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Abstract

Humans acquire language in a compositional
and grounded manner. They can describe
their perceptual world using novel compo-
sitions from already learnt elementary con-
cepts. However, recent research shows that
modern neural networks lack such composi-
tional generalization ability. To address this
challenge, in this paper, we propose MetaVL,
a meta-transfer learning framework to train
transformer-based vision-and-language (V&L)
models using optimization-based meta-learning
method and episodic training. We carefully
created two datasets based on MSCOCO and
Flicker30K to specifically target novel compo-
sitional concept learning. Our empirical results
have shown that MetaVL outperforms baseline
models in both datasets. Moreover, MetaVL
has demonstrated higher sample efficiency com-
pared to supervised learning, especially under
the few-shot setting.

1 Introduction

Acquiring language is the process of learning
words from the surrounding environment. Humans
acquire language in a compositional and grounded
manner. They can combine words in novel ways
to describe their perceptual world, although these
novel compositions may have never been seen be-
fore. It would be desirable for intelligent systems
to have such compositional generalization abil-
ity (Lake et al., 2017).

To address this issue, recent years have seen
an increasing amount of work on grounded com-
positional concept learning (GCCL) which learns
to describe perceptual world by composing novel
concepts from previously learnt words. There are
mainly two lines of work to formulate the GCCL
problem. The first line of work studies compo-
sitional attribute-object pair learning and frames
GCCL as a classification problem within the zero-
shot learning (ZSL) framework(Misra et al., 2017;
Nagarajan and Grauman, 2018). The second line
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Figure 1: An illustration of Grounded Compositional
Concept Learning(GCCL). For example, given concepts
(red, bus) and (old chair) in the training data, the goal
is to learn to predict novel compositional concept(red,
chair) as masked token prediction at testing time.

frames GCCL as masked token prediction problem
as proposed in (Jin et al., 2020; Suris et al., 2020).
Our work follows the second line of formulation.
Given a paired image-caption item with the target
compositional concepts masked from the caption,
models are expected to predict the masked con-
cepts based on both linguistic and visual context.
For example, as shown in Figure 1, suppose the
models have learned primitive concepts such as red
and chair from the training data, the models are
expected to predict novel compositional concepts
e.g., red chair in the testing data even though they
have never appeared in the training data.

By framing GCCL as a masked token predic-
tion problem, current literature mainly employs
transformer-based V&L models to solve the prob-
lem. Although self-supervised pre-training V&L
models, such as VLBERT (Su et al., 2020) and
LXMERT (Tan and Bansal, 2019), have achieved
huge success and become the off-the-shelf encod-
ing tools for downstream cross-modal applications,
it has been recently noted that: 1) they are not
data-efficient and typically require large amounts
of fine-tuning data for satisfactory performance
on the downstream tasks; and 2) pre-trained V&L
models lack task-specific knowledge and ignore the



discrepancy between pre-training tasks and down-
stream tasks which make it challenging to deploy
such models in a low-resource setting. It is partic-
ularly challenging for our GCCL problem as the
goal is to learn new compositional concepts which
do not appear in the training data.

To address these issues, we propose a meta-
transfer trained V&L model (MetaVL) for
grounded compositional concept learning. Based
on Model-Agnostic Meta-Learning(MAML) (Finn
et al., 2017), MetaVL accumulates compositional
knowledge by training through episodes. Each
episode consists of a support set and a query set.
Examples in the support set are used to learn el-
ement concepts, while examples in the query set
are used to learn how element concepts are com-
posed together to form a compositional concept. In
addition, we combine MAML with transfer learn-
ing to exploit large-scale data through pre-training,
similar to Sun et al. and Soh et al.. We fur-
ther created two datasets based on MSCOCO and
Flicker30K to specifically target novel composi-
tional concept learning. Our empirical results have
shown that MetaVL outperforms baseline models in
both datasets. Moreover, MetaVL has demonstrated
higher sample efficiency compared to supervised
learning, especially under the few-shot setting.

The contributions of this work are the two folds.
First, to the best of our knowledge, we are among
the first to use the meta-learning framework on
GCCL that achieves better performance compared
to other transformer-based V&L models. It has
demonstrated higher sample efficiency, especially
under the few shot setting. Second, we have cre-
ated two datasets, carefully curated for evaluating
GCCL.These datasets will be made available to
the community to support future research in this
emerging area.

