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ABSTRACT

The proliferation of mobile devices generates a massive volume of time series
across various domains, where effective time series forecasting enables a variety
of real-world applications. This study focuses on a new problem of source-free
domain adaptation for time series forecasting. It aims to adapt a pretrained model
from sufficient source time series to the sparse target time series domain without
access to the source data, embracing data protection regulations. To achieve this,
we propose TimePD, the first source-free time series forecasting framework with
proxy denoising, where large language models (LLMs) are employed to benefit
from their generalization capabilities. Specifically, TimePD consists of three key
components: (1) dual-branch invariant disentangled feature learning that enforces
representation- and gradient-wise invariance by means of season-trend decompo-
sition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates
systematic biases of LLMs; and (3) knowledge distillation that bidirectionally
aligns the denoised prediction and the original target prediction. Extensive exper-
iments on real-world datasets offer insight into the effectiveness of the proposed
TimePD, outperforming SOTA baselines by 9.3% on average1.

1 INTRODUCTION

The widespread deployment of Internet-of-Things (IoT) sensors has produced massive time series
data across domains (Sun et al., 2025; Wang et al., 2024a), including traffic (Kieu et al., 2024; Cirstea
et al., 2022), weather (Hettige et al., 2024), and energy (Wu et al., 2020). Accurate time series
forecasting is crucial, enabling effective decision-making across diverse domains (Liu et al., 2025a;
2024a; Campos et al., 2023). We are seeing impressive advances in machine learning, especially in
deep learning, that are successful in effective feature extraction and value creation (Hettige et al.,
2024; Liu et al., 2025b). They are mainly dedicated to creating models based on large amounts
of domain-specific time series (see Figure 1(a)). However, in real-world scenarios, the time series
data can be sparse due to various reasons, such as data collection mechanisms (e.g., low sampling
rate) and data privacy. The performance of existing time series forecasting methods may degrade
remarkably with such insufficient training data (Jin et al., 2022).

Although recent research efforts have been devoted to addressing sparse training data by means of
transfer learning (Pan & Yang, 2009; Wang et al., 2024a), these are mainly designed for computer
vision and natural language processing while ignoring the specific characteristics of time series, i.e.,
capturing complex temporal correlations (Shao et al., 2025). In addition, these methods are often
performed across domains by leveraging both source and target data (Liu et al., 2024b). However,
the reliance on source data may raise various concerns, e.g., training inefficiency and data privacy.
Further, large language models (LLM) based methods emerge as a new paradigm for universal time
series forecasting. Nonetheless, it is expensive to train these large models, incurring high compu-
tational costs. Further, despite LLM-based methods offering acceptable time series forecasting per-
formance, they often fail to achieve superior performance on specific domains, especially domains
with scarce time series. To address these issues, this study focuses on a new problem of source-free
domain adaptation (Tang et al., 2025; Ragab et al., 2023) for time series forecasting, referred to as

1The code can be found at https://anonymous.4open.science/r/TimePD-52E7/.
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Figure 1: (a) Domain-specific time series forecasting. (b) Source-free time series forecasting. (c)
Limited target data acquisition. (d) Cross-domain distribution shift.

source-free time series forecasting (SF-TSF), as shown in Figure 1 (b). The SF-TSF aims to directly
adapt a source model to a target domain using only its parameters, without accessing its source data.

However, it is non-trivial to develop SF-TSF methods due to the following challenges. First, in
the source-free domain adaptation scenarios, it is often hard to acquire sufficient target data due
to privacy and data collection mechanisms. Limited target data acquisition often results in insuf-
ficient observations, as shown in Figure 1 (c). It is challenging to effectively capture the complex
temporal correlations of such sparse target data. Second, alleviating the cross-domain distribution
shift between source and target data also poses difficulties. Owing to differences in data sensing
mechanisms, the statistical properties of time series, such as trend and season, of the target domain
may largely deviate from those of the source domain. The distribution shift makes it difficult for
most existing time series modeling methods trained on the source domain to generalize to the target
domain, as shown in Figure 1 (d), resulting in low effectiveness. Recent advances have incorporated
LLMs into time series modeling, benefiting from their pre-trained knowledge and generalization
ability (Huang et al., 2024). However, this naturally introduces the third challenge: how to effec-
tively leverage the knowledge embedded in LLMs while alleviating noise, since LLMs are prone
to hallucinations (Sriramanan et al., 2024), producing irrelevant or misleading outputs when faced
with domain-scarce signals, which could distort the forecasting.

This study addresses the above challenges by providing a novel Source-Free Time Series Fore-
casting framework with Proxy Denoising (TimePD). To facilitate effective temporal correlation ex-
traction across sparse target time series, we develop an innovative source-free domain adaptation
paradigm, where the target model borrows the rich knowledge learned on sufficient source data
based on the assumption that time series from different domains share certain latent patterns (Jin
et al., 2022). Further, we achieve completely invariant disentangled feature learning, which also
alleviates cross-domain distribution shift. Specifically, we design a dual-branch architecture that ex-
plicitly decomposes input series into seasonal and trend components and enforces invariance at both
the representation and gradient levels. Stochastic augmentation and specialized invariance blocks
further strip away component-specific cues, obtaining disentangled and component-invariant rep-
resentations. To leverage the transferability ability of LLMs while alleviating hallucinations, we
applied pre-trained LLMs to guide the target model, alleviating the impact of domain shift on the
target model. Then, we introduce a proxy denoising mechanism, which treats LLM as a powerful
but probably noisy proxy forecaster, to denoise the LLM’s forecasts. It dynamically corrects its
systematic bias on the target domain by leveraging the consensus between the source model and the
adapting target model, producing more reliable forecasts for subsequent guidance. Then, we estab-
lish a bidirectional knowledge transfer loop: denoised proxy forecasts supervise the target model,
while target predictions feed back to stabilize the proxy correction, preventing distribution drift from
the target domain. Finally, we employ knowledge distillation to further calibrate the target prediction
with the denoised prediction, enhancing model performance.

