
Under review as submission to TMLR

How iteration composition influences convergence and sta-
bility in deep learning

Anonymous authors
Paper under double-blind review

Abstract

Despite exceptional achievements, training neural networks remains computationally expen-
sive and is often plagued by instabilities that can degrade convergence. While learning rate
schedules can help mitigate these issues, finding optimal schedules is time-consuming and
resource-intensive. This work explores theoretical issues concerning training stability in the
constant-learning-rate (i.e., without schedule) and small-batch-size regime. Surprisingly, we
show that the composition order of gradient updates affects stability and convergence in
gradient-based optimizers. We illustrate this new line of thinking using backward-SGD, which
produces parameter iterates at each step by reverting the usual forward composition order
of batch gradients. Our theoretical analysis shows that in contractive regions (e.g., around
minima) backward-SGD converges to a point while the standard forward-SGD generally
only converges to a distribution. This leads to improved stability and convergence which
we demonstrate experimentally. While full backward-SGD is computationally intensive in
practice, it highlights that the extra freedom of modifying the usual iteration composition by
reusing creatively previous batches at each optimization step may have important beneficial
effects in improving training. To our knowledge, this represents a new and unexplored avenue
in deep learning optimization.

1 Introduction

In recent years, neural networks have achieved remarkable success across diverse domains from text genera-
tion Gemini (2024; 2023); Brown et al. (2020) and image creation Ramesh et al. (2022; 2021); Saharia et al.
(2022) to applications in protein folding Jumper et al. (2021a;b) and material discovery Merchant et al. (2023).
However, their training remains challenging and computationally expensive. One of the reasons for this is due
to training instabilities which often occur Morchdi et al. (2023); Li et al. (2019); Cohen et al. (2021); Chen
et al. (2018) and which produces hard to interpret loss curves, wasted computation time, and potentially
failed experiments. One way to view this challenge is as a trade-off between stability and performance:
hyperparameter settings that often yield better test performance, such as higher learning rates and smaller
batch sizes, tend to exacerbate these instabilities.

As a basic example, consider the training batch size. For many common optimizers, smaller batch sizes often
lead to improved test performance. In fact, recent research has shown that small batches induce a form of
implicit regularization Novack et al. (2023); Smith et al. (2021); Dherin et al. (2022); Keskar et al. (2017); Ali
et al. (2020) which benefits generalization. On the other hand, the greater variability of small batches tends
to exacerbate oscillations of the training loss, prolonging time to convergence. In this work, we demonstrate
that these instability and convergence issues associated with small batch sizes can be mitigated without loss
of generalization power by reversing the composition order used to produce each iterate. The general line of
thinking behind our approach consists of leveraging not only the current batch, but also the previous batches
to produce the current parameter iterate. The creative reuse of previous batches at a given step has been
already explored in Choi et al. (2019) for instance in order to speed up training by composing previous batch
gradient updates to the current iterate while waiting for the data pipeline to deliver a new batch in case of
IO bound situations. In this work, we reverse the composition order of all the batches received so far from
initialization and show theoretically and practically that the sequence of iterates produced this way enjoys
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better convergence and stability properties than the usual composition order of the batch gradient updates.
We now describe below this reverse composition procedure in details.

Namely, standard training algorithms, such as stochastic gradient descent (SGD), Adam, and other gradient-
based optimizers, are iterative processes. At each step, these algorithms update the network parameters θ
using a randomly sampled data batch Bi. This update can be formalized as a transformation, θ′ = Ti(θ),
where θ′ represents the new parameter value. Because at each step i the batch Bi is randomly sampled, the
update operator Ti can be formalized as a random operator. For instance, in the case of SGD, the random
operator is defined by the update rule Ti(θ) = θ − h∇LBi

(θ), where LBi
is the loss function evaluated on

batch Bi and h is the learning rate. The sequence of parameter updates generated by these iterations, starting
from an initial parameter value θ, defines the standard learning trajectory, which we will refer to as the
forward trajectory:

θ0 = θ, θ1 = T1(θ), θ2 = T2T1(θ), . . . , θn = TnTn−1 · · · T1(θ).

Notation: To conserve notation, we write TiTj to denote the mapping composition Ti ◦ Tj ; i.e., TiTj(θ) =
Ti(Tj(θ)).

Moderate or large learning rates and small batches, when used with the standard forward trajectory for
training, tend to destabilize common gradient-based optimizers, causing convergence and stability issues.
Consequently, learning rate schedules have become essential as an attempt to encourage proper convergence of
the loss during training. Our key contribution, which we support with both theoretical analysis and empirical
results (see Figure 2 and Appendix A), is in demonstrating that reversing the batch composition order to
produce an iterate at a given step–what we call the backward trajectory–leads to significantly more stable
convergence. Specifically, the backward trajectory consists of iterates generated by composing the training
batches in reverse order; i.e.,

θ0 = θ, θ1 = T1(θ), θ2 = T1T2(θ), . . . , θn = T1T2 · · · Tn(θ).

For the sake of clarity, let us work out the first two iterates both for forward and backward. For instance for
SGD, if we receive first the batch B1 and then the batch B2 in sequence in the training loop, then at the first
step both the backward and forward iterates coincides with T1(θ) = θ − h∇LB1(θ), where θ is the randomly
initialized parameter value. However at the second step the forward iterate becomes

T2T1(θ) = T1(θ) − h∇LB2(T1(θ))
= θ − h∇LB1(θ) − h∇LB2(θ − h∇LB1(θ)).

On the other hand, the second step of the backward iterate is

T1T2(θ) = T2(θ) − h∇LB1(T2(θ))
= θ − h∇LB2(θ) − h∇LB1(θ − h∇LB2(θ)).

A naive (and computationally intensive) implementation of the backward optimization is depicted in Figure 1
where all the batches received so far at each step are re-processed from scratch in the reverse order in which
they were received from the initialization point.

Main contributions: The main contributions of this paper are to show theoretically (Theorems 2.2
and 2.6) and experimentally (Figure 2 and Appendix A) that backward optimization has better convergence
and stability properties than the standard forward optimization. As already known (see related work in
Section 1.1), forward trajectories do not generally converge toward points but rather toward a probability
distribution of the iterates (in the fixed learning-rate regime).

We argue that the advantage of backward trajectories comes from their convergence toward actual points (see
Theorem 2.2) sampled from the forward distribution (see Theorem 2.6). We prove this using a generalization
of the Banach fixed point theorem when the random maps Ti become contractions. Note that backward
optimization can theoretically be applied to any gradient-based optimizer (not only to SGD) to improve
stability and convergence, since our theoretical statements hold at the level of the Ti’s, no matter what their
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Figure 1: Naive implementation of the backward dynamics: Forward iterations (left) and backward iterations
(right). The training steps are represented by Pac-men consuming batches. Forward iterations maintain a
training state and consume a new batch at each step, while backward iterations restart the training and
consume all the batches received so far in reverse order.

actual forms are. To our knowledge, these concepts are new in deep learning optimization. The main goal of
this paper is to expose how this phenomenon manifests in deep learning. We defer engineering applications
leveraging this phenomenon (like efficient implementations of the backward SGD) to future work, while
outlining a few potential directions at the paper’s conclusion.

1.1 Related work

Convergence of SGD: A number of works prove under different assumptions that the (forward) iterates
of SGD with constant learning rate do not converge toward points but rather toward a stationary probability
distribution: Merad & Gaïffas (2023) and Dieuleveut et al. (2020) show this for the strongly convex case; Shi-
rokoff & Zaleski (2024) treats the non-convex case with separable loss; Babichev & Bach (2018) focus on
losses coming from exponential family models; Cheng et al. (2020) quantify the rate of convergence of SGD to
its stationary distribution in non-convex optimization problems; see also Dieuleveut & Bach (2016) and Meyn
& Tweedie (1993). In Huang et al. (2017), the authors leverage the fact that SGD with fixed large learning
rate oscillates between different solutions in order to create a cheap average of models by saving the explored
parameters along the way. For convergence to a particular solution, the forward order for SGD needs an
extra decaying learning rate schedule as shown in Robbins & Monro (1951) or Mertikopoulos et al. (2020).

Contractions in deep learning: From our point of view, one important feature that leads to convergence
for the backward trajectory is the contraction property of the random operators. This notion (which we
believe is under-exploited in deep learning) has surfaced in different contexts in deep learning: see Bergomi
et al. (2019), Qian & Wegman (2019), and Avelin & Karlsson (2022).