2 Related Work

2.1 Meta Learning

Meta learning, also known as learning to learn,
aims to solve a low-resource problem by leverag-
ing the learnt experience from a set of related tasks.
Meta-learning algorithms deal with the problem of
efficient learning so that they can learn new con-
cepts or skills fast with just a few seen examples
(few-shot setting) or even no seen examples (zero-
shot setting). There are mainly three categories of
meta-learning methods: 1) Metric-based methods
learn a metric or distance function over tasks (Sung

et al., 2018; Snell et al., 2017). 2) Model-based
methods aim to design an architecture or a training
process for rapid generalization across tasks (Ravi
and Larochelle, 2016; Munkhdalai et al., 2018).
3) Optimization-based methods directly adjust the
optimization algorithm to enable quick adaptation
with just a few examples (Nichol et al., 2018; Finn
et al., 2017). Meta learning has also been widely
deployed in NLP field (Gu et al., 2018; Dou et al.,
2019; Holla et al., 2020) recently to address the
low-resource language processing problems.

2.2 Compositional Learning

Compositional learning is the key component of hu-
man intelligence and has been widely studied in the
contexts of human-object interactions(HOI) (Kato
et al., 2018; Hou et al., 2020), attribute-object learn-
ing (Nagarajan and Grauman, 2018; Misra et al.,
2017), natural language processing (Lake, 2019;
Nye et al., 2020) and language acquisition (Jin
et al., 2020; Suris et al., 2020). Our work falls into
the language acquisition category.

MetaVL has the similar problem formalization
as (Jin et al., 2020) and (Suris et al., 2020), but
different from their work. First, MetaVL focuses
on compositional concept learning, not composi-
tional phrase learning. Compositional concepts can
be distributed in different parts of a sentence, not
always in continuous phrase, which is a more ratio-
nal and challenging compositional learning setting.
Second, MetaVL adopts optimization-based meta-
learning method to enhance the base V&L model’s
compositional ability instead of checking such com-
positional ability in continual setting. Suris et al.
propose an episodic framework for grounded con-
cept learning. Different from this work, MetaVL
has a different learning setting and do not need to
give a reference set in test time.

3 Problem and Dataset

3.1 Problem Formulation

Following Jin et al.’s work, we formulate GCCL
as the grounded masked token prediction. In this
setting, the training example is a four element tu-
ple, X = (Ximga Xbbox ; Xtexts Xlabel) , Where Ximg
and Xppox are the image and the annotated bound-
ing boxes, X 1S the related caption with the com-
positional concept Xjahe] masked out. The models
are expected to predict the masked compostional
concepts Xjahel during test time. Different from (Jin
et al., 2020) setting, the compositional concepts
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Figure 2: An illustration of MetaVL’s meta-learning process. Each episode is designed to teach the base V&L model
to learn and compose the primitive concepts(i.e., "red", "chair") in the support set to recognize the compositional
concept(i.e., "red chair") in the query set. The parameter updating within one episode happens in two levels:
fast-update using element concepts from the support set and meta-update using the query set detailed in Section 5.3.

Img_ID is from MSCOCO.

in GCCL do not need to be continuous phrases,
which is a more realistic setting for compositonal
learning (see Section 3.2). Moreover, we clarify
the concept-related terms as follows:

* Primitive or element concept is the constituent
of compositional concepts. It can be a verb,
an adjective or a noun in GCCL. For example,
red and car are element concepts regarding
composiitonal concpet red car.

* Compositional or pair concepts refers to
adjective-noun and verb-noun pairs in GCCL,
including seen compositions and novel com-
positions based on whether we see them dur-
ing the training time.

3.2 Dataset Construction

Nikolaus et al. introduce novel compositional data
split designed to evaluate the image-captioning
models’ compositional ability based on MSCOCO
dataset. They select 24 pairs as novel compositions
and remove images related to these 24 pairs from
the training dataset. Then, they check whether cur-
rent SoTA captioning models can generate captions
containing the 24 pairs which are never seen during
training time. Following Nikolaus et al.’s work, Jin
et al. utilize the same data split to check current
V&LModel’s compositional ability on phrase learn-
ing under the continual learning setting. However,
based on their extracting rules, most of the phrases
are in the form of article + noun, like the car and
a man, instead of the original adj/verb-noun pairs

which may not be sufficient to evaluate composi-
tional learning ability.