The main contributions are summarized as follows:

• To the best of our knowledge, this is the first study to learn source-free time series forecasting and
propose an LLM-empowered framework called TimePD that unleashes the power of LLMs and
models trained on sufficient data to improve.

• We propose an invariant disentangled feature learning method to handle the cross-domain distri-
bution shift, a proxy denoising strategy to alleviate the hallucinations of LLMs, and a knowledge
distillation mechanism to transfer denoised knowledge from LLMs to a lightweight target model.
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• Extensive experiments on real-world datasets demonstrate that TimePD outperforms state-of-the-
art baselines, achieving average improvements of 10.7% and 9.3% in terms of MSE and MAE,
respectively, offering a brand new paradigm for cross-domain time series analytics.

2 RELATED WORK

Time Series Forecasting. Time series forecasting attracts increasing interest due to the growing
availability of time series data and rich downstream applications (Benidis et al., 2022; Hettige et al.,
2024). Traditional time series forecasting models (Box et al., 2015) are mostly based on shallow
statistics, making them difficult to capture the complex temporal correlations. Recent advances in
deep learning techniques apply neural networks for effective time series modeling (Zhou et al., 2022;
Bai et al., 2020), including various architectures, e.g., CNNs (Wu et al., 2023), RNNs (Lai et al.,
2018), and Transformers (Wu et al., 2021; Liu et al., 2024c). LLM-based methods (Liu et al., 2025b;
Zhou et al., 2023; Jin et al., 2024) emerge as a new paradigm for time series forecasting empowered
by their powerful general feature extraction capabilities. However, most existing methods require
sufficient training data. Their performance may degrade remarkably when training on sparse data.

Source-free Domain Adaptation (SFDA). SFDA aims to adapt pre-trained models to target do-
mains without accessing source data (Kundu et al., 2020; Kim et al., 2021; Fang et al., 2024;
Mitsuzumi et al., 2024; Zhang et al., 2024). For example, SHOT (Liang et al., 2020) leverages
information maximization and self-supervised pseudo-labeling. NRC (Yang et al., 2021) introduces
neighborhood clustering to improve adaptation stability. However, these methods are primarily tai-
lored for computer vision and natural language processing (Li et al., 2024), and cannot capture the
unique temporal correlations among time series. Although recent studies (Ragab et al., 2023; Zhong
et al., 2025) have explored SFDA for time series imputation, its application to forecasting remains
largely underexplored. At the same time, large language models (LLMs) have demonstrated the
ability to acquire generalized knowledge across diverse tasks, showing strong potential for time se-
ries forecasting (Jin et al., 2024). However, most existing SFDA approaches have yet to effectively
harness the knowledge embedded in LLMs.

3 METHODOLOGY

IDFL

Source Domain

Target Domain

Proxy LLM Space

Proxy Error

…

Figure 2: Overview of TimePD. Invariant Disentangled Features
Learning (IDFL) is designed to boost forecasters to learn invari-
ant features by disentangling the seasonal and trend components.
Proxy Denoising aims to denoise the LLM’s outputs.

Figure 2 presents the overview
of TimePD, which integrates
an invariant feature disentangle-
ment learning module, a proxy
denoising module, and a knowl-
edge distillation. Sequentially,
TimePD begins with training
a source model θs on source
data. Without revisiting the
source dataset, θs is copied to
initialize the target model θt,
which adapts to the target do-
main. Meanwhile, a pre-trained
LLM θts is applied for ex-
tracting knowledgeable features,
which are further calibrated by
the proxy denoising module to alleviate hallucinations. Finally, the knowledge distillation module
is designed to minimize disagreement between the corrected proxy forecasts and target predictions.

3.1 INVARIANT DISENTANGLED FEATURE LEARNING

Invariant Disentangled Feature Learning (IDFL) aims to handle cross-domain distribution shift. As
shown in Figure 3, IDFL consists of a decomposition block, forecasters, a representation-invariant
block, a gradient-invariant block, and a Fourier transform module. It decomposes the input series
into trend and seasonal components and learns component-invariant representations. The invari-
ance features remain stable while other factors change (Parascandolo et al., 2021). For example,
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Forecaster

…

Forecaster

Figure 3: Model Training via Invariant Disentangled Feature Learning (IDFL).

trend features should stay consistent under seasonal variations, and vice versa. Such disentangled
invariants enhance forecasting accuracy across domains. We design two complementary branches:
the trend branch, where seasonal variations act as domains; and the seasonal branch, where trend
variations act as domains. To improve generalization, invariance is explicitly enforced at both the
representation level and the gradient level. Finally, the IDFL yields disentangled seasonal–trend
features that provide accurate prediction.

Decomposition Module. To begin with, the time series is decomposed into seasonal and trend
features. Given a time series with C features T ∈ RB×L×C , we extract the trend component by a
moving-average kernel of length ktrend:

t = AvgPoolktrend
(T ), s = T − t, (1)

where t ∈ RB×L×C and s ∈ RB×L×C denote the trend and seasonal signals, respectively.

To diversify the decomposed trend and seasonal components, we perform stochastic forward passes
by applying dropout in the decomposition module and input the same time series T into the decom-
position module twice:

s(1), t(1) = Decomposition(T ), s(2), t(2) = Decomposition(T ). (2)

Next, features (s(1), s(2)) and (t(1), t(2)) are separately fed into the forecasters.

Forecaster. The forecaster is implemented as a lightweight Time-Series Feature Extractor
(TSFE) (Miao et al., 2024), consisting of patching with patch length P and stride S, Nop stacked
self-attention and feed-forward networks, and a linear layer that outputs latent features:

z
(i)
tre = Forecaster tre(t

(i)), z(i)sea = Forecaster sea(s
(i)), (3)

where i ∈ {1, 2} and ztre , zsea ∈ RB×N×C is the prediction of trend and seasonal features.

Given the mean squared error loss function l(·, ·), the time seires forecasting loss can be defined as:

L = l(ztre + zsea , y), (4)

where y represents the ground truth for the input time series.

