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Abstract

The cold posterior e�ect (CPE) (Wenzel et al., 2020) in Bayesian deep learning shows that,
for posteriors with a temperature T < 1, the resulting posterior predictive could have better
performance than the Bayesian posterior (T = 1). As the Bayesian posterior is known to be
optimal under perfect model specification, many recent works have studied the presence of
CPE as a model misspecification problem, arising from the prior and/or from the likelihood.
In this work, we provide a more nuanced understanding of the CPE as we show that
misspecification leads to CPE only when the resulting Bayesian posterior underfits. In fact,
we theoretically show that if there is no underfitting, there is no CPE. Furthermore, we show
that these tempered posteriors with (T < 1) are indeed proper Bayesian posteriors with a
di�erent combination of likelihood and prior parameterized by T . Within the empirical Bayes

framework, this observation validates the adjustment of the temperature hyperparameter T

as a straightforward approach to mitigate underfitting in the Bayesian posterior. In essence,
we show that by fine-tuning the temperature T we implicitly utilize alternative Bayesian
posteriors, albeit with less misspecified likelihood and prior distributions.

1 Introduction

In Bayesian deep learning, the cold posterior e�ect (CPE) (Wenzel et al., 2020) refers to the phenomenon in
which if we artificially “temper” the posterior by either p(◊|D) Ã (p(D|◊)p(◊))1/T or p(◊|D) Ã p(D|◊)1/T

p(◊)
with a temperature T < 1, the resulting posterior enjoys better predictive performance than the standard
Bayesian posterior (with T = 1). The discovery of the CPE has sparked debates in the community about its
potential contributing factors.

If the prior and likelihood are properly specified, the Bayesian solution (i.e., T = 1) should be optimal
(Gelman et al., 2013), assuming approximate inference is properly working. Hence, the presence of the CPE
implies either the prior (Wenzel et al., 2020; Fortuin et al., 2022), the likelihood (Aitchison, 2021; Kapoor
et al., 2022), or both are misspecified. This has been, so far, the main argument of many works trying to
explain the CPE.

One line of research examines the impact of the prior misspecification on the CPE (Wenzel et al., 2020;
Fortuin et al., 2022). The priors of modern Bayesian neural networks are often selected for tractability.
Consequently, the quality of the selected priors in relation to the CPE is a natural concern. Previous research
has revealed that while adjusting priors can help alleviate the CPE in certain cases, there are instances where
the e�ect persists despite such adjustments (Fortuin et al., 2022). Some studies even show that the role of
priors may not be critical (Izmailov et al., 2021). Therefore, the impact of priors on the CPE remains an
open question.

Furthermore, the influence of likelihood misspecification on CPE has also been investigated (Aitchison,
2021; Noci et al., 2021; Kapoor et al., 2022; Fortuin et al., 2022), and has been identified to be particularly
relevant in curated datasets (Aitchison, 2021; Kapoor et al., 2022). Several studies have proposed alternative
likelihood functions to address this issue and successfully mitigate the CPE (Nabarro et al., 2022; Kapoor
et al., 2022). However, the underlying relation between the likelihood and CPE remains a partially unresolved
question. Notably, the CPE usually emerges when data augmentation (DA) techniques are used (Wenzel
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et al., 2020; Izmailov et al., 2021; Fortuin et al., 2022; Noci et al., 2021; Nabarro et al., 2022; Kapoor et al.,
2022). A popular hypothesis is that using DA implies the introduction of a randomly perturbed log-likelihood,
which lacks a clear interpretation as a valid likelihood function (Wenzel et al., 2020; Izmailov et al., 2021).
However, Nabarro et al. (2022) demonstrates that the CPE persists even when a proper likelihood function
incorporating DA is defined. Therefore, further investigation is needed to fully understand their relationship.

Other works argued that CPE could mainly be an artifact of inaccurate approximate inference methods,
especially in the context of neural networks, where the posteriors are extremely high dimensional and complex
(Izmailov et al., 2021). However, many of the previously mentioned works have also found setups where
the CPE either disappears or is significantly alleviated through the adoption of better priors and/or better
likelihoods with approximate inference methods. In these studies, the same approximate inference methods
were used to illustrate, for example, how using a standard likelihood function leads to the observation of CPE
and how using an alternative likelihood function removes it (Aitchison, 2021; Noci et al., 2021; Kapoor et al.,
2022). In other instances, under the same approximate inference scheme, CPE is observed when using certain
types of priors but it is strongly alleviated when an alternative class of priors is utilized (Wenzel et al., 2020;
Fortuin et al., 2022). Therefore, there is compelling evidence suggesting that approximate methods are not,
at least, a necessary condition for the CPE.

This study, both theoretically and empirically, demonstrates that the presence of the cold posterior e�ect
(CPE) implies the existence of underfitting; in other words, if there is no underfitting, there is no CPE.
Integrating this perspective with previous findings suggesting that CPE indicates misspecified likelihood,
prior, or both (Gelman et al., 2013), we conclude that CPE implies both misspecification and underfitting.
Consequently, mitigating CPE necessitates addressing both aspects. Notably, simplifying the issue by solely
focusing on misspecification is insu�cient, as misspecification can lead Bayesian methods to both underfitting
and overfitting (Domingos, 2000; Immer et al., 2021; Kapoor et al., 2022); CPE only arises when underfitting
occurs. This study thus o�ers a nuanced perspective on the factors contributing to CPE. Additionally, we
demonstrate that tempered posteriors represent proper Bayesian posteriors under di�erent likelihood and
prior distributions, jointly parameterized by the temperature parameter T . Consequently, by adjusting T , we
e�ectively identify Bayesian posteriors with less misspecified likelihood and prior distributions, leading to a
more accurate representation of the training data and improved generalization performance. Furthermore,
we delve into the relationship between prior/likelihood misspecification, data augmentation, approximate
inference, and CPE, o�ering insights into potential strategies for addressing these issues.