In order to evaluate and improve V&L model’s
compositional ability, we build our GCCL bench-
marks ComptCOCO using Nikolaus et al.’s extract-
ing rules and data split, but mask out the exact 24
held-out adj/verb-noun pairs from captions. More-
over, to verify MetaVL’s compositional general-
izing ability, we further use the same pairs and
extracting rules to construct ComptFlirck from
Flirkr30k Entities (Plummer et al., 2015) with
statistics in Table 3.

Concretely, we construct data items by scanning
each image-caption pair in the captioning dataset.
For the caption input, we parse the caption using
Stanza (Qi et al., 2020), extract and mask verb-
noun pairs and adj-noun pairs using the part-of-
speech (POS) and dependency information follow-
ing the extracting rules in Appendix B. For the
image part, we use Detectron-2 (Wu et al., 2019)!
to extract the image and regional features from the
ground truth bounding boxes without any object
label or attribute information. Here, each image-
caption pair is transformed into a series of text
tokens and visual tokens in addition with the ex-
tracted compositional concept’s information, in-
cluding the token indexes and the token labels.

"https://github.com/facebookresearch/detectron2



4 MetaVL Models
4.1 Base Model

We use V&L models as our base model to predict
compositional concepts. We choose VLBERT(Su
et al., 2020) and LXMERT(Tan and Bansal, 2019)
in this work. Both models take the above visual
and textual tokens as input and adopt a simple yet
powerful stack of self-attention blocks (Vaswani
et al., 2017) to extract fused multi-modal repre-
sentation for each token. The difference is that
VLBERT treats image and text jointly by a sin-
gle self-attention encoder known as single-stream
V&L model, while LXMERT is a dual-stream
V&L model which processes each modality data
separately before joint cross-modal information fu-
sion (Bugliarello et al., 2020). We will compare the
performance of such single-stream and two-stream
V&L performance for GCCL in this work.

Given the above visual and textual tokens,
after adding special tokens and masking out
compositional concept, we obtain the input as x =
([els]ty, ...[mask], ...t;, [sep], vi41, ...vN, [sep])
where the compositional concepts are replaced
with [mask] tokens. The V&L model takes x
and predict the masked tokens to conduct the
compostional concept learning process. A V&L
model fy in GCCL consists of two modules:
a self-attention multimodal encoder e, and a
concept predicting head hy where 6 = ¢ U ¢ and
Jo = hg(ey). fo accepts input = and calculates
d-dimensional contextual representations v; for
each token using encoder ey, and use hy to do
prediction using the masked token’s representation
Ulmask]-

In GCCL, V&L models are expected to learn
compositional concepts Xjape by learning both ele-
ment concept meaning and composing rules from
the training items. Moreover, V&L models in
GCCL are trained from the scratch to 1) avoid hav-
ing the novel concept knowledge by loading the
pre-trained weights, 2) fair comparison with (Jin
et al., 2020; Suris et al., 2020) and 3) simulate the
language acquisition process.

4.2 Optimization-based Meta-Learning

In this section, we discuss two optimization-based
meta-learning methods used in GCCL: MAML and
FOMAML.

MAML. We employ MAML (Finn et al., 2017),
an optimization-based meta-learning framework ,
to address the compostional learning problem. Gen-

erally, MAML attempts to learn how to learn model
parameters across episodes. In GCCL, MAML is
trained on episodes D; = {D;"?, D"} composed
by support set D;"“" which focus on element learn-
ing and query set D{"¥ which focus on composing
learning. Intuitively, MAML encourages optimiza-
tion on the element support examples to have a
positive effect on the compositional query exam-
ples and balance the concept recognition ability
between element concepts and compositional con-
cepts. When given an episode, MAML conducts
the following steps:

* Initialization. Create fast model by copying
the meta model. The fast model can be treated
as the task-specific model and learns the com-
positional concept in the current task.

* Inner update(meta-train). Training fast model
on the support set D;"" by a few gradient
descent steps using Equation 1. In this step,
MetaVL learns element concepts from task ¢
and L is the cross-entropy loss function.

0=0—aVyL; (6,D"P) (1)

* QOuter update(meta-test). Applying the fast-
updated model on the query set DY and use
the compositional loss on a batch of query
sets to update parameters using Equation 2.
In this step, MetaVL learns the composing
rule by optimizing through gradient updating
procedure.