Representation-Level Alignment. Representation-level alignment is designed to force samples
that share a pattern, no matter which domain they come from, to occupy the same region of
the feature space. Concretely, the network learns a single mapping that pushes every domain’s
distribution toward one common statistical form. Here, we denote the forecasting task set as
C = {seasonal, trend}. We use s, s to represent different seasons, and use t, t to represent differ-
ent trends so that we can denote decomposed features as F = {(s, t), (s, t), (t, s), (t, s)}, where
{(s, t), (s, t)} represent s(1), s(2), {(t, s), (t, s)} represent t(1), t(2). For example, (s, t) represents
a seasonal feature with a different trend than another seasonal feature (s, t), considering that sea-
sonal and trend features have not yet been fully disentangled.

4
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Initially, we derive the gradient of the model on each branch with respect to the representations:

gij =
∂(Forecaster j(Decomposition(T ))

X , (5)

where i ∈ F , j ∈ C. X denotes the embedding of input time series T .

The representations associated with similar gradients indicate intrinsic characteristics of seasonal
patterns that are invariant to trend factors or vice versa. Consequently, we compute the absolute
value of the difference between the two gradients:

∆gsea = |g(s,t)sea − g(s,t)sea |,∆gtre = |g(t,s)tre − g
(t,s)
tre |. (6)

The variables with a small difference correspond to seasonal features that are insensitive to trend
variation and trend features that are insensitive to seasonal variation. We rank the absolute gradient
differences in descending order and then take the α-percentile value, denoted as dα. A binary mask
m of identical shape to the representation is then generated. For the k-th element,

mj(k) =

{
0, ∆gj(k) ≥ dα

1, else
. (7)

By applying the mask to the original representation, the network filters out component-varying fea-
ture variables to learn the invariant seasonal feature ŝ and invariant trend feature t̂,

ŝ = X ⊙msea , t̂ = X ⊙mtre . (8)

Then, the learned invariant features are fed into the forecaster:

ẑtre = Forecaster tre(t̂), ẑsea = Forecaster sea(ŝ). (9)

Finally, the mean square error is defined as the loss of invariant features in predictions,

Linv = l(ẑtre + ẑsea , y), (10)

where y represents the ground truth of the input time series.

Fourier Transform Module. Average pooling provides a coarse time-domain decomposition into
trend and residual, while fourier transform offers a fine-grained frequency-domain analysis to cap-
ture periodic components. This module aims to provide frequency-consistent supervision for in-
variant learning. Time-series windows are decomposed in the time domain via the Discrete Fourier
Transform (DFT). Given the whole time series embedding X ∈ RB×L×E , we treat each channel
independently. The DFT of each channel is defined as:

X[k] =

L−1∑
t=0

X[t] exp

(
−2πi

L
kt

)
, k = 0, . . . , L− 1. (11)

Specifically, frequency coefficients are split into low-frequency (trend) and high-frequency (season-
ality) subsets using a predefined cut-off index kcut:

Xtr[k] =

{
X[k], 0 ≤ k ≤ kcut ,

0, otherwise,
Xsea [k] =

{
X[k], kcut < k ≤ ⌊L/2⌋,

0, otherwise.
(12)

Then, the inverse DFT F−1(·) is applied to obtain the trend t and seasonal signals s, respectively:

t = F−1(Xtr ), s = F−1(Xsea). (13)

After the representation-level alignment, we fed the predictions of invariant features into Fourier
transform module FT (·), getting the decomposed seasonal and trend features:

s′, t′ = FT (ẑtre + ẑsea). (14)

Finally, we compute the loss function with the new decomposed features and the prediction of raw
decomposed features:

Lpred =

2∑
i=1

l(Forecaster sea(s
(i)), s′) +

2∑
i=1

l(Forecaster tre(t
(i)), t′). (15)

5
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The loss function Lrep is the combination of the trend-irrelevant seasonal-specific representation
and the seasonal-irrelevant trend-specific representation:

Lrep = l(Forecaster tre(t̂), t
′) + l(Forecaster sea(ŝ), s

′). (16)

Gradient-Level Alignment. Gradient-level alignment aims to optimize the trajectories of all
branches toward a common direction. By explicitly shrinking the dispersion of inter-branch gra-
dients, the model is encouraged to discard component-specific cues and retain invariant ones. We
derive the gradient of seasonal predictions with respect to the seasonal forecaster under varying
trends, that of trend predictions under varying seasonals, as detailed below:

Gi
sea =

∂l(Forecaster sea(s
i), s′)

∂θsea
, Gi

tre =
∂l(Forecaster tre(t

i), t′)

∂θtre
, (17)

where θ denotes the parameters of Forecaster(·) and decomposition module Dcomposition(·).
Steering every branch along this identical route markedly eases the acquisition of invariant predic-
tions (Chen et al., 2025b). To enforce this gradient-level alignment and distill disentangled invari-
ances, we suppress the model’s ability to identify patterns by minimizing the Euclidean distance,
denoted deuc(·, ·), between the respective gradient vectors, formulated as:

Lgrad = deuc(G
(s,t)
sea , G(s,t)

sea ) + deuc(G
(t,s)
tre , G

(t,s)
tre ). (18)

Therefore, the gradient-level alignment drives all parameter updates along a unified trajectory,
thereby strengthening the robustness of the forecaster.

3.2 PROXY DENOISING

LLMs for time series modeling benefit from their pre-trained knowledge and generation ability, but
would introduce hallucinations. The proxy denoising (PD) is proposed to quantify the proxy error
of the LLMs and then generate calibrated predictions for enhancing prediction. It leverages the
disagreement between the source model θs and the target model θt to estimate and suppress the
noise dynamically. θs encodes knowledge acquired on the source distribution, remaining oblivious
to target-specific drift, while θt is trainable and gradually adapts to the target. Its current state reflects
the best in-domain hypothesis available at any moment.