Markov chains, iterated functions, and MCMC: In many Markov Chain Monte Carlo (MCMC)
algorithms the goal is to sample from a distribution µ. The idea is to construct a Markov chain with stationary
distribution µ and then run the chain for a long time to get samples from µ. The Propp-Wilson algorithm uses
a form of backward iterations to accelerate the convergence toward samples from the distribution (see Propp
& Wilson (1996)). More generally, the idea of backward dynamics is hidden in many constructions in Markov
chain theory when the Markov chain is given by iterations of random operators as illustrated in Diaconis &
Freedman (1999). In particular, they prove a general result concerning the convergence in distribution of
these types of iterated Markov chains using the backward dynamics.
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Stability in deep learning: Already instability issues appear in the full-batch regime, and a number of
theoretical works have studied it under the heading edge of stability Cheng et al. (2020); Wu et al. (2024); Cai
et al. (2024). Other works have also studied stability in the large batch regime after a batch size saturation
takes place using the implicit conditioning ratio Lee et al. (2022); Agarwala & Pennington (2024). In this
work we focus on the stochastic or small batch setting. Our findings do not really matter for the full-batch
setting since backward and forward iterates then coincide. In the context of physics-informed neural networks,
it has been observed that the gradient field is stiff, producing instabilities in learning trajectories Wang
et al. (2020). To remedy this Li et al. (2023) propose a backward Euler scheme to stabilize training in this
context. However the backward Euler method is an implicit Runge-Kutta method, which is different from
using iteration backward.

Sample order: Curriculum learning Soviany et al. (2022) leverages the impact of sample order for
generalization Mange (2019) by organizing training examples in a meaningful sequence, typically starting
with simpler examples and gradually introducing harder ones, thereby optimizing the learning process and
improving model performance. The backward optimization can be viewed as an automated form of curriculum,
mitigating the forgetting of previous examples as new examples are added; a phenomenon which is also related
to catastrophic forgetting and the stability gap in continual learning (see Lange et al. (2023) for instance).

2 A backward contraction principle

The contraction mapping principle, also called the Banach fixed point theorem, is a cornerstone result in
mathematics and science, in particular for finding solutions of equations (Newton’s method) or of differential
equations (Picard’s method of successive approximation). It is also behind Google’s PageRank algorithm Page
et al. (1998). It concerns the existence of a fixed point of maps which are uniform contractions of a complete
metric space1. In detail, let (Ω, d) be a complete metric space and T : Ω → Ω be a continuous map. If there
exists 0 ≤ k < 1 such that

d(T (θ1), T (θ2)) ≤ k · d(θ1, θ2),

for all θ1, θ2 ∈ Ω, then T is called a uniform contraction. The fixed point theorem now states that T has a
fixed point, that is, θ0 ∈ Ω such that T (θ0) = θ0. This point can be found by iterating the map:

T n(θ) → θ0

for any θ ∈ Ω as n → ∞. For example, in PageRank Page et al. (1998), one iterates the PageRank matrix
from 50 to 100 times and the result is a very good approximation of the PageRank vector θ0. Another
application is the standard proof of convergence for (full-batch) gradient descent around a minimum, which
can be interpreted as an application of the Banach fixed point theorem as detailed in the next example:
Example 2.1. (Full-batch gradient descent convergence.) In this case the operator is T (θ) = θ − h∇L(θ)
for a loss function L. The idea of the proof is to choose the learning rate h small enough so that T becomes a
contraction. More precisely, around a minimum θ∗ the operator T can be approximated using a first-order
expansion of the gradient around the minimum as T (θ) = θ∗ + (I − hH)(θ − θ∗), where H = ∇2L(θ∗). Now
we have that

∥T (θ1) − T (θ2)∥ ≤ ∥I − hH∥op∥θ1 − θ2∥, (1)

where ∥I − hH∥op is the operator norm of 1 − hH, that is the operator maximum eigenvalue: maxi |1 − hλi|
(here the λi’s are eigenvalues of H). Now it is easy to verify that ∥I − hH∥op < 1 if and only if the learning
rate is strictly smaller than 2/λmax where λmax is the largest eigenvalue of H. Convergence for that setting
follows from the Banach fixed point theorem.

The generalization of this convergence argument to Stochastic Gradient Descent (SGD) is actually problematic.
The main reason is that now we do not have a single operator but a sequence of them T1, T2, . . . , each
computing the loss gradient on a different batch of data. Even if each of the operators is a contraction it

1Recall that a complete metric space (Ω, d) is a set Ω, equipped with a distance metric d(θ1, θ2) for which all Cauchy sequences
(i.e., sequences θn such that d(θn, θm) → 0 as n, m → 0) converge to points in the space; typically Rd with the Euclidean
distance is a complete metric space.
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turns out that usual forward iterations will not converge to a point in general as illustrated in Example 2.4.
Theorem 2.2, however, establishes the convergence of the backward iterations.
Theorem 2.2. (Backward contraction mappings principle) Let Ti be a sequence of continuous self-maps of a
complete metric space. Assume Ti’s are uniform contractions, with a certain k < 1 in common, and for some
θ there is a constant D such that,

d(θ, Ti(θ)) < D for all i. (2)
Then for any θ ∈ Ω the backward iterates

θn = T1T2 · · · Tn(θ)

converge to a point θ∗ as n → ∞. Moreover, the convergence rate is exponential: i.e, there is a constant C
depending on θ such that

d(θ∗, T1T2 · · · Tn(θ)) ≤ C · kn.

Proof. Condition (2) expresses that the distance d(θ, Ti(θ)) is uniformly bounded by a constant D for all
T ′

i s for a point θ. Let us show that if this happens for a single point θ, this happens for all points, provided
we change the constant D. To see this, take another point θ̃. We will compute another constant D̃ such
that d(θ̃, Ti(θ̃)) < D̃. Namely, using the triangle inequality and the fact that Ti are uniform contractions, we
obtain that

d(θ̃, Ti(θ̃)) ≤ d(θ̃, θ) + d(θ, Ti(θ)) + d(Ti(θ), Ti(θ̃))
≤ D + (1 + k)d(θ, θ̃) = D̃.

Now, we want to prove that θn is a Cauchy sequence, i.e, that d(θn, θm) tends to zero for m > n as n → ∞.
Since Ω is assumed to be complete, this will mean that the backward iterates θn converge toward a point θ∗.
The idea is to bound the quantity

A = d(θn, θm)
= d(T1T2 · · · Tn(θ), T1T2 · · · Tm(θ)).

Because of the backward order (note: the forward order would not allow that), we can apply the contraction
property n times (since m > n), yielding:

A ≤ kn · d(θ, Tn+1 · · · Tm(θ)).

Now a simple application of the triangle inequality produces

A ≤ kn
(

d(θ, Tn+1(θ))

+d(Tn+1(θ), Tn+1Tn+2(θ)) + · · ·
· · · + d(Tn+1 · · · Tm−1(θ), Tn+1 · · · Tm(θ))

)
.

At this point, we can use the condition in (2) for the first term d(θ, Tn+1(θ)) < D and in conjunction with
the contraction property for the subsequent terms in the sum, yielding:

A ≤ kn
(
D + D · k + · · · + D · km−n+1)

≤ D · kn ·
(

1 − kn−m+2

1 − k

)

≤ D · kn

1 − k
,

where we used the sum of a geometric series. Now, this yields that A → 0 as n → ∞, meaning that the
sequence θn is a Cauchy sequence and thus converges to a certain point θ∗ since Ω is complete. Then, taking
the limit m → ∞ we obtain

d(θn, θ∗) ≤ D · kn

1 − k
= C · kn,

with C := D
1−k , which shows the exponential convergence rate.
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Remark 2.3. The contractivity assumption for the operators Ti’s is in general too restrictive for deep-learning
settings. However, the proof of Theorem 2.2 still works in a more generalized setting that encompasses the
non-convexity of deep-learning loss-landscapes. The price to pay though is the introduction of the more
abstract notion of a pseudo-metrics for which the argument in the proof of Theorem 2.2 still works verbatim.
We give the details of this more complicated approach in Appendix G.

As for the condition in (2), let us verify that it is satisfied for SGD in the case of an overparametrized model like
a neural network. Namely, in this setting, we generally consider losses of the form L(θ) = 1

N

∑N
i=1 Li(θ), where

Li is the loss computed on batch Bi with Li(θ) being non-negative. Because of the over-parameterization,
there generally exists points θ∗ where the full loss vanishes. This in turns implies that Li(θ∗) = 0 for
all i. For SGD, the operators are Ti(θ) = θ − h∇Li(θ). Now it is easy to see that (2) is satisfied:
d(θ∗, Ti(θ∗)) = ∥θ∗ − θ∗ − h∇Li(θ∗)∥ = 0, since the global zero θ∗ is a critical point for all the Li’s.