0=0-pVsd L (é, Dgry) 2)

FOMAML. The standard MAML needs to
explicitly calculate gradients from 6’ with re-
spect to # by differentiating through the optimizer
and needs to calculate the Hessian matrix. FO-
MAML simplifies the MAML implementation
as Equation 3 which doesn’t treat 6’ as a func-

tion of 6 and assumes V; >, L; (é,DgTy> ~
VoY, Li (é,Dg’”y> (Finn et al., 2017). FO-
MAML ignores the Hessian matrix and is a first-

order approximation of MAML. We compare its
performance with FOMAML later.

6=0-5v,5 L (é, Dg’"y) 3)

*Task and episode have the same meaning in our MetaVL
setting. We use them interchangeably in this paper.
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Figure 3: The meta-transfer learning framework for
MetaVL. It includes three phases: pre-training phase,
meta-learning phase and compositional test phase.

S Meta-Transfer Training Pipeline

In conventional supervised learning, we usually
assume the training items and the test items are
from the same distribution. However, in GCCL,
especially in the novel compositonal learning set-
ting, this assumption does not hold. To address
the compositional learning problems, we use meta-
transfer pipeline to train MetaVL as (Sun et al.,
2020; Soh et al., 2020). As shown in Figure 3,
the overall meta-transfer training pipeline consists
of three phases: 1) in transfer learning phase, we
train MetaVL using all concepts, including element
concepts and compositional concepts, to obtain the
pre-trained parameters and transfer to the meta-
training phase. 2) in meta-learning phase, we con-
struct episodes to mimic the GCCL scenario and
train MetaVL using MAML. 3) in the composi-
tional test phase, we test MetaVL using both seen
compositions and novel compositions. The meta-
transfer training pipeline for MetaVL is detailed in
Algirhtm 1.

5.1 Pre-training

At this phase, all training items are merged into
a conventional training dataset Dp. The goal of
the pre-training phase is to obtain relatively good
parameters and equip the V&L models with basic
ability to conduct concept recognition. Specifically,
given an item xi = (Xiimg’ Xf)box7 X%ext’ Xfabel)’ we
randomly choose to mask out one single element
concept or compositional concept corresponding to
element concept learning or compositional concept
learning. We use the cross-entropy loss as Equa-
tion 4 to update parameters in this phase where

L i i Ll
Ti = (Ximg7 Xbbox Xtext) and y; = Xlabel*

L(6;Dr)=— > logPy(yi|z:) (&)
z3,yi€Dr

The pre-trained V&L model can be biased to fre-

quent element and compositional concepts and lack

compostional ability. Therefore, after pre-training,

the parameters of 6§ are transferred to the next meta-

learning phase to enhance the compositional ability.

Algorithm 1: Training MetaVL for GCCL.

Input: item (Xilmgxi)bom X%ext’ Xfabel) ’
random initialized V&L model
fo = hg(ey), meta-transfer learning
parameters
Output: Optimized parameters § = 1) U ¢
/% Pre-train */
1 Pre-train (ey, hy) using Eq.4 and obtain
pre-trained parameters ¢'pre, Ppre
/+ Construct Episodes */
2 Construct Task Base 7; by sampling target
compositional concepts, element concepts
and related image-caption pairs described
in Section 5.2
/* Model-Agnostic Meta-Learning */
3 while not done do

4 for Each T; do
5 for Local Update Steps do
// Meta Train on Sup-Set
6 Compute V. L; (¢), Vg L; (P)
on DEUP.
7 Compute adapted parameters
with gradient descent:
8 V' =9 —aVyLr (0)
9 ¢ = ¢ —aVyLr (¢)
10 end
11 end
// Meta Test on Qry-Set
12 Compute Vi L; (1), Vg Li (¢) using
batch of D?ry
13 Update 1) and ¢ using either FOMAML
or MAML.
14 end
/% Compositional Test */

15 Perform compositional concept recognition
using meta-transfer updated parameters v
and ¢.

5.2 Episode Construction

Episode construction is one of the main challenges
for meta-learning (Holla et al., 2020; Wang et al.,