When all three models agree, the LLM is likely reliable. If θs and θt agree with each other but deviate
from the LLM, the discrepancy is interpreted as proxy noise that needs to be corrected. For every
target mini-batch Bt =

{
xi

}B

i=1
, we compute the prediction of three models: zts,i = θts(xi), zs,i =

θs(xi), zt,i = θt(xi). The per-sample noise vector is simply the signed residual ei = θs(xi)− θt(xi),
which captures how far the LLM predictions deviate from the consensus of source and target models.
The subtraction serves as an empirical error signal. The estimated noise is subtracted from the LLM
outputs to obtain the denoised prediction:

z̃i = θts(xi)− α(θs(xi)− θt(xi)), (19)

where θs, θt, θts apply the source model, target model, and LLM to get the corresponding prediction,
and α represents the correction strength, which is a hyperparameter. Particularly, α = 1 performs
full correction (complete trust in the source-target consensus) and α = 0 retains the raw LLM
predictions. The denoised predictions z̃i are forwarded to the subsequent knowledge distillation.

3.3 KNOWLEDGE DISTILLATION

To improve inference efficiency, LLM’s outputs are distilled to a lightweight target model to guide
the model with purified knowledge and prevent the LLM from drifting away from the target domain.
The output of the target model is aligned with the corrected proxy via Mean Squared Error:

Lkd = l(θts(xi)− α(θs(xi)− θt(xi)), θt(xi)). (20)

Minimizing Lkd pulls the target model’s predictions toward the denoised large language model
without any label supervision. The gradient flow is one-way: only the target model θt is updated; the
large language model remains frozen. Consequently, the target model receives high-level temporal
knowledge distilled from the denoised LLM while preserving its own low-rank adaptation capacity.

6
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3.4 OVERALL OBJECTIVE FUNCTION

The final loss consists of a time series forecasting loss L, an invariant features forecasting loss
Linv , a disentangled features forecasting loss Lpred , a representation invariant loss Lrep , a gradient
invariant loss Lgrad and a knowledge distillation loss Lkd . We combine them together, and the
overall loss is:

Lall = L+ λinvLinv + λpredLpred

+ λrepLrep + λgradLgrad + λkdLkd ,
(21)

where λinv , λpred , λrep , λgrad , λkd are trade-off parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The experiments are carried out on six widely-used time series datasets, including ETTh1, ETTh2,
ETTm1, ETTm2, Weather, Traffic, and Electricity (Liu et al., 2024b). We compare TimePD with
the following existing baselines: DLinear (Zeng et al., 2023), TimeKAN (Huang et al., 2025),
SimpleTM (Chen et al., 2025a), TimesNet (Wu et al., 2023), TimeMixer (Wang et al., 2024b),
WPMixer (Murad et al., 2025), iTransformer (Liu et al., 2024c), FEDformer (Zhou et al., 2022),
PatchTST (Nie et al., 2023), OFA (Zhou et al., 2023) and TimeLLM (Jin et al., 2024). We provide
more details of datasets and baselines in Appendix A.2. For the source-free training, we first train a
source model on a source dataset (e.g., ETTh1). Then, we initialize the target model with the trained
source model and then train the target model on the target domain (e.g., Weather). For example,
we use ETTh1→Weather to denote a source-free training process where the source and target do-
mains are ETTh1 and Weather, respectively. Time series foundation models are not compared due
to different objectives, where foundation models aim to achieve broad generalization by pretraining
on massive multi-domain data. To enable fair comparison, we train the baselines on the source data
and then finetune them with 30% of the target data for testing. We employ the stacked TSFE as the
forecaster (Miao et al., 2024), and OFA as the LLM backbone. Mean Absolute Error (MAE) and
Mean Square Error (MSE) are adopted as the evaluation metrics.

We implement our model using PyTorch on the NVIDIA A800 GPU. The hyperparameters in the
model are set as follows. Target-domain dataset size is 30%. The weight of rep losses at the repre-
sentation level and grad losses at the gradient level are set to 1/8 and 1/2, respectively. The weight
of loss at knowledge distillation is set to 0.001. The dropout rate in the decomposition block is set to
0.1. The patch length and stride are set to 16 and 8, respectively. The initial learning rate is 0.0001.
ETT datasets and other datasets are split into the training data, validation data, and test data by the
ratios of 6:2:2 and 7:1:2, respectively. The parameters of the baseline methods are set according to
their original papers and any accompanying code. All of the models follow the same experimental
setup with prediction length PL ∈ {96, 192, 336} on all datasets.

4.2 EXPERIMENTAL RESULTS

4.2.1 OVERALL PERFORMANCE COMPARISON

We evaluate the source-free long-term forecasting capabilities of TimePD and baselines on six
datasets (ETTh2, ETTm1, ETTm2, Weather, Electricity, Traffic) transferred from ETTh1 in Table 2.
Results on other source datasets are provided in A.3.1. The best performance is marked in bold, and
the second-best performance is underlined. From the comparison results, it is evident that TimePD
achieves the best performance on most datasets across all prediction lengths. Averaged across all
18 tasks (6 datasets × 3 prediction lengths), TimePD obtains the lowest average MSE and MAE,
outperforming the most advanced method (Time-LLM and OFA) with an average MSE reduction
by 4.98% and 4.39%, and MAE reduction by 2.64% and 3.21%, respectively. The most substantial
improvements are observed on the ETTh1→ Weather and ETTh1→ ETTh2 datasets, particularly
at shorter horizons (e.g., PL = 96), where TimePD reduces MSE by over 10.00% and MAE by over
5.03% compared to Time-LLM. This is due to that TimePD learns the invariant features contained
in time series through IDFL, and leverages LLM, denoised via proxy denoising, to guide the tar-
get model. Moreover, TimePD is particularly effective on complex datasets. On ETTh1 → traffic

7
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Table 1: Overall Performance Comparison.
Methods Dataset ETTh1→ ETTh2 ETTh1→ ETTm1 ETTh1→ ETTm2 ETTh1→Weather ETTh1→ Electricity ETTh1→ Traffic

PL 96 192 336 96 192 336 96 192 336 96 192 336 96 192 336 96 192 336

DLinear MSE 0.287 0.367 0.438 0.357 0.396 0.428 0.180 0.240 0.301 0.178 0.220 0.262 0.178 0.191 0.217 0.460 0.484 0.522
MAE 0.346 0.400 0.453 0.391 0.422 0.443 0.274 0.319 0.363 0.244 0.280 0.314 0.279 0.292 0.319 0.332 0.348 0.377