Contributions (i) We theoretically demonstrate that the presence of the CPE implies the Bayesian
posterior is underfitting in Section 3. (ii) We show that any tempered posterior is a proper Bayesian posterior
with an alternative likelihood and prior distribution in Section 4. (iii) We show in Section 5 that likelihood
misspecification and prior misspecification result in CPE only if they also induce underfitting. Furthermore,
the tempered posteriors o�er an e�ective and well-founded Bayesian mechanism to address the underfitting
problem. (iv) Finally, we show that data augmentation results in stronger CPE because it induces a stronger
underfitting of the Bayesian posterior in Section 6. In conclusion, our theoretical analysis reveals that the
occurrence of the CPE signifies underfitting of the Bayesian posterior. Also, fine-tuning the temperature in
tempered posteriors o�ers a well-founded and e�ective Bayesian approach to mitigate the issue. Furthermore,
our work aims to settle the debate surrounding CPE and its implications for Bayesian principles, specifically
within the context of deep learning.

2 Background

2.1 Notation

Let us start by introducing basic notation. Consider a supervised learning problem with the sample space Y◊X .
Let D = {(yi, xi)}n

i=1 denote the training data, which we assume to be generated from an unknown data-
generating distribution ‹ on Y ◊X . We also assume we have a family of probabilistic models parameterized by
�, where each ◊ defines a conditional probability distribution denoted by p(y|x, ◊). The standard metric to
measure the quality of a probabilistic model ◊ on a sample (y, x) is the (negative) log-loss ≠ ln p(y|x, ◊). The
expected (or population) loss of a probabilistic model ◊ is defined as L(◊) = E(y,x)≥‹ [≠ ln p(y|x, ◊)], and the
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empirical loss of the model ◊ on the data D is defined as L̂(D, ◊) = ≠ 1
n

q
iœ[n] ln p(yi|xi, ◊) = ≠ 1

n ln p(D|◊).
We might interchange the loss expression, L̂(D, ◊), and the negative log-likelihood expression, ≠ 1

n ln p(D|◊),
in the paper for presentation. Also, if it induces no ambiguity, we use E‹ [·] as a shorthand for E(y,x)≥‹ [·].

2.2 (Generalized) Bayesian Learning

In Bayesian learning, we learn a probability distribution fl(◊|D), often called a posterior, over the parameter
space � from the training data D. Given a new input x, the posterior fl makes the prediction about y
through (an approximation of) Bayesian model averaging (BMA) p(y|x, fl) = E◊≥fl[p(y|x, ◊)], where the
posterior fl is used to combine the predictions of the models. Again, if it induces no ambiguity, we use Efl[·]
as a shorthand for E◊≥fl[·]. The predictive performance of such BMA is usually measured by the Bayes loss,
defined by

B(fl) = E‹ [≠ lnEfl[p(y|x, ◊)]] . (1)

For some ⁄ > 0 and a prior p(◊), the so-called tempered posteriors (or the generalized Bayes posterior)
(Barron & Cover, 1991; Zhang, 2006; Bissiri et al., 2016; Grünwald & van Ommen, 2017), are defined as a
probability distribution

p
⁄(◊|D) Ã p(D|◊)⁄

p(◊) , (2)
where p(D|◊)⁄ =

r
i p(yi|xi, ◊)⁄. Note that, when ⁄ ”= 1,

s
p(y|x, ◊)⁄

dy might not be 1 in general.

Even though many works on CPE use the parameter T = 1/⁄ instead, we adopt ⁄ in the rest of the work for
the convenience of derivations. Therefore, the CPE (T < 1) corresponds to when ⁄ > 1. We also note that
while some works study CPE with a full-tempering posterior, where the prior is also tempered, many works
also find CPE for likelihood-tempering posterior (see (Wenzel et al., 2020) and the references therein). Also,
with some widely chosen priors (e.g., zero-centered Gaussian priors), the likelihood-tempering posteriors are
equivalent to full-tempering posteriors with rescaled prior variances (Aitchison, 2021; Bachmann et al., 2022).

When ⁄ = 1, the tempered posterior equals the (standard) Bayesian posterior. The tempered posterior can
be obtained by optimizing a generalization of the so-called (generalized) ELBO objective (Alquier et al., 2016;
Higgins et al., 2017), which, for convenience, we write as follows:

p
⁄(◊|D) = arg min

fl
Efl[≠ ln p(D|◊)] + 1

⁄
KL(fl(◊|D), p(◊)) . (3)

The first term is known as the (un-normalized) reconstruction error or the empirical Gibbs loss of the posterior
fl on the data D, denoted as Ĝ(fl, D) = Efl[≠ 1

n ln p(D|◊)], which further equals to Efl[L̂(D, ◊)]. Therefore,
it is often used as the training loss in Bayesian learning (Morningstar et al., 2022). The second term is a
Kullback-Leibler divergence between the posterior fl(◊|D) and the prior p(◊) scaled by a hyper-parameter ⁄.

