in user questions, 163.1 words in expert
answers, and 1.84 images per sample. Contextual samples tend to be longer and more detailed, with
80.9 words per question, 222.9 words per answer, and a slightly higher image count (2.05 images per
sample), reflecting the increased reasoning burden in these settings.

Task Category Distribution: MIRAGE-MMST covers a broad spectrum of expert tasks, which are
grouped into two high-level categories: A.) Identification Tasks (7398) including, Plant Identification
(3,919), Insect and Pest Identification (2,131), Plant Disease Identification (1,348) & B.) Management
Tasks (8957) spanning, Plant Care and Gardening Guidance (3,707), Insect and Pest Management
(1,689), Plant Disease Management (2,445), Weed and Invasive Plant Management (1,116)

Entity Coverage: The dataset includes over 7,000 unique biological entities, with fine-grained
coverage across: 4,485 plant species, 1,732 insect/pest categories and 639 plant disease types.
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C.2 Data Curation Details

Our benchmark utilizes real-world dialogue data sourced from online platforms, necessitating a
rigorous multi-step curation process to ensure the dataset’s high quality and relevance. The curation
process comprises four main steps (See Figure 5):

Figure 5: An Illustration of Data Curation Process for MIRAGE-MMST

Step 1: Data Cleaning

The initial step involved removing unsatisfactory or incomplete data points. We first sampled the
data and conducted manual checking, identifying four primary issues. Specifically, we excluded
dialogues where the expert: (1) recommended contacting another individual or organization; (2)
requested additional information from the user without providing a complete standalone response, as
the benchmark focuses exclusively on single-turn dialogues; (3) expressed uncertainty regarding their
response; or (4) explicitly indicated an inability to assist. Subsequently, we employed GPT-4o-mini
to automate the filtering of these identified issues. Manual verification and automated filtering were
iteratively performed to refine and optimize the filtering prompts. Final results of this process are
described in Section C.3. Additionally, expert responses containing inaccessible or broken URLs
were removed to ensure the dataset’s integrity and usability.

Let the initial dataset of raw expert-user dialogues be denoted as:

D0 = {(qi, ai,mi)}Ni=1

where qi is the user query, ai is the expert response, mi is associated metadata (e.g., images,
timestamp, location), and N is the number of raw entries.

Filtering Unvalid Samples We define a filtering function fvalid : D0 → {0, 1}, which retains a
dialogue only if the response:

• is complete (not asking for follow-up or deferring);
• does not express uncertainty or redirect the user;
• is not a broken or inaccessible URL;

The cleaned dataset is:

D1 = {(qi, ai,mi) ∈ D0 | fvalid(qi, ai,mi) = 1}

Step 2: Data Categorization

Data Classification: We categorized the dataset into subsets relevant to agricultural language model
research, resulting in seven primary categories grouped into two subsets: Subset 1: Identification
(Plant Identification, Insect and Pest Identification, Plant Disease Identification) and Subset 2:
Management (Plant Disease Management, Insect and Pest Management, Plant Care and Gardening
Guidance, Weeds/Invasive Plants Management). Dialogues not fitting these categories were labeled
as "Others." We used GPT-4.1 to classify the dataset.
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Let C : D1 → C be a classifier mapping each sample to one of K = 7 predefined agronomic
categories. Define:

cati = C(qi, ai,mi)

Entity Extraction: We extracted relevant entities based on the assigned category: plant names for
Plant Identification, Plant Care and Gardening Guidance, and Weeds/Invasive Plants Management;
insect or pest names for Insect and Pest Identification and Management; and disease names for Plant
Disease Identification and Management. We used GPT-4.1-mini to extract the entities. These entities
are then enriched with their synonyms (See Section C.4).

Let Eplant, Epest, Edisease be entity extractors for respective domains. Then:

ei =


Eplant(qi, ai), if cati ∈ {Plant ID, Plant MG, Care/Weeds MG}
Epest(qi, ai), if cati ∈ {Pest ID, Pest MG}
Edisease(qi, ai), if cati ∈ {Disease ID, Disease MG}

Contextual-Aware Labeling: Contextual-aware labeling involved analyzing expert answers that
leveraged implicit context such as user location and timing. These instances included cases where
experts cited location-specific regulations or practices, provided location-dependent advice, referenced
current weather conditions specific to the user’s location and timing (e.g., recent drought, frost
conditions), or offered time-specific recommendations. These were labeled as "location_related" or
"time_related" data. We used GPT-4o and GPT-4o-mini to label the data. This step also involved
manual checking. Final results of this process are described in Section C.3.

Let ϕctx : D1 → {0, 1} indicate whether a sample includes contextual elements (e.g., location-specific
recommendations):

ϕctx(qi, ai,mi) =

{
1 if contextual reasoning is present
0 otherwise

Split the dataset as:

Dstandard = {(qi, ai,mi, cati, ei) | ϕctx = 0}, Dcontextual = {(qi, ai,mi, cati, ei) | ϕctx = 1}

Step 3: Data Reformatting

Content Removal and Question Enhancement: We reformatted the remaining data to enhance
clarity and appropriateness for language model benchmarks. Specifically, we removed personal
identification information, references specific to the "Ask Extension" service, and content unsuitable
for interactions with language models (e.g., mentions of voicemails). Additionally, relevant details
from dialogue titles were merged into questions when they provided additional context. We used
GPT-4.1-mini model to reformat the data.

Integration of Supplementary Content: Approximately half of the expert responses contained URLs
referencing supplementary information. To enrich these responses, we crawled and extracted the
content from these URLs. Subsequently, we used the GPT-4.1 model to integrate this supplementary
content with the original expert answers, producing more detailed and comprehensive responses.

Identification Answer Reconstruction with Visual Enhancement: Initial identification (ID) dataset
expert responses included reasoning processes and conclusions but lacked consistent formatting,
comprehensive visual descriptions, and complete reasoning chains. We utilized the GPT-4.1-mini
model, capitalizing on its multimodal and information integration capabilities, to reconstruct and
enhance these responses. This involved adding detailed descriptions of key visual characteristics
(such as distinguishing features of plants and insects, or observable symptoms of plant diseases)
and constructing clear, coherent reasoning chains. The standardized answers were formatted into a
concise single-paragraph structure, clearly presenting both the reasoning process and the final result,
thereby facilitating efficient benchmark evaluation.

Let DID ⊆ Dstandard ∪ Dcontextual with cati ∈ {Plant ID, Pest ID, Disease ID}. We define an enhanced
answer:

a′i = llm(ai,mi)
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The reconstructed dataset is:

DID-enhanced = {(qi, a′i,mi, cati, ei) ∈ DID}

Step 4: Data Splitting

We first divided the dataset into standard and contextual subsets based on contextual-aware labeling.

Standard Data: The standard data subset was partitioned into benchmark (30%) and training (70%)
datasets. The splitting aimed to maximize diversity by ensuring at least one sample per entity in the
benchmark, which led to some entities appearing exclusively in the benchmark due to limited samples.
Additionally, we preserved the original distribution across all seven categories and maintained the
proportion of URL-based responses within each category. Ultimately, we obtained a Standard
Benchmark dataset of 8,184 dialogues and a training dataset of 17,532 dialogues.

Contextual Data: Context-sensitive questions were augmented with explicit user location and timing
details. Due to their complexity, these were entirely allocated to the Contextual Benchmark, totaling
3,934 dialogues.

We define a stratified sampling function S : Dstandard → {0, 1} for selecting 30% of data for
benchmarking:

Dstandard
benchmark = {x ∈ Dstandard | S(x) = 1}, Dstandard

train = Dstandard \ Dstandard
benchmark

C.3 Manual Check and Model Selection for Data Sanitation

As part of our data curation pipeline, we conducted a targeted analysis of user-expert conversations to
identify specific characteristics that affect data quality. This step was essential for filtering low-value
interactions and retaining samples that reflect sensitivity to latent contextual reasoning typical in
real-world agricultural consultations.

We focused on three key characteristics:

• Unsatisfactory: These include expert replies that fail to provide meaningful or actionable
guidance. Common patterns include vague disclaimers such as “I’m not sure how to help you
with this” or deferrals to third-party support (“You may want to contact your local extension
office”). These represent non-informative speech acts and were marked for exclusion from
the curated dataset to maintain high informational integrity.

• Location-related: Many expert responses assumed the user’s geographic context, such as
referencing local regulations, climate patterns, or soil characteristics, without this context
being explicitly provided by the user. While this introduces contextual elision, these
responses are not deficiencies; they reflect realistic, situated expertise. We retained these
samples, recognizing their value in evaluating models’ ability to interpret or recover latent
geographic/location-related context.

• Time-related: Similarly, several expert responses implicitly relied on temporal context,
such as seasonal crop cycles or pest development stages. These exhibited temporal under-
specification, where the meaning of the advice depends on when the consultation occurred
(e.g., “The pest is likely in its larval stage right now” during a spring consultation). These in-
teractions were preserved as they reflect authentic domain-specific reasoning under temporal
constraints.

To identify these characteristics at scale, we first manually annotated a stratified sample of 111
conversations. Each was labeled with one or more of the above characteristics. We then used few-
shot prompting to evaluate a set of large language models (LLMs) on their ability to classify these
characteristics. For each model, we provided a set of illustrative examples demonstrating how each
characteristic manifests in expert replies. We measured performance using standard classification
metrics: accuracy, precision, recall, and F1 score, broken down by characteristic type. (See Table 5)

Based on this evaluation, we selected gpt-4o-min plus analysis for filtering unsatisfactory data and
labeling location-related data; gpt-4o plus analysis for labeling time-related data in our data curation
workflow.
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Table 5: Performance of various LLMs on conversational characteristic classification. "Model +
Analysis" denotes that the model first generates an analysis before classification; "Model" indicates
direct classification without intermediate analysis.

Characteristic Count Model Accuracy Precision Recall F1 Score

Unsatisfactory 51 gpt-4o-mini 0.855 9 0.830 2 0.862 7 0.846 2
gpt-4o 0.819 8 0.792 5 0.823 5 0.817 1
gpt-4o-mini + analysis 0.855 9 0.777 8 0.960 8 0.9176
gpt-4o + analysis 0.828 8 0.796 3 0.843 1 0.833 3
gemini-2.0-flash 0.873 9 0.836 4 0.902 0 0.888 0
gemini-2.0-flash + analysis 0.882 9 0.865 4 0.882 4 0.878 9

Location-related 25 gpt-4o-mini 0.828 8 0.571 4 0.960 0 0.845 1
gpt-4o 0.918 9 0.833 3 0.800 0 0.806 5
gpt-4o-mini + analysis 0.927 9 0.840 0 0.840 0 0.8400
gpt-4o + analysis 0.909 9 0.857 1 0.720 0 0.743 8
gemini-2.0-flash 0.837 8 0.594 6 0.880 0 0.802 9
gemini-2.0-flash + analysis 0.882 9 0.687 5 0.880 0 0.833 3

Time-sensitive 16 gpt-4o-mini 0.855 9 0.500 0 1.000 0 0.833 3
gpt-4o 0.918 9 0.652 2 0.937 5 0.862 1
gpt-4o-mini + analysis 0.855 9 0.500 0 0.937 5 0.797 9
gpt-4o + analysis 0.964 0 0.875 0 0.875 0 0.8750
gemini-2.0-flash 0.675 7 0.307 7 1.000 0 0.689 7
gemini-2.0-flash + analysis 0.846 8 0.484 8 1.000 0 0.824 7

C.4 Biological Entity Synonymy Collection

To facilitate fair evaluation of biological entity identification in model outputs, we developed a
comprehensive name collection pipeline that aggregates all valid references, both scientific and ver-
nacular, for biological entities in our dataset. Rather than standardizing to a single canonical form, our
objective was to compile an exhaustive synonymy for each entity, enabling robust matching regardless
of the nomenclatural variant used. The system queries multiple authoritative taxonomic databases via
their APIs in a hierarchical approach, beginning with the Global Biodiversity Information Facility
(GBIF) [2] and extending to iNaturalist [59] Encyclopedia of Life (EOL) [1], Integrated Taxonomic
Information System (ITIS) [3], Wikipedia [63], and NCBI Taxonomy [4]. Queries are enhanced
with category-specific context (e.g., kingdom Plantae for botanical entries) to improve retrieval
accuracy. For each entity, we preserve all retrieved scientific names (including accepted names,
synonyms, and historical nomenclature) and vernacular names across languages, with metadata
indicating the source authority. This comprehensive approach prevents unfair penalization during
model evaluation when, for instance, a model correctly identifies an organism using its scientific
name (Phytolacca americana) while the reference answer uses a common name ("pokeweed"), or vice
versa. The resulting enriched dataset maintains the original hierarchical structure while appending all
valid nomenclatural alternatives, thereby supporting more equitable assessment of biological entity
recognition capabilities.