TimeKAN MSE 0.284 0.352 0.409 0.367 0.399 0.426 0.182 0.236 0.280 0.735 0.742 0.745 1.085 1.083 1.079 0.540 0.555 0.557
MAE 0.343 0.387 0.429 0.399 0.417 0.431 0.267 0.303 0.329 0.665 0.666 0.666 0.853 0.852 0.852 0.828 0.831 0.829

SimpleTM MSE 0.283 0.351 0.355 0.383 0.401 0.486 0.182 0.231 0.278 0.754 0.768 0.701 1.080 1.074 1.074 0.526 0.539 0.549
MAE 0.340 0.388 0.404 0.399 0.414 0.464 0.269 0.302 0.333 0.670 0.679 0.645 0.851 0.851 0.851 0.825 0.828 0.829

TimesNet MSE 0.362 0.429 0.457 0.498 0.635 0.617 0.213 0.270 0.315 0.737 0.742 0.744 1.086 1.082 1.080 0.524 0.534 0.546
MAE 0.408 0.437 0.461 0.462 0.534 0.526 0.297 0.331 0.358 0.665 0.665 0.668 0.853 0.852 0.852 0.825 0.827 0.828

TimeMixer MSE 0.330 0.399 0.431 0.438 0.534 0.491 0.185 0.234 0.282 0.744 0.741 0.743 1.083 1.083 1.082 0.524 0.534 0.548
MAE 0.373 0.413 0.447 0.425 0.483 0.461 0.269 0.303 0.333 0.667 0.665 0.666 0.852 0.852 0.852 0.825 0.827 0.829

WPMixer MSE 0.291 0.375 0.414 0.371 0.403 0.461 0.182 0.233 0.284 0.736 0.764 0.741 1.082 1.083 1.080 0.525 0.536 0.548
MAE 0.348 0.399 0.432 0.392 0.409 0.441 0.270 0.302 0.337 0.663 0.677 0.665 0.852 0.852 0.852 0.825 0.827 0.829

iTransformer MSE 0.358 0.489 0.510 0.402 0.420 0.561 0.194 0.237 0.312 0.189 0.237 0.274 0.180 0.191 0.219 0.452 0.479 0.516
MAE 0.395 0.467 0.487 0.415 0.426 0.503 0.275 0.306 0.351 0.238 0.282 0.309 0.288 0.299 0.316 0.341 0.358 0.387

FEDformer MSE 0.388 0.485 0.421 0.646 0.630 0.695 0.287 0.331 0.391 0.747 0.746 0.734 1.083 1.082 1.079 0.529 0.535 0.548
MAE 0.431 0.500 0.462 0.534 0.544 0.566 0.359 0.388 0.423 0.667 0.668 0.661 0.852 0.852 0.851 0.827 0.827 0.829

PatchTST MSE 0.280 0.359 0.354 0.364 0.400 0.430 0.180 0.234 0.286 0.232 0.279 0.335 0.181 0.197 0.216 0.455 0.484 0.519
MAE 0.340 0.388 0.399 0.398 0.420 0.438 0.267 0.303 0.338 0.282 0.318 0.357 0.278 0.292 0.313 0.333 0.345 0.382

OFA MSE 0.296 0.374 0.394 0.382 0.404 0.430 0.185 0.231 0.287 0.195 0.232 0.269 0.173 0.206 0.220 0.459 0.483 0.515
MAE 0.352 0.404 0.424 0.399 0.413 0.433 0.270 0.305 0.338 0.248 0.280 0.304 0.283 0.313 0.320 0.347 0.356 0.380

Time-LLM MSE 0.324 0.374 0.393 0.402 0.424 0.456 0.183 0.236 0.283 0.176 0.224 0.272 0.171 0.192 0.220 0.452 0.478 0.513
MAE 0.367 0.400 0.421 0.410 0.423 0.434 0.272 0.307 0.331 0.229 0.275 0.304 0.284 0.291 0.318 0.338 0.347 0.381

TimePD MSE 0.280 0.345 0.346 0.359 0.392 0.422 0.177 0.230 0.277 0.169 0.219 0.265 0.170 0.187 0.211 0.452 0.474 0.510
MAE 0.338 0.385 0.398 0.390 0.413 0.430 0.267 0.297 0.330 0.228 0.275 0.303 0.276 0.289 0.312 0.327 0.342 0.373

dataset, where baseline methods suffer from high variance due to noise and periodicity. For exam-
ple, at PL = 96, TimePD reduces MAE by 3.25% compared to Time-LLM. The results demonstrate
that TimePD has a superior generalization ability.

4.2.2 ABLATION STUDY

To assess the contribution of each component in TimePD, we evaluate three invariants: (1) w/o LLM:
TimePD without the large language model; (2) w/o PD: TimePD without the proxing denoising; and
(3) w/o KD. TimePD without the knowledge distillation and report ablation study results in Figure
4 and A.3.2. The most substantial performance drop is observed when w/o KD is removed. For
example, on ETTh1 → ETTh2, the MSE rises by 17.86% and MAE rises by 18.34%. The reason
is that knowledge distillation proves to be the most critical, as it effectively transfers domain-shared
temporal knowledge from the LLM to the target model. The removal of w/o PD leads to further
degradation since it refines the LLM outputs by mitigating noise. On ETTh1 → ETTm1, MSE
increases sharply by 26.18%, and MAE increases by 12.31%. We also observe that performance
degrades moderately across all datasets under w/o LLM, as it serves as an indispensable knowledge
source. For instance, on ETTh1→ ETTh2, MSE increases by 4.29% and MAE increases by 3.55%.

