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Abstract

Humans acquire language in a compositional001
and grounded manner. They can describe002
their perceptual world using novel compo-003
sitions from already learnt elementary con-004
cepts. However, recent research shows that005
modern neural networks lack such composi-006
tional generalization ability. To address this007
challenge, in this paper, we propose MetaVL,008
a meta-transfer learning framework to train009
transformer-based vision-and-language (V&L)010
models using optimization-based meta-learning011
method and episodic training. We carefully012
created two datasets based on MSCOCO and013
Flicker30K to specifically target novel compo-014
sitional concept learning. Our empirical results015
have shown that MetaVL outperforms baseline016
models in both datasets. Moreover, MetaVL017
has demonstrated higher sample efficiency com-018
pared to supervised learning, especially under019
the few-shot setting.020

1 Introduction021

Acquiring language is the process of learning022

words from the surrounding environment. Humans023

acquire language in a compositional and grounded024

manner. They can combine words in novel ways025

to describe their perceptual world, although these026

novel compositions may have never been seen be-027

fore. It would be desirable for intelligent systems028

to have such compositional generalization abil-029

ity (Lake et al., 2017).030

To address this issue, recent years have seen031

an increasing amount of work on grounded com-032

positional concept learning (GCCL) which learns033

to describe perceptual world by composing novel034

concepts from previously learnt words. There are035

mainly two lines of work to formulate the GCCL036

problem. The first line of work studies compo-037

sitional attribute-object pair learning and frames038

GCCL as a classification problem within the zero-039

shot learning (ZSL) framework(Misra et al., 2017;040

Nagarajan and Grauman, 2018). The second line041

a large red bus
is driving down 
the street.

two teddy bears 
sitting on an old
chair together.

a man in black 
sits at a red 
table with red 
chairs

Learnt Element Concept: red, chair Compositional Concept: red chair

Figure 1: An illustration of Grounded Compositional
Concept Learning(GCCL). For example, given concepts
(red, bus) and (old chair) in the training data, the goal
is to learn to predict novel compositional concept(red,
chair) as masked token prediction at testing time.

frames GCCL as masked token prediction problem 042

as proposed in (Jin et al., 2020; Surís et al., 2020). 043

Our work follows the second line of formulation. 044

Given a paired image-caption item with the target 045

compositional concepts masked from the caption, 046

models are expected to predict the masked con- 047

cepts based on both linguistic and visual context. 048

For example, as shown in Figure 1, suppose the 049

models have learned primitive concepts such as red 050

and chair from the training data, the models are 051

expected to predict novel compositional concepts 052

e.g., red chair in the testing data even though they 053

have never appeared in the training data. 054

By framing GCCL as a masked token predic- 055

tion problem, current literature mainly employs 056

transformer-based V&L models to solve the prob- 057

lem. Although self-supervised pre-training V&L 058

models, such as VLBERT (Su et al., 2020) and 059

LXMERT (Tan and Bansal, 2019), have achieved 060

huge success and become the off-the-shelf encod- 061

ing tools for downstream cross-modal applications, 062

it has been recently noted that: 1) they are not 063

data-efficient and typically require large amounts 064

of fine-tuning data for satisfactory performance 065

on the downstream tasks; and 2) pre-trained V&L 066

models lack task-specific knowledge and ignore the 067
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discrepancy between pre-training tasks and down-068