D MMST Evaluation Criteria

D.1 Reasoning LLM-as-Judge

D.1.1 Traditional LLM-as-Judge

Traditional metrics for evaluating long-form question answering have significant limitations. Research
by Xu et al. [65] reveals that established approaches like ROUGE and BERTScore frequently diverge
from human quality assessments, creating a fundamental evaluation challenge. A breakthrough
solution has emerged in the form of language model-based evaluation frameworks. Cortes et al.
[21] found that carefully designed prompting strategies with advanced models like GPT-4 can
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achieve remarkable alignment with human judgment, particularly when assessing the thoroughness
of responses. This paradigm shift suggests that AI systems themselves may offer the most effective
tools for evaluating complex natural language generation tasks.

LLMs have become widely adopted as evaluators in benchmarks like AlpacaEval [23], MT-Bench
[13], and Chatbot Arena [18], where models such as GPT-4 conduct pairwise preference assessments
based on helpfulness, factuality, and engagement. Frameworks like G-Eval [44] further enable
fine-grained scoring by prompting models to assess specific dimensions using structured rubrics.
These LLM-based evaluations have shown stronger alignment with human judgments than traditional
metrics, especially on long-form and knowledge-intensive tasks.

However, relying on a single model introduces concerns around opacity, bias, and instability, including
self-preference and sensitivity to output variance. To address this, we implement a multi-model,
multi-run evaluation protocols that improve interpretability, reduces bias, and yields more robust and
reproducible assessments.

D.1.2 Leveraging an Interpretable Ensemble of Reasoning LLMs

To address the limitations of single-model, single-pass evaluation pipelines, we propose an in-
terpretable and robust evaluation framework based on an ensemble of reasoning-capable LLMs:
Deepseek-R1-Distilled [34], Qwen-3-32B [5], and Phi-4-Reasoning [6]. These models were selected
not only for their demonstrated strength in multi-hop reasoning and long-form comprehension but
also for their open accessibility, ensuring that our evaluation protocol is fully transparent and repro-
ducible without dependence on proprietary APIs. Our evaluation protocol is also distinguished by its
multi-run robustness. For each benchmark sample, we perform three independent inference runs of
the candidate model to capture natural generation variability. Each of these outputs is then evaluated
independently by the full ensemble of three judge models. This results in nine total evaluations
per sample, allowing us to report aggregated metrics that reflect not only average performance but
also stability and consistency across generations and evaluators. We further analyze cross-model
agreement and judgment variance to ensure evaluation fidelity. This interpretable ensemble-based
and multi-run evaluation represents a significant step forward in the use of LLMs as evaluators. It
brings together the benefits of scale and automation while maintaining experimental rigor.

D.2 Reliability and Robustness of Multi-Judge Evaluation

To ensure the statistical robustness and reproducibility of our evaluation framework, we go beyond
model-averaged scores and perform formal inter- and intra-judge reliability assessments. These anal-
yses validate both the consistency across judges (inter-rater agreement) and stability within individual
judges across multiple runs (intra-rater reliability), providing a more rigorous characterization of
evaluation quality.

Inter-Judge Agreements: We assess agreement between our ensemble of LLM judges: Deepseek-
R1-Distilled, Qwen-3-32B, and Phi-4-Reasoning, using two complementary statistical measures:

• Fleiss’ Kappa: To measure categorical agreement across multiple judges, we binarize
evaluation outcomes (e.g., correct vs. incorrect) and compute Fleiss’ κ [28], a widely used
metric for evaluating agreement on nominal data among fixed raters. This quantifies how
consistently the LLM judges classify outputs beyond what would be expected by chance.

• Kendall’s W (Coefficient of Concordance: For tasks involving ordinal scoring or ranking
of generations, we compute Kendall’s W [27], a non-parametric measure of rank correlation.
This accounts for judges using different scoring scales by focusing on relative orderings.
To accommodate tied ranks, we use the corrected-for-ties version of Kendall’s W. The
coefficient ranges from 0 (no agreement) to 1 (perfect agreement), enabling us to quantify
the degree of concordance in evaluative judgments.

The results of our inter-judge reliability analysis, shown in Figure 6, reveal consistently high agree-
ment among the three LLM judges across a diverse set of evaluated models. Fleiss’ κ scores for the ID
task (binary classification) generally fall within the 0.75–0.88 range, indicating “good” to “excellent”
agreement by standard interpretation guidelines The bottom plot presents inter-judge agreement
measured by Kendall’s W across four evaluation dimensions: accuracy, completeness, parsimony,
and relevance, for 23 vision-language models. Overall, models exhibit moderate to strong agreement
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Figure 6: (Top): Inter-judge reliability of LLM-based evaluation using Fleiss’ κ (binary classification
of ID correctness) across evaluated models on MMST-ID. Each bar represents the agreement among
the three ensemble judges—Deepseek-R1-Distilled, Qwen 3 32B, and Phi-4-Reasoning. (Bottom):
Kendall’s W across four evaluation dimensions in MMST-MD: accuracy, completeness, parsimony,
and relevance—for 23 vision-language models. Higher values indicate stronger rank correlation
among the three LLM judges.

(W = 0.69–0.87), indicating consistent ranking behavior among the three LLM judges. Agreement is
highest for accuracy. In contrast, parsimony scores demonstrate lower concordance (W = 0.64–0.73),
indicating greater variability in how judges interpret brevity or conciseness. Qwen, Claude, and
Gemma families show relatively stable agreement across all four dimensions, highlighting their
reliability as evaluated agents. The relatively lower agreement for some models, such as LLaVA-
based variants and InternVL3-2B, particularly on reasoning metrics, highlights instances where judge
interpretations diverged, possibly due to varied output styles or ambiguous task completions.

Intra-Judge Reliability: In addition to evaluating agreement across different models, we assess
intra-judge reliability by running each judge model three independent times on the same set of
samples. This allows us to measure the stability of each model’s judgments under natural generation
variability.

For this purpose, we compute the Intraclass Correlation Coefficient (ICC), which quantifies how
consistently a single model scores the same item across multiple runs. ICC is particularly suited
for this setting as it accounts for both within-subject and between-subject variability, providing a
continuous-scale assessment of intra-rater consistency. Following established interpretative guidelines
[20] we classify ICC values into bands (e.g., moderate, good, excellent) to report the strength of
reliability for each judge.

To assess the consistency of our LLM-based judges, we conducted a three-run intra-rater reliability
analysis using the Intraclass Correlation Coefficient (ICC2) shown in Figure 7, separately computed
for binary ID judgments and ordinal reasoning assessments. The results indicate that both DeepSeek-
R1 and Qwen3-32B exhibit strong intra-judge reliability. DeepSeek-R1 shows excellent agreement
on ID assessments across almost all models, with ICC2 values typically in the 0.85–0.90 range. We
also observe that LLaVA-based models tend to show more intra-model fluctuation, potentially due to
less structured or variable outputs.
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Figure 7: Intra-rater reliability (ICC2) of our interpretable ensemble judges over three independent
runs, shown for two judge models. (Top): DeepSeek-R1-Distill and Bottom: Qwen3-32B. Both
models exhibit consistently high reliability of judgement on MMST-ID

D.3 Management (MG) Evaluation Criteria and W-Sum Score

To evaluate model performance on the Management (MG) subset, we adopt a four-dimensional
evaluation framework capturing complementary aspects of answer quality: Accuracy, Relevance,
Completeness, and Parsimony. These dimensions were chosen based on findings from the long-form
QA literature and insights from agricultural experts.

• Accuracy measures the factual correctness of the recommendation or diagnosis.

• Relevance assesses whether the response remains on-topic and directly addresses the user’s
query.

• Completeness evaluates whether essential details (e.g., causal factors, conditions, or next-
step actions) are covered.

• Parsimony rewards concise, evidence-based explanations that avoid unnecessary speculation
or verbosity.

The first three dimensions align with multi-axis evaluation principles in long-form QA studies [66, 21],
which demonstrate that completeness and relevance correlate more strongly with human judgments
than surface-level metrics such as ROUGE or BERTScore. The fourth dimension, Parsimony, is
inspired by the cognitive and philosophical principle of simplicity (Occam’s razor), emphasizing clear
and minimal explanations in expert communication. We provide a detailed discussion and illustrative
examples of diagnostic parsimony in Appendix D.4.

To enable model comparison with a single scalar, we compute a Weighted-Sum (W-Sum) score that
aggregates these four dimensions. The adopted weight ratio of 2:1:1:1 reflects expert consensus that
factual Accuracy should carry the greatest influence, since factual errors can lead to misleading or
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harmful recommendations. While we also report per-dimension results for transparency, the W-Sum
provides a concise, interpretable measure for aggregate ranking.

D.4 Diagnostic Parsimony

Diagnostic parsimony refers to the principled restraint in offering explanations, favoring the simplest
account consistent with observed evidence while avoiding unnecessary speculation. [46] shows
that humans have a robust bias toward simpler explanations, not just for cognitive ease but because
simplicity aids understanding, memory, and decision-making. In agriculture, this principle is espe-
cially critical: farmers and gardeners often seek immediate, actionable advice under time-sensitive
or resource-constrained conditions. Overly elaborate responses can obscure key insights, introduce
confusion, or even lead to misapplied interventions. As in medicine and law, where expert communi-
cation must balance completeness with clarity, parsimony is a cornerstone of effective agronomic
consultation. LLM/LVLM answers in such knowledge-intensive domains must therefore strive to be
concise yet comprehensive, ensuring the user gets just enough information to act confidently. Studies
show that human evaluators, particularly non-experts, tend to prefer shorter, to-the-point responses,
even when some details are omitted [66].

However, many instruction-following LLMs/LVLMs often default to verbose outputs, including
tangential or overly cautious elaborations. As illustrated in Figure 8, when responding to a user’s
concern about bark defects on a tree, GPT-4.1 generates a detailed and structured diagnostic explana-
tion covering wound physiology, tree tolerance, preventative care, and multi-step recommendations.
Qwen 2 VL 72B, while more concise, still includes speculative possibilities (e.g., fungal infection,
water stress) and a broad checklist of actions. In contrast, the human expert offers a brief but deci-
sive interpretation, attributing the damage to non-serious activity and explicitly recommending no
treatment. This behavior not only hinders user trust and satisfaction but also confounds traditional
QA metrics like exact match (EM) and F1, which are poorly suited to judge informativeness under
parsimony constraints. [9].

This tree has been very happy in our soggy back yard, but we have noticed four of these bark defects along the trunk. Are 
they a problem? (Also looks like a sapsucker was in the 'hood)

The bark defects on your tree could be caused by several factors, including physical injury, fungal infection, 
or environmental stress. Here are a few possibilities: 
1. Wound Healing or Mechanical Damage The lesions on the bark may be from past injuries, such as 
branch pruning, animal damage, or impact. Trees naturally form callous tissue over wounds, but if the bark 
peels away excessively, it may indicate an issue. 

2. Fungal or Bacterial Infection If the bark is splitting or oozing sap, it might be due to pathogens like 
Botryosphaeria (a canker-causing fungus) or Pseudomonas syringae (bacterial canker). Wet conditions in 
your soggy yard may contribute to fungal infections. 

3. Sapsucker Damage The smaller holes likely indicate sapsucker activity. While sapsucker feeding 
usually doesn't cause significant harm, repeated damage can stress the tree. 

4. Water Stress or Poor Drainage If your yard remains overly soggy, root rot can weaken the tree, 
making it more susceptible to infections. 

What to Do?
1. Inspect the wood under the peeling bark – If it’s soft, discolored, or has a foul smell, it may be 

rotting. 
2. Check for signs of fungus – Fruiting bodies or dark streaks can indicate infection. 
3. Prune affected areas carefully – Remove any dead or infected wood. 
4. Improve drainage – If water retention is an issue, consider aerating the soil or creating a raised bed 

around the tree. 
5. Monitor for progression – If the lesions enlarge or spread, consulting an arborist might be necessary.