TimePD
w/o_LLMw/o_PD

w/o_KD
2.7

3.1

3.4

3.8

4.1

Lo
ss

×10 1

MSE
MAE

(a) ETTh1 → ETTh2

TimePD
w/o_LLMw/o_PD

w/o_KD
3.5

3.9

4.2

4.6

5.0

Lo
ss

×10 1

MSE
MAE

(b) ETTh1 → ETTm1

Figure 4: Performance of TimePD and its variants.
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5% 10% 20% 30% 40%1.7

2.2

2.6

3.1

3.5

Lo
ss

×10 1

MSE MAE

(b) ETTh1 → ETTm2

Figure 5: Effect of target dataset size.

4.2.3 EFFECT OF THE SIZE OF THE TARGET DOMAIN DATASET

To verify the scalability of TimePD, we conduct experiments using 5%, 10%, 20%, 30%, and
40% of the dataset. We observe that increasing the proportion of the target domain dataset gen-
erally improves performance in terms of MSE and MAE. Specifically, on the ETTh1→ ETTh2 and
ETTh1→ ETTm2 tasks, the model exhibits a consistent decrease in both MSE and MAE as more
target domain data is used, as shown in Figure 5. This suggests that these tasks benefit significantly
from domain-specific supervision and that the TimePD is capable of effectively leveraging more
target samples. More scalability analysis results are presented in Appendix A.3.3.
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Prediction
Ground Truth

(a) ETTh1 → ECL

Prediction
Ground Truth

(b) ETTh1 → Traffic

Figure 6: Data distribution visualization.
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Figure 7: Prediction vs. Ground Truth.

4.2.4 DATA DISTRIBUTION VISUALIZATION OF PREDICTION AND GROUND TRUTH

To validate whether the prediction follows the similar distribution as the ground truth, we visualize
the t-SNE (Maaten & Hinton, 2008) across ETTh1, Traffic, and ECL datasets, as shown in Figure
6. 1000 prediction–ground truth pairs are randomly sampled. Across all subfigures, the predicted
values (orange) closely align with the true values (blue), indicating that TimePD effectively cap-
tures the underlying data distribution. Furthermore, we observe that the spatial structure of the data
clusters is also well preserved between predictions and ground truth.

4.2.5 CASE STUDY ON PREDICTION CONSISTENCY

To further intuitively demonstrate the effectiveness of the proposed TimePD, we compare the pre-
dictions with ground truth on ETTh1 → ECL and ETTh1 → Traffic settings. As shown in Figure
7, the predicted curves closely follow the actual trajectories, capturing both periodic trends and
abrupt variations. On ECL, the model reproduces seasonal peaks and troughs with minor devia-
tions at sharp transitions. On the Traffic dataset, the predictions remain well aligned with sudden
spikes, demonstrating robustness across domains. These results qualitatively confirm that TimePD
generalizes well and produces reliable forecasts beyond quantitative metrics.

4.2.6 INVARIANT FEATURE VISUALIZATION

Target
Source

(a) Season

Target
Source

(b) Trend

Figure 8: Invariant feature visualization.

To test whether TimePD is effective in captur-
ing the invariant features, especially the sea-
sonal and trend information, we visualize such
frequency information of source data and tar-
get data in one figure with t-SNE. The results
on two datasets are shown in Figure 8, where
Figures 8 (a) and (b) show the season and trend
comparison on the ETT dataset. Blue and or-
ange dots represent the target data and source
data, respectively. We observe that blue dots
almost follow the trace of orange dots, indicat-
ing that the models learns the invariant features,

i.e., season and trend information. Although some exceptions exist in the trend comparison, these
show that TimePD not only learns the invariant features between source and target data but also is
capable of extracting specialized features that are useful for the target time series forecasting.

5 CONCLUSION

We present TimePD, a new source-free time series forecasting framework with proxy denoising that
unleashes the power of LLMs and sufficient knowledge extracted from the source domain without
accessing its raw data. To enable effective temporal correlation capturing and alleviate concept drift
across domains, we propose an invariant disentangled feature learning module based on a dual-
branch architecture. Further, a proxy denoising mechanism is proposed to dynamically incorporate
the generalized knowledge learned by LLMs, enhancing model performance. We also employ the
knowledge distillation to calibrate the final prediction with denoised prediction. An empirical study
on real datasets offers evidence that the paper’s proposals improve on the state-of-the-art in terms of
prediction accuracy. An interesting research direction is to attempt to apply the proposed TimePD
to other time series related tasks, e.g., anomaly detection.
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A APPENDIX

A.1 PRELIMINARY

This section introduces the basic concepts, notations, and preliminaries that underpin the proposed
TimePD framework. We first formalize the source-free time-series forecasting problem under do-
main shift, and then establish a theory of invariant disentangled features for domain robustness,
and introduce a proxy confidence theory for bias correction in large language models. Through-
out, we adopt the following general notation: Bold lower-case symbols (e.g., x, y) denote vectors;
bold upper-case symbols (e.g., X,Y) denote matrices or higher-order tensors. Calligraphic symbols
(e.g., X ,Y) denote sets or distributions. Subscripts s and t indicate source and target domains,
respectively. Unless stated otherwise, all norms ||·|| are L2 norms.

A.1.1 SOURCE-FREE TIME-SERIES FORECASTING

Let T denote a multivariate time-series sample of length L and channel (feature) dimension C:
T ∈ RL×C . Given a look-back window of length l: x = T {t− l + 1 : t, ·} ∈ Rl×C the forecasting
task is to predict the next H steps: y = T {t+ 1 : t+H, ·} ∈ RH×C .

Domains. Source domain Ds = {Xs,Ys} contains labeled pairs (xs, ys) drawn from distribution
Ps(X ,Y). Target domain Dt = {Xt} contains unlabeled samples xt from distribution Pt{X},
where Pt ̸= Ps .