2021). Each episode in GCCL should be similar
to the test environment and mimic the composi-
tional learning process which requires both concept
learning ability and concept composing ability. To
build an compositional episode(CompEpisode), we
first sample a target compositional concept from
training dataset as virtual novel compositional con-
cept, then we sample K items for the selected con-
cept and mask the pair concepts and these K items
make up the query set. For the support set, for
each element concept in the selected compositional
concept, we sample K items for each element con-
cept and mask out the element concepts from the
captions. Notably, we control the selected com-
positional concepts in support set not appearing
in the query set to mimic the novel compositional
learning setting. Then each episode has 3K items
within which 2K items in the support set with el-
ement concepts masked and K items in the query
set with compositional concepts masked as shown
as Episode Generator in Figure 2 where K is set to
1 in this example. We define K, the item number
in the query set, as the shot number in GCCL and
we will study its effect in experiment section.

5.3 Meta-Learning

In this phase, we further fine-tune MetaVL us-
ing MAML and CompEpisodes. MetaVL’s meta-
learning occurs at two levels including local update
on the support set and meta update on a batch of
query sets.

Intuitively, meta-learning’s above bi-level opti-
mization (Rajeswaran et al., 2019) encourages the
optimization in the support set to have a positive
effect on the query set as well. In GCCL setting,
that means MetaVL learns pamameter 6 not only
beneficial to element concept recognition but also
beneficial to compositional concept recognition.

5.4 Inference

At test time, we only focus on composi-
tional concept prediction. Given an test item
(Xfmg» Xbbox: Xtext)s MetaVL predicts the masked
compositional concepts using the meta-transfer
trained @ without fine-tuning nor reference set us-
ing § = arg maXp(y|ximg’ Lbbox xtext) which is
different from Suris et al.’s setting. Because the
compositional concepts can be either novel pairs
or seen pairs during test time, we report the perfor-
mance under both settings.

6 Experiments

We created two datasets to evaluate the perfor-
mance of MetaVL. This section gives detailed eval-
uation and analysis.

6.1 Dataset

Two datasets are created for GCCL as follows:
CompCOCQO is constructed from COCO-captions’s
2014 split version. COCO-captions has 103175
training images and 15112 validation images in
the 2014 split (Lin et al., 2014; Chen et al., 2015).
Because MSCOCO does not provide test data, we
use the validation data as the testing data in Com-
pCOCO. Furthermore, we randomly sampled 500
instances from the training set as the validation set.
Moreover, we did some minor synonym modifica-
tions described in the Appendix A to extract more
clean concepts.

CompkFlickr is constructed from Flickr30k En-
tities (Plummer et al., 2015). Flickr30k con-
tains 276k manually annotated bounding boxes
for 31,783 images and a total of 158,915 En-
glish captions (five per image). We use the given
train/val/test split in our experiment.

6.2 Implementation Details

We use pytorch on NVIDIA 2080Ti to implement
all models and use Higher? to implement MAML
and FOMAML. The learning rate in pre-training
phase is 1e — 4 and in meta-learning is set to be — 5
for both inner updates and outer updates. Due to
V&LModel’s scale and computing resource lim-
itation, we set inner update to 1 in our MAML’s
implementation.

6.3 Evaluation Metrics.

To measure the GCCL performance, we use ac-
curacy as our primary metric. We also report
Perplexity (PPL) (Mikolov et al., 2011) as in Jin
et al.’s work. PPL measures the uncertainty about
MetaVL’s compositional prediction and is calcu-
lated as PPL(W) = —+ log P(W). Lower PPL
is preferred.

6.4 Baselines

We use two baselines in this evaluation. The first
baseline is the pre-trained baseline. It is exactly
the off-line baseline as in Jin et al.. It is also the pre-
trained model for MetaVL. The second baseline
is a meta-learning baseline Reptile (Nichol et al.,

3https://github.com/facebookresearch/higher



2018) to demonstrate the importance of episode
construction in GCCL. Reptile is another first-order
optimization-based meta-learning method. It up-
dates parameters using 6 < 0 + (%) — 9) where
9%) is the inner updated parameters after k steps.
Different from the MAML setting, it does not re-
quire tasks to have a query set. This makes it easier
in task construction.

6.5 Main Results

We report the performance under both seen compo-
sitions and novel compositions in this section.
Seen Compositions. Table 1 shows the perfor-
mance of different models under the seen setting
(i.e., predicting compositional concepts that have
appeared in the training set). From the table, we can
see that MetaVL, including FOMAML and MAML,
outperforms conventional pre-trained V&L models.
This suggests that MetaVL, through optimizing the
V&L model towards compositional generalization,
captures a representation which is beneficial for
compositional learning.

In contrast, while Reptile works well on few-
shot learning, it does not improve the performance
in GCCL. One reason is that Reptile does not have
a query set in their episode construction. There-
fore, it cannot capture how concepts are composed
through the query set as in MetaVL. In fact, query
sets are particularly important as they accumulate
knowledge on how element concepts are composed
together for learning compositional concepts.

V&L-Model VLBERT LXMERT
Metric Accu.t PPL] Accut PPL|
Pre-Train 0.5975 1.7421 0.6158 1.5632
8 Reptile 0.5962 1.7831 0.5998 1.7625
8 FOMAML 0.6137 1.6995 0.6290 1.5183
MAML 0.6201 1.7046  0.6429 1.5738
Pre-Train 0.5573  2.3632 0.5889 1.7631
% Reptile 0.5488 2.3575 0.5800 1.7701
£ FOMAML 0.5717 1.9956 0.6081 1.7258
MAML 0.5863 1.8741 0.6107 1.7022

Table 1: Results on Seen Compositional Concept.

Novel Compositions. As shown in Table 2,
MetaVL improves the performance on the novel
setting compared to pre-trained model and Reptile.
However, compared with seen compositions (i.e.,
Table 1), the performance on novel pairs drops sig-
nificantly across the board. Taking VLBERT on
CompCOCO as an example, the accuracy drops by
about 18%. This indicates the compositional gen-
eralization is still a very difficult task for current
V&L models.

V&L-Model VLBERT LXMERT
Metric Accu.t  PPL] Accuft PPL|
o Pre-Train 04180 2.2990 0.4222 2.1157
O Reptile 0.4017 2.3001 0.4239 2.1163
8 FOMAML 04312 2.1936 0.4483 2.7818
MAML 0.4593 1.9897 04728 2.015
Pre-Train 0.4758 2.3918 0.5213  2.0497
% Reptile 04689 24102 0.5173 2.1546
T FOMAML 0.5145 2.0013 0.5376  1.9983
MAML 0.5014 1.8452 0.5719 1.6778

Table 2: Results on Novel Compositional Concept.

Moreover, from Table 1 and Table 2, we can see
the following interesting results: 1) LXMERT (two-
stream V&L Model) has better performance com-
pared with VLBERT (single-stream V&L Model)
on both benchmarks which is worth further prob-
ing. 2) MAML outperforms its first-order approxi-
mation FOMAML. Hessian matrix may bring ad-
ditional information for compositonal learning in
MetaVL.

6.6 Ablation Study

Effect of Visual Input. In GCCL, one interest-
ing question is how much visual input helps con-
cept learning. To answer this question, we com-
pare three configurations: 1) Text-only Prediction:
zeroing-out all visual tokens and only keep the
text tokens as input; 2) Text + Image Prediction:
zeroing-out all bounding box tokens and keep text
tokens and the whole image token as input; and 3)
Text + Image + BBox Prediction: keep all text and
visual information as described earlier.

Figure 4a shows the importance of visual input
for MetaVL in GCCL. We can see that without
visual input, the accuracy drops from 0.62 to 0.42
on seen compositions and drops from 0.46 to 0.42
on seen compositions. Moreover, better contextual
information as given by the bounding boxes helps
MetaVL better learn compositional concepts.

Effect of Number of Episodes used for Learn-
ing. We examine how the number of episodes (i.e.,
tasks) used for learning in MetaVL may affect the
outcome. From Figure 4b, we can see the trend that
at the beginning the accuracy increases as MetaVL
trained on more tasks, reaches the peak at about
400 episode and keeps stable afterward even trained
on more episodes for both the seen and novel com-
positions.

Effect of Shot Number K in Each Episode. The
number of examples (i.e., in the support set and
the query set) in each episode may affect the learn-
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ing outcome. More training examples within one
episode may introduce ambiguity, as red in red
wine and red car have different meanings. We
varied different numbers of training examples in
each episode, i.e., K described in Section 5.2. Our
results have shown that 32 examples in our set-
ting has best performance (i.e, meaning the support
set has 32 object concepts and 32 verb/adjective
concepts and the query set has 32 compositional
concepts).

7 Meta-Learning Efficiency

One key advantage of meta learning is its ability
to learn how to learn a task through a small num-
ber of examples. In this section, we study the data
efficiency of meta-learning compared with the con-
ventional V&L model through supervised training
in the compositional leraning setting. We select
400 tasks as our training data and change the shot
number for each task. In this setting, meta-trained
and supervised-trained models access the same set
of data items. The difference is that MetaVL or-
ganized the data items into CompEpisodes and
supervised-trained model learn from all the items.
Fig. 5 shows that in both seen and novel settings,
MetaVL achieves better compositional ability com-
pared to supervised-learning. Empirically, meta-
learning has demonstrated a higher sample effi-

ciency as shown by the learning curves. Meta
learning is consistently better than conventional
supervised learning as it can leverage its past expe-
rience to solve new tasks. The difference is more
significantly under the few shot setting (e.g., 2-shot
setting).

8 Conclusion

In this paper, we propose MetaVL, a meta-transfer
trained V&L model, for grounded compositional
concept learning. It builds upon current V&L mod-
els and MAML to learn how to compose element
concepts together to form compositional concepts.
Our empirical results on two datasets have shown
that MetaVL consistently outperforms conventional
V&L models for GCCL. However, GCCL is still a
challenging open problem. Many problems remain.
Our future work will explore more cognitively plau-
sible models and explicitly address the grounding
ability in concept learning.
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A Modified MSCOCO Synonym

In order to extract more compositional concepts, we modify drier’s synonym list as : hair drier, hairdryer,
hair dryer, blow dryer, blow drier

B Extracting Rules

We use exact extracting rules of (Nikolaus et al., 2019) to extract verbs and adjectives for CompCOCO
and extract adjetives for CompFlickr

B.1 Adj-Noun Pair Extracting Rule

Adj Adj | [[Noun |
A brown and black horse inthe middle of the city eating grass.

AMOD AMOD

Adj Adj
An orange blue and white bus and a brown round structure behind it.
AMOD

Adj | [[Noun ]
A black cat is inside a white toilet.

NSUBJ

Adj
The big book bus is blue and yellow.

Figure 6: Rules to extract adj-noun pairs.

B.2 Verb-Noun Pair Extracting Rule

ACL

A large passenger airplane flying through the air.

ACL:RECL

An airplane that is, either, landing or just taking off .

NSUBJ

[ Noun | [ verb |
A cute kitten is sitting in a dish on a table.

Figure 7: Rules to extract verb-noun pairs.

C Statistics of Novel Pairs
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MSCOCO Flickr30K
Train Img.  Train Caps. TestImg. Test Caps. | Train Img. Train Caps. Vallmg. ValCaps. TestImg. Test Caps.

black bird 205 323 122 190 17 24 0 0 2 3
small dog 681 1067 316 481 360 612 11 12 17 33
white boat 373 261 196 134 69 85 0 0 3 8
big truck 417 601 191 288 28 38 0 0 1 1
eat horse 212 378 106 187 2 2 0 0 0 0
stand child 1288 1556 577 741 1048 1475 38 57 26 36
white horse 264 500 151 300 51 100 3 4 4 8
big cat 184 216 103 108 0 0 0 0 1 1
blue bus 276 506 143 243 11 16 0 0 0 0
small table 261 296 134 154 48 54 1 1 1 1
hold child 1328 1860 664 992 835 1289 27 37 35 60
stand bird 532 831 260 406 13 24 0 0 0 0
brown dog 613 878 291 430 934 1838 31 61 29 58
small cat 252 325 149 183 2 3 0 0 0 0
white truck 262 420 121 175 35 42 2 2 2 2
big plane 967 1345 357 494 5 5 0 0 0 0
ride woman 595 674 300 330 266 537 8 17 9 23
fly bird 245 526 132 283 29 53 0 0 0 0
black cat 840 1760 448 940 15 27 0 0 1 1
big bird 215 291 123 169 24 34 0 0 0 0
red bus 566 1212 232 474 11 20 0 0 1 1
small plane 481 833 158 279 13 20 0 0 0 0
eat man 555 698 250 314 153 272 4 5 5 10
lie woman 301 388 144 194 145 278 1 2 4 8

Table 3: Novel Pair Statistics for both CompCOCO and CompFlickr. For fair comparation, we use the same 24
pairs to verify the compositional generalization.
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