Qwen 2 VL 72B

SYSTEM PROMPT: Assume you are an agronomy expert and providing consultation to common users. As an expert, your 
task is to provide evidence-based answers to the user's concern. Analyze the image provided by user and their request 
and then respond. 

These patches of missing bark are almost certainly sap-wells made by a sapsucker (a type of small 
woodpecker) rather than a fungal canker or mechanical injury. Here’s what you need to know:
1. How sapsucker damage works
- Sap wells: Sapsuckers drill neat rows of holes through the bark and into the living cambium to drink the 
sap.
- Wound appearance: The lesions in your photo are elongated patches where the bird has gouged 
through the outer bark, exactly where you’d expect a sapsucker to feed.

2. Why it’s usually not fatal
- Compartmentalization: Healthy trees seal off (compartmentalize) small wounds by forming callus 
tissue around them.
- Tolerance: Research shows that most broadleaf trees can tolerate up to ~25–30 % trunk-area sap-well 
damage with only minor growth reduction.

3. When to worry
- Girdling risk: If successive rows encircle more than half the trunk’s circumference, sap flow can be 
seriously interrupted (girdling), which may eventually kill the tree above the wound.
- Stress factors: Because your yard is soggy, the tree is already under some root/stress pressure—
repeated drilling could push it over the edge.

4. What you can do
1.Monitor

1. Check each spring for new wells. If you see fresh feeding, take deterrent steps.
2.Protect the trunk

1. Wrap a ½″ galvanized-mesh sleeve (hardware cloth) loosely around the trunk (spring–summer), or
2. Hang shiny tape or pinwheels on nearby branches to spook the bird.

3.Promote tree vigor
1. Improve drainage (e.g. a shallow trench or raised bed) so roots aren’t water-logged.
2. Mulch (2–3 in) out to the drip line and avoid damaging roots with lawn equipment.
3. Fertilize lightly in early spring if soil tests show nutrient deficiencies.

4.Let it heal naturally
1. Do not paint or seal the wounds—studies have repeatedly shown that wound dressings do not 

speed healing and can trap moisture and pathogens.

GPT-4.1

The trunk scars do not appear to be new and look well healed. We see no rot. We can't say what 
caused the scars, perhaps old healed wounds from loss of a branch or bark cracking from winter 
temperature swings. At any rate, they do not appear worrisome. Yes, it has been visited by 
sapsuckers, briefly. Also not a problem. Trees tolerate hundreds, if not thousands, of their shallow holes. 
It is not an indicator of disease or insect problems. They feed on the sap and the insects stuck in the 
sap. No treatment is recommended. category: Plant Care and Gardening Guidance

Human Expert

Human User

Figure 8: An illustration of three different diagnostic responses to the same user request from MMST-
MG: Multiple hypotheses/conditions, speculative statements without direct evidence, technical
terminology, actionable intervention recommendations, and definitive expert assessments are each
highlighted in the figure to illustrate the taxonomy of statement types.
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E Additional MMST Benchmark Results

E.1 MMST Benchmark Main Results

E.1.1 Standard ID Benchmark Results

Table 6 summarises identification accuracy (Acc, %) and reasoning accuracy (0–4 scale) for a
diverse LVLM on the MMST Standard-ID benchmark, reporting scores under three automated
judges—DeepSeek-R1-Distill, Qwen3-32B, and Phi-4-reasoning. The table reveals a persistent
proprietary lead: GPT-4.1 achieves the highest scores across all judges, retaining a margin of roughly
13 pp in identification accuracy and 0.5 points in reasoning over the strongest open-source model,
Qwen-2.5-VL-72B-Instruct.

Table 6: Performance Comparison of Large Language Models on MMST (Standard-ID) Benchmark

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc (%) Reasoning Acc (%) Reasoning Acc (%) Reasoning

gpt-4.1 44.6 3.07 44.7 2.78 42.4 3.17
gpt-4.1-mini 36.3 2.79 35.0 2.51 32.6 2.95
gpt-4o 40.9 2.52 40.5 2.29 36.6 2.65
gpt-4o-mini 24.3 2.19 22.4 2.01 20.4 2.34
claude-3-7-sonnet 34.3 2.71 34.5 2.40 32.9 2.81
claude-3-5-sonnet 32.3 2.59 32.4 2.29 31.4 2.65
claude-3-haiku 18.7 1.83 18.4 1.63 15.8 1.92

Llama-4-Scout-17B-16E-Instruct 20.6 2.13 21.2 1.96 18.5 2.24
llava-v1.6-mistral-7b-hf 7.7 1.36 7.2 1.18 6.3 1.47
llava-onevision-qwen2-7b-ov-hf 9.9↑29 1.63↑20 9.4↑31 1.45↑23 9.0↑43 1.70↑16

Qwen2.5-VL-3B-Instruct 17.4 1.55 18.1 1.37 16.0 1.53
Qwen2.5-VL-7B-Instruct 22.5↑29 1.91↑23 23.3↑29 1.70↑24 20.5↑28 1.95↑28

Qwen2.5-VL-32B-Instruct 26.1↑16 2.54↑33 25.3↑9 2.18↑28 23.8↑16 2.57↑32

Qwen2.5-VL-72B-Instruct 30.8↑18 2.59↑2 30.3↑20 2.22↑2 28.4↑19 2.60↑1

gemma-3-4b-it 10.4 1.87 10.7 1.70 10.2 1.95
gemma-3-12b-it 16.1↑55 2.08↑11 15.9↑49 1.82↑7 15.7↑54 2.05↑5

gemma-3-27b-it 19.3↑20 2.28↑10 19.2↑21 2.03↑12 18.1↑15 2.35↑15

InternVL3-2B 10.0 1.64 8.9 1.53 8.2 1.77
InternVL3-8B 12.2↑22 1.81↑10 12.2↑37 1.64↑7 11.4↑39 1.86↑5

InternVL3-14B 14.7↑21 1.95↑8 14.2↑16 1.76↑7 13.6↑19 2.02↑9

InternVL3-38B 20.0↑36 2.13↑9 19.7↑39 1.96↑11 17.8↑31 2.26↑12

InternVL3-78B 23.9↑20 2.28↑7 22.6↑15 2.07↑6 20.8↑17 2.37↑5

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
↑ values indicate percentage improvements over the previous model size in the same family. Bold purple values

highlight the best performance.
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E.1.2 Standard MG Benchmark Results

Table 7 presents management-task performance on the MMST Standard-MG benchmark, reporting
four rubric scores—Accuracy, Relevance, Completeness, and Parsimony (0–4 scale)—under
the same trio of automated judges used for the ID setting. Consistent with the ID results, the
proprietary GPT-4.1 model dominates most of metrics across all judges, outscoring the best open-
source competitor by roughly 0.4 absolute points in Accuracy and by 0.3–0.5 in the Relevance and
Completeness.

Table 7: Performance Comparison of Large Vision Language Models on MMST (Standard-MG)
Benchmark

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.17 3.59 3.39 2.93 3.27 3.59 3.03 2.97 3.27 3.62 3.24 3.14
gpt-4.1-mini 2.93 3.39 3.05 2.91 2.92 3.31 2.54 2.97 2.96 3.40 2.89 3.06
gpt-4o 2.75 3.14 2.57 2.91 2.77 3.10 2.17 3.07 2.78 3.23 2.55 3.03
gpt-4o-mini 2.65 3.01 2.44 2.70 2.64 2.95 2.01 2.83 2.66 3.10 2.40 2.81
claude-3-7-sonnet 2.83 3.29 2.96 2.83 2.82 3.17 2.41 2.89 2.81 3.23 2.71 2.91
claude-3-5-sonnet 2.75 3.22 2.80 2.88 2.75 3.11 2.29 2.94 2.74 3.18 2.62 2.95
claude-3-haiku 2.44 2.92 2.22 2.74 2.37 2.78 1.77 2.82 2.40 2.98 2.15 2.96

Llama-4-Scout-17B-16E-Instruct 2.53 2.96 2.48 2.55 2.51 2.86 1.99 2.63 2.49 2.98 2.34 2.64
llava-v1.6-mistral-7b-hf 2.22 2.55 2.05 2.14 2.20 2.44 1.60 2.26 2.17 2.50 1.93 2.19
llava-onevision-qwen2-7b-ov-hf 2.25 2.61 2.13 2.16 2.22 2.50 1.66 2.29 2.23 2.59 2.02 2.23

Qwen2.5-VL-3B-Instruct 2.10 2.42 1.96 2.01 2.12 2.35 1.55 2.17 2.04 2.37 1.83 2.07
Qwen2.5-VL-7B-Instruct 2.39 2.76 2.36 2.26 2.39 2.65 1.84 2.34 2.36 2.76 2.22 2.33
Qwen2.5-VL-32B-Instruct 2.84 3.25 3.14 2.52 2.80 3.11 2.56 2.31 2.85 3.22 2.93 2.45
Qwen2.5-VL-72B-Instruct 2.70 3.10 2.79 2.56 2.72 3.02 2.25 2.60 2.74 3.15 2.64 2.65

gemma-3-4b-it 2.33 2.82 2.60 2.18 2.28 2.61 2.04 2.06 2.23 2.69 2.31 2.25
gemma-3-12b-it 2.66 3.11 3.01 2.38 2.62 2.89 2.49 2.13 2.61 3.01 2.72 2.40
gemma-3-27b-it 2.80 3.25 3.15 2.52 2.79 3.05 2.65 2.29 2.71 3.11 2.82 2.48

InternVL3-2B 2.12 2.47 1.98 2.07 2.11 2.36 1.56 2.25 2.05 2.41 1.86 2.14
InternVL3-8B 2.36 2.75 2.28 2.39 2.34 2.64 1.83 2.50 2.34 2.74 2.19 2.50
InternVL3-14B 2.49 2.88 2.39 2.58 2.50 2.79 1.95 2.70 2.47 2.88 2.30 2.69
InternVL3-38B 2.56 2.96 2.44 2.66 2.56 2.89 2.01 2.80 2.56 3.01 2.39 2.78
InternVL3-78B 2.60 2.99 2.48 2.97 2.59 2.90 2.03 2.82 2.60 3.04 2.42 2.82

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Scores represent performance on four key metrics (Accuracy / Relevance / Completeness / Parsimony) on a 0-4

scale. Bold purple values highlight the best performance on each metric within each benchmark.
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E.1.3 Contextual MG Benchmark Results

Table 8: Performance Comparison of Large Vision-Language Models on MMST (Contextual)
Benchmark

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.21 3.61 3.40 2.94 3.28 3.59 3.01 2.96 3.29 3.61 3.24 3.14
gpt-4.1-mini 2.89 3.37 3.01 2.89 2.88 3.26 2.43 2.93 2.92 3.36 2.82 3.03
gpt-4o 2.73 3.07 2.46 2.85 2.73 3.00 2.03 3.00 2.74 3.17 2.44 2.98
gpt-4o-mini 2.66 2.97 2.36 2.67 2.62 2.87 1.92 2.81 2.63 3.03 2.31 2.76
claude-3-7-sonnet 2.85 3.31 2.94 2.87 2.79 3.13 2.35 2.89 2.80 3.24 2.68 2.90
claude-3-5-sonnet 2.79 3.24 2.80 2.92 2.75 3.09 2.26 2.96 2.76 3.20 2.62 2.95
claude-3-haiku 2.41 2.83 2.08 2.63 2.30 2.65 1.66 2.77 2.37 2.89 2.03 2.88

Llama-4-Scout-17B-16E-Instruct 2.53 2.95 2.38 2.58 2.47 2.78 1.88 2.67 2.48 2.95 2.28 2.71
llava-v1.6-mistral-7b-hf 2.29 2.57 2.03 2.17 2.22 2.44 1.57 2.31 2.22 2.53 1.91 2.24
llava-onevision-qwen2-7b-ov-hf 2.26 2.57 2.01 2.18 2.22 2.46 1.57 2.34 2.22 2.58 1.92 2.30

Qwen2.5-VL-3B-Instruct 2.15 2.43 1.94 2.00 2.10 2.30 1.48 2.16 2.04 2.36 1.80 2.05
Qwen2.5-VL-7B-Instruct 2.30 2.61 2.13 2.20 2.28 2.50 1.65 2.32 2.24 2.60 2.03 2.32
Qwen2.5-VL-32B-Instruct 2.87 3.24 3.11 2.52 2.75 3.06 2.44 2.26 2.86 3.21 2.89 2.43
Qwen2.5-VL-72B-Instruct 2.72 3.07 2.75 2.52 2.68 2.95 2.12 2.53 2.71 3.09 2.57 2.59

gemma-3-4b-it 2.34 2.83 2.57 2.19 2.24 2.56 1.94 2.00 2.22 2.69 2.26 2.22
gemma-3-12b-it 2.76 3.17 3.09 2.42 2.69 2.94 2.52 2.10 2.71 3.08 2.80 2.39
gemma-3-27b-it 2.82 3.28 3.19 2.54 2.79 3.05 2.63 2.28 2.74 3.12 2.83 2.48

InternVL3-2B 2.22 2.51 2.02 2.08 2.16 2.37 1.56 2.22 2.13 2.46 1.88 2.13
InternVL3-8B 2.86 2.76 2.26 2.45 2.37 2.64 1.76 2.56 2.36 2.76 2.14 2.53
InternVL3-14B 2.52 2.85 2.37 2.53 2.49 2.75 1.87 2.64 2.49 2.87 2.26 2.62
InternVL3-38B 2.57 2.90 2.39 2.60 2.54 2.81 1.91 2.73 2.55 2.94 2.31 2.72
InternVL3-78B 2.57 2.92 2.36 3.05 2.54 2.81 1.90 2.78 2.55 2.95 2.30 2.77

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Scores represent performance on four key metrics (Accuracy / Relevance / Completeness / Parsimony) on a 0-4

scale. Bold purple values denote the best score for each metric across all models.
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E.2 Model Scaling Results

Increasing model scale consistently boosts both identification accuracy and reasoning quality for all
three open-source LVLM families (See Figure 9).