Source-free constraint. At adaptation time, the original source data {xs, ys} are inaccessible due to
privacy or legal constraints. Only a pre-trained source model θs (parameterized by ϕs) is available.
The goal is to learn a target model θt (parameterized by ϕt) that minimizes the expected forecast
error on Dt:

minϕt
Ex∼Pt

[L(θt(x), y)], (22)

where y is the (unknown) ground-truth future values, and L(·, ·) is a loss function (e.g., MSE).
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A.1.2 INVARIANT DISENTANGLED FEATURES

Domain shifts in time series manifest as perturbations to trend Ttre or seasonality Ssea . An invariant
feature ϕ∗ satisfies:

ϕ∗(x) ≈ ϕ∗(x′) ∀x, x′ s.t. x ∈ Di, x
′ ∈ Dj , C(x) = C(x′), (23)

where Di,Dj are domains (e.g., differing trend contexts), and C denotes the component class (e.g.,
seasonal pattern). Disentanglement requires that features are component-specific: ϕs(x) encodes
seasonality and is invariant to trend variations ∆t, and ϕt(x) encodes trend and is invariant to sea-
sonal variations ∆s. Formally, for small perturbations ϵ:∥∥ϕs(s+ t+ ε∆t)− ϕs(s+ t)

∥∥
2
< δs,∥∥ϕt(s+ t+ ε∆s)− ϕt(s+ t)

∥∥
2
< δt,

(24)

where δs, δt → 0 for perfect invariance. Learning such features necessitates suppressing gradient
pathways sensitive to cross-component variations, enabling generalization across domains where
either component shifts (Parascandolo et al., 2021).

A.1.3 PROXY CONFIDENCE THEORY

When a pre-trained large language model is used as a proxy forecaster on the unlabeled target do-
main, its outputs inevitably deviate from the latent “domain-invariant” distribution because of do-
main shift. We therefore treat the large language model as a noisy proxy and quantify its reliability
through a proxy confidence theory.

Notations. DS represents the source domain distribution (known only via the pretrained source
model θs). Dt

T represents target model θt distribution at adaptation step t. DTS represents proxy
(LLM θts ) distribution. Dl represents latent domain-invariant distribution.

Proxy Error. Define the proxy error at step t as the expected divergence between the proxy and the
ideal space:

et = Ex∼DT
[D(θts(x), θl(x))], (25)

where D(·, ·) is a distance in logit space. Since θl is inaccessible, we approximate et by the dis-
agreement between source and target models:

et ≈ Ex∼DT
[∥θs(x)− θt(x)∥2]. (26)

Larger disagreement⇒ larger proxy error.

Proxy Confidence Score. We map the error to a confidence weight:

Ct = exp(−et/τ) ∈ (0, 1], (27)

with temperature τ>0. At t = 0,θt ≈ θs ⇒ et ≈ 0 ⇒ Ct ≈ 1(high trust), As adaptation proceeds,
θt drifts from θs ⇒ et grows Ct ↓(reduced trust).

The proxy confidence theory thus provides an online, parameter-free mechanism to quantify and
mitigate the noise inherent in large language model forecasts during source-free domain adaptation.

A.2 EXPERIMENTAL SETUP DETAILS

A.2.1 DATASETS.

We conduct comprehensive experiments under a source-free domain adaptation scenario using seven
widely-used time series datasets, covering four application domains: weather, traffic, economics,
and energy.

• Weather. The Weather dataset contains 21 indicators of weather(e.g., air temperature and humid-
ity), which are collected in Germany. The data is recorded every 10 minutes.

• Traffic. The Traffic dataset contains hourly road occupancy rates obtained from sensors located
on San Francisco freeways from 2015 to 2016.
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• Electricity. The Electricity dataset contains the hourly electricity consumption of 321 clients from
2012 to 2014.

• ETT. The ETT dataset includes two hourly-level datasets(ETTh1 and ETTh2) and two 15-minute-
level datasets (ETTm1 and ETTm2). Each dataset includes 7 oil and load features of electricity
transformers between July 2016 and July 2018.

We chose time series forecasting as a representative downstream task, as it is a popular analytics
task. We employ the proposed stacked TSOperators as the forecasting models in the source model
and target model, and employ OFA as the LLM backbone.

A.2.2 BASELINES.

We compare TimePD with the following existing methods for time series forecasting.

• OFA: Introduces a frozen pretrained Transformer framework that reuses frozen self-attention and
feedforward blocks from large pretrained language or vision models, fine-tuning only lightweight
adapters to achieve state-of-the-art performance across diverse time series tasks such as forecast-
ing, classification, and anomaly detection (Zhou et al., 2023).

• SimpleTM: Introduces a simple yet effective architecture that uniquely integrates classical signal
processing ideas with a slightly modified attention mechanism (Chen et al., 2025a).

• TimeKAN: Employs a kernel attention network to decompose the time series into frequency
components and model each for improved long-term forecasting (Huang et al., 2025).

• TimeMixer: Utilizes a decomposable multiscale mixing module to integrate information across
different temporal scales for more robust predictions (Wang et al., 2024b).

• iTransformer: Introduces an “inverted” transformer architecture that swaps the roles of queries,
keys, and values to simplify and accelerate time series modeling (Liu et al., 2024c).

• PatchTST: Treats a time series as a sequence of fixed-length patches and applies transformer-
based patch-wise modeling to capture long-range dependencies (Nie et al., 2023).

• TimesNet: Constructs a 2D temporal-variation representation and applies joint time–frequency
convolutions to capture general patterns in time series data (Wu et al., 2023).

• DLinear: Decomposes the series into trend and seasonal components, fits each with a simple
linear model, and then recombines them for forecasting (Zeng et al., 2023).

• FEDformer: Leverages frequency-enhanced decomposition within a transformer framework to
efficiently model and forecast long-term periodic patterns (Zhou et al., 2022).

• WPMixer: This method is an MLP-based model that performs multi-resolution wavelet decom-
position to generate time–frequency patches which are then embedded and mixed via lightweight
MLP modules, efficiently capturing both local and global patterns for long-term time series fore-
casting (Murad et al., 2025).

• TimeLLM:This method is a reprogramming framework to repurpose LLMs for general time se-
ries forecasting with the backbone language models kept intact (Jin et al., 2024).

A.3 EXPERIMENTS

A.3.1 OVERALL PERFORMANCE COMPARISON

Table 2: Overall Performance Comparison.