If it induces no ambiguity, we will use p
⁄ as a shorthand for p

⁄(◊|D). So, for example, B(p⁄) would refer to
the expected Bayes loss of the tempered-posterior p

⁄(◊|D). In the rest of this work, we will interpret the
CPE as how changes in the parameter ⁄ a�ect the test error and the training error of p

⁄ or, equivalently, the
Bayes loss B(p⁄) and the empirical Gibbs loss Ĝ(p⁄

, D).

3 The presence of the CPE implies underfitting

A standard understanding for underfitting refers to a situation when the trained model cannot properly
capture the relationship between input and output in the data-generating process, resulting in high errors
on both the training data and testing data. In the context of highly flexible model classes such as neural
networks, underfitting refers to a scenario where the trained model exhibits (much) higher training and testing
losses compared to what is achievable. Essentially, it means that there exists another model in the model class
that achieves lower training and testing losses simultaneously. In the context of Bayesian inference, we argue
that the Bayesian posterior is underfitting if there exists another posterior distribution with lower empirical
Gibbs and Bayes losses at the same time. In fact, we will show later in Section 4 that such a posterior is
essentially another Bayesian posterior but with a di�erent prior and likelihood function. Before delving into
that, we focus on characterizing the cold posterior e�ect (CPE) and its connection to underfitting.
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As previously discussed, the CPE describes the phenomenon of getting better predictive performance when
we make the parameter of the tempered posterior, ⁄, higher than 1. The next definition introduces a formal
characterization. We do not claim this is the best possible formal characterization. However, through the rest
of the paper, we will show that this simple characterization is enough to understand the relationship between
CPE and underfitting.
Definition 1. We say there is a CPE for Bayes loss if and only if the gradient of the Bayes loss of the

posterior p
⁄
, B(p⁄), evaluated at ⁄ = 1 is negative. That is,

Ò⁄B(p⁄)|⁄=1 < 0 , (4)

where the magnitude of the gradient Ò⁄B(p⁄)
--
⁄=1 defines the strength of the CPE.

According to the above definition, a (relatively large) negative gradient Ò⁄B(p⁄)|⁄=1 implies that by making
⁄ slightly greater than 1, we will have a (relatively large) reduction in the Bayes loss with respect to the
Bayesian posterior. Note that if the gradient Ò⁄B(p⁄)|⁄=1 is not relatively large and negative, then we can
not expect a relatively large reduction in the Bayes loss and, in consequence, the CPE will not be significant.
Obviously, this formal definition could also be extended to other specific ⁄ values di�erent from 1, or even
consider some aggregation over di�erent ⁄ > 1 values. We will stick to this definition because it is simpler, and
the insights and conclusions extracted here can be easily extrapolated to other similar definitions involving
the gradient of the Bayes loss.

Next, we present another critical observation. We postpone the proofs in this section to Appendix A.
Proposition 2. The gradient of the empirical Gibbs loss of the tempered posterior p

⁄
satisfies

’⁄ Ø 0 Ò⁄Ĝ(p⁄
, D) = ≠Vp⁄

!
ln p(D|◊)

"
Æ 0 , (5)

where V(·) denotes the variance.

As shown in Proposition 6 in Appendix A, to achieve Vp⁄

!
ln p(D|◊)

"
= 0, we need p

⁄(◊|D) = p(◊), implying
that the data has no influence on the posterior. In consequence, in practical scenarios, Vp⁄

!
ln p(D|◊)

"
will

always be greater than zero. Thus, increasing ⁄ will monotonically reduce the empirical Gibbs loss Ĝ(p⁄
, D)

(i.e., the train error) of p
⁄. The next result also shows that the empirical Gibbs loss of the Bayesian posterior

Ĝ(p⁄=1) cannot reach its floor to observe the CPE.
Proposition 3. A necessary condition for the presence of the CPE, as defined in Definition 1, is that

Ĝ(p⁄=1
, D) > min

◊
≠ ln p(D|◊) .

Insight 1. Definition 1 in combination with Proposition 2 state that if the CPE is present, by making ⁄ > 1,

the test loss B(p⁄) and the empirical Gibbs loss Ĝ(p⁄
, D) will be reduced at the same time. Furthermore,

Proposition 3 states that the Bayesian posterior still has room to fit the training data further (e.g., by placing

more probability mass on the maximum likelihood estimator). From here, we can deduce that the presence

of CPE implies that the original Bayesian posterior (⁄ = 1) is experiencing underfitting. This conclusion

arises because there exists another Bayesian posterior (i.e, p
⁄(◊|D) with ⁄ > 1) that has lower training

(Proposition 3) and testing (Definition 1) loss at the same time. Further elaboration on the nature of p
⁄(◊|D)

as another Bayesian posterior will be provided later in Section 4. In short, if there is CPE, the original

Bayesian posterior is underfitting. Or, equivalently, if the original Bayesian posterior does not underfit, there

is no CPE.