(a) Identification Accuracy (b) Reasoning

Figure 9: Performance scaling of open-source LVLM families—Qwen (yellow), Gemma (orange),
and InternVL (red)—on the standard identification benchmark (Judge: DeepSeek-R1-Distill). Shaded
bands denote ±1 std dev across three runs. The dashed purple line shows the closed-source GPT-4.1
result for comparison.

E.3 With/Without Meta Data Results

Utility of metadata. Tables 9 and 10 compare model performance when each question is presented
with versus without the user’s location and timestamp. Metadata is incorporated by appending
this spatiotemporal context in natural-language form to the image–text input during inference.
For the Identification benchmark, gains are modest (≤ 1.6,pp ID%) with negligible changes in
reasoning quality (≤ 0.05). Stronger models (GPT-4.1, Qwen-72B) show slight improvements (+1.6
and +0.6,pp), whereas smaller ones (GPT-4.1-mini, Gemma-3B) show minimal or negative shifts,
indicating that metadata can add noise without sufficient model capacity.

A similar pattern emerges on the Management benchmark (Table 10): absolute deltas across accuracy,
relevance, completeness, and parsimony remain within ±0.04, yet the direction of change is revealing.
Large models (GPT-4.1, Gemma-27B, Qwen-72B) exhibit consistent, albeit small, improvements,
most notably in relevance and completeness, while smaller models fluctuate or even decline. Overall,
these findings indicate that spatiotemporal cues confer a measurable but limited advantage, and that
leveraging them effectively remains contingent on model scale and training.

Table 9: Impact of metadata (location + time) on identification accuracy (ID%) and reasoning ability
across models on MIRAGE-MMST Standard Identification Benchmark (Judge: DeepSeek-R1-Distill).
The table compares performance in the Image + Text Only setting and the Metadata-Augmented
setting. Arrows (↑/↓) indicate change from baseline. Absolute ∆ values are reported on the right.

Model Image + Text Only + Metadata ∆ (Meta – No Meta)

ID% Reason ID% Reason ∆ ID% ∆ Reason

gpt-4.1 44.60 3.07 46.2↑ 3.12↑ 1.60 0.05
gpt-4.1-mini 36.30 2.79 35.6↓ 2.81↑ −0.60 0.02
gemma-3-4b-it 10.40 1.87 10.2↓ 1.88↑ −0.20 0.01
gemma-3-27b-it 19.30 2.28 19.0↓ 2.33↑ −0.20 0.04

Qwen2.5-VL-3B-Instruct 17.40 1.55 18.0↑ 1.57↑ 0.60 0.02
Qwen2.5-VL-32B-Instruct 26.10 2.54 25.7↓ 2.54 −0.30 0.00
Qwen2.5-VL-72B-Instruct 30.80 2.59 31.4↑ 2.59 0.60 0.00
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Table 10: Performance of large vision–language models on the MIRAGE-MMST Standard Manage-
ment benchmark (Judge: DeepSeek-R1-Distill), comparing the standard setting (image + text only)
against a metadata-augmented setting (including geographic location and time). Results are reported
over four metrics: accuracy (Acc), relevance (Rel), completeness (Comp), and parsimony (Pars).
Arrows in the metadata columns indicate the direction of change, and absolute ∆ values are reported.
Model Image + Text Only + Metadata ∆ (Meta – No Meta)

Acc Rel Comp Pars Acc Rel Comp Pars ∆ A ∆ R ∆ C ∆ P

gpt-4.1 3.17 3.59 3.39 2.93 3.21↑ 3.62↑ 3.41↑ 2.96↑ 0.04 0.03 0.02 0.03
gpt-4.1-mini 2.93 3.39 3.05 2.91 2.90↓ 3.41↑ 3.05↓ 2.94↑ −0.03 0.02 0.00 0.03
gemma-3-4b-it 2.33 2.82 2.60 2.18 2.32↓ 2.83↑ 2.62↑ 2.18 −0.01 0.01 0.02 0.00
gemma-3-27b-it 2.80 3.25 3.15 2.52 2.81↑ 3.28↑ 3.19↑ 2.55↑ 0.01 0.03 0.04 0.03

Qwen2.5-VL-3B-Instruct 2.10 2.42 1.96 2.01 2.13↑ 2.44↑ 1.99↑ 2.00↓ 0.03 0.02 0.03 −0.01
Qwen2.5-VL-32B-Instruct 2.84 3.25 3.14 2.52 2.83↓ 3.25 3.14 2.54↑ −0.01 0.00 0.00 0.02
Qwen2.5-VL-72B-Instruct 2.70 3.10 2.79 2.56 2.71↑ 3.12↑ 2.83↑ 2.56 0.01 0.02 0.04 0.00

E.4 Fine-Turning Results

Fine-tuning setup. All models are adapted on the MMST standard training dataset, which contains
17 532 single-turn consultations, each paired with up to three images. Given the limited corpus size,
we employ parameter-efficient LoRA fine-tuning: a global batch size of 128, lora_alpha = 64,
lora_dropout = 0.05, and bfloat16 precision. Optimisation uses AdamW with a cosine learning-
rate schedule and a warm-up ratio of 0.03. Hardware resources: one NVIDIA H200 GPU suffices for
the QwenVL-2.5-3 B and 7 B models, while the 32 B model is trained on two H200 cards—enabling
the full eight-epoch run.

Effect of LoRA fine-tuning. Figure 10 tracks identification accuracy and reasoning accuracy on
seen vs. unseen entities, as Qwen2.5-VL models undergo progressively longer LoRA fine-tuning. For
both the 32 B (left) and 7 B (right) variants, the bulk of the improvement is realised within the first
four epochs: ID accuracy on seen entities rises from 32.9% to 37.6% for 32 B and from 27.7% to
34.8% for 7 B. Beyond epoch 4 the gains plateau or slightly regress, hinting at diminishing returns
and possible over-fitting to the fine-tuning set. Reasoning accuracy follow a similar but more muted
trend, increasing by at most 0.2–0.3 points before flattening. The persistently low curves for unseen
entities are unsurprising. Identification requires the model to emit an explicit entity name; if that
name never appeared in the fine-tuning set, fine-tuning does not help.

Figure 10: LoRA fine-tuning results on identification accuracy and reasoning on Standard Identifi-
cation Benchmark (Judge: DeepSeek-R1-Distill). Bars show ID Accuracy (%) on seen entities and
unseen entities for Qwen2.5-VL-32B (Left) & 7B (Right) at epochs: Instruct (0), LoRA-ep-2, 4, 6, 8.
The grey line marker • traces the Reasoning Score (0–4 scale) on seen entities. Values above each
bar/point give the exact percentages and scores.
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F Error Analysis

We conducted a quantitative error analysis to complement our main evaluation results for deeper
insights into model failure modes. We performed a stratified manual error review across three
scenarios: (i) GPT-4.1 failures (n = 100 of 2,395), (ii) Qwen2.5-VL-32B failures where GPT-4.1
succeeds (n = 100 of 1,078), and (iii) joint failures (n = 100 of 300). We focused on instances
with zero identification accuracy and compared the failure modes and root causes between the
proprietary GPT-4.1 and the open-source Qwen2.5-VL-32B. The observed errors cluster into two
tiers: Fundamental Domain Challenges and Open-Source Model Systematic Failures.

F.1 Tier 1: Fundamental Domain Challenges

These represent the current boundaries of what even the most advanced LVLMs can achieve in
agricultural reasoning and consultation contexts. Failures in this tier occur in GPT-4.1, the best-
performing model in our evaluation, indicating inherent limitations of current LVLMs in agricultural
expert reasoning. Percentages reflect the relative frequency of each error type within sampled failures

• Specialist Knowledge Gaps (35% of cases): These involve missing domain-specific
understanding of biological phenomena requiring deep expertise beyond general training
data. The LVLMs fail to recognize or reason about biological processes. Example: GPT-4.1
could not interpret “appleleaf blister mite” damage or its developmental process.

• Complex Diagnostic Reasoning (10% of cases): These involve correct symptom observa-
tion but incorrect causal inference or disease conclusion. Despite accurate visual analysis,
the models fail to reason over underlying biological causality. Example: Observing insect
damage but misdiagnosing the pest species.

• Finegrained visual understanding (55% of cases): Majority of the errors occured due
to model’s inability to pick up finegrained visual cues and distinguishing factors among
different adjacent biological species or part occlusions of the main entity in images.

F.2 Tier 2: Open-Source Model Systematic Failures

These failure types occur primarily in Qwen2.5-VL-32B but not in GPT-4.1, revealing systematic
capability gaps between open-source and proprietary LVLMs.

• Vision-Language Integration Issues (40% of cases): Failures in integrating visual cues
with domain-specific terminology lead to misidentification among visually similar species.
Domain-specific finetuning mitigates this issue. Example: Qwen2.5-VL-32B confusing a
longhorn beetle with a June beetle.

• Diagnostic Hedging Bias (25% of cases): The open-source model frequently exhibits
hedging behavior, avoiding decisive expert-level conclusions.

• Generalist Reasoning Bias (20% of cases): The model applies broad, non-specific reason-
ing, listing multiple generic possibilities instead of providing a targeted diagnosis.

F.3 Quantitative Error Pattern Summary

Critical Finding: In joint failures, GPT-4.1 still demonstrates superior reasoning quality in 60% of
cases, reflecting deeper integration of visual and textual cues and more expert-like reasoning patterns,
even when incorrect in final identification.

F.4 Performance on Common and Rare Entities

The MIRAGE dataset exhibits a long-tail entity distribution, where models consistently perform worse
on rare entities than on common ones. This imbalance exposes a central challenge for agricultural AI:
models must recognize thousands of rare species that occur infrequently in training data. Addressing
this limitation will require domain adaptation and long-tail learning approaches beyond standard
large-scale training.
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Table 11: Quantitative distribution of failure categories.

Failure Category Percentage Model

Tier 1: Fundamental Domain Challenges (GPT-4.1 Failures)
Specialist Knowledge Gaps 35% GPT-4.1
Complex Diagnostic Reasoning 10% GPT-4.1
Finegrained visual understanding 55% GPT-4.1

Tier 2: Open-Source Model Systematic Failures (Qwen2.5-VL-32B vs. GPT-4.1)
Vision-Language Integration Issues 40% Qwen2.5-VL-32B
Diagnostic Hedging Bias 25% Qwen2.5-VL-32B
Generalist Reasoning Bias 20% Qwen2.5-VL-32B

Table 12: Performance (%) and average reasoning score on common entities.