Methods Dataset ETTm2→Traffic Weather→Electricity Electricity→ETTm2 Traffic→Weather ETTh2→Weather ETTm1→ETTh1

PL 96 192 336 96 192 336 96 192 336 96 192 336 96 192 336 96 192 336

OFA MSE 0.455 0.469 0.503 0.171 0.197 0.271 0.185 0.242 0.293 0.239 0.254 0.299 0.221 0.288 0.299 0.482 0.502 0.498
MAE 0.336 0.344 0.368 0.279 0.293 0.313 0.270 0.306 0.337 0.295 0.297 0.328 0.277 0.325 0.322 0.470 0.486 0.484

TimePD MSE 0.453 0.469 0.496 0.170 0.189 0.211 0.180 0.229 0.281 0.229 0.236 0.271 0.168 0.287 0.271 0.456 0.474 0.441
MAE 0.327 0.341 0.362 0.275 0.293 0.312 0.267 0.304 0.335 0.285 0.285 0.307 0.226 0.321 0.308 0.454 0.464 0.453

In this section, we present the experimental results that compare TimePD with OFA using other
datasets (except ETTh1) as source data. The experimental results show that our method can also
achieve better prediction results when other datasets are used as source data.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TimePD w/o_LLM w/o_PD w/o_KD
1.7

2.1

2.5

2.9

3.4

Lo
ss

×10 1

MSE
MAE

(a) ETTh1→ETTm2

TimePD w/o_LLM w/o_PD w/o_KD
1.6

1.9

2.3

2.7

3.0

Lo
ss

×10 1

MSE
MAE

(b) ETTh1→Weather

TimePD w/o_LLM w/o_PD w/o_KD
1.6

2.1

2.5

3.0

3.5

Lo
ss

×10 1

MSE
MAE

(c) ETTh1→ECL

TimePD w/o_LLM w/o_PD w/o_KD
3.2

3.6

4.1

4.6

5.1

Lo
ss

×10 1

MSE
MAE

(d) ETTh1→Traffic

Figure 9: Performance of TimePD and Its Variants

A.3.2 ABLATION STUDY

Here, we present the experimental results on the remaining datasets, as shown in Figure 9.

A.3.3 EFFECT OF THE SIZE OF TARGET DOMAIN DATASET

5% 10% 20% 30% 40%
3.5

3.9

4.3

4.7

5.1

Lo
ss

×10 1

MSE MAE

(a) ETTh1→ETTm1

5% 10% 20% 30% 40%
1.7

1.9

2.2

2.4

2.6

Lo
ss

×10 1

MSE MAE

(b) ETTh1→Weather

5% 10% 20% 30% 40%
1.6

2.0

2.3

2.7

3.0

Lo
ss

×10 1

MSE MAE

(c) ETTh1→ECL

5% 10% 20% 30% 40%
3.2

3.7

4.1

4.6

5.0

Lo
ss

×10 1

MSE MAE

(d) ETTh1→Traffic

Figure 10: Effect of the Size of Target domain Dataset

Figure 10 shows experimental results on other datasets. In the main text, we mentioned that the
degree of improvement varies significantly across datasets, and in some cases, additional data even
leads to performance degradation. For example, the ETTh1 → ECL task shows very little variation
across all data proportions, indicating that the model achieves near-optimal performance even with
as little as 5% of target data. This insensitivity implies that the model transfers well to the ECL
domain with minimal adaptation. Interestingly, ETTh1 → ETTm1 and ETTh1 → weather present
non-monotonic trends. For example, in the ETTm1 task, performance initially worsens from 5% to
10% and then improves, while for weather, fluctuations occur throughout. This behavior may result
from domain complexity, data noise, or overfitting due to insufficient generalization. For the ETTh1
→ traffic task, model performance fluctuates within a narrow range across all data proportions. The
lack of substantial improvement suggests that the model might have already captured the essential
patterns with a small amount of target data, and further data adds limited value.

A.3.4 EFFECT OF THE LEARNING RATE
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Figure 11: Effect of the learning rate

We further study the sensitivity of our model to the learning rate, as shown in Figure 11. Across all
transfer settings, extremely small or large values lead to performance degradation, while moderate
values (e.g., 1e-4) yield consistently better results. In particular, ETTh1→ETTm1 exhibits a sharp
loss increase when deviating from this range, indicating that the model is relatively sensitive to the
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learning rate in certain domains. Overall, these results suggest that our method remains robust within
a reasonable range but requires careful tuning to achieve optimal performance.

A.3.5 PSEUDO TRAINING CODE OF TIMEPD

Algorithm 1: The TimePD Framework
Input: Source model θs, Pre-trained large language model θts, Source dataset XS , Target

dataset XT , Denoising strength α, Loss weights λ1, λ2, Iterations M
Output: Adapted target model θt
Initialization: Train θs on source dataset XS and set target model θt ← θs.
for m = 1 to M do

Sample a mini-batch Xb
T from XT .

Obtain source prediction zs by forwarding Xb
T through θs (frozen).

Obtain target prediction zt by forwarding Xb
T through θt.

Obtain proxy forecast zproxy by forwarding Xb
T through θts(frozen).

Extract invariant trend and seasonal features htrend, hseason via invariant feature learning.
Compute invariance regularizers L,Linv, Lpred, Lrep, Lgrad at representation and gradient
levels (Eq. (4), Eq. (10), Eq. (15), Eq. (16), Eq. (18)).

Apply proxy denoising to correct proxy forecasts of Xb
T (Eq. (19)).

zdenoised ← zproxy − α(zs − zt).
Apply knowledge distillation between corrected proxy zdenoised and target outputs zt
(Eq. (20)).
Lmkd ←MSE(zdenoised, zt).
Compute the overall objective Lall and update θt by minimizing Lall (Eq. (21)).

return Adapted target model θt

We show the training process of TimePD in Algorithm 1. With the optimization objective proposed
in Eq. (21), we can effectively train and optimize the model.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used in this work solely for auxiliary purposes. Specifically, they assisted in improv-
ing the accuracy of writing by identifying and correcting grammatical issues. All research ideas,
methodological developments, experiments, and the main body of the manuscript are independently
conceived, conducted, and written by the authors.
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