However, a final question arises: when is ⁄ = 1 (the original Bayesian posterior of interest) optimal? More
precisely, when does the gradient of the Bayes loss with respect to ⁄ evaluated at ⁄ = 1 become zero
(Ò⁄B(p⁄)|⁄=1 = 0)? This would imply that neither (infinitesimally) increasing nor decreasing ⁄ changes the
predictive performance. We will see that this condition is closely related to the situation that updating such
a Bayesian posterior with more data does not enhance its fit to the original training data better. In other
words, when such a Bayesian posterior contains more information about the data-generating distribution, it
continues to fit the originally provided training data in a similar manner.
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We start by denoting p̃
⁄(◊|D, (y, x)) as the distribution obtained by updating the posterior p

⁄(◊|D) with
one new sample (y, x), i.e., p̃

⁄(◊|D, (y, x)) Ã p(y|x, ◊)p⁄(◊|D). And we also denote p̄
⁄ as the distribution

resulting from averaging p̃
⁄(◊|D, (y, x)) over di�erent unseen samples from the data-generating distribution

(y, x) ≥ ‹(y, x):
p̄

⁄(◊|D) = E‹

#
p̃

⁄(◊|D, (y, x))
$

. (6)

In this sense, p̄
⁄ represents how the posterior p

⁄ would be, on average, after being updated with a new sample
from the data-generating distribution. This updated posterior contains a bit more information about the
data-generating distribution, compared to p

⁄. Using the updated posterior p̄
⁄, the following result introduces

a characterization of the optimality of the original Bayesian posterior.
Theorem 4. The gradient of the Bayes loss at ⁄ = 1 is null, i.e., Ò⁄B(p⁄)|⁄=1 = 0, if and only if,

Ĝ(p⁄=1
, D) = Ĝ(p̄⁄=1

, D) .

Insight 2. The original Bayesian posterior of interest is optimal if after updating it using the procedure

described in Eq. 6, or in other words, after exposing the Bayesian posterior to more data from the data-

generating distribution, the empirical Gibbs loss over the initial training data remains unchanged.

We will then show that the tempered posterior p
⁄(◊|D) is actually yet another Bayesian posterior.

4 Tempered Posteriors are Bayesian Posteriors

As previously discussed, the CPE phenomenon involves achieving improved predictive accuracy by employing
a tempered posterior. A potential criticism is that this tempered posterior does not strictly adhere to the
principles of a proper Bayesian posterior because the tempered likelihood, P (D|◊)⁄ fails to meet the criteria
of a proper likelihood function when ⁄ ”= 1 (i.e.,

s
P (D|◊)⁄

dD ”= 1 when ⁄ ”= 1). In this section, we aim to
demonstrate that this tempered posterior e�ectively serves as a proper Bayesian posterior when considering
a new combination of likelihood and prior functions. This strengthens our understanding of the CPE as a
consequence of underfitting, resulting from poorly specified likelihood and prior functions. We will show that
the presence of the CPE implies the existence of an alternative set of likelihood and prior functions, which
are better specified in the sense that they define a Bayesian posterior that exhibits superior performance in
both training and testing loss metrics.

Before delving into the description of the new likelihood and prior functions, it is essential to acknowledge
a fundamental aspect. Given a labeled dataset D = (X, Y ) and the conditional likelihood associated to a
classification model, the application of Bayes’ theorem naturally results in the following Bayesian posterior:
p(◊|X, Y ) Ã p(Y |X, ◊)p(◊|X), where the prior over ◊ is a conditional prior (Marek et al., 2024) that
depends on the unlabelled training data X. However, specifying p(◊|X) for a complex model, like a deep
neural network, poses a significant challenge. We are not aware of any work defining this kind of prior in
the context of Bayesian deep learning. Therefore, for practical purposes, nearly all existing works (Wenzel
et al., 2020; Fortuin et al., 2022) assume ◊ to be independent of X, resulting in the simplified expression
p(◊|X, Y ) Ã p(Y |X, ◊)p(◊), where the prior over ◊ is now an unconditional prior. The next result shows
that the tempered posteriors are indeed proper Bayesian posteriors with di�erent priors and posteriors.
Proposition 5. For any given dataset D = (X, Y ) and ⁄ > 0, the tempered posterior defined in Equation 2

can be expressed as a Bayesian posterior with a new prior and likelihood function as follows:

p
⁄(◊|X, Y ) Ã q(◊|X, ⁄)

Ÿ

(y,x)œD

q(y|x, ◊, ⁄), (7)

where the new prior distribution q(◊|X, ⁄) and likelihood function q(y|x, ◊, ⁄) are defined as:

q(◊|X, ⁄) Ã p(◊)
Ÿ

xœX

⁄
p(y|x, ◊)⁄

dy, q(y|x, ◊, ⁄) = p(y|x, ◊)⁄

s
p(y|x, ◊)⁄dy

. (8)
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q(y|x, ◊, ⁄) q(◊|X, ⁄)

(x)

q(◊|X, ⁄)

Figure 1: Illustration of the new likelihood q(y|x, ◊, ⁄) and priors q(◊|X, ⁄), respectively, with the original likelihood
in the form of Bernoulli distribution (left and middle); and the new prior obtained from an inverse-gamma prior and
Gaussian likelihood (right) with a single observation. The transformation from ◊(x) to ◊ı(x, ⁄) := ◊(x)⁄

◊(x)⁄+(1≠◊(x))⁄

is shown at the left. The transformation of a Beta prior in a coin-flipping Beta-Binomial example with a single
observation is shown in the middle.

Note that the new conditional likelihood and the new prior are both parametrized by the same ⁄ > 0, and
note that the prior only depends on the unlabelled training data X as in the general case described above.
We now elaborate on how the new likelihood and prior distributions depend on ⁄. The next inequality, proved
in Appendix B.2, shows that higher ⁄ values induce likelihood distributions with lower aleatoric uncertainty
or, equivalently, lower entropy, denoted as H(q(y|x, ◊, ⁄)):

Ò⁄H(q(y|x, ◊, ⁄)) Æ 0 ’⁄ > 0 . (9)

We give two concrete examples with Gaussian and Bernoulli conditional likelihoods to illustrate the proposition.
We also show that higher ⁄ values result in likelihood distributions with lower aleatoric uncertainty. Let’s
first have a look at the new likelihood distributions.