Model DeepSeek-R1 Qwen3-32B Phi-4-reasoning

GPT-4.1 53.1, 3.15 52.7, 2.84 52.2, 3.20
GPT-4.1-mini 42.1, 2.82 41.3, 2.53 40.5, 2.95
Qwen2.5-VL-32B-Instruct 32.9, 2.62 32.2, 2.23 31.6, 2.62
Qwen2.5-VL-72B-Instruct 38.1, 2.65 38.4, 2.27 37.1, 2.63

Table 13: Performance (%) and average reasoning score on rare entities.

Model DeepSeek-R1 Qwen3-32B Phi-4-reasoning

GPT-4.1 38.5, 3.01 38.9, 2.73 35.4, 3.14
GPT-4.1-mini 32.1, 2.76 30.4, 2.50 26.8, 2.94
Qwen2.5-VL-32B-Instruct 21.1, 2.47 20.4, 2.14 18.2, 2.53
Qwen2.5-VL-72B-Instruct 25.5, 2.56 24.5, 2.18 22.1, 2.57

Building on these findings, we outline a roadmap for advancing multimodal large vision-language
models (VLMs) toward robust, interactive agricultural consultation systems. Future versions MI-
RAGE should integrate agentic capabilities that enable models to proactively utilize time- and
location-based context—for example, adapting responses based on seasonal patterns, regional crop
profiles, or current environmental conditions. This contextual grounding will allow evaluations to
move beyond static reasoning and toward dynamic, situation-aware dialogue.

To achieve this, future VLM development should emphasize the following directions:

• Contextual and Temporal Grounding: Incorporate temporal signals (e.g., crop cycles,
weather timelines) and geospatial information (e.g., soil types, local pest occurrences) to
support temporally and regionally coherent reasoning in consultation tasks.

• Interactive Conversational Reasoning: Extend MIRAGE’s multi-turn benchmark to
simulate fully interactive dialogues, where models must perform clarification, conversational
repair, and feedback incorporation, key aspects of real-world agricultural advisory systems.

• Domain-Specific Knowledge Integration: Bridge VLMs with structured agronomic knowl-
edge graphs and expert-curated datasets to reduce specialist knowledge gaps identified in
our error analysis.

• Adaptive Visual-Linguistic Understanding: Improve VLMs’ capacity to detect fine-
grained visual cues and align them with domain terminology, addressing the vision-language
integration failures seen in open-source models.
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• Long-Tail Entity Recognition: Develop targeted fine-tuning and retrieval-augmented
methods for handling rare species and diseases that dominate real-world agricultural problem
distributions.

These extensions will move MIRAGE and future VLMs from static perception and reasoning bench-
marks toward fully interactive, contextually grounded expert systems. Such systems could
ultimately assist human agricultural specialists in diagnosing issues, providing adaptive recom-
mendations, and integrating multimodal data streams for decision support in diverse agricultural
environments.
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F.5 Category-Wise Breakdown Results
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F.5.1 Plant Identification Reults (MMST Standard)

Table 14: Performance Comparison of Large Language Models on the MMST Standard Benchmark
Results for Plant Identification

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc (%) Reasoning Acc (%) Reasoning Acc (%) Reasoning

gpt-4.1 48.7 3.13 49.0 2.89 45.9 3.28
gpt-4.1-mini 38.4 2.84 37.2 2.60 34.6 3.04
gpt-4o 44.5 2.58 44.8 2.40 39.7 2.75
gpt-4o-mini 26.8 2.23 25.2 2.09 22.2 2.41
claude-3-7-sonnet 35.8 2.76 36.3 2.51 34.8 2.95
claude-3-5-sonnet 35.0 2.67 35.0 2.42 33.9 2.79
claude-3-haiku 19.6 1.81 18.8 1.70 15.3 1.96

Llama-4-Scout-17B-16E-Instruct 20.1 2.12 21.4 2.01 18.1 2.28
llava-v1.6-mistral-7b-hf 6.7 1.33 6.3 1.19 5.2 1.49
llava-onevision-qwen2-7b-ov-hf 9.6 1.63 8.8 1.54 7.9 1.76

Qwen2.5-VL-3B-Instruct 20.3 1.56 20.8 1.44 18.3 1.57
Qwen2.5-VL-7B-Instruct 25.8 1.94 27.3 1.81 23.6 2.03
Qwen2.5-VL-32B-Instruct 26.3 2.52 25.9 2.23 24.1 2.61
Qwen2.5-VL-72B-Instruct 33.1 2.57 33.1 2.31 30.2 2.69

gemma-3-4b-it 11.4 1.85 11.8 1.74 11.0 2.03
gemma-3-12b-it 17.0 2.08 16.8 1.93 16.0 2.17
gemma-3-27b-it 20.0 2.29 20.4 2.11 18.7 2.47

InternVL3-2B 9.4 1.61 8.1 1.57 7.3 1.80
InternVL3-8B 10.8 1.77 10.8 1.68 9.9 1.91
InternVL3-14B 11.8 1.89 11.5 1.79 10.9 2.03
InternVL3-38B 18.4 2.10 18.6 2.01 16.1 2.30
InternVL3-78B 22.3 2.24 21.6 2.11 19.5 2.41

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Bold purple values denote the best performance in each column.
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F.5.2 Insect and Pest Identification Results (MMST Standard)

Table 15: Performance Comparison of Large Language Models on the MMST Standard Benchmark
for Insect and Pest Identification

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc (%) Reasoning Acc (%) Reasoning Acc (%) Reasoning

gpt-4.1 34.9 2.93 34.9 2.60 32.6 3.01
gpt-4.1-mini 30.1 2.68 28.6 2.38 26.0 2.83
gpt-4o 33.0 2.43 31.2 2.16 27.3 2.53
gpt-4o-mini 17.5 2.12 14.9 1.88 12.8 2.23
claude-3-7-sonnet 27.5 2.56 27.4 2.19 24.5 2.60
claude-3-5-sonnet 24.4 2.42 24.5 2.06 23.6 2.41
claude-3-haiku 15.4 1.83 15.1 1.54 13.3 1.84

Llama-4-Scout-17B-16E-Instruct 16.8 2.10 16.3 1.89 14.1 2.15
llava-v1.6-mistral-7b-hf 7.2 1.35 6.1 1.15 5.1 1.42
llava-onevision-qwen2-7b-ov-hf 8.6 1.57 7.7 1.33 6.5 1.60

Qwen2.5-VL-3B-Instruct 13.5 1.48 13.8 1.26 11.9 1.45
Qwen2.5-VL-7B-Instruct 18.3 1.90 18.2 1.60 15.8 1.92
Qwen2.5-VL-32B-Instruct 23.9 2.52 23.1 2.13 20.2 2.54
Qwen2.5-VL-72B-Instruct 25.6 2.46 23.6 2.11 22.5 2.49

gemma-3-4b-it 5.8 1.85 6.2 1.65 5.8 1.84
gemma-3-12b-it 10.2 1.96 10.8 1.60 10.6 1.79
gemma-3-27b-it 14.4 2.16 13.8 1.89 13.4 2.16

InternVL3-2B 9.2 1.66 7.9 1.48 6.3 1.74
InternVL3-8B 11.2 1.78 11.5 1.57 9.8 1.76
InternVL3-14B 13.9 1.92 13.0 1.69 11.9 1.95
InternVL3-38B 17.5 2.12 17.3 1.87 15.3 2.20
InternVL3-78B 22.1 2.29 19.5 2.03 17.9 2.30

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Bold purple values denote the best performance in each column.
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F.5.3 Plant Disease Identification Results (MMST Standard)

Table 16: Performance Comparison of Large Language Models on the MMST Standard Benchmark
for Plant Disease Identification

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc (%) Reasoning Acc (%) Reasoning Acc (%) Reasoning

gpt-4.1 45.7 3.06 44.6 2.62 46.0 2.97
gpt-4.1-mini 38.8 2.79 37.7 2.37 36.5 2.77
gpt-4o 40.5 2.46 40.0 2.02 41.0 2.46
gpt-4o-mini 26.5 2.15 24.9 1.88 27.2 2.22
claude-3-7-sonnet 40.8 2.77 40.7 2.28 41.0 2.58
claude-3-5-sonnet 35.6 2.62 36.2 2.15 35.3 2.48
claude-3-haiku 21.5 1.91 23.2 1.54 22.8 1.91

Llama-4-Scout-17B-16E-Instruct 30.4 2.26 30.3 1.90 29.4 2.19
llava-v1.6-mistral-7b-hf 13.0 1.48 13.7 1.15 13.3 1.47
llava-onevision-qwen2-7b-ov-hf 13.8 1.71 15.7 1.30 18.3 1.67

Qwen2.5-VL-3B-Instruct 12.3 1.63 14.5 1.25 13.8 1.52
Qwen2.5-VL-7B-Instruct 15.9 1.77 15.4 1.38 16.1 1.70
Qwen2.5-VL-32B-Instruct 29.4 2.61 27.0 2.04 29.4 2.44
Qwen2.5-VL-72B-Instruct 30.6 2.95 31.0 2.03 31.1 2.41

gemma-3-4b-it 15.4 1.99 14.7 1.61 15.6 1.77
gemma-3-12b-it 23.5 2.30 22.3 1.78 24.2 2.05
gemma-3-27b-it 25.6 2.48 24.4 1.96 25.1 2.18

InternVL3-2B 14.0 1.76 14.5 1.47 15.9 1.73
InternVL3-8B 20.1 2.04 19.7 1.60 21.1 1.86
InternVL3-14B 29.8 2.23 28.4 1.78 29.2 2.08
InternVL3-38B 31.8 2.30 29.6 1.90 30.3 2.22
InternVL3-78B 35.1 2.44 33.2 1.96 32.7 2.33

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Bold purple values denote the best performance in each column.
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F.5.4 Plant Disease Management Results (MMST Standard)

Table 17: Performance Comparison of Large Vision–Language Models on MMST Standard Bench-
mark for Plant Disease Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.05 3.54 3.31 2.87 3.17 3.54 2.90 2.92 3.15 3.53 3.12 3.05
gpt-4.1-mini 2.79 3.28 2.92 2.77 2.81 3.20 2.37 2.90 2.78 3.25 2.72 2.91
gpt-4o 2.65 3.06 2.48 2.80 2.68 3.01 2.06 2.98 2.64 3.10 2.39 2.89
gpt-4o-mini 2.55 2.89 2.31 2.54 2.56 2.84 1.90 2.73 2.52 2.95 2.24 2.65
claude-3-7-sonnet 2.67 3.19 2.82 2.71 2.66 3.06 2.25 2.79 2.61 3.07 2.55 2.81
claude-3-5-sonnet 2.59 3.10 2.63 2.80 2.58 2.98 2.11 2.84 2.50 3.00 2.41 2.84
claude-3-haiku 2.35 2.86 2.12 2.60 2.26 2.70 1.65 2.73 2.25 2.85 2.03 2.82

Llama-4-Scout-17B-16E-Instruct 2.45 2.91 2.32 2.49 2.42 2.80 1.85 2.63 2.36 2.88 2.20 2.61
llava-v1.6-mistral-7b-hf 2.13 2.49 1.96 2.05 2.08 2.37 1.48 2.18 2.04 2.42 1.83 2.14
llava-onevision-qwen2-7b-ov-hf 2.16 2.55 2.02 2.08 2.13 2.44 1.55 2.26 2.07 2.48 1.88 2.17

Qwen2.5-VL-3B-Instruct 2.00 2.33 1.85 1.94 1.99 2.27 1.44 2.14 1.87 2.24 1.68 2.01
Qwen2.5-VL-7B-Instruct 2.30 2.66 2.25 2.19 2.26 2.57 1.72 2.28 2.19 2.62 2.06 2.25
Qwen2.5-VL-32B-Instruct 2.73 3.19 3.05 2.43 2.67 3.03 2.37 2.20 2.68 3.11 2.77 2.30
Qwen2.5-VL-72B-Instruct 2.58 2.99 2.63 2.46 2.61 2.92 2.09 2.52 2.54 2.98 2.49 2.54

gemma-3-4b-it 2.06 2.63 1.85 2.04 1.99 2.37 1.73 1.98 1.92 2.33 1.77 2.07
gemma-3-12b-it 2.48 2.99 2.84 2.29 2.40 2.75 2.26 2.04 2.31 2.78 2.47 2.26
gemma-3-27b-it 2.65 3.15 3.03 2.43 2.61 2.91 2.45 2.23 2.50 2.94 2.61 2.35