stream tasks which make it challenging to deploy069

such models in a low-resource setting. It is partic-070

ularly challenging for our GCCL problem as the071

goal is to learn new compositional concepts which072

do not appear in the training data.073

To address these issues, we propose a meta-074

transfer trained V&L model (MetaVL) for075

grounded compositional concept learning. Based076

on Model-Agnostic Meta-Learning(MAML) (Finn077

et al., 2017), MetaVL accumulates compositional078

knowledge by training through episodes. Each079

episode consists of a support set and a query set.080

Examples in the support set are used to learn el-081

ement concepts, while examples in the query set082

are used to learn how element concepts are com-083

posed together to form a compositional concept. In084

addition, we combine MAML with transfer learn-085

ing to exploit large-scale data through pre-training,086

similar to Sun et al. and Soh et al.. We fur-087

ther created two datasets based on MSCOCO and088

Flicker30K to specifically target novel composi-089

tional concept learning. Our empirical results have090

shown that MetaVL outperforms baseline models in091

both datasets. Moreover, MetaVL has demonstrated092

higher sample efficiency compared to supervised093

learning, especially under the few-shot setting.094

The contributions of this work are the two folds.095

First, to the best of our knowledge, we are among096

the first to use the meta-learning framework on097

GCCL that achieves better performance compared098

to other transformer-based V&L models. It has099

demonstrated higher sample efficiency, especially100

under the few shot setting. Second, we have cre-101

ated two datasets, carefully curated for evaluating102

GCCL.These datasets will be made available to103

the community to support future research in this104

emerging area.105

2 Related Work106

2.1 Meta Learning107

Meta learning, also known as learning to learn,108

aims to solve a low-resource problem by leverag-109

ing the learnt experience from a set of related tasks.110

Meta-learning algorithms deal with the problem of111

efficient learning so that they can learn new con-112

cepts or skills fast with just a few seen examples113

(few-shot setting) or even no seen examples (zero-114

shot setting). There are mainly three categories of115

meta-learning methods: 1) Metric-based methods116

learn a metric or distance function over tasks (Sung117

et al., 2018; Snell et al., 2017). 2) Model-based 118

methods aim to design an architecture or a training 119

process for rapid generalization across tasks (Ravi 120

and Larochelle, 2016; Munkhdalai et al., 2018). 121

3) Optimization-based methods directly adjust the 122

optimization algorithm to enable quick adaptation 123

with just a few examples (Nichol et al., 2018; Finn 124

et al., 2017). Meta learning has also been widely 125

deployed in NLP field (Gu et al., 2018; Dou et al., 126

2019; Holla et al., 2020) recently to address the 127

low-resource language processing problems. 128

2.2 Compositional Learning 129

Compositional learning is the key component of hu- 130

man intelligence and has been widely studied in the 131

contexts of human-object interactions(HOI) (Kato 132

et al., 2018; Hou et al., 2020), attribute-object learn- 133

ing (Nagarajan and Grauman, 2018; Misra et al., 134

2017), natural language processing (Lake, 2019; 135

Nye et al., 2020) and language acquisition (Jin 136

et al., 2020; Surís et al., 2020). Our work falls into 137

the language acquisition category. 138

MetaVL has the similar problem formalization 139

as (Jin et al., 2020) and (Surís et al., 2020), but 140

different from their work. First, MetaVL focuses 141

on compositional concept learning, not composi- 142

tional phrase learning. Compositional concepts can 143

be distributed in different parts of a sentence, not 144

always in continuous phrase, which is a more ratio- 145

nal and challenging compositional learning setting. 146

Second, MetaVL adopts optimization-based meta- 147

learning method to enhance the base V&L model’s 148

compositional ability instead of checking such com- 149

positional ability in continual setting. Surís et al. 150

propose an episodic framework for grounded con- 151

cept learning. Different from this work, MetaVL 152

has a different learning setting and do not need to 153

give a reference set in test time. 154

3 Problem and Dataset 155

3.1 Problem Formulation 156

Following Jin et al.’s work, we formulate GCCL 157

as the grounded masked token prediction. In this 158

setting, the training example is a four element tu- 159

ple, X =
(
ximg,xbbox,xtext,xlabel

)
, where ximg 160

and xbbox are the image and the annotated bound- 161

ing boxes, xtext is the related caption with the com- 162

positional concept xlabel masked out. The models 163

are expected to predict the masked compostional 164

concepts xlabel during test time. Different from (Jin 165

et al., 2020) setting, the compositional concepts 166
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Meta Update
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Base V&L Model

Episodes Generator

Figure 2: An illustration of MetaVL’s meta-learning process. Each episode is designed to teach the base V&L model
to learn and compose the primitive concepts(i.e., "red", "chair") in the support set to recognize the compositional
concept(i.e., "red chair") in the query set. The parameter updating within one episode happens in two levels:
fast-update using element concepts from the support set and meta-update using the query set detailed in Section 5.3.
Img_ID is from MSCOCO.

in GCCL do not need to be continuous phrases,167

which is a more realistic setting for compositonal168

learning (see Section 3.2). Moreover, we clarify169

the concept-related terms as follows:170

• Primitive or element concept is the constituent171

of compositional concepts. It can be a verb,172

an adjective or a noun in GCCL. For example,173

red and car are element concepts regarding174

composiitonal concpet red car.175

• Compositional or pair concepts refers to176

adjective-noun and verb-noun pairs in GCCL,177

including seen compositions and novel com-178

positions based on whether we see them dur-179

ing the training time.180

3.2 Dataset Construction181

Nikolaus et al. introduce novel compositional data182

split designed to evaluate the image-captioning183

models’ compositional ability based on MSCOCO184

dataset. They select 24 pairs as novel compositions185

and remove images related to these 24 pairs from186

the training dataset. Then, they check whether cur-187

rent SoTA captioning models can generate captions188

containing the 24 pairs which are never seen during189

training time. Following Nikolaus et al.’s work, Jin190

et al. utilize the same data split to check current191

V&LModel’s compositional ability on phrase learn-192

ing under the continual learning setting. However,193

based on their extracting rules, most of the phrases194

are in the form of article + noun, like the car and195

a man, instead of the original adj/verb-noun pairs196

which may not be sufficient to evaluate composi- 197

tional learning ability. 198

In order to evaluate and improve V&L model’s 199

compositional ability, we build our GCCL bench- 200

marks ComptCOCO using Nikolaus et al.’s extract- 201

ing rules and data split, but mask out the exact 24 202

held-out adj/verb-noun pairs from captions. More- 203

over, to verify MetaVL’s compositional general- 204

izing ability, we further use the same pairs and 205

extracting rules to construct ComptFlirck from 206

Flirkr30k Entities (Plummer et al., 2015) with 207

statistics in Table 3. 208

Concretely, we construct data items by scanning 209

each image-caption pair in the captioning dataset. 210

For the caption input, we parse the caption using 211

Stanza (Qi et al., 2020), extract and mask verb- 212

noun pairs and adj-noun pairs using the part-of- 213

speech (POS) and dependency information follow- 214

ing the extracting rules in Appendix B. For the 215

image part, we use Detectron-2 (Wu et al., 2019)1 216

to extract the image and regional features from the 217

ground truth bounding boxes without any object 218

label or attribute information. Here, each image- 219

caption pair is transformed into a series of text 220

tokens and visual tokens in addition with the ex- 221

tracted compositional concept’s information, in- 222

cluding the token indexes and the token labels. 223

1https://github.com/facebookresearch/detectron2
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4 MetaVL Models224

4.1 Base Model225

We use V&L models as our base model to predict226

compositional concepts. We choose VLBERT(Su227

et al., 2020) and LXMERT(Tan and Bansal, 2019)228

in this work. Both models take the above visual229

and textual tokens as input and adopt a simple yet230

powerful stack of self-attention blocks (Vaswani231

et al., 2017) to extract fused multi-modal repre-232

sentation for each token. The difference is that233

VLBERT treats image and text jointly by a sin-234

gle self-attention encoder known as single-stream235

V&L model, while LXMERT is a dual-stream236

V&L model which processes each modality data237

separately before joint cross-modal information fu-238

sion (Bugliarello et al., 2020). We will compare the239

performance of such single-stream and two-stream240

V&L performance for GCCL in this work.241

Given the above visual and textual tokens,242

after adding special tokens and masking out243

compositional concept, we obtain the input as x =244

([cls]t1, ...[mask], ...tl, [sep], vl+1, ...vN , [sep])245

where the compositional concepts are replaced246

with [mask] tokens. The V&L model takes x247

and predict the masked tokens to conduct the248

compostional concept learning process. A V&L249

model fθ in GCCL consists of two modules:250

a self-attention multimodal encoder eψ and a251

concept predicting head hϕ where θ = ψ ∪ ϕ and252

fθ = hϕ(eψ). fθ accepts input x and calculates253

d-dimensional contextual representations vi for254

each token using encoder eψ and use hϕ to do255

prediction using the masked token’s representation256

v[mask].257

In GCCL, V&L models are expected to learn258

compositional concepts xlabel by learning both ele-259

ment concept meaning and composing rules from260

the training items. Moreover, V&L models in261

GCCL are trained from the scratch to 1) avoid hav-262

ing the novel concept knowledge by loading the263

pre-trained weights, 2) fair comparison with (Jin264

et al., 2020; Surís et al., 2020) and 3) simulate the265

language acquisition process.266

4.2 Optimization-based Meta-Learning267

In this section, we discuss two optimization-based268

meta-learning methods used in GCCL: MAML and269

FOMAML.270

MAML. We employ MAML (Finn et al., 2017),271

an optimization-based meta-learning framework ,272

to address the compostional learning problem. Gen-273

erally, MAML attempts to learn how to learn model 274

parameters across episodes2. In GCCL, MAML is 275

trained on episodes Di = {Dsupi ,Dqryi } composed 276

by support set Dsupi which focus on element learn- 277

ing and query set Dqryi which focus on composing 278

learning. Intuitively, MAML encourages optimiza- 279

tion on the element support examples to have a 280

positive effect on the compositional query exam- 281

ples and balance the concept recognition ability 282

between element concepts and compositional con- 283

cepts. When given an episode, MAML conducts 284

the following steps: 285

• Initialization. Create fast model by copying 286

the meta model. The fast model can be treated 287

as the task-specific model and learns the com- 288

positional concept in the current task. 289

• Inner update(meta-train). Training fast model 290

on the support set Dsupi by a few gradient 291

descent steps using Equation 1. In this step, 292

MetaVL learns element concepts from task i 293

and L is the cross-entropy loss function. 294

θ̂ = θ − α∇θLi (θ,Dsupi ) (1) 295

• Outer update(meta-test). Applying the fast- 296

updated model on the query set Dqryi and use 297

the compositional loss on a batch of query 298

sets to update parameters using Equation 2. 299

In this step, MetaVL learns the composing 300

rule by optimizing through gradient updating 301

procedure. 302

θ = θ − β∇θ
∑
i

Li
(
θ̂,Dqryi

)
(2) 303

FOMAML. The standard MAML needs to 304

explicitly calculate gradients from θ′ with re- 305

spect to θ by differentiating through the optimizer 306

and needs to calculate the Hessian matrix. FO- 307

MAML simplifies the MAML implementation 308

as Equation 3 which doesn’t treat θ′ as a func- 309

tion of θ and assumes ∇θ̂
∑

i Li
(
θ̂,Dqryi

)
≈ 310

∇θ
∑

i Li
(
θ̂,Dqryi

)
(Finn et al., 2017). FO- 311

MAML ignores the Hessian matrix and is a first- 312

order approximation of MAML. We compare its 313

performance with FOMAML later. 314

θ = θ − β∇θ̂
∑
i

Li
(
θ̂,Dqryi

)
(3) 315

2Task and episode have the same meaning in our MetaVL
setting. We use them interchangeably in this paper.
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Figure 3: The meta-transfer learning framework for
MetaVL. It includes three phases: pre-training phase,
meta-learning phase and compositional test phase.

5 Meta-Transfer Training Pipeline316

In conventional supervised learning, we usually317

assume the training items and the test items are318

from the same distribution. However, in GCCL,319

especially in the novel compositonal learning set-320

ting, this assumption does not hold. To address321

the compositional learning problems, we use meta-322

transfer pipeline to train MetaVL as (Sun et al.,323

2020; Soh et al., 2020). As shown in Figure 3,324

the overall meta-transfer training pipeline consists325

of three phases: 1) in transfer learning phase, we326

train MetaVL using all concepts, including element327

concepts and compositional concepts, to obtain the328

pre-trained parameters and transfer to the meta-329

training phase. 2) in meta-learning phase, we con-330

struct episodes to mimic the GCCL scenario and331

train MetaVL using MAML. 3) in the composi-332

tional test phase, we test MetaVL using both seen333

compositions and novel compositions. The meta-334

transfer training pipeline for MetaVL is detailed in335

Algirhtm 1.336

5.1 Pre-training337

At this phase, all training items are merged into338

a conventional training dataset DT . The goal of339

the pre-training phase is to obtain relatively good340

parameters and equip the V&L models with basic341

ability to conduct concept recognition. Specifically,342

given an item xi = (xiimg,x
i
bbox,x

i
text,x

i
label), we343

randomly choose to mask out one single element344

concept or compositional concept corresponding to345

element concept learning or compositional concept346

learning. We use the cross-entropy loss as Equa-347

tion 4 to update parameters in this phase where348

xi = (xiimg,x
i
bbox,x

i
text) and yi = xilabel.349

L (θ;DT ) = −
∑

xi,yi∈DT

logPθ(yi | xi) (4) 350

The pre-trained V&L model can be biased to fre- 351

quent element and compositional concepts and lack 352

compostional ability. Therefore, after pre-training, 353

the parameters of θ are transferred to the next meta- 354

learning phase to enhance the compositional ability. 355

Algorithm 1: Training MetaVL for GCCL.

Input: item
(
xiimgx

i
bbox,x

i
text,x

i
label

)
,

random initialized V&L model
fθ = hϕ(eψ), meta-transfer learning
parameters

Output: Optimized parameters θ = ψ ∪ ϕ
/* Pre-train */

1 Pre-train (eψ, hϕ) using Eq.4 and obtain
pre-trained parameters ψpre, ϕpre

/* Construct Episodes */

2 Construct Task Base Ti by sampling target
compositional concepts, element concepts
and related image-caption pairs described
in Section 5.2

/* Model-Agnostic Meta-Learning */

3 while not done do
4 for Each Ti do
5 for Local Update Steps do

// Meta Train on Sup-Set

6 Compute ∇ψLi (ψ),∇ϕLi (ϕ)
on Dsup

i .
7 Compute adapted parameters

with gradient descent:
8 ψ′ = ψ − α∇ψLTi (θ)
9 ϕ′ = ϕ− α∇ϕLTi (ϕ)

10 end
11 end

// Meta Test on Qry-Set

12 Compute ∇ψ′Li (ψ),∇ϕ′Li (ϕ) using
batch of Dqry

i

13 Update ψ and ϕ using either FOMAML
or MAML.

14 end
/* Compositional Test */

15 Perform compositional concept recognition
using meta-transfer updated parameters ψ
and ϕ.

5.2 Episode Construction 356

Episode construction is one of the main challenges 357

for meta-learning (Holla et al., 2020; Wang et al., 358
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2021). Each episode in GCCL should be similar359

to the test environment and mimic the composi-360

tional learning process which requires both concept361

learning ability and concept composing ability. To362

build an compositional episode(CompEpisode), we363

first sample a target compositional concept from364

training dataset as virtual novel compositional con-365

cept, then we sample K items for the selected con-366

cept and mask the pair concepts and these K items367

make up the query set. For the support set, for368

each element concept in the selected compositional369

concept, we sample K items for each element con-370

cept and mask out the element concepts from the371

captions. Notably, we control the selected com-372

positional concepts in support set not appearing373

in the query set to mimic the novel compositional374

learning setting. Then each episode has 3K items375

within which 2K items in the support set with el-376

ement concepts masked and K items in the query377

set with compositional concepts masked as shown378

as Episode Generator in Figure 2 where K is set to379

1 in this example. We define K, the item number380

in the query set, as the shot number in GCCL and381

we will study its effect in experiment section.382

5.3 Meta-Learning383

In this phase, we further fine-tune MetaVL us-384

ing MAML and CompEpisodes. MetaVL’s meta-385

learning occurs at two levels including local update386

on the support set and meta update on a batch of387

query sets.388

Intuitively, meta-learning’s above bi-level opti-389

mization (Rajeswaran et al., 2019) encourages the390

optimization in the support set to have a positive391

effect on the query set as well. In GCCL setting,392

that means MetaVL learns pamameter θ not only393

beneficial to element concept recognition but also394

beneficial to compositional concept recognition.395

5.4 Inference396

At test time, we only focus on composi-397

tional concept prediction. Given an test item398

(xiimg,x
i
bbox,x

i
text), MetaVL predicts the masked399

compositional concepts using the meta-transfer400

trained θ without fine-tuning nor reference set us-401

ing ŷ = argmax p(y|ximg, xbbox, xtext) which is402

different from Surís et al.’s setting. Because the403

compositional concepts can be either novel pairs404

or seen pairs during test time, we report the perfor-405

mance under both settings.406

6 Experiments 407

We created two datasets to evaluate the perfor- 408

mance of MetaVL. This section gives detailed eval- 409

uation and analysis. 410

6.1 Dataset 411

Two datasets are created for GCCL as follows: 412

CompCOCO is constructed from COCO-captions’s 413

2014 split version. COCO-captions has 103175 414

training images and 15112 validation images in 415

the 2014 split (Lin et al., 2014; Chen et al., 2015). 416

Because MSCOCO does not provide test data, we 417

use the validation data as the testing data in Com- 418

pCOCO. Furthermore, we randomly sampled 500 419

instances from the training set as the validation set. 420

Moreover, we did some minor synonym modifica- 421

tions described in the Appendix A to extract more 422

clean concepts. 423

CompFlickr is constructed from Flickr30k En- 424

tities (Plummer et al., 2015). Flickr30k con- 425

tains 276k manually annotated bounding boxes 426

for 31, 783 images and a total of 158, 915 En- 427

glish captions (five per image). We use the given 428

train/val/test split in our experiment. 429

6.2 Implementation Details 430

We use pytorch on NVIDIA 2080Ti to implement 431

all models and use Higher3 to implement MAML 432

and FOMAML. The learning rate in pre-training 433

phase is 1e−4 and in meta-learning is set to 5e−5 434

for both inner updates and outer updates. Due to 435

V&LModel’s scale and computing resource lim- 436

itation, we set inner update to 1 in our MAML’s 437

implementation. 438

6.3 Evaluation Metrics. 439

To measure the GCCL performance, we use ac- 440

curacy as our primary metric. We also report 441

Perplexity (PPL) (Mikolov et al., 2011) as in Jin 442

et al.’s work. PPL measures the uncertainty about 443

MetaVL’s compositional prediction and is calcu- 444

lated as PPL(W ) = − 1
N logP (W ). Lower PPL 445

is preferred. 446

6.4 Baselines 447

We use two baselines in this evaluation. The first 448

baseline is the pre-trained baseline. It is exactly 449

the off-line baseline as in Jin et al.. It is also the pre- 450

trained model for MetaVL. The second baseline 451

is a meta-learning baseline Reptile (Nichol et al., 452

3https://github.com/facebookresearch/higher
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2018) to demonstrate the importance of episode453

construction in GCCL. Reptile is another first-order454

optimization-based meta-learning method. It up-455

dates parameters using θ ← θ + ϵ(θ(k) − θ) where456

θ(k) is the inner updated parameters after k steps.457

Different from the MAML setting, it does not re-458

quire tasks to have a query set. This makes it easier459

in task construction.460

6.5 Main Results461

We report the performance under both seen compo-462

sitions and novel compositions in this section.463

Seen Compositions. Table 1 shows the perfor-464

mance of different models under the seen setting465

(i.e., predicting compositional concepts that have466

appeared in the training set). From the table, we can467

see that MetaVL, including FOMAML and MAML,468

outperforms conventional pre-trained V&L models.469

This suggests that MetaVL, through optimizing the470

V&L model towards compositional generalization,471

captures a representation which is beneficial for472

compositional learning.473

In contrast, while Reptile works well on few-474

shot learning, it does not improve the performance475

in GCCL. One reason is that Reptile does not have476

a query set in their episode construction. There-477

fore, it cannot capture how concepts are composed478

through the query set as in MetaVL. In fact, query479

sets are particularly important as they accumulate480

knowledge on how element concepts are composed481

together for learning compositional concepts.482

V&L-Model VLBERT LXMERT

Metric Accu.↑ PPL↓ Accu.↑ PPL↓

C
O

C
O

Pre-Train 0.5975 1.7421 0.6158 1.5632
Reptile 0.5962 1.7831 0.5998 1.7625
FOMAML 0.6137 1.6995 0.6290 1.5183
MAML 0.6201 1.7046 0.6429 1.5738

Fl
ic

kr

Pre-Train 0.5573 2.3632 0.5889 1.7631
Reptile 0.5488 2.3575 0.5800 1.7701
FOMAML 0.5717 1.9956 0.6081 1.7258
MAML 0.5863 1.8741 0.6107 1.7022

Table 1: Results on Seen Compositional Concept.

Novel Compositions. As shown in Table 2,483

MetaVL improves the performance on the novel484

setting compared to pre-trained model and Reptile.485

However, compared with seen compositions (i.e.,486

Table 1), the performance on novel pairs drops sig-487

nificantly across the board. Taking VLBERT on488

CompCOCO as an example, the accuracy drops by489

about 18%. This indicates the compositional gen-490

eralization is still a very difficult task for current491

V&L models.492

V&L-Model VLBERT LXMERT

Metric Accu.↑ PPL↓ Accu.↑ PPL↓

C
O

C
O

Pre-Train 0.4180 2.2990 0.4222 2.1157
Reptile 0.4017 2.3001 0.4239 2.1163
FOMAML 0.4312 2.1936 0.4483 2.7818
MAML 0.4593 1.9897 0.4728 2.015

Fl
ic

kr

Pre-Train 0.4758 2.3918 0.5213 2.0497
Reptile 0.4689 2.4102 0.5173 2.1546
FOMAML 0.5145 2.0013 0.5376 1.9983
MAML 0.5014 1.8452 0.5719 1.6778

Table 2: Results on Novel Compositional Concept.

Moreover, from Table 1 and Table 2, we can see 493

the following interesting results: 1) LXMERT (two- 494

stream V&L Model) has better performance com- 495

pared with VLBERT (single-stream V&L Model) 496

on both benchmarks which is worth further prob- 497

ing. 2) MAML outperforms its first-order approxi- 498

mation FOMAML. Hessian matrix may bring ad- 499

ditional information for compositonal learning in 500

MetaVL. 501

6.6 Ablation Study 502

Effect of Visual Input. In GCCL, one interest- 503

ing question is how much visual input helps con- 504

cept learning. To answer this question, we com- 505

pare three configurations: 1) Text-only Prediction: 506

zeroing-out all visual tokens and only keep the 507

text tokens as input; 2) Text + Image Prediction: 508

zeroing-out all bounding box tokens and keep text 509

tokens and the whole image token as input; and 3) 510

Text + Image + BBox Prediction: keep all text and 511

visual information as described earlier. 512

Figure 4a shows the importance of visual input 513

for MetaVL in GCCL. We can see that without 514

visual input, the accuracy drops from 0.62 to 0.42 515

on seen compositions and drops from 0.46 to 0.42 516

on seen compositions. Moreover, better contextual 517

information as given by the bounding boxes helps 518

MetaVL better learn compositional concepts. 519

Effect of Number of Episodes used for Learn- 520

ing. We examine how the number of episodes (i.e., 521

tasks) used for learning in MetaVL may affect the 522

outcome. From Figure 4b, we can see the trend that 523

at the beginning the accuracy increases as MetaVL 524

trained on more tasks, reaches the peak at about 525

400 episode and keeps stable afterward even trained 526

on more episodes for both the seen and novel com- 527

positions. 528

Effect of Shot Number K in Each Episode. The 529

number of examples (i.e., in the support set and 530

the query set) in each episode may affect the learn- 531

7
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(a) Visual information importance for VL-
BERT on CompCOCO dataset.
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Figure 4: Ablation study for MetaVL’s performance.
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Figure 5: Data efficiency comparison between
Supervised-Learning and Meta-Learning for composi-
tional Concept Learning.

ing outcome. More training examples within one532

episode may introduce ambiguity, as red in red533

wine and red car have different meanings. We534

varied different numbers of training examples in535

each episode, i.e., K described in Section 5.2. Our536

results have shown that 32 examples in our set-537

ting has best performance (i.e, meaning the support538

set has 32 object concepts and 32 verb/adjective539

concepts and the query set has 32 compositional540

concepts).541

7 Meta-Learning Efficiency542

One key advantage of meta learning is its ability543

to learn how to learn a task through a small num-544

ber of examples. In this section, we study the data545

efficiency of meta-learning compared with the con-546

ventional V&L model through supervised training547

in the compositional leraning setting. We select548

400 tasks as our training data and change the shot549

number for each task. In this setting, meta-trained550

and supervised-trained models access the same set551

of data items. The difference is that MetaVL or-552

ganized the data items into CompEpisodes and553

supervised-trained model learn from all the items.554

Fig. 5 shows that in both seen and novel settings,555

MetaVL achieves better compositional ability com-556

pared to supervised-learning. Empirically, meta-557

learning has demonstrated a higher sample effi-558

ciency as shown by the learning curves. Meta 559

learning is consistently better than conventional 560

supervised learning as it can leverage its past expe- 561

rience to solve new tasks. The difference is more 562

significantly under the few shot setting (e.g., 2-shot 563

setting). 564

8 Conclusion 565

In this paper, we propose MetaVL, a meta-transfer 566

trained V&L model, for grounded compositional 567

concept learning. It builds upon current V&L mod- 568

els and MAML to learn how to compose element 569

concepts together to form compositional concepts. 570

Our empirical results on two datasets have shown 571

that MetaVL consistently outperforms conventional 572

V&L models for GCCL. However, GCCL is still a 573

challenging open problem. Many problems remain. 574

Our future work will explore more cognitively plau- 575

sible models and explicitly address the grounding 576

ability in concept learning. 577
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A Modified MSCOCO Synonym 722

In order to extract more compositional concepts, we modify drier’s synonym list as : hair drier, hairdryer, 723

hair dryer, blow dryer, blow drier 724

B Extracting Rules 725

We use exact extracting rules of (Nikolaus et al., 2019) to extract verbs and adjectives for CompCOCO 726

and extract adjetives for CompFlickr 727

B.1 Adj-Noun Pair Extracting Rule 728

A      black      cat is   inside   a   white   toilet.
NounAdj

AMOD

A    brown   and   black   horse   in the middle of the city eating grass.
NounAdj Adj

AMOD
CONJ

The  big book   bus is   blue  and   yellow.

NSUBJ

An  orange blue and white bus and a brown round structure behind it.

AdjNoun

Adj Adj Noun

AMODAMOD

Figure 6: Rules to extract adj-noun pairs.

B.2 Verb-Noun Pair Extracting Rule 729

A   large   passenger   airplane  flying through   the   air .
Noun Verb

ACL

An   airplane  that   is , either , landing or just taking off .
Noun Verb

ACL:RECL

A  cute  kitten is   sitting in   a   dish   on   a   table .
Noun Verb

NSUBJ

Figure 7: Rules to extract verb-noun pairs.

C Statistics of Novel Pairs 730

11



MSCOCO Flickr30K
Train Img. Train Caps. Test Img. Test Caps. Train Img. Train Caps. Val Img. Val Caps. Test Img. Test Caps.

black bird 205 323 122 190 17 24 0 0 2 3
small dog 681 1067 316 481 360 612 11 12 17 33
white boat 373 261 196 134 69 85 0 0 3 8
big truck 417 601 191 288 28 38 0 0 1 1
eat horse 212 378 106 187 2 2 0 0 0 0

stand child 1288 1556 577 741 1048 1475 38 57 26 36
white horse 264 500 151 300 51 100 3 4 4 8

big cat 184 216 103 108 0 0 0 0 1 1
blue bus 276 506 143 243 11 16 0 0 0 0

small table 261 296 134 154 48 54 1 1 1 1
hold child 1328 1860 664 992 835 1289 27 37 35 60
stand bird 532 831 260 406 13 24 0 0 0 0
brown dog 613 878 291 430 934 1838 31 61 29 58
small cat 252 325 149 183 2 3 0 0 0 0

white truck 262 420 121 175 35 42 2 2 2 2
big plane 967 1345 357 494 5 5 0 0 0 0

ride woman 595 674 300 330 266 537 8 17 9 23
fly bird 245 526 132 283 29 53 0 0 0 0

black cat 840 1760 448 940 15 27 0 0 1 1
big bird 215 291 123 169 24 34 0 0 0 0
red bus 566 1212 232 474 11 20 0 0 1 1

small plane 481 833 158 279 13 20 0 0 0 0
eat man 555 698 250 314 153 272 4 5 5 10

lie woman 301 388 144 194 145 278 1 2 4 8

Table 3: Novel Pair Statistics for both CompCOCO and CompFlickr. For fair comparation, we use the same 24
pairs to verify the compositional generalization.
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