Likelihood Examples Consider the case where the original likelihood is Gaussian, defined as p(y|x, ◊) =
N (µ(x, ◊), ‡(◊)2), where the variance is input-independent, as typically seen in many regression problems.

Then, following Equation 8, the new likelihood corresponds to a scaling in the variance, given by q(y|x, ◊, ⁄) =
N (µ(x, ◊), ‡(◊)2

⁄2 ). Thus, as ⁄ increases, the tempered likelihood q(y|x, ◊, ⁄) induces a proper Gaussian

likelihood with reduced variance, i.e., a new likelihood with lower aleatoric uncertainty.

Consider the case of a binary classification problem where the original conditional likelihood is Bernoulli,

defined as p(y|x, ◊) = ◊(x)y(1 ≠ ◊(x))1≠y
with y œ {0, 1} and the input-dependent parameter function

◊(x) œ [0, 1], which is usually implemented by a neural network with a softmax activation function in the last

layer. Then, following Equation 8, the new conditional likelihood q(y|x, ◊, ⁄) = ◊
ú(x, ⁄)y(1 ≠ ◊

ú(x, ⁄))1≠y

also follows a Bernoulli distribution with a di�erent parameter function ◊
ú(x, ⁄) = ◊(x)⁄

◊(x)⁄+(1≠◊(x))⁄ œ [0, 1].
The function ◊

ú(x, ⁄) is displayed in Figure 1 (left). When ⁄ increases, the parameter function that defines the

new Bernoulli likelihood becomes more extreme, resulting in a new likelihood with lower aleatoric uncertainty.

On the other hand, according to Proposition 5, using the tempered posteriors implies implicitly using the
prior q(◊|X, ⁄). Such prior depends not only on the unlabelled training data X, but also on the likelihood
function defined by the probabilistic model family through the term

s
p(y|x, ◊)⁄

dy for x œ X. Thus, for
models ◊ that yield a large value for this term across most of the training data x œ X, the new prior will
assign larger probability mass accordingly. We will showcase this e�ect in both binary classification and
regression problems. Moreover, we will see how this new prior q(◊|X, ⁄) with ⁄ > 1 favors those models

within the model class that yield likelihoods with lower aleatoric uncertainty on the training data X.

Prior Examples Consider the case where the original likelihood is Gaussian, defined as p(y|x, ◊) =
N (µ(x, ◊), ‡

2(◊)), where the variance is input-independent, as typically seen in many regression problems. A

common parametrization in this case is to have ◊ = (w, “), where w refer to the weights of the neural network

defining the function µ(x, ◊) and “ > 0 is a free parameter encoding the variance of the Gaussian likelihood,
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‡
2(◊) = “. And p(◊) is then defined as p(◊) = p(w)p(“), where p(w) is usually a Gaussian distribution with

a diagonal covariance matrix, and p(“) is usually defined in terms of a inverse-gamma distribution. Following

Equation 8, the new prior would be then expressed as q(◊|X, ⁄) = q(w|X, ⁄)q(“|X, ⁄), where each term is

defined:

q(w|X, ⁄) = p(w) q(“|X, ⁄) Ã p(“)/“
n(⁄≠1)

.

Figure 1 (right) plots the density of q(“|X, ⁄) for n = 1 and several ⁄ > 1 values when p(“) is an inverse-

gamma prior. For larger ⁄ values, this new prior will assign more probability mass to models defining a

likelihood with smaller variance or, equivalently, smaller aleatoric uncertainty.

Consider another case where the original conditional likelihood is Bernoulli, defined as p(y|x, ◊) = ◊(x)y(1 ≠
◊(x))1≠y

with y œ {0, 1} and ◊(x) œ [0, 1], as commonly used in binary classification problems. Then,

following Equation 8, the new prior is expressed as

q(◊|X, ⁄) Ã p(◊)
Ÿ

xœX

1
◊(x)⁄ + (1 ≠ ◊(x))⁄

2
.

Figure 1 (middle) illustrates this prior for a Beta-Binomial model under ⁄ Ø 1, assuming that there is a single

training sample. This figure shows that as ⁄ increases, the new prior assigns more probability mass to models

where ◊(x) is close to either 1 or 0. In other words, this new prior assigns more probability mass to models

that assign more extreme probabilities to the training data (i.e., models with lower aleatoric uncertainty).

Note that the prior does not consider how accurately these models classify the training data, but only the

extremity of the probabilities assigned to the training data.

In this context, employing tempered posteriors seamlessly fits within a Bayesian framework. Tuning the
hyperparameter ⁄ resembles an empirical Bayesian technique. This method streamlines and enriches the
utilization of diverse likelihood and prior functions. Furthermore, using likelihood/priors with ⁄ > 1, the
tempered Bayesian posterior enhances the fit to training data by allocating more probability to models with
lower aleatoric uncertainty. Consequently, tempered posteriors provide a simple, computationally e�cient, and
theoretically sound approach to mitigate the underfitting problem commonly encountered in contemporary
Bayesian deep learning methods.
Insight 3. If, in comparison to the original Bayesian posterior, we observe a decrease in both training and

test loss when using tempered posteriors with ⁄ > 1, it implies that the new likelihood and priors implicitly

defined in Equation 8 are better specified. This alignment with the underlying data distribution enables the

tempered posterior to better capture the data-generating distribution, leading to enhanced model performance

on both training and unseen test data.

Generalized ELBOs are also proper ELBOs Generalized ELBOs, characterized by scaling the KL
divergence term using a hyper-parameter ⁄, have found widespread application in many studies (Wenzel
et al., 2020). This popularity stems from the demonstrated ability of adjusting ⁄ to improve the predictive
accuracy of variational approximations:

q
ı
⁄ := arg min

rœ�
Er[≠ ln p(D|◊)] + 1

⁄
KL(r(◊), p(◊)) , (10)

where � defines the variational family. Critics have pointed out a flaw in the above generalized ELBO when ⁄

deviates from 1, as it no longer functions as a true lower bound for the marginal likelihood. But Proposition
5 can be used to justify that such a variational posterior q

ı
⁄ still emerges from minimizing a valid ELBO.

Specifically, it is constructed based on the revised likelihood and prior functions as follows:

q
ı
⁄ = arg min

rœ�
Er[≠ ln q(Y |X, ◊, ⁄)] + KL(r(◊), q(◊|X, ⁄)) . (11)

Consequently, this analysis shows that using generalized ELBOs as Equation 10 perfectly adheres to variational
and Bayesian principles.
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(a) No misspecification (b) Misspecified likelihood I (c) Misspecified likelihood II (d) Misspecified prior

Figure 2: 1. The CPE occurs in Bayesian linear regression with exact inference. 2. Model misspecification
can lead to overfitting and to a “warm” posterior e�ect (WPE). Every column displays a specific setting, as
indicated in the caption. The first row shows exact Bayesian posterior predictive fits for three di�erent values of the
tempering parameter ⁄. The second row shows the Gibbs loss Ĝ(p⁄, D) (aka training loss) and the Bayes loss B(p⁄)
(aka testing loss) with respect to ⁄. The experimental details are given in Appendix D.

5 Likelihood Misspecification, Prior Misspecification and the CPE

In light of the theoretical characterization of the CPE given above in terms of underfitting, we will revisit the
main arguments by previous works in relation to CPE, and we will show how we can provide a new and more
nuanced perspective on the underlying implications of the presence of the CPE. For now, we set aside data
augmentation, which will be specifically treated in the next section.

CPE, approximate inference, and NNs: As mentioned in the introduction, several works have discussed
that CPE is an artifact of inappropriate approximate inference methods, especially in the context of the
highly complex posterior that emerge from neural networks (Wenzel et al., 2020). The main reasoning is
that if the approximate inference method is accurate enough, the CPE disappears (Izmailov et al., 2021).
However, Proposition 2 shows that when ⁄ is made larger than 1, the training loss of the exact Bayesian
posterior decreases; if the test loss decreases too, the exact Bayesian posterior underfits. It means that even
if the inference method is accurate, we can still observe the CPE due to underfitting. In fact, Figure 2 shows
examples of a Bayesian linear regression model learned on synthetic data. Here, the exact Bayesian posterior
can be computed, and it is clear from Figures 2c and 2d that the CPE can occur in Bayesian linear regression
with exact inference. Although simple, the setting is articulated specifically to mimic the classification tasks
using BNNs where CPE was observed. In particular, the linear model has more parameters than observations
(i.e. it’s overparameterized).

Model misspecification, CPE, and underfitting: Prior and/or likelihood misspecification can lead
Bayesian methods to both underfitting and overfitting, as widely discussed in the literature (Domingos, 2000;
Immer et al., 2021; Kapoor et al., 2022). We illustrate this using a Bayesian linear regression model: Figures
2c and 2d show how the Bayesian posterior underfits due to likelihood and prior misspecification, respectively.
On the other hand, Figure 2b showcases a scenario where likelihood misspecification can perfectly lead to
overfitting as well, giving rise to what we term a “warm” posterior e�ect (WPE), i.e., there exists other
posteriors (p⁄ with ⁄ < 1) with lower testing loss, which, at the same time, also have higher training loss due
to Proposition 2. As a result, to describe CPE merely as a model misspecification issue without acknowledging
underfitting o�ers a narrow interpretation of the problem.
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(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 3: Experimental illustrations for the arguments in Section 5 using small CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with small CNN and CIFAR-10(0) with ResNet-18
in Appendix E. Figures 3a to 3c illustrate the arguments in Section 5. Figure 3c uses the standard prior (‡ = 1)
and the standard softmax (“ = 1) for the likelihood without applying DA. Figure 3a follows a similar setup except for
using a narrow prior. Figure 3b uses a narrow prior as in Figure 3a but with a tempered softmax that results in a
lower aleatoric uncertainty. We report the training loss Ĝ(p⁄, D) and the testing losses B(p⁄) and G(p⁄) from 10
samples of the small Convolutional neural network (CNN) via Stochastic Gradient Langevin Dynamics (SGLD). We
show the mean and standard error across three di�erent seeds. For additional experimental details, please refer to
Appendix E.

Note that the above examples, corresponding to the Gaussian case in the likelihood example and prior
example, provide a perfect and intuitive demonstration and explanation to our Proposition 5: when CPE
shows up, tuning ⁄ is equivalent to finding a Bayesian posterior with a less misspecified likelihood and prior.
We first expand the discussion on the likelihood and then the prior. For the likelihood, we go to Figure
2c, where the Gaussian likelihood model has a larger variance than the true data-generating process. Here,
the CPE is taking place since increasing ⁄ results in a likelihood model with lower aleatoric uncertainty
(Equation 9), bringing a less misspecified model (the Gaussian case in the likelihood example) and, thus,
better performance. More precisely, the new likelihood model has a smaller variance (divided by ⁄), and is,
accordingly, much closer to the true data-generating process. The opposite can be seen for Figure 2b, where
the Gaussian likelihood model has a lower variance than the true data-generating process and the WPE
occurs. This reveals the nature of CPE under likelihood misspecification: the performance improves because
the tempered posteriors implicitly assume a better specified likelihood. For the prior, we compare Figure 2a
and 2d. Since our likelihood variance is lower than 1, increasing ⁄ is the same as putting more probability
mass in likelihood models with lower uncertainty (shown in the Gaussian case in the prior example). Since
both the likelihood and prior are well-specified in Figure 2a, the “new prior” causes misspecification and
CPE does not occur. Conversely, this “new prior” places more mass on the less uncertain likelihood in Figure
2d. In consequence, it mitigates the misspecification and brings the CPE.

The likelihood misspecification argument: Likelihood misspecification has also been identified as a
cause of CPE, especially in cases where the dataset has been curated (Aitchison, 2021; Kapoor et al., 2022).
Data curation often involves carefully selecting samples and labels to improve the quality of the dataset. As a
result, the curated data-generating distribution typically presents very low aleatoric uncertainty, meaning that
‹(y|x) usually takes values very close to either 1 or 0. However, the standard likelihoods used in deep learning,
like softmax or sigmoid, implicitly assume a higher level of aleatoric uncertainty in the data (Aitchison,
2021; Kapoor et al., 2022). Therefore, their use in curated datasets, that exhibit low uncertainty, made
them misspecified (Kapoor et al., 2022; Fortuin et al., 2022). To address this issue, alternative likelihood
functions like the Noisy-Dirichlet model (Kapoor et al., 2022, Section 4) have been proposed, which better
align with the characteristics of the curated data. On the other hand, introducing noise labels also alleviates
the CPE, as demonstrated in Aitchison (2021, Figure 7). By introducing noise labels, we intentionally
increase aleatoric uncertainty in the data-generating distribution, which aligns better with the high aleatoric
uncertainty assumed by the standard Bayesian deep networks (Kapoor et al., 2022). Consequently, according
to these works, the CPE can be strongly alleviated when the likelihood misspecification is addressed.

9



Under review as submission to TMLR

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 4: Experimental illustrations for the arguments in Section 5 using large CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with large CNN and CIFAR-10(0) with ResNet-50
in Appendix E. The experiment setup is similar to the setups in Figure 3 but with a large CNN. Please refer to
Appendix E for further details on the model.

Our theoretical analysis aligns with these findings. However, we can also add that the key underlying cause
of CPE under data curation is the underfitting induced by likelihood misspecification. Because fitting low
aleatoric uncertainty data-generating distributions, e.g., ‹(y|x) œ {0.01, 0.99}, with high aleatoric uncertainty
likelihood functions e.g., p(y|x, ◊) œ [0.2, 0.8], induces underfitting. The presence of underfitting is not
mentioned at all by any of these previous works (Aitchison, 2021; Kapoor et al., 2022). On top of that, using
Proposition 5 and Equation 9, our work explains why the likelihood implicitly used by the tempered posterior
with ⁄ > 1 provides better generalizaton performance. Because, in this case, we are using a likelihood
q(◊|X, ⁄) (Equation 8) with lower aleatoric-uncertainty, which better aligns with the low aleatoric-uncertainty
data-generating distribution induced by curated datasets, thus reducing the degree of model misspecification.

Figures 3a and 3b, along with Figures 4a and 4b, illustrate this point through a regular multi-class classification
task on a curated benchmark dataset. Both scenarios utilize the same narrow prior. The distinction in Figure
3b lies in the adoption of a tempered softmax likelihood, defined as p(y|x, ◊) = (1 + exp (≠“ logits(x, ◊)))≠1,
with “ = 2, compared to “ = 1 in Figure 3a. This tempered softmax likelihood, more closely aligned with
the dataset’s low aleatoric uncertainty as outlined by (Guo et al., 2017), leads to a reduced incidence of
CPE in Figure 3b compared to Figure 3a. From the perspective of Proposition 5 and specifically Equation
9, the intrinsic lower aleatoric uncertainty of the likelihood used in Figure 3b (softmax with “ = 2) makes
the potential for improvement through increasing ⁄ somewhat limited, resulting in a less pronounced CPE
compared to Figure 3a. It is, however, important to highlight the critical interaction between the likelihood
and the prior, as we dicuss next.

The prior misspecification argument: As highlighted in previous works, such as in Wenzel et al. (2020);
Fortuin et al. (2022), isotropic Gaussian priors are commonly chosen in modern Bayesian neural networks for
the sake of tractability in approximate Bayesian inference rather than chosen based on their alignment with
our actual beliefs. Given that the presence of the CPE implies that either the likelihood and/or the prior
are misspecified, and given that neural networks define highly flexible likelihood functions, there are strong
reasons for thinking these commonly used priors are misspecified. Notably, the experiments conducted by
Fortuin et al. (2022) demonstrate that the CPE can be mitigated in fully connected neural networks when
using heavy-tailed prior distributions that better capture the weight characteristics typically observed in
such networks. However, such priors were found to be ine�ective in addressing the CPE in convolutional
neural networks (Fortuin et al., 2022), indicating the challenges involved in designing e�ective Bayesian priors
within this context.

Our theoretical analysis provides a deeper insight into these observations. As mentioned in Section 3, the
absence of underfitting means the absence of CPE. This implies that, assuming that large neural networks
defines a su�ciently flexible likelihood function, underfitting occurs due to the prior’s failure to allocate
enough probability to models that both fit the training data well and exhibit good generalization capabilities,
essentially due to excessive regularization by the prior p(◊). As detailed in Section 4, employing tempered
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posteriors with ⁄ > 1 e�ectively defines a conditional prior q(◊|X, ⁄) (see Equation 8 and the prior example)
that favors models with lower aleatoric-uncertainty. Such models aligns better with the training data. Hence,
the conditional prior q(◊|X, ⁄) with ⁄ > 1 can be considered better specified that the original prior p(◊)
because it leads to a tempered Bayesian posterior that not only more accurately represents the training data
but also improves generalization.

Figures 3a and 3c exemplify this situation: when the prior is too narrow (‡ = 0.0005) and induces a very
strong regularization, the resulting posterior severely underfits the training data and leads to a high empirical
Gibbs loss that deviates significantly from zero (Figure 3a). We also observe a strong CPE in this case, i.e.,
the Bayes loss B(p⁄) significantly decreases when ⁄ > 1. However, by using a flatter prior (Figure 3c) there is
less underfitting, and the CPE is considerably diminished. Using Proposition 5 and the above discussion, we
can see that in the former case, the new prior q(◊|X, ⁄) with ⁄ > 1 would place much more probability mass
in models with lower-aleatoric uncertainty than the narrow prior and, hence, strongly alleviating underfitting.
In the second case, since the flatter prior already has a more di�use probability mass over the model class,
the probability mass it can transfer to those models with lower aleatoric uncertainty will be lesser than that
from a narrower prior, hence resulting in a milder CPE.

Model size, CPE, and underfitting: Larger models have the capacity to fit data more e�ectively, while
smaller models are more likely to underfit. As we have argued that if there is no underfitting, there is no
CPE, we expect that the size of the model has an impact on the strength of CPE as well, as demonstrated in
Figure 3 and Figure 4. Specifically, in our experiments presented in Figure 3, we utilize a relatively small
convolutional neural network (CNN), which has a more pronounced underfitting behavior, and this indeed
corresponds to a stronger CPE. On the other hand, we employ a larger CNN in Figure 4, which has less
underfitting, and we see the CPE is strongly alleviated.

6 Data Augmentation (DA) and the CPE

Machine learning is applied to many di�erent fields and problems, and in many of them, the data-generating
distribution is known to have properties that can be exploited to artificially generate new data samples
(Shorten & Khoshgoftaar, 2019). This is commonly known as data augmentation (DA) and relies on the
property that for a given set of transformations T , the data-generating distribution satisfies ‹(y|x) = ‹(y|t(x))
for all t œ T . In practice, not all the transformations are applied to every single data. Instead, a probability
distribution (usually uniform) µT is defined over T , and augmented samples are drawn accordingly. As argued
in Nabarro et al. (2022), the use of data augmentation when training Bayesian neural networks implicitly
targets the following (pseudo) log-likelihood, denoted L̂DA(D, ◊) and defined as

L̂DA(D, ◊) = 1
n

ÿ

iœ[n]
Et≥µT [≠ ln p(yi|t(xi), ◊)] , (12)

where data augmentation provides unbiased estimates of the expectation under the set of transformations
using Monte Carlo samples (i.e., random data augmentations).

Although some argue that this data-augmented (pseudo) log-likelihood “does not have a clean interpretation
as a valid likelihood function” (Wenzel et al., 2020; Izmailov et al., 2021), we do not need to enter into this
discussion to understand why the CPE emerges when using the generalized Bayes posterior (Bissiri et al.,
2016) associated to this (pseudo) log-likelihood, which is the main goal of this section. We call this posterior
the DA-tempered posterior and is denoted by p

⁄
DA(◊|D). The DA-tempered posterior can be expressed as the

global minimizer of the following learning objective,

p
⁄
DA(◊|D) = arg min

fl
Efl[nL̂DA(D, ◊)] + 1

⁄
KL(fl(◊|D), p(◊)) . (13)

This is similar to Eq. 3 but now using L̂DA(D, ◊) instead of L̂(D, ◊), where we recall the notation L̂(D, ◊) =
≠ 1

n ln p(D|◊). Hence, the resulting DA-tempered posterior is given by p
⁄
DA(◊|D) Ã e

≠n⁄L̂DA(D,◊)
p(◊). In

comparison, the tempered posterior p
⁄(◊|D) in Eq. 2 can be similarly expressed as e

≠n⁄L̂(D,◊)
p(◊).
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There is large empirical evidence that DA induces a stronger CPE (Wenzel et al., 2020; Izmailov et al., 2021;
Fortuin et al., 2022). Indeed, many of these studies show that if CPE is not present in our Bayesian learning
settings, using DA makes it appear. According to our previous analysis, this means that the use of DA
induces a stronger underfitting. To understand why this is case, we will take a step back and begin analyzing
the impact of DA in the so-called Gibbs loss of the DA-Bayesian posterior p

⁄=1
DA rather than the Bayes loss,

as this will help us in understanding this puzzling phenomenon.

6.1 Data Augmentation and CPE on the Gibbs loss

The expected Gibbs loss of a given posterior fl, denoted G(fl), is a commonly used metric