InternVL3-2B 2.07 2.47 1.95 2.06 2.04 2.34 1.48 2.20 1.92 2.33 1.77 2.07
InternVL3-8B 2.26 2.67 2.19 2.31 2.25 2.56 1.72 2.43 2.19 2.61 2.05 2.41
InternVL3-14B 2.43 2.83 2.31 2.48 2.42 2.73 1.84 2.63 2.34 2.80 2.20 2.59
InternVL3-38B 2.51 2.90 2.38 2.57 2.51 2.84 1.93 2.73 2.47 2.91 2.28 2.72
InternVL3-78B 2.54 2.94 2.39 2.64 2.51 2.83 1.92 2.76 2.50 2.93 2.28 2.73

Models are color-coded by type: closed-source models in red/light red, open-source models in blue/light blue.
Scores are given on a 0–4 scale for Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony

(Pars). Bold purple numbers denote the best performance for each metric within a column block.
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F.5.5 Insect and Pest Management Results (MMST Standard)

Table 18: Performance Comparison of Large Vision–Language Models on MMST Standard Bench-
mark for Insect and Pest Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.05 3.51 3.33 2.87 3.18 3.53 2.98 2.98 3.11 3.52 3.15 3.06
gpt-4.1-mini 2.86 3.36 3.01 2.95 2.76 3.21 2.45 2.92 2.72 3.23 2.72 2.94
gpt-4o 2.62 3.05 2.48 2.80 2.66 3.04 2.11 3.01 2.58 3.09 2.43 2.90
gpt-4o-mini 2.47 2.88 2.31 2.58 2.45 2.81 1.89 2.74 2.40 2.89 2.21 2.59
nova-pro 2.12 2.57 1.98 2.34 2.13 2.45 1.57 2.50 2.07 2.49 1.88 2.50
claude-3-7-sonnet 2.64 3.14 2.83 2.71 2.66 3.03 2.30 2.80 2.57 2.99 2.53 2.71
claude-3-5-sonnet 2.57 3.07 2.70 2.69 2.63 3.02 2.24 2.85 2.54 2.95 2.49 2.72
claude-3-haiku 2.27 2.76 2.11 2.59 2.42 2.66 1.70 2.70 2.23 2.78 2.04 2.76

Llama-4-Scout-17B-16E-Instruct 1.29 2.77 2.34 2.42 1.33 2.71 1.90 2.54 1.18 2.69 2.12 2.42
llava-v1.6-mistral-7b-hf 1.95 2.32 1.81 1.97 1.98 2.21 1.44 2.16 1.83 2.10 1.62 1.93
llava-onevision-qwen2-7b-ov-hf 1.98 2.35 1.91 1.96 1.99 2.28 1.52 2.16 1.88 2.19 1.73 1.91
Qwen2.5-VL-3B-Instruct 1.89 2.25 1.78 1.90 1.94 2.19 1.43 2.09 1.74 2.06 1.60 1.83
Qwen2.5-VL-7B-Instruct 2.13 2.55 2.16 2.10 2.19 2.47 1.70 2.24 2.04 2.42 1.94 2.07
Qwen2.5-VL-32B-Instruct 2.59 3.07 2.95 2.36 2.62 2.96 2.43 2.26 2.66 3.06 2.82 2.39
Qwen2.5-VL-72B-Instruct 2.48 2.96 2.63 2.45 2.56 2.90 2.16 2.56 2.45 2.95 2.45 2.46
gemma-3-4b-it 1.99 2.51 2.28 1.94 1.99 2.34 1.81 1.93 1.81 2.24 1.93 1.98
gemma-3-12b-it 2.29 2.83 2.70 2.15 2.28 2.62 2.22 2.03 2.15 2.58 2.31 2.13
gemma-3-27b-it 2.47 2.98 2.87 2.32 2.51 2.84 2.43 2.22 2.31 2.74 2.47 2.23
InternVL3-2B 1.87 2.22 1.77 1.90 1.91 2.13 1.40 2.11 1.73 2.06 1.58 1.88
InternVL3-8B 2.06 2.53 2.08 2.22 2.07 2.44 1.64 2.40 1.99 2.39 1.93 2.24
InternVL3-14B 2.19 2.64 2.19 2.40 2.25 2.60 1.79 2.59 2.11 2.49 2.00 2.44
InternVL3-38B 2.32 2.80 2.31 2.50 2.38 2.73 1.90 2.72 2.24 2.72 2.17 2.55
InternVL3-78B 2.36 2.81 2.33 2.54 2.41 2.75 1.92 2.72 2.31 2.77 2.23 2.62

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0-4 for
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple indicates the best

score in each column block.
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F.5.6 Plant Care and Gardening Guidance Results (MMST Standard)

Table 19: Performance Comparison of Large Vision–Language Models on MMST Standard Bench-
mark for Plant Care and Gardening Guidance

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.38 3.73 3.55 3.01 3.45 3.73 3.17 3.12 3.52 3.80 3.43 3.24
gpt-4.1-mini 3.15 3.54 3.23 3.01 3.15 3.50 2.72 3.03 3.28 3.64 3.15 3.20
gpt-4o 2.93 3.26 2.69 3.01 2.93 3.21 2.28 3.12 3.03 3.41 2.74 3.16
gpt-4o-mini 2.85 3.18 2.64 2.87 2.84 3.12 2.17 2.94 2.95 3.35 2.65 3.03
nova-pro 2.60 2.95 2.31 2.67 2.52 2.81 1.87 2.73 2.63 3.04 2.30 2.88
claude-3-7-sonnet 3.08 3.48 3.15 3.00 3.06 3.39 2.59 3.02 3.14 3.53 2.97 3.12
claude-3-5-sonnet 3.02 3.41 2.99 3.05 3.00 3.32 2.47 3.07 3.09 3.49 2.87 3.17
claude-3-haiku 2.66 3.10 2.39 2.93 2.56 2.95 1.92 2.94 2.67 3.25 2.35 3.16

Llama-4-Scout-17B-16E-Instruct 2.79 3.15 2.69 2.68 2.75 3.02 2.15 2.70 2.85 3.29 2.62 2.82
llava-v1.6-mistral-7b-hf 2.50 2.77 2.27 2.28 2.47 2.66 1.80 2.35 2.50 2.82 2.19 2.37
llava-onevision-qwen2-7b-ov-hf 2.55 2.86 2.39 2.35 2.50 2.73 1.85 2.39 2.61 2.96 2.33 2.47
Qwen2.5-VL-3B-Instruct 2.33 2.61 2.15 2.15 2.34 2.52 1.67 2.25 2.37 2.67 2.09 2.27
Qwen2.5-VL-7B-Instruct 2.65 2.97 2.55 2.41 2.63 2.83 2.00 2.42 2.71 3.08 2.49 2.54
Qwen2.5-VL-32B-Instruct 3.14 3.45 3.40 2.68 3.07 3.32 2.80 2.39 3.21 3.50 3.22 2.62
Qwen2.5-VL-72B-Instruct 2.96 3.29 3.02 2.69 2.95 3.18 2.42 2.65 3.09 3.42 2.92 2.80
gemma-3-4b-it 2.77 3.14 2.97 2.40 2.68 2.96 2.21 2.57 2.76 3.20 2.76 2.54
gemma-3-12b-it 3.09 3.41 3.36 2.60 3.03 3.19 2.84 2.25 3.16 3.48 3.23 2.64
gemma-3-27b-it 3.17 3.53 3.45 2.72 3.14 3.32 2.96 2.39 3.19 3.53 3.23 2.72
InternVL3-2B 2.38 2.67 2.18 2.22 2.34 2.54 1.71 2.35 2.38 2.73 2.11 2.35
InternVL3-8B 2.67 2.99 2.52 2.57 2.63 2.88 2.04 2.61 2.74 3.11 2.49 2.72
InternVL3-14B 2.78 3.11 2.62 2.77 2.76 3.01 2.15 2.82 2.87 3.26 2.60 2.91
InternVL3-38B 2.82 3.15 2.62 2.84 2.79 3.06 2.16 2.89 2.90 3.30 2.63 2.97
InternVL3-78B 2.84 3.18 2.67 2.88 2.82 3.08 2.20 2.92 2.93 3.32 2.67 3.01

Models are color-coded by type: closed-source (red) and open-source (blue). Each metric is scored on a 0–4
scale: Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple values

indicate the best performance within each column block.
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F.5.7 Weeds/Invasive Plants Management Results (MMST Standard)

Table 20: Performance Comparison of Large Vision–Language Models on MMST Standard Bench-
mark for Weeds/Invasive Plants Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 2.90 3.41 3.14 2.85 3.01 3.37 2.87 2.96 2.89 3.40 3.00 3.10
gpt-4.1-mini 2.62 3.19 2.80 2.82 2.67 3.09 2.43 2.97 2.60 3.14 2.67 3.06
gpt-4o 2.56 3.06 2.50 2.95 2.62 3.04 2.18 3.17 2.59 3.12 2.46 3.11
gpt-4o-mini 2.43 2.88 2.25 2.65 2.39 2.80 1.91 2.81 2.36 2.92 2.22 2.79
nova-pro 1.92 2.33 1.78 2.28 1.95 2.33 1.53 2.51 1.84 2.33 1.74 2.50
claude-3-7-sonnet 2.59 3.06 2.82 2.72 2.56 2.93 2.28 2.82 2.48 2.94 2.49 2.73
claude-3-5-sonnet 2.48 3.03 2.66 2.74 2.46 2.84 2.19 2.82 2.35 2.86 2.39 2.77
claude-3-haiku 2.19 2.67 2.05 2.64 2.14 2.58 1.66 2.81 2.11 2.68 1.95 2.92

Llama-4-Scout-17B-16E-Instruct 2.18 2.71 2.31 2.38 2.20 2.65 1.87 2.52 2.06 2.63 2.08 2.44
llava-v1.6-mistral-7b-hf 1.90 2.29 1.82 2.07 1.89 2.19 1.47 2.27 1.85 2.23 1.73 2.09
llava-onevision-qwen2-7b-ov-hf 1.85 2.28 1.83 1.99 1.80 2.16 1.45 2.22 1.81 2.17 1.73 2.04
Qwen2.5-VL-3B-Instruct 1.86 2.20 1.82 1.88 1.92 2.20 1.53 2.11 1.79 2.09 1.68 1.87
Qwen2.5-VL-7B-Instruct 2.10 2.57 2.23 2.14 2.14 2.48 1.81 2.34 2.03 2.50 2.06 2.21
Qwen2.5-VL-32B-Instruct 2.42 2.96 2.78 2.37 2.47 2.86 2.33 2.32 2.33 2.80 2.48 2.34
Qwen2.5-VL-72B-Instruct 2.43 2.92 2.64 2.52 2.48 2.85 2.20 2.67 2.44 2.90 2.49 2.65
gemma-3-4b-it 1.95 2.55 2.38 2.11 1.96 2.38 1.90 2.03 1.87 2.37 2.06 2.14
gemma-3-12b-it 2.19 2.78 2.66 2.21 2.21 2.60 2.20 2.12 2.11 2.55 2.31 2.28
gemma-3-27b-it 2.36 2.92 2.82 2.37 2.39 2.76 2.40 2.21 2.18 2.68 2.46 2.32
InternVL3-2B 1.74 2.13 1.71 1.87 1.79 2.17 1.45 2.24 1.68 2.01 1.61 1.96
InternVL3-8B 1.94 2.43 2.00 2.24 1.97 2.34 1.66 2.47 1.83 2.31 1.86 2.34
InternVL3-14B 2.07 2.56 2.13 2.44 2.13 2.48 1.75 2.62 1.96 2.38 1.95 2.51
InternVL3-38B 2.19 2.71 2.20 2.54 2.18 2.65 1.85 2.76 2.11 2.66 2.13 2.66
InternVL3-78B 2.25 2.76 2.25 2.54 2.26 2.67 1.87 2.78 2.17 2.72 2.16 2.68

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0–4 across
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple marks the highest

score for each metric within a column block.
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F.5.8 Plant Disease Management Results (MMST Contextual)

Table 21: Performance Comparison of Large Vision–Language Models on MMST Contextual
Benchmark for Plant Disease Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.07 3.52 3.34 2.86 3.16 3.49 2.91 2.86 3.09 3.44 3.08 2.96
gpt-4.1-mini 2.74 3.20 2.90 2.70 2.68 3.08 2.24 2.74 2.63 3.07 2.58 2.78
gpt-4o 2.62 2.96 2.40 2.68 2.60 2.89 1.89 3.17 2.55 2.96 2.28 2.78
gpt-4o-mini 2.57 2.85 2.30 2.48 2.52 2.75 1.80 2.65 2.46 2.81 2.15 2.51
nova-pro 2.17 2.55 1.94 2.37 2.08 2.37 1.43 2.48 2.05 2.47 1.81 2.60
claude-3-7-sonnet 2.66 3.16 2.83 2.68 2.58 2.97 2.18 2.71 2.52 2.95 2.47 2.67
claude-3-5-sonnet 2.59 3.06 2.67 2.73 2.54 2.89 2.05 2.77 2.46 2.91 2.37 2.74
claude-3-haiku 2.32 2.75 2.03 2.48 2.18 2.56 1.53 2.64 2.20 2.73 1.89 2.71

Llama-4-Scout-17B-16E-Instruct 2.36 2.79 2.24 2.43 2.27 2.59 1.67 2.52 2.24 2.69 2.07 2.59
llava-v1.6-mistral-7b-hf 2.18 2.47 1.97 2.04 2.07 2.33 1.43 2.18 2.04 2.36 1.75 2.07
llava-onevision-qwen2-7b-ov-hf 2.17 2.50 1.95 2.05 2.09 2.35 1.45 2.19 2.04 2.38 1.78 2.11
Qwen2.5-VL-3B-Instruct 2.04 2.33 1.89 1.92 1.96 2.21 1.35 2.04 1.86 2.16 1.67 1.92
Qwen2.5-VL-7B-Instruct 2.15 2.49 2.04 2.06 2.09 2.33 1.47 2.18 1.99 2.33 1.81 2.13
Qwen2.5-VL-32B-Instruct 2.69 3.07 2.98 2.37 2.54 2.85 2.22 2.06 2.56 2.92 2.62 2.18
Qwen2.5-VL-72B-Instruct 2.59 2.91 2.64 2.35 2.49 2.77 1.94 2.34 2.44 2.82 2.33 2.33
gemma-3-4b-it 2.07 2.60 2.02 2.04 1.93 2.27 1.63 1.94 1.87 2.31 1.93 1.94
gemma-3-12b-it 2.52 3.03 2.93 2.29 2.38 2.68 2.20 1.93 2.27 2.67 2.39 2.13
gemma-3-27b-it 2.57 3.09 2.99 2.38 2.48 2.78 2.29 2.12 2.33 2.72 2.42 2.23
InternVL3-2B 2.18 2.48 2.06 2.01 2.07 2.31 1.47 2.10 1.98 2.32 1.80 2.02
InternVL3-8B 2.31 2.63 2.21 2.29 2.22 2.48 1.63 2.40 2.16 2.52 1.96 2.32
InternVL3-14B 2.42 2.76 2.32 2.38 2.36 2.59 1.74 2.44 2.29 2.66 2.12 2.43
InternVL3-38B 2.47 2.79 2.34 2.45 2.39 2.66 1.76 2.56 2.36 2.72 2.14 2.50
InternVL3-78B 2.46 2.79 2.30 2.48 2.40 2.66 1.76 2.61 2.33 2.72 2.12 2.58

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0–4 across
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple marks the highest

score for each metric within a column block.
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F.5.9 Insect and Pest Management Results (MMST Contextual)

Table 22: Performance Comparison of Large Vision–Language Models on MMST Contextual
Benchmark for Insect and Pest Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.14 3.59 3.32 2.99 3.25 3.61 2.99 3.06 3.22 3.60 3.20 3.21
gpt-4.1-mini 2.73 3.33 2.91 2.88 2.80 3.22 2.42 2.97 2.79 3.30 2.75 3.02
gpt-4o 2.66 3.07 2.44 2.89 2.71 3.03 2.08 3.03 2.63 3.16 2.42 3.00
gpt-4o-mini 2.52 2.88 2.25 2.62 2.50 2.82 1.88 2.78 2.41 2.92 2.18 2.70
nova-pro 2.13 2.58 1.95 2.46 2.17 2.49 1.62 2.64 2.10 2.59 1.91 2.70
claude-3-7-sonnet 2.74 3.27 2.89 2.81 2.74 3.13 2.35 2.92 2.68 3.18 2.63 2.87
claude-3-5-sonnet 2.68 3.19 2.76 2.87 2.67 3.02 2.22 2.92 2.60 3.11 2.57 2.84
claude-3-haiku 2.30 2.75 1.98 2.59 2.22 2.61 1.63 2.74 2.22 2.76 1.95 2.78

Llama-4-Scout-17B-16E-Instruct 2.37 2.87 2.30 2.71 2.37 2.75 1.89 2.63 2.28 2.82 2.20 2.61
llava-v1.6-mistral-7b-hf 1.99 2.35 1.78 2.04 1.99 2.24 1.44 2.23 1.92 2.21 1.68 2.01
llava-onevision-qwen2-7b-ov-hf 1.97 2.33 1.81 1.99 1.99 2.26 1.42 2.19 1.87 2.22 1.67 2.02
Qwen2.5-VL-3B-Instruct 1.97 2.28 1.80 1.90 1.98 2.20 1.43 2.10 1.79 2.14 1.59 1.87
Qwen2.5-VL-7B-Instruct 2.13 2.54 2.05 2.12 2.18 2.43 1.65 2.32 2.05 2.45 1.91 2.17
Qwen2.5-VL-32B-Instruct 2.62 3.11 2.91 2.44 2.57 2.97 2.36 2.29 2.60 3.05 2.71 2.35
Qwen2.5-VL-72B-Instruct 2.56 3.03 2.66 2.50 2.62 2.95 2.14 2.60 2.52 3.01 2.47 2.58
gemma-3-4b-it 1.95 2.60 2.35 2.02 1.97 2.40 1.84 1.92 1.94 2.41 2.03 2.02
gemma-3-12b-it 2.43 2.94 2.80 2.26 2.45 2.77 2.34 2.04 2.35 2.75 2.38 2.22
gemma-3-27b-it 2.57 3.09 2.98 2.41 2.61 2.93 2.51 2.27 2.47 2.89 2.60 2.38
InternVL3-2B 1.94 2.28 1.79 1.92 1.95 2.20 1.45 2.14 1.81 2.15 1.65 1.91
InternVL3-8B 2.05 2.58 2.05 2.26 2.19 2.45 1.67 2.45 2.04 2.48 1.93 2.34
InternVL3-14B 2.26 2.67 2.18 2.40 2.31 2.62 1.79 2.60 2.22 2.61 2.06 2.42
InternVL3-38B 2.31 2.74 2.21 2.50 2.36 2.70 1.86 2.70 2.28 2.72 2.11 2.59
InternVL3-78B 2.42 2.85 2.29 2.62 2.43 2.77 1.88 2.81 2.35 2.81 2.19 2.69

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0–4 for
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple highlights the best

score for each metric within a column block.
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F.5.10 Plant Care and Gardening Guidance Results (MMST Contextual)

Table 23: Performance Comparison of Large Vision–Language Models on MMST Contextual
Benchmark for Plant Care and Gardening Guidance

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.40 3.73 3.54 3.03 3.46 3.72 3.16 3.03 3.53 3.80 3.42 3.27
gpt-4.1-mini 3.13 3.55 3.19 3.05 3.11 3.47 2.65 3.07 3.27 3.64 3.09 3.23
gpt-4o 2.87 3.20 2.57 2.97 2.86 3.11 2.16 3.08 2.95 3.35 2.62 3.11
gpt-4o-mini 2.82 3.13 2.50 2.85 2.79 3.03 2.06 2.93 2.90 3.29 2.55 2.98
nova-pro 2.59 2.92 2.24 2.72 2.52 2.77 1.81 2.82 2.59 3.02 2.25 2.94
claude-3-7-sonnet 3.09 3.48 3.13 3.03 3.02 3.33 2.53 3.01 3.12 3.53 2.92 3.09
claude-3-5-sonnet 3.02 3.44 2.98 3.09 2.99 3.31 2.46 3.12 3.07 3.48 2.87 3.13
claude-3-haiku 2.57 2.97 2.19 2.81 2.45 2.78 1.79 2.87 2.59 3.11 2.19 3.04

Llama-4-Scout-17B-16E-Instruct 2.77 3.13 2.57 2.74 2.70 2.98 2.05 2.78 2.78 3.24 2.49 2.86
llava-v1.6-mistral-7b-hf 2.52 2.77 2.20 2.32 2.45 2.63 1.73 2.41 2.49 2.82 2.13 2.43
llava-onevision-qwen2-7b-ov-hf 2.51 2.79 2.21 2.39 2.45 2.65 1.75 2.51 2.55 2.90 2.17 2.55
Qwen2.5-VL-3B-Instruct 2.36 2.60 2.11 2.14 2.29 2.45 1.61 2.26 2.33 2.64 2.01 2.24
Qwen2.5-VL-7B-Instruct 2.52 2.79 2.30 2.36 2.48 2.67 1.81 2.43 2.54 2.91 2.27 2.51
Qwen2.5-VL-32B-Instruct 3.14 3.46 3.35 2.69 3.02 3.29 2.70 2.38 3.23 3.53 3.21 2.63
Qwen2.5-VL-72B-Instruct 2.92 3.26 2.94 2.67 2.89 3.12 2.29 2.62 3.04 3.38 2.84 2.79
gemma-3-4b-it 2.71 3.13 2.88 2.39 2.58 2.87 2.26 2.16 2.67 3.16 2.67 2.50
gemma-3-12b-it 3.12 3.43 3.39 2.61 3.06 3.21 2.87 2.25 3.21 3.54 3.25 2.65
gemma-3-27b-it 3.18 3.54 3.48 2.73 3.15 3.34 2.99 2.41 3.20 3.54 3.25 2.71
InternVL3-2B 2.45 2.70 2.17 2.24 2.38 2.55 1.70 2.33 2.42 2.74 2.09 2.33
InternVL3-8B 2.69 2.99 2.45 2.66 2.61 2.86 1.94 2.72 2.70 3.11 2.42 2.77
InternVL3-14B 2.76 3.05 2.54 2.74 2.72 2.95 2.04 2.81 2.80 3.20 2.51 2.87
InternVL3-38B 2.79 3.10 2.55 2.76 2.75 3.00 2.07 2.87 2.85 3.26 2.56 2.94
InternVL3-78B 2.78 3.10 2.51 3.50 2.74 2.99 2.05 2.91 2.85 3.24 2.52 2.99

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0–4 for
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple highlights the best

score for each metric within a column block.
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F.5.11 Weeds/Invasive Plants Management Results (MMST Contextual)

Table 24: Performance Comparison of Large Vision–Language Models on MMST Contextual
Benchmark for Weeds/Invasive Plants Management

Model DeepSeek-R1-Distill Qwen3-32B Phi-4-reasoning

Acc Rel Comp Pars Acc Rel Comp Pars Acc Rel Comp Pars

gpt-4.1 3.03 3.53 3.27 2.92 3.12 3.46 2.92 3.03 3.02 3.45 3.07 3.20
gpt-4.1-mini 2.74 3.31 2.89 2.93 2.74 3.19 2.43 3.01 2.69 3.25 2.75 3.18
gpt-4o 2.62 3.13 2.49 3.05 2.65 3.06 2.13 3.19 2.63 3.17 2.47 3.23
gpt-4o-mini 2.47 2.90 2.32 2.75 2.44 2.82 1.96 2.90 2.45 2.95 2.28 2.92
nova-pro 2.08 2.53 1.96 2.52 2.12 2.48 1.66 2.67 2.06 2.57 1.97 2.82
claude-3-7-sonnet 2.75 3.30 2.96 2.90 2.73 3.09 2.41 2.93 2.66 3.12 2.67 2.98
claude-3-5-sonnet 2.68 3.22 2.81 2.93 2.67 3.07 2.36 3.02 2.65 3.14 2.66 3.05
claude-3-haiku 2.27 2.78 2.06 2.75 2.19 2.59 1.69 2.86 2.23 2.79 2.04 3.03

Llama-4-Scout-17B-16E-Instruct 2.34 2.87 2.39 2.55 2.34 2.80 2.00 2.73 2.25 2.82 2.26 2.73
llava-v1.6-mistral-7b-hf 1.98 2.38 1.87 2.18 1.99 2.32 1.58 2.38 1.93 2.30 1.77 2.23
llava-onevision-qwen2-7b-ov-hf 1.92 2.31 1.77 2.04 1.92 2.27 1.47 2.33 1.86 2.22 1.71 2.12
Qwen2.5-VL-3B-Instruct 1.88 2.26 1.83 1.92 1.93 2.23 1.54 2.17 1.78 2.12 1.67 1.89
Qwen2.5-VL-7B-Instruct 2.10 2.50 2.13 2.20 2.20 2.50 1.76 2.44 2.06 2.54 2.03 2.33
Qwen2.5-VL-32B-Instruct 2.57 3.09 2.88 2.50 2.58 2.95 2.42 2.43 2.56 2.97 2.68 2.49
Qwen2.5-VL-72B-Instruct 2.55 3.02 2.69 2.63 2.60 2.99 2.26 2.73 2.54 3.03 2.56 2.77
gemma-3-4b-it 2.12 2.69 2.51 2.18 2.10 2.52 2.03 2.11 2.03 2.60 2.22 2.29
gemma-3-12b-it 2.42 2.96 2.85 2.35 2.46 2.81 2.45 2.19 2.33 2.78 2.59 2.38
gemma-3-27b-it 2.52 3.09 3.02 2.52 2.58 2.93 2.58 2.34 2.49 2.95 2.71 2.52
InternVL3-2B 1.81 2.23 1.79 1.96 1.89 2.21 1.50 2.22 1.77 2.14 1.68 2.00
InternVL3-8B 2.04 2.52 2.06 2.33 2.03 2.43 1.68 2.54 1.95 2.43 1.92 2.47
InternVL3-14B 2.18 2.63 2.21 2.46 2.21 2.56 1.85 2.65 2.18 2.53 2.11 2.60
InternVL3-38B 2.29 2.78 2.30 2.65 2.33 2.69 1.92 2.81 2.23 2.71 2.18 2.77
InternVL3-78B 2.26 2.77 2.24 2.65 2.35 2.74 1.93 2.86 2.27 2.77 2.21 2.81

Models are color-coded by type: closed-source (red) and open-source (blue). Scores range from 0–4 for
Accuracy (Acc), Relevance (Rel), Completeness (Comp), and Parsimony (Pars). Bold purple marks the highest

score for each metric within a column block.
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G MIRAGE-MMMT

G.1 Benchmark Details

The MIRAGE-MMMT dataset as shown in Table 25, contains 861 multi-turn samples, each annotated
with a high-level decision label—either Clarify (56.6%) or Respond (43.4%)—reflecting the expert’s
intent in continuing the consultation. On average, each sample includes 2.11 images and spans 1.52
turns, capturing compact yet information-rich interactions.

Table 25: Summary statistics for the full dataset

Overall Statistics Total

Total Samples 861

Decision Distribution

Clarify 487 (56.6%)
Respond 374 (43.4%)

Per-Sample Statistics

Avg. Images per Sample 2.11
Avg. Turns per Sample 1.52

Word Count Statistics

Avg. User-turn Words 109.91
Avg. Expert-turn Words 80.57

Distribution Statistics

Max Images per Sample 3
Max Turns per Sample 14
Max User-turn Words 1 488
Max Expert-turn Words 287

User and expert utterances are relatively verbose, with average lengths of 109.9 and 80.6 words
respectively, and a maximum of 1,488 words in a user turn. Each sample includes up to 3 images
and 14 turns, reflecting a wide range of complexity and interaction depth. These characteristics make
the dataset well-suited for studying decision-making, goal inference, and clarification strategies in
visually grounded, expert-guided dialogues.

G.2 Task Definition

MIRAGE-MT is a multimodal, multi-turn benchmark designed to evaluate conversational expert
agents in a consultative decision-making setting. Given a multi-turn dialogue and associated image(s)
as shown in Figure 11, the agent must decide whether to ask a clarification question or provide a
helpful response, and then generate the corresponding utterance.

G.2.1 Input

Let a multi-turn dialogue context be represented as a sequence:

D = {(s1, u1), (s2, u2), . . . , (sn, un)}

where:

• si ∈ {user, expert} denotes the speaker

• ui ∈ U is the corresponding utterance
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Figure 11: Illustrative example of decision-making in the MIRAGE-MMMT task

Each dialogue is also associated with a set of image inputs:

I = {i1, i2, . . . , im}, I ⊂ I
which may provide visual context necessary for interpretation (e.g., pest damage, plant structure).

G.2.2 Output

The model must jointly predict:

1. A decision a ∈ A = {<Clarify>, <Respond>}
2. A corresponding utterance r ∈ U , where:

• If a = <Clarify>, then r is a clarification question
• If a = <Respond>, then r is an expert answer

G.2.3 Goal Inference and Decision Policy

Let G ∈ G denote the user’s underlying goal (e.g., identifying a plant disease, choosing a planting
strategy). The model must infer G and a goal-state representation:

SG = (known, missing)

The model learns a policy:
π : (D, I) → (a, r)

and must select the appropriate action:

a =


<Clarify>, if ∃f ∈ missing that is essential to achieve G

<Respond>, if missing = ∅ or non-essential

57



Figure 12: Overview of the MIRAGE-MMMT task generation pipeline. We begin with raw user-
expert consultation data including dialogues and attached images. The pipeline applies a series of
preprocessing, truncation, and prompting steps to convert each interaction into a structured decision-
making task. Green modules denote inputs to the prompt template, while pink boxes indicate
components automatically generated using a vision-language model (LVLM). The final structured
output includes decision, goal state, and a response or clarification utterance for supervised training
or evaluation.

The generation r should then follow:

r =


a goal-relevant clarification question, if a = <Clarify>

a grounded and helpful expert answer, if a = <Respond>

G.3 Evaluation Criteria

Predictions are evaluated against:

• Gold revealed fact f∗, obtained from the masked user utterance after expert’s turn
• Gold goal state S∗

G, obtained from the source dialogue
• LLM-as-a-Judge ratings:

– Decision Accuracy
– Goal Relevance

G.4 Data Curation Details

Each task sample consists of the dialogue context, referenced images, and metadata such as source
dialogue ID and topic. To ensure data safety, we perform automated PII sanitization, replacing
all named entities with randomized placeholders while preserving domain relevance. URLs and
institutional references are retained when necessary for contextual fidelity. To ensure data quality
and task validity, we conduct manual human review on a representative subset of the generated
examples. Expert annotators assess the correctness of the decision label, coherence of the generated
question or response, and alignment with the revealed user intent. Feedback from this process is
used to refine prompt instructions and filter any low-quality generations. Our modular pipeline
supports deterministic regeneration of the dataset via fixed seeds and indexing, enabling reproducible
experimentation and future extensibility to other domains.

Release Protocol for MIRAGE-MMMT: In designing our dataset release, we follow established best
practices from recent benchmarks such as MMLU [35], and BIG-Bench [32, 33], which emphasize
the importance of separating training data and test targets to prevent leakage and ensure reliable
model evaluation. We adopt a protocol that maximizes transparency, reproducibility, and community
usability, while preserving the integrity of the held-out test set. We publicly release:
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• Full training and validation task datasets, generated from processed source conversations
• Corresponding dialogue context, goal annotations, image references, and model-generated

outputs
• Task generation scripts, PII scrubbing utilities, and evaluation tools.

To ensure the credibility and integrity of the test set, we do not plan to release the source dialogues or
revealed facts used to construct it. Instead, we provide only the test input (dialogue context and image
references). This ensures that models are evaluated blind to the gold output, preventing overfitting
or prompt leakage. Evaluation of model predictions on the test set can be conducted either via our
LLM-based judge or via human assessment.

G.5 Additional MIRAGE-MMMT Results

Table 26: Classifier performance on the <Clarify> vs <Respond> decision task using logistic
regression with TF-IDF features. Models are grouped by level of input observability.

Input Variant Decision Acc. F1 (Macro) Level

Dialogue only 69.79% 0.70 Realistic
Dialogue + Goal 71.34% ↑1.55% 0.71 ↑0.01 Semi-Privileged
Dialogue + GoalState 89.27% ↑19.48% 0.89 ↑0.19 Oracle
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H Prompts

H.1 Evaluation Prompts for MIRAGE-MMST

Figure 13 presents the inference prompt used for the MIRAGE-MMST Identification Task.
user_query refers to the original user question. This task evaluates both the model’s identifi-
cation accuracy and reasoning quality, requiring it to generate a clear reasoning chain followed by a
final answer. The prompt enforces a standardized output format to facilitate consistent and automatic
evaluation. In contrast, for the management task, we impose no format constraints—models are
simply given the user question along with the associated images during inference.

Figure 13: Model Inference prompt for MIRAGE-MMST Identification Task.

Figure 14 presents the evaluation prompt used for the MIRAGE-MMST Identification Task. Here,
entity_type denotes the category of the entity—plant, disease, or insect/pest. user_query is
the original user question, while expert_answer contains the expert’s full response. The field
entity_name captures the specific entity mentioned by the expert, with its corresponding scientific
name stored in entity_scientific_name. The list of entity_common_names comprises com-
monly used names for that entity, collected through external search. Finally, model_response refers
to the generated answer being evaluated.

Figure 14: LLM As Judge prompts for MIRAGE-MMST Identification Task.

Figure 15 presents the evaluation prompt used for the MIRAGE-MMST Management Task. Here,
user_query is the original user question, while expert_answer contains the expert’s full response.
The field model_response refers to the generated answer being evaluated.
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Figure 15: LLM As Judge prompts for MIRAGE-MMST Management Task.
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H.2 Evaluation Prompts for MIRAGE-MMMT

Figure 16: LLM As Judge prompts for MIRAGE-MMMT Prompt.
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I Case Study
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I.1 Category-Wise Cases

I.1.1 Plant Identification (MMST Standard)

Figure 17: An example for Plant Identification (MMST Standard).
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I.1.2 Insect and Pest Identification (MMST Standard)

Figure 18: An example for Insect and Pest Identification (MMST Standard).
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I.1.3 Plant Disease Identification (MMST Standard)

Figure 19: An example for Plant Disease Identification (MMST Standard).
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I.1.4 Plant Disease Management (MMST Standard)

Figure 20: An example for Plant Disease Management (MMST Standard).

I.1.5 Insect and Pest Management (MMST Standard)

Figure 21: An example for Insect and Pest Management (MMST Standard).
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I.1.6 Plant Care and Gardening Guidance (MMST Standard)

Figure 22: An example for Plant Care and Gardening Guidance (MMST Standard).

I.1.7 Weeds/Invasive Plants Management (MMST Standard)

Figure 23: An example for Weeds/Invasive Plants Management (MMST Standard).
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I.1.8 Plant Disease Management (MMST Contextual)

Figure 24: An example for Plant Disease Management (MMST Contextual).
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I.1.9 Insect and Pest Management (MMST Contextual)

Figure 25: An example for Insect and Pest Management (MMST Contextual).
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I.1.10 Plant Care and Gardening Guidance (MMST Contextual)

Figure 26: An example for Plant Care and Gardening Guidance (MMST Contextual).
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I.1.11 Weeds/Invasive Plants Management (MMST Contextual)

Figure 27: An example for Weeds/Invasive Plants Management (MMST Contextual).
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I.1.12 Clarify (MMMT)

Figure 28: An example for Clarify Category (MMMT).
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I.1.13 Respond (MMMT)

Figure 29: An example for Respond Category (MMMT).

74



I.2 Examples of Reasoning LLM as a Judge

I.2.1 MMST Identification Task

Figure 30: An example illustrating LLM-as-a-Judge framework for MMST Identification Task. The
DeepSeek-R1-Distill-Llama-70B judge evaluates both the correctness of the model’s prediction and
the quality of its reasoning, providing an interpretable feedback.
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I.2.2 MMST Management Task

Figure 31: An example illustrating LLM-as-a-Judge framework for MMST Management Task.
The DeepSeek-R1-Distill-Llama-70B judge evaluate the accuracy, relevance, completeness, and
parsimony, providing an interpretable feedback.
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I.2.3 MMMT Task

Figure 32: An example illustrating LLM-as-a-Judge framework for MMMT Task. The DeepSeek-
R1-Distill-Llama-70B judge evaluate the known_accuracy, missing_coverage, spurious, utter-
ance_goal_relevance, decision_accuracy, providing an interpretable feedback.
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