Now here is a major point: The contraction mapping principle fails with the forward order. As the next
example demonstrates, it is not enough for the operator Ti’s to be uniform contractions for the forward
sequence of iterates to converge, while this is always true for the backward sequence because of Theorem 2.2.
Example 2.4. (Forward iterations counter-example.) Here is an extreme example illustrating the
convergence failure for the forward sequence of iterates (even when the maps are uniform contractions), while
the backward sequence converges to a single point under the conditions of Theorem 2.2. Consider the two
constant maps S(θ) = x0, and U(θ) = y0, which are contractions with k = 0. Assume that x0 ̸= y0, now also
assume that each Ti is either equal to S or U with equal probability to be selected. Then, independently of θ,
the forward iterates

TnTn−1 · · · T1(θ)
will jump between x0 and y0, according to whether Tn is S or U at that particular n. Thus, no convergence
to a single point is possible, although the sequence converges to a probability uniformly distributed in the two
outcomes, since for each forward iterate either outcome has probability 1/2. On the contrary, the backward
trajectory

T1T2 · · · Tn(θ)
will always converge to a single point determined by the first element in the sequence: either to x0 if T1 = S
or to y0 if T1 = U .

2.1 A fundamental example of a contraction

We now describe how the SGD updates are uniform contractions when the batch losses are strongly convex
near a minimum. First, consider a strongly convex smooth function L : Rd → R. Recall that L is strongly
convex if there is a constant m > 0 such that for all θ1, θ2 ∈ Rd

⟨∇L(θ1) − ∇L(θ2), θ1 − θ2⟩ ≥ m ∥θ1 − θ2∥2
, (3)

where ⟨a, b⟩ = aT b is the inner product between two vectors. Furthermore, we assume that there is a constant
M > m such that

∥∇L(θ1) − ∇L(θ2)∥ ≤ M ∥θ1 − θ2∥ . (4)
This is sometimes denoted as L ∈ S1,1

m,M (Rd), see Nesterov (2013). The following lemma (whose proof is in
Appendix F) shows that for strongly convex functions we can always find a learning rate small enough so
that the corresponding gradient descent update is a contraction.
Lemma 2.5. Let L(θ) satisfy (3) and (4) and define the map T (θ) = θ − h∇L(θ). Then

∥T (θ1) − T (θ2)∥ ≤
√

1 − 2hm + h2M2 ∥θ1 − θ2∥ .

In particular, for small enough h ∈ (0, 1) (depending on m and M) the map T is a uniform contraction.

Now if we suppose that batch losses Li’s are strongly convex (possibly near global minima), then Lemma 2.5
tells us that the SGD maps Ti(θ) = θ − h∇Li(θ) are uniform contractions. Thus, we can apply Theorem 2.2
and see that the sequence of backward iterates, θn = T1T2 · · · Tn(θ), converges to a point.
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2.2 Relation between forward, backward, and generalization

In this section we address the question of the generalization power of backward iterates, which we argue is
the same as that of the forward iterates. The relationship with generalization is implicit through Theorem 2.6
below which states that backward convergence points are distributed according to the forward stationary
distribution. It follows that the best test-performance forward-solutions can be reached by the backward
trajectories with the same probability. This a good thing as it shows that the backward trajectories are
more stable but without test-performance reduction on average, which is often not the case as for instance
the increased stability obtained by increasing the learning rate or decreasing the batch-size (see Dherin
et al. (2022)). In particular, the bias of backward SGD is statistically equivalent to that of standard SGD.
Consequently, the convergence point of the backward iterates cannot outperform the best solutions attainable
by the forward iterates.

The goal of this work aims to demonstrate that the composition order creates two different processes, which
we could described intuitively as follows:

• The forward iterate process converges toward a distribution, “forgetting” the initial batches and
being most influenced by the recent ones. This makes this process robust to a bad start but leaves it
perpetually noisy.

• The backward iterate process converges toward a point, “remembering” the initial batches but
“forgetting” the recent stochastic noise.

Theorem 2.6 formalizes this intuition and essentially generalizes the situation already seen in Example 2.4, an
actual realization of a forward trajectory converges to a distribution which is uniformly distributed between
the two outcomes. On the other hand, any realization of the backward trajectory always converges to a point
sampled from this distribution. Let’s formalize this for the general case.

First of all, recall that a map T : Ω → Ω produces a corresponding push-forward map T∗ : P (Ω) → P (Ω)
at the level of probability measures P (Ω) on Ω. Recall that a probability measure µ ∈ P (Ω) associates to
each subset A ⊂ Ω a number µ(A) modelling the probability Probµ(θ ∈ A) of θ being in the subset A if θ is
sampled from µ. Now, if µ is a probability measure on Ω then the push forward T∗µ(A) = µ(T −1(A)) for
A ⊂ Ω computes the probability Probµ(T (θ) ∈ A) of T (θ) being in A if θ is sampled according to µ.

Therefore, the forward sequence (Tn · · · T2T1) : Ω → Ω induces a push-forward (Tn · · · T2T1)∗ that maps an
initial distribution µ0 to the probability measure µn = (Tn · · · T2T1)∗µ0 modeling the probability distribution
of the nth forward iterate θn = Tn · · · T2T1(θ0) when the initial point θ0 is randomly sampled from µ0. Observe
that the forward iterates θn form a sequence of random variables, which is a Markov chain (since for the
forward iterates we have that θn = Tn(θn−1)). Many previous works (see related work in Section 1.1) have
shown under different assumptions that this sequence of forward iterates do not converge to a point when
using fixed learning rates, but rather their probability distributions µn converge to a limiting probability
distribution, called the stationary distribution of the Markov chain. In other words, starting at initial point
θ0 the distribution µn = (Tn)∗ · · · (T1)∗δθ0 of the forward iterate θn converges to a stationary distribution µθ∗ .
Recall that δθ0 is the Dirac measure concentrated at θ0 (i.e., δθ0(A) is 1 if A contains θ0 and 0 otherwise).

On the contrary, as we have seen in Theorem 2.2, the backward iterates converge to actual points in regions
where the maps Ti’s become contractions (which we will call contractive regions). The following theorem
(whose proof is in Appendix E) shows the relation between the point-wise convergence of the backward
iterates and the distributional convergence of the forward iterates:
Theorem 2.6. Consider a sequence {Ti}, i = 1, 2, . . . of independent and identically distributed random
operators. Suppose that for θ0 ∈ Ω = Rd the backward iterates converge to a random point (randomness is
due to the sampling of the random operators Ti’s):

T1T2 · · · Tn(θ0) −→ θ∗ as n → ∞.

Then the probability distribution of the forward iterates from θ0 converge (in distribution) to a stationary
probability measure µθ∗ . Moreover, the random point θ∗ is distributed according to the same forward iterate
stationary distribution µθ∗ .
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3 Two explicit examples on stochastic gradient descent

We now present two examples that provide an intuition on why backward SGD converges to a point rather
than to a distribution as forward SGD does, when the learning rate is fixed. The reason in both examples
is that the stochastic noise added to the parameter iterates at each step due to the randomization of the
batch diminishes to zero in backward SGD as the training progress even with fixed learning rates, while this
stochastic noise stays unchanged at each step of forward SGD, requiring a learning rate decay for convergence.

3.1 Example: Quadratic loss

Consider the quadratic loss function L(θ) = θ2/2 with θ ∈ R. Its gradient is θ. We want to find the minimum
of L (which of course is 0 at θ = 0) by a stochastic gradient descent. To model the batch noise, we add an
i.i.d random error ϵi to the gradient at step i, yielding the iteration procedure:

Ti(θ) = θ − h
(

∇L(θ) − ϵi

)
= (1 − h)θ + hϵi,

where h is the learning rate. These maps are uniform contractions provided that θ ∈ (0, 1) since

|Ti(θ1) − Ti(θ2)| = |(1 − h)(θ1 − θ2)| ≤ |1 − h||θ1 − θ2|.

Now we would like to compare the behavior of the forward trajectory to that of the backward trajectory for
the Ti’s. In order to do this we begin by calculating the forward iterates:

T2T1(θ) = (1 − h)((1 − h)θ + hϵ1) + hϵ2

= (1 − h)2θ + hϵ2 + (1 − h)hϵ1.

One sees easily how this continues:

Tn · · · T1(θ) = (1 − h)nθ + hϵn + · · · + h(1 − h)n−1ϵ1.

By switching indices, for the backward iterates we obtain:

T1 · · · Tn(θ) = (1 − h)nθ + hϵ1 + · · · + h(1 − h)n−1ϵn.

We see that the forward iterates receive at each step n an additional error hϵn which stays constant during
the whole trajectory preventing point-convergence, while for backward iterates that same error h(1 − h)n−1ϵn

is decaying to zero as the trajectory progresses.

3.2 Example: Learning dynamics close to minima

The previous example was a warm up for the following more realistic example. However, the key idea is
identical. Consider a loss function

L(θ) = 1
N

N∑

i=1
Li(θ),

where Li is the loss computed on the random batch Bi. The SGD update is

Ti(θ) = θ − h∇Li(θ)

where h is again the learning rate. We now compare forward and backward SGD dynamics sufficiently close
to a minimum θ∗ of the loss function so that we can approximate well the full loss gradient g(θ) = ∇L(θ)
using the loss Hessian H(θ) = ∇g(θ): i.e., a first order Taylor’s expansion of the gradient at the minimum
yields

g(θ) ≃ g(θ∗) + H(θ∗)(θ − θ∗) = H(θ∗)(θ − θ∗), (5)
since at a minimum g(θ∗) = 0. To simplify the notation, we will denote by gi(θ) the gradient of the batch loss
Li(θ), which is now a random vector (because the batch is random). We can model this stochastic gradient
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as follows: gi(x) = g(x) − ϵi, where we assume that the differences ϵi = g(x) − gi(x) are i.i.d random vectors
with zero mean. Using gradient approximation (5) we have that a single gradient update is given in a form
very similar to that of the previous example:

Ti(θ) = θ − h
(

g(θ) − ϵi

)
≃ θ∗ + (1 − hH)(θ − θ∗) + hϵi

where H denotes the Hessian evaluated at the minimum θ∗. Since

∥Ti(θ1) − Ti(θ2)∥ ≤ ∥1 − hH∥∥θ1 − θ2∥
and since ∥1 − hH∥ < 1 for h strictly smaller than 2/λmax (as in Example 2.1), Theorem 2.2 tells us that the
backward trajectory converges. Now let us have a look at the form of the forward and backward iterates
in this particular case to give us an intuition about why this is true. In a similar way than in the previous
example, the nth forward SGD iterate is given by

Tn · · · T1(θ) = θ∗ + (1 − hH)n(θ − θ∗) + hϵn + h(1 − hH)ϵn−1 + · · · · · · + h(1 − hH)n−1ϵ1.

While the term (1 − hH)n(θ − θ∗) converges to zero (when h < 2/λmax), we see that at each step n a fresh
random vector hϵn is added to the iterate, making the whole sequence converge to a distribution rather than
to a point. On the other hand the backward iterate is obtained by reversing the indices:

T1 · · · Tn(θ) = θ∗ + (1 − hH)n(θ − θ∗) + hϵ1 + h(1 − hH)ϵ2 + · · · · · · + h(1 − hH)n−1ϵn.

This expression converges as n → ∞ since the terms are decreasing at an exponential rate as n grows. Thus
the iterates converge to a point now rather than a distribution. Looking at the actual form of the backward
iterates, it is clear that they are distributed by the probability measure given by the forward iterates as
prescribed by Theorem 2.6.

4 Experiments

Note on plotting multiple seeds: We are interested in the variability per realization of the backward and
forward trajectories. The backward trajectories are more stable individually along their own path, but these
paths can be very different from seed to seed (because of the convergence toward different points). Therefore
the phenomenon is much clearer when the seeds are plotted individually rather than averaged, which creates
artificially more variability in the backward trajectories as there really is on each individual realization. This
is why we are reporting the various seed plots individually and not as a single averaged plot with error bars.
Note that the increased stability and point convergence is visible in each of the seeds, which are added to the
Appendix B.

Increased convergence stability for backward SGD: We trained a ResNet-18 with stochastic gradient
descent and no regularization on the CIFAR-10 dataset Krizhevsky (2009). We used a learning rate of 0.025
and a batch-size of 8. In Figure 2, we recorded the learning curves at each gradient update for both the
forward and backward iterations for 2000 steps. The additional seeds are in Appendix B.1. We observe that
the training loss for the backward trajectory is more stable, converges faster, and has less variability than the
forward trajectory, and similarly for all the other learning curves. In Appendix A, we repeat the experiment
with different datasets (synthetic dataset, FashionMNIST, and CIFAR-100) as well as different architectures
(ResNet-50, VGG, and MLP). Each time we observe the same phenomenon for all 5 seeds.

Convergence toward points v.s. distributions: We trained a MLP with 5 layers of 500 neurons each
with stochastic gradient descent with no regularization to learn FashionMNIST Xiao et al. (2017). The
batch-size was set to 8 while the learning rate was 0.001. In Figure 3, we report the test accuracy at every
single step for 2000 steps. At step 1000, we reset the point from which we perform backward SGD to
that of the parameter at this step. As a result we see that the backward trajectory from that reset point
seems to converge again, but to a different point (with different test accuracy), while forward SGD seems to
oscillate between these two points. This is in line with the theoretical prediction that backward trajectories
SGD converge toward points distributed according to the distribution induced by forward trajectories (see
Theorem 2.6). The additional seeds are in Appendix B.2.
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Figure 2: Backward SGD exhibits decreased variance and increased stability compared to forward SGD for
a ResNet-18 model trained on CIFAR-10. The additional seeds are in Appendix B.1.

while the forward trajectories converge toward probability distributions in regions where the optimization
maps become contractions, leading to improved stability and convergence. We observed this phenomenon
experimentally on a number of datasets (synthetic, FashionMNIST, CIFAR-10, and CIFAR-100) and neural
network architectures (MLP, VGG-19, ResNet-18, and ResNet-50), making it relevant to deep learning. This
phenomenon points toward the fact that the ordering in which the data examples are consumed to produce
each parameter iterate impacts the properties of both the learning trajectories and their convergence points.
In particular the last examples used to produce a parameter iterate seem to have great importance. Indeed,
the backward order is the only order in which the sequence of the last examples used to produce a parameter
iterate remains consistent at each training step. As we saw, this yields convergence toward a point rather
than oscillations between solutions of varied performances.

However, realistic applications of the full backward order are challenging due to the prohibitive computation
time that grows quadratically with the number of batches consumed. We now point toward conjectural
workarounds and applications to showcase possible exploitation of this phenomenon. This is outside of the
scope of this paper; nevertheless, we give supporting evidence in the appendix when possible.
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Figure 3: Backward SGD converges toward a di�erent minimum after resetting the initialization point
at step 1000 (“intermittent backward”) while forward SGD oscillates between them for MLP trained on
FashionMNIST. Top: On the first seed, backward changes from a higher test-performance trajectory to a
lower test-performance trajectory at the reset step 1000. Bottom: On the second seed, backward changes
this time from a trajectory converging to a lower test-performance point to a trajectory converging to a higher
test-performance point. The other seeds can be found in Appendix B.2 including all the learning curves.

One possible strategy to mitigate the intensive computational requirements of the full backward order is to
apply it only partially on a fixed window of iterations from a point that is reset periodically. This way the
extra computation time is capped by the window size. We see that this approach leads to convergence and
increased stability in Figure 3; however the backward trajectory may change and converge to a di�erent point
at each reset. We can imagine strategies to initiate this reset only when the performance of the new backward
trajectory increases, leading to stable convergence to higher test performance points. Another possibility
is to start the backward order only later in training to force convergence toward a single solution after the
forward trajectory has done enough exploration of the space as demonstrated in Figure 10 in Appendix A.
We imagine that this approach may possibly lead toward more reliable early-stopping criteria. Similarly,
application of the backward order at the very beginning of training may give an accurate idea of whether a
specific hyperparameter setting is promising or needs to be aborted by creating stabler trajectories whose
learning curves are easier to interpret early on.

An orthogonal approach to deal with the computational challenges of backward optimization is to approximate
the backward trajectory. In Appendix C, we show how to compute a backward iterate from a cheaper forward
iterate to which we add a correction that can be computed completely independently. We compute these
corrections up to order 2 in Theorem C.2 Theorem C.2, namely:

T1 · · ·Tn = Tn · · ·T1 + h2
ÿ

1Æi<jÆn

[ÒLi,ÒLj ] + O(h3)

where [ÒLi,ÒLj ](◊) = Hi(◊)ÒLj(◊)≠Hj(◊)ÒLi(◊) is the Lie bracket between the vector fields ÒLi and ÒLj .
Even though the approximation we provide is not immediately useful because the higher order terms seem to
matter, it probably will be useful if higher order corrections are included. As a proof of the usefulness of these
type of corrections added to the forward iterates to emulate alternate orderings, we show in Appendix D that
the corrections we computed at second order are already enough to approximate an average between all the
possible iteration orders on a batch window. Adding these corrections to the forward iterates produces a
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Figure 3: Backward SGD converges toward a different minimum after resetting the initialization point
at step 1000 (“intermittent backward”) while forward SGD oscillates between them for MLP trained on
FashionMNIST. Top: On the first seed, backward changes from a higher test-performance trajectory to a
lower test-performance trajectory at the reset step 1000. Bottom: On the second seed, backward changes
this time from a trajectory converging to a lower test-performance point to a trajectory converging to a higher
test-performance point. The other seeds can be found in Appendix B.2 including all the learning curves.

5 Conclusion and future work

sec:conclusion

In this paper, we analyzed the impact of two different composition orders (to produce each iterate) on the
convergence and stability of stochastic learning trajectories. Although the very idea of backward trajectories
may seem strange and counterintuitive at first, we show that this approach of backward optimization has
clear advantages. Namely, we show theoretically that the backward trajectories converge toward actual points
while the forward trajectories converge toward probability distributions in regions where the optimization
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maps become contractions, leading to improved stability and convergence. We observed this phenomenon
experimentally on a number of datasets (synthetic, FashionMNIST, CIFAR-10, and CIFAR-100) and neural
network architectures (MLP, VGG-19, ResNet-18, and ResNet-50), making it relevant to deep learning. This
phenomenon points toward the fact that the ordering in which the data examples are consumed to produce
each parameter iterate impacts the properties of both the learning trajectories and their convergence points.
In particular the last examples used to produce a parameter iterate seem to have great importance. Indeed,
the backward order is the only order in which the sequence of the last examples used to produce a parameter
iterate remains consistent at each training step. As we saw, this yields convergence toward a point rather
than oscillations between solutions of varied performances.

However, realistic applications of the full backward order are challenging due to the prohibitive computation
time that grows quadratically with the number of batches consumed. We now point toward conjectural
workarounds and applications to showcase possible exploitation of this phenomenon. This is outside of the
scope of this paper; nevertheless, we give supporting evidence in the appendix when possible.

One possible strategy to mitigate the intensive computational requirements of the full backward order is to
apply it only partially on a fixed window of iterations from a point that is reset periodically. This way the
extra computation time is capped by the window size. We see that this approach leads to convergence and
increased stability in Figure 3; however the backward trajectory may change and converge to a different point
at each reset. We can imagine strategies to initiate this reset only when the performance of the new backward
trajectory increases, leading to stable convergence to higher test performance points. Another possibility
is to start the backward order only later in training to force convergence toward a single solution after the
forward trajectory has done enough exploration of the space as demonstrated in Figure 10 in Appendix A.
We imagine that this approach may possibly lead toward more reliable early-stopping criteria. Similarly,
application of the backward order at the very beginning of training may give an accurate idea of whether a
specific hyperparameter setting is promising or needs to be aborted by creating stabler trajectories whose
learning curves are easier to interpret early on.

An orthogonal approach to deal with the computational challenges of backward optimization is to approximate
the backward trajectory. In Appendix C, we show how to compute a backward iterate from a cheaper forward
iterate to which we add a correction that can be computed completely independently. We compute these
corrections up to order 2 in Theorem C.2 Theorem C.2, namely:

T1 · · · Tn = Tn · · · T1 + h2
∑

1≤i<j≤n

[∇Li, ∇Lj ] + O(h3)

where [∇Li, ∇Lj ](θ) = Hi(θ)∇Lj(θ)−Hj(θ)∇Li(θ) is the Lie bracket between the vector fields ∇Li and ∇Lj .
Even though the approximation we provide is not immediately useful because the higher order terms seem to
matter, it probably will be useful if higher order corrections are included. As a proof of the usefulness of these
type of corrections added to the forward iterates to emulate alternate orderings, we show in Appendix D that
the corrections we computed at second order are already enough to approximate an average between all the
possible iteration orders on a batch window. Adding these corrections to the forward iterates produces a
beneficial regularizer that mimics small batch training regularization. In fact, a training step can be seen
as a parameter average of mixture of models where each model is trained not from a different seed but
from a different batch order. We hope that this paper will bring awareness and foster more research toward
understanding and exploiting the role of iteration order in the production of models with more consistent
properties along more stable learning trajectories.

Broader Impact Statement

This work focused on the theoretical aspect of learning algorithms, especially stability. We do not foresee any
negative impact from this theoretical work.
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A Additional Experiments

Note on plotting multiple seeds: We are interested in the variability per realization of the backward and
forward trajectories. The backward trajectories are more stable individually along their own paths, but these
paths can be very different from seed to seed (because of the convergence toward different points). Therefore,
the phenomenon is much clearer when the seeds are plotted individually rather than averaged, which creates
artificially more variability in the backward trajectories as there really is on each individual realization. This
is why we are reporting the various seed plots individually and not as a single averaged plot with error bars.
Note that the increased stability and point convergence is visible in each of the seeds.
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A.1 Regression on synthetic datasets

In this experiment, to verify the increased stability of backward SGD over the standard forward version, we
trained with both algorithms a neural network with 3 layers of 300 neurons with no regularization each to
regress 100 points uniformly sampled from function graphs D = {(xi, yi) : yi = f(xi) with xi = −1 + 2i

100 , i =
0, . . . , 100} using the functions f(x) = x2 (Figure 4), f(x) = cos(10x) (Figure 5), and f(x) = x3 (Figure 6).
In all cases, we can observe a much higher stability for backward SGD over the forward version.

Figure 4: Decreased variance and increased stability in train (left) and test (right) losses for backward SGD
compared to forward SGD for all 5 seeds. The data was sampled from f(x) = x2 and the training performed
with batch size 1 and learning rate 0.05 for 1400 steps.
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Figure 5: Decreased variance and increased stability in train (left) and test (right) losses for backward SGD
compared to forward SGD for all 5 seeds. The data was sampled from f(x) = cos(10x) and the training
performed with batch size 1 and learning rate 0.02 for 1400 steps.
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Figure 6: Decreased variance and increased stability in train (left) and test (right) losses for backward SGD
compared to forward SGD for all 5 seeds. The data was sampled from f(x) = x3 and the training performed
with batch size 1 and learning rate 0.02 for 1400 steps.
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A.2 MLP trained on Fashion-MNIST

In this experiment, to verify the increased stability of backward SGD over the standard forward version, we
trained a MLP with 5 layers of 500 neurons each with no regularization using both forward and backward
stochastic gradient descent with no regularization on the Fashion-MNIST dataset Xiao et al. (2017). We
repeated the experiment for 5 different random seeds. For all seeds, we used a learning rate of 0.001 and a
batch size of 8. In Figure 7, we recorded the training loss at each gradient update for both the forward end
backward iteration and plotted the 5 seeds separately (one seed for each row). For each seed, we observe that
the training loss for the backward iterations is more stable and converges faster with less variability when
compared to the forward iterations. We also observe stability improvements for all other learning curves for
the backward trajectories.

Figure 7: MLP trained on Fashion-MNIST. Training with backward SGD significantly reduces the variance
and increases the stability of both the train and test loss as well as the train and test and accuracy compared
to forward SGD. This behavior is consistent across all seeds.
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A.3 VGG-19 trained on CIFAR-10

In this experiment, to verify the increased stability of backward SGD over the standard forward version, we
trained a VGG-19 model Simonyan & Zisserman (2014) using both forward and backward stochastic gradient
descent with no regularization on the CIFAR-10 dataset Krizhevsky (2009). We repeated the experiment for
5 different random seeds. In all seeds, we used a learning rate of 0.001 and a batch-size of 8. In Figure 8,
we plot the training and test loss at each gradient update for both the forward and backward iteration.
We plotted the 5 seeds separately, represented by each row. Note that for each seed, we observe that the
training loss for the backward iterations is again more stable, converges faster, and has less variability than
the forward iterations.
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Figure 8: VGG-19 trained on CIFAR-10. Training with backward SGD significantly reduces the variance
and increases the stability of both the train and test loss as well as the train and test and accuracy compared
to forward SGD. This behavior is consistent across all seeds.
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A.4 ResNet-50 trained on CIFAR-100

In this experiment, to verify the increased stability of backward SGD over the standard forward version, we
trained a ResNet-50 model He et al. (2016) using both forward and backward stochastic gradient descent with
no regularization on the CIFAR-100 dataset Krizhevsky (2009). We repeated the experiment for 5 different
random seeds. In all seeds, we used a learning rate of 0.001 and a batch-size of 16. In Figure 9, we plot the
training and test loss at each gradient update for both the forward and backward iteration. We plotted the 5
seeds separately, represented by each row. Note that for each seed, we observe that the training loss for the
backward iterations is again more stable, converges faster, and has less variability than the forward iterations.
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Figure 9: ResNet-50 trained on CIFAR-100. Training with backward SGD significantly reduces the variance
and increases the stability of both the train and test loss as well as the train and test and accuracy compared
to forward SGD. This behavior is consistent across all seeds.
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A.5 Backward stabilization after forward iterations

In this experiment, to verify the increased stability and convergence after turning on backward iterations
after a number of forward iterations, we trained a MLP with 5 layers of 500 neurons each with stochastic
gradient descent with no regularization to learn the 10 classes of Fashion-MNIST dataset Xiao et al. (2017).
We repeated the experiments for 5 seeds. We used a learning rate of 0.001 and a batch-size of 8. In Figure 10,
we recorded the learning curves at each gradient update for both the forward iteration and the backward
iteration switched on after step 1000. Each seed is plotted independently. We observe that the training loss
for the backward iterations has again more stable convergence once backward iterations are switched on after
step 1000 than the forward iterations.

Figure 10: Decreased variance and increased stability for all learning curves and all seeds once backward
SGD is switched on at step 1000 after forward SGD iterations for an MLP trained on Fashion MNIST.
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A.6 Continued stability of backward SGD throughout training.

In this experiment, to verify that the behavior of increased stability and convergence for backward iterates
continues throughout training, we trained a ResNet-18 model on the CIFAR-10 dataset using the same
hyperparameters as in Figure 2 (i.e., no regularization, a learning rate of 0.025 and batch size of 8) but
training for 25000 steps instead of 2000. In Figure 11, we record the learning curves for both forward and
backward SGD, performing model evaluation every 100 steps. Throughout training, we continue to notice
that the training loss (as well as all the other learning curves) for the backward iterations is again more
stable, converges faster, and has less variability than the forward iterations. Note, here we only performed
this experiment for one seed because because of the high computational requirements for backward SGD with
so many training steps.
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Figure 11: ResNet-18 trained on CIFAR-10 for 25000 steps. Decreased variance and increased stability
throughout model training.
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B Additional seeds to plots in the main paper

Note on plotting multiple seeds: We are interested in the variability per realization of the backward and
forward trajectories. The backward trajectories are more stable individually along their own paths, but these
paths can be very different from seed to seed (because of the convergence toward different points). Therefore
the phenomenon is much clearer when the seeds are plotted individually rather than averaged, which creates
artificially more variability in the backward trajectories as there really is on each individual realization. This
is why we are reporting the various seed plots individually and not as a single averaged plot with error bars.
Note that the increased stability and point convergence is visible in each of the seeds.

B.1 All 5-seeds for ResNet-18 trained on CIFAR-10; cf. Figure 2

In Figure 12 below, we plot the learning curves for all five seeds as in Figure 2 of the main paper.

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

Se
ed

 1

Train Loss

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4 Test Loss

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0.5 Train Accuracy

Iteration Order
forward
backward

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

Test Accuracy

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

Se
ed

 2

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0.5

Iteration Order
forward
backward

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

Se
ed

 3

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0.5

Iteration Order
forward
backward

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

Se
ed

 4

0 500 1000 1500 2000

1.4

1.6

1.8

2.0

2.2

2.4

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0.5

Iteration Order
forward
backward

0 500 1000 1500 20000.0

0.1

0.2

0.3

0.4

0 500 1000 1500 2000
Iteration

1.4

1.6

1.8

2.0

2.2

2.4

Se
ed

 5

0 500 1000 1500 2000
Iteration

1.4

1.6

1.8

2.0

2.2

2.4

0 500 1000 1500 2000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Iteration Order
forward
backward

0 500 1000 1500 2000
Iteration

0.0

0.1

0.2

0.3

0.4

Figure 12: All 5-seeds plot of Figure 2.
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B.2 All 5-seeds for MLP trained on FashionMNIST; cf. Figure 3

In Figure 13 below, we plot the learning curves for all five seeds as in Figure 3 of the main paper.

Figure 13: All 5-seeds plot of Figure 3
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C Toward an approximate backward SGD

Backward SGD has increased stability and convergence over forward SGD but naive implementations are
computationally intensive. In this section, we propose an approximation of the backward iterates by modifying
the forward iterates with a Lie bracket term of order O(h2) in the learning rate (Theorem C.2). This comes
at an extra cost, but which can be made smaller than evaluating the backward iterates from the initial point
at every step (Corollary C.4). Our approximation is valid

• for any optimizer of the form Ti(θ) = θ+hVi(θ), where Vi(θ) is a random vector field on the parameter
space depending on the randomly sampled batch of data Bi. (Of course, in the case of SGD we have
Vi(θ) = −∇Li(θ) where Li = LBi

is the loss function evaluated on batch Bi.)

• up to an error of order O(h3) in the learning rate.

Unfortunately, it seems that in real-life cases higher orders beyond O(h2) play a significant role in the backward
dynamics, and therefore can not be neglected for reasonable ranges of the learning rate. Nevertheless, we
include our second order approximation here, since we believe it gives a reasonable path on how to produce
approximations of the backward trajectories using the forward trajectories. Namely, while this is out-of-scope
for this paper and topic of further research, we believe that adding higher order corrections may produce
useful approximations that could be used as stabilizers for the forward trajectories. The main idea is to
expand a generic k term iterate

Ti1 · · · Tik
(θ) = (1 + hVi1) · · · (1 + hVik

)(θ) (6)

in Taylor’s series in the learning rate. This is what the next lemma gives. (We demonstrate the usefulness of
such expansions Appendix D where we use Lemma C.1 to produce a beneficial second order regularizer that
emulates an iteration order average.)

Observe also that Lemma C.1 tells us that all possible iteration orders coincide at order h but start differing
at order O(h2):
Lemma C.1. Consider a sequence {Ti}i>0 of operators of the form Ti(θ) = θ + hVi(θ), where Vi(θ) is a
vector field on the parameter space. Then for any choice of indices i1, . . . , ik we have that

Ti1 · · · Tik
= 1 + h

k∑

l=1
Vil

+ h2
∑

1≤u<v≤k

V ′
iu

Viv
+ O(h3)

Proof. We proceed by induction. For the base case, k = 1, this is trivial. Suppose now that this is true for
any composition of k − 1 operators. By definition of Ti1 we have that

Ti1 · · · Tik
(θ) = Ti1(Ti2 · · · Tik

(θ))
= X + hVi1(X)

(7)

with X = Ti2 · · · Tik
(θ). Now by induction hypothesis we have that

X = θ + h

k∑

l=2
Vil

(θ) + h2
∑

2≤u<v≤k

V ′
iu

(θ)Viv
(θ) + O(h3) (8)

Therefore, taking a Taylor series for the second term of (7), we obtain

hVi1(X) = hVi1(θ) + h2
k∑

l=2
V ′

i1
(θ)Vil

(θ) + O(h3). (9)

Summing up in (7) the expressions we have found for X and hVi1(X) above, we obtain that the composition
Ti1 · · · Tik

(θ) has the form

θ + h

k∑

l=1
Vil

(θ) + h2
∑

1≤u<v≤k

V ′
iu

(θ)Viv (θ) + O(h3),
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which completes the proof.

The next theorem gives us a way to approximate the backward iterates up to order O(h3) by correcting the
forward iterates with a term keeping track of their difference:
Theorem C.2. Consider a sequence {Ti}i>0 of operators of the form Ti(θ) = θ + hVi(θ), where Vi(θ) is a
vector field on the parameter space. The backward and forward iterates of the sequence are related by the
following identity:

T1 · · · Tn(θ) = Tn · · · T1(θ) + h2
∑

1≤i<j≤n

[Vi, Vj ](θ) + O(h3)

where the [Vi, Vj ](θ) = V ′
i (θ)Vj(θ) − V ′

j (θ)Vi(θ) is the Lie bracket between the vector fields Vi and Vj.

Proof. By Lemma C.1, we have that the backward iterate is

T1 · · · Tn = 1 + h

n∑

l=1
Vl + h2

∑

1≤u<v≤n

V ′
uVv + O(h3)

while the forward iterate is obtained by reversing the indices:

Tn · · · T1 = 1 + h

n∑

l=1
Vl + h2

∑

1≤u<v≤n

V ′
vVu + O(h3).

We now see that the difference
D(θ) = T1 · · · Tn(θ) − Tn · · · T1(θ)

between the backward and forward iterates is of the form

D(θ) = h2
∑

1≤u<v≤n

V ′
u(θ)Vv(θ) − V ′

v(θ)Vu(θ) + O(h3)

= h2
∑

1≤u<v≤n

[Vu, Vv](θ) + O(h3),

which completes the proof.

We now consider the case of SGD where the vector fields Vi are given by the gradients of the loss evaluated
at the current batch. We give below a definition of the approximate backward iterate in that particular case,
although a similar definition can be given for any vector fields.
Definition C.3. Consider the SGD operators Ti(θ) = θ − h∇Li(θ) obtained by taking the gradient of a loss
function on a batch Bi of data at step i. We denote by θn = Tn · · · T1(θ0) = θn−1 − h∇Ln(θn−1) the forward
SGD iterate starting at initial point θ0 and by θB

n = T1 · · · Tn(θ0) the corresponding backward iterate starting
at the same initial point. Motivated by Theorem C.2, we introduce the approximate backward iterate θ̃n as
follows:

θ̃n = θn + h2
∑

1≤i<j≤n

[∇Li, ∇Lj ](θ0) (10)

Theorem C.2 tells us that the true backward iterate and its approximation are within O(h3) of each other:

∥θ̃n − θB
n ∥ = O(h3), (11)

which allows us to use the approximation for learning rates small enough so that the terms in O(h3) can be
neglected. The following corollary tells us how the approximate backward iterates can be computed in an
iterative fashion by keeping in memory an additional variable Cn of the same size as the network parameters:
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Corollary C.4. In the notation above, we can obtain the approximate backward SGD iterate θ̃n from the
forward SGD iterate θn starting at θ0 in an iterative fashion as follows:

θn = θn−1 − h∇Ln(θn−1)
gn = gn−1 + ∇Ln−1(θ0)

Hn = Hn−1 + ∇2Ln−1(θ0)
Cn = Cn−1 + Hn∇Ln(θ0) − ∇2Ln(θ0)gn

θ̃n = θn + h2Cn

with g0 = g1 = 0, H0 = H1 = 0, and c0 = c1 = 0.

Proof. By Definition C.3 of the approximate backward iterates we have that θ̃n = θn + h2Cn with

Cn =
∑

1≤i<j≤n

[∇Li, ∇Lj ](θ0).

First observe that we can split Cn into two parts

Cn =
∑

1≤i<j≤n−1
[∇Li, ∇Lj ](θ0) +

∑

1≤i≤n−1
[∇Li, ∇Ln](θ0)

= Cn−1 + [
∑

1≤i≤n−1
∇Li, ∇Ln](θ0)

= Cn−1 +


 ∑

1≤i≤n−1
∇2Li(θ0)


 ∇Ln(θ0)

−∇2Ln(θ0)


 ∑

1≤i≤n−1
∇Li(θ0)




= Cn−1 + Hn∇Ln(θ0) − ∇2Ln(θ0)gn,

where Hn and gn are expressed recursively as in the theorem statement.

D Approximate implicit regularization of smaller batches

As shown in Keskar et al. (2017); Smith et al. (2017; 2021); Dherin et al. (2022) for instance, small batches
have an implicit regularization effect, producing solutions with higher test accuracy as the batch size decreases.
In this section, we show that approximations of the type given by Lemma C.1 are useful to understand this
implicit regularization effect. We also see how we can go beyond this small batch effect and produce explicit
regularizers with even higher test performance based on the idea of iteration order average on the small
batches, leveraging Lemma C.1.

Throughout the section we will write Vi(θ) for the negative batch loss gradient −∇Li(θ) computed on batch
Bi in order to keep the notation simple.

D.1 The effect of small batches

The idea is to use Lemma C.1 to understand the implicit regularization effect of small batches, very much in
line with the findings in Smith et al. (2021). First, consider two settings. In the first setting, we perform a
single gradient update

Tlarge(θ) = θ + hVB(θ),

with one large batch B and learning rate h. In the second setting, we split the large batch B into c small
batches of equal size: B1, B2, . . . , Bc (i.e, each of size |B|/c). Then we apply SGD sequentially c times for
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each of the smaller batch and with learning rate h′ = h/c:

Tsmall(θ) = (1 + h′Vc) · · · (1 + h′V2)(1 + h′V1)(θ)

Then Lemma C.1 gives us immediately a second order approximation for the second setting:

Tsmall(θ) = θ + h′
c∑

i=1
Vi(θ) + h′2 ∑

i<j

V ′
i (θ)Vj(θ) + O(h3)

Now it is easy to see that

hVB(θ) = h′
c∑

i=1
Vi(θ).

Therefore, we can extract the added implicit regularization that is induced from smaller batches. Namely, we
obtain that the composition of the c smaller batches is the same as a single gradient step with the larger
batch using learning rate h = ch′ plus an additional second-order regularization term:

Tsmall(θ) = Tlarge(θ) + h′2 ∑

i<j

V ′
i (θ)Vj(θ)

︸ ︷︷ ︸
Smaller Batch Regularization

+ O(h′3)

So we can attribute the second order regularization effect of small batch training to this additional term, in
line with the computations in Smith et al. (2021).

D.2 Explicit regularization through iteration order averages

In the previous section, we applied the small batches in some chosen order. Another order may have worked
as well, although producing a different second order regularization term. This begs the question of whether
we can instead take the average over all possible iteration orders so as to produce an iterate for which no
particular order is preferred:

Tperm(θ) = 1
c!

( ∑

σ∈Permc

(1 + h′Vσ(1)) · · · (1 + h′Vσ(n))(θ)
)

, (12)

where Permc is the permutations of c elements. Again Lemma C.1 gives us the second order approximation
for this new update rule:

Tperm(θ) = Tlarge(θ) + 1
2h′2 ∑

i̸=j

V ′
i (θ)Vj(θ) + O(h′3).

In the next section, we show that the iteration-order-averaging term, that we can extract from the computation
above, namely,

λ
∑

i ̸=j

V ′
i (θ)Vj(θ),

produces a more powerful regularizer than the one obtained from a single ordering of the small batches. In a
way, this new regularizer emulates a mixture of models, each of which is produced by a different ordering of
the iterations in a window of c batches (rather than from a different random seed). The next section shows
the benefits of this new “ordering-free” regularizers experimentally.
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D.2.1 Experiments

We trained a MLP with 5 layers of 500 neurons each with stochastic gradient descent with no regularization
to learn the 10 classes of Fashion-MNIST dataset Xiao et al. (2017). We used a learning rate of h = 0.001
(and h′ = h/c), and a batch-size of |B| = 20482. We examine three different shrinking factors c ∈ {2, 3, 4}. In
each setting, we test the values of λ ∈ {0.5h2, h2, 2h2, 4h2}. The following figures present the train and test
loss over training compared to training with large-batch |B| = 2048 and learning rate h′ = h/c, and training
with small-batch 2048/c with learning rate h′. The experiment shows that our method can outperform vanilla
training both for large and small batches with minimal tuning of λ for this specific experiment.

Figure 14: Train curves for injecting regulariza-
tion resulting from splitting the batch in two
(i.e., c = 2).

Figure 15: Test curves for injecting regularization
resulting from splitting the batch in two (i.e.,
c = 2). As you can see, the performance improves
as we increase the λ.

Figure 16: Train curves for injecting regulariza-
tion resulting from splitting the batch in three
(I.e., c = 3).

Figure 17: Test curves for injecting regularization
resulting from splitting the batch in three (i.e.,
c = 3). Similar to the case where c = 2 above,
the performance improves as we increase the λ.

2Or the closest integer divisible by c; e.g., 2049 for c = 3.
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Figure 18: Train curves for injecting regulariza-
tion resulting from splitting the batch in four
(I.e., c = 4).

Figure 19: Test curves for injecting regularization
resulting from splitting the batch in four (I.e.,
c = 4). Similar to the cases above, the trend
continues and is even more visible; Performance
improves as we increase the λ.

E Proof of Theorem 2.6

E.1 Definitions

Before we dive into the proof, let us define the following three different notions of convergence of random
variables. First we have the strongest notion, which is convergence almost surely. That is, a sequence of
random variables Xn converges to a limiting random variable X∞ almost surely if

P( lim
n→∞

Xn = X∞) = 1.

This can be thought of as a sort of point-wise convergence. A weaker notion of convergence which is implied
by almost sure convergence (see Theorem 2.7 (i) in Van der Vaart (2000)) is convergence in probability. The
sequence Xn of random variables converges to the random variable X∞ in probability if for every ε > 0 the
following holds

lim
n→∞

P(|Xn − X∞| > ϵ) = 0.

That is, for large n it becomes more and more likely that Xn is close to X∞. The weakest notion of
convergence is convergence in distribution, which is implied by convergence in probability (see Theorem 2.7
(ii) in Van der Vaart (2000)). There are many equivalent ways to define this, but the most concrete way
is the following: Let Fn(x) = P(Xn ≤ x) be the cumulative distribution function for Xn and let F∞(x) be
the corresponding cumulative distribution function for X∞, then we say that the sequence Xn converges in
distribution to X∞ if for every continuity point x of the cumulative distribution function F∞ we have the
following

lim
n→∞

Fn(x) = F∞(x).

If we define µn := dFn and µ∞ := dF∞, then when we say that µn → µ∞ we mean convergence in distribution
in the above sense.

E.2 Proof

Consider a sequence Ti : Ω → Ω, i = 1, 2, . . . of independent and identically distributed random operators.
The probability distribution of the forward iterates θn = TnTn−1 · · · T1(θ0) is given by

µn = (TnTn−1 · · · T1)∗δθ0 ,

where δθ0 is the delta distribution concentrated at θ0 (i.e. δθ0(A) = 1 if θ0 ∈ A and 0 otherwise).
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We want to show that when the backward iterates converge to a random point (randomness is due to the
sampling of the random operators Ti’s), i.e., when

T1T2 · · · Tn(θ0) −→ θ∗ as n → ∞,

then this implies that

• the probability distribution of the forward iterates from θ0 converge to a stationary probability
measure µn → µθ∗

• the random point θ∗ is distributed according to the same forward iterate stationary distribution µθ∗ .

To see that let Y θ0
n denote the forward iterates

Y θ0
n = TnTn−1 . . . T1(θ0),

and let Xθ0
n denote the backward iterates

Xθ0
n = T1T2 . . . Tn(θ0).

Define the cumulative distribution function (CDF) for the random vector Y θ0
n and θ = (θ1, . . . , θd) ∈ Rd as

F θ0
n (θ) := P((Y θ0

n )1 ≤ θ1, . . . , (Y θ0
n )d ≤ θd).

By independence of the random operators Ti’s we know by symmetry that F θ0
n (θ) is also the CDF of Xθ0

n .

Under our assumption that the backward iterates converge to a random point θ∗ (almost sure convergence)
we will define the CDF of that random point as, F θ0∞ (θ) and for the sake of the proof we denote that point
with Xθ0∞ instead of θ∗ to highlight that it is a random vector.

Now, our assumption that the backward iterates converge to a point implies that the random vector
Xθ0

n converges to Xθ0∞ almost surely, in the sense defined above. As alluded to in the previous section
above, the almost sure convergence implies convergence in distribution, i.e., the convergence of the CDF
limn→∞ F θ0

n (θ) = F θ0∞ (θ), for every θ where F θ0∞ is continuous.

Since Xθ0
n and Y θ0

n have the same distribution (same CDF) we have immediately that Y θ0
n also converges in

distribution to Xθ0∞ . The limiting stationary distribution µθ∗ is simply the probability measure corresponding
to F θ∗

∞ , i.e. µθ∗ := dF θ0∞ .

F Proof of Lemma 2.5

Consider a smooth function L : Rd → R satisfying (3) and (4).

We want to show the following inequality

∥T (θ1) − T (θ2)∥ ≤
√

1 − 2hm + h2M2 ∥θ1 − θ2∥ .

for the gradient operator T (θ) = θ − h∇L(θ).

We can see that by first expanding the square of the operator difference:

∥T (θ1) − T (θ2)∥2 = ∥θ1 − θ2∥2

− 2h⟨∇L(θ1) − ∇L(θ2), θ1 − θ2⟩
+ h2∥∇L(θ1) − ∇L(θ2)∥2.

Now applying the strict convexity conditions, we get

∥T (θ1) − T (θ2)∥2 ≤ ∥θ1 − θ2∥2 − 2hm∥θ1 − θ2∥2

+ h2M2∥θ1 − θ2∥2

= (1 − 2hm + h2M2)∥θ1 − θ2∥2,

which ends the proof by taking the square root on both sides.
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G Discussion on the assumption of contractions.

The following discussion demonstrates that the contraction hypothesis required in Theorem 2.2 can be satisfied
under standard conditions that frequently arise in deep learning. Specifically, we show that gradient descent
transformations are contractions with respect to a natural loss-based pseudo-metric when the loss function
satisfies both Lipschitz and Polyak-Łojasiewicz conditions.

Setup and Assumptions Let S be a domain in RM representing the parameter space, and let L : S → R≥0
be a loss function to be minimized, having the form

L(θ) = 1
m

m∑

i=1
li(θ).

We make the following standard assumptions:

1. Each individual loss li ≥ 0 and the global minimum value of L is 0. This interpolation assumption is
reasonable for over-parametrized systems where the model can perfectly fit the training data.

2. All functions are differentiable.

3. There exists a constant C such that all gradients ∇li (and therefore ∇L) are C-Lipschitz continuous
in the relevant parameter space S.

The Polyak-Łojasiewicz Condition Additionally, we assume that L satisfies the Polyak-Łojasiewicz
(PL) condition: there exists a constant µ > 0 such that

1
2 ∥∇L(θ)∥2 ≥ µL(θ)

for all θ ∈ S. This condition, while satisfied by strongly convex functions, is particularly important because
it also holds for over-parametrized neural networks (which are typically non-convex), as demonstrated in Liu
et al. (2022). The PL condition essentially ensures that the gradient magnitude provides a lower bound on
the distance to optimality.

Loss Pseudo-Metric To analyze the contraction properties of gradient-based updates, we introduce a
natural pseudo-metric based on the loss function.

Definition. For the parameter space S, we define the loss pseudo-metric d : S × S → R≥0 by:

d(x, y) =
{

L(x) + L(y) if x ̸= y,

0 if x = y.

Properties. This function satisfies the standard metric axioms:

1. Symmetry: d(x, y) = L(x) + L(y) = L(y) + L(x) = d(y, x).

2. Triangle inequality: For any x, y, z ∈ S:

d(x, y) = L(x) + L(y) ≤ L(x) + L(z) + L(z) + L(y) = d(x, z) + d(z, y),

which follows from the non-negativity of L.

3. Pseudo-metric property: d(x, y) = 0 for x ̸= y if and only if x, y ∈ Z, where Z := {θ ∈ S : L(θ) =
0} denotes the set of global minima.

The key insight is that d measures the “total suboptimality” of two points. Unlike a true metric, distinct
points in the zero-loss set Z have distance zero from each other, hence the term pseudo-metric.
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Contraction Analysis for Full-Batch Gradient Descent We now establish that gradient descent is a
contraction in the loss pseudo-metric d. The Lipschitz condition on ∇L immediately implies that for any
x, y ∈ S:

L(y) − L(x) =
∫ 1

0
∇L(x + t(y − x)) · (y − x) dt ≤ ⟨∇L(x), y − x⟩ + C

2 ∥y − x∥2
.

Consider the full-batch gradient descent transformation T (x) = x − h∇L(x) with learning rate h > 0.
Applying the above inequality with y = T (x), we obtain:

L(T (x)) − L(x) ≤ ⟨∇L(x), T (x) − x⟩ + C

2 ∥T (x) − x∥2

= ⟨∇L(x), −h∇L(x)⟩ + C

2 ∥−h∇L(x)∥2

= −h

(
1 − Ch

2

)
∥∇L(x)∥2

.

Combining this with the PL condition and requiring 0 < h < 2/C (a standard step-size constraint), we get

L(T (x)) − L(x) ≤ −h

(
1 − Ch

2

)
∥∇L(x)∥2 ≤ −2hµ

(
1 − Ch

2

)
L(x).

This yields the key contraction result:

L(T (x)) ≤ (1 − hµ(2 − Ch)) L(x)

for sufficiently small h. The factor k := 1 − hµ(2 − Ch) < 1 represents the contraction rate. That is, for two
points x, y ∈ S, we have

d(Tx, Ty) = L(Tx) + L(Ty) ≤ kL(x) + kL(y) = kd(x, y),

establishing that T is a contraction in the loss pseudo-metric d.

Extension to Stochastic Mini-Batch Updates For stochastic gradient descent with mini-batches, we
consider transformations of the form

Ti(x) = x − h∇


 1

m

∑

j∈Ii

lj


 (x),

where Ii denotes a mini-batch (a subset of indices) of size m. Through a similar to above but more technical
argument (see (Bassily et al., 2018, p. 3-4)), one can show that

E [L(Ti(x))] ≤ kL(x),

for some contraction factor 0 < k < 1, provided the hyperparameters are chosen appropriately. The key insight
is that while individual mini-batch updates may not be contractions, they are contractions in expectation.

Application to the Backward Contraction Principle The contraction analysis established above
directly enables the application of our backward contraction principle (Theorem 2.2) to gradient-based
optimization. Several technical points ensure the theory applies seamlessly:

• Pseudo-metric compatibility: The contraction principle extends naturally from true metrics to
pseudo-metrics. In our loss pseudo-metric framework, the zero-loss set Z effectively becomes a single
point when passing to the metric completion, serving as the unique fixed point of both T and any Ti.

• Bounded displacement condition: The required condition (2) can be satisfied by restricting the
parameter space S. For instance, imposing L(θ) ≤ B for some bound B creates an invariant set since
gradient descent decreases L (and Ti decreases E[L]).
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• Stochastic contractions: For mini-batch updates that are only contractions in expectation, more
sophisticated analysis techniques are available (see Diaconis & Freedman (1999) and references
therein).

This framework provides the rigorous foundation needed to apply our backward iteration theory to practical
deep learning optimization algorithms.

35


	Introduction
	Related work

	A backward contraction principle
	A fundamental example of a contraction
	Relation between forward, backward, and generalization

	Two explicit examples on stochastic gradient descent
	Example: Quadratic loss
	Example: Learning dynamics close to minima

	Experiments
	Conclusion and future work
	Additional Experiments
	Regression on synthetic datasets
	MLP trained on Fashion-MNIST
	VGG-19 trained on CIFAR-10
	ResNet-50 trained on CIFAR-100
	Backward stabilization after forward iterations
	Continued stability of backward SGD throughout training.

	Additional seeds to plots in the main paper
	All 5-seeds for ResNet-18 trained on CIFAR-10; cf. figure:traininglossescifar10resnet18
	All 5-seeds for MLP trained on FashionMNIST; cf. figure:intermittentbackwardfashionmnist

	Toward an approximate backward SGD
	Approximate implicit regularization of smaller batches
	The effect of small batches
	Explicit regularization through iteration order averages
	Experiments


	Proof of thm:backwardforward
	Definitions
	Proof

	Proof of lem:contraction
	Discussion on the assumption of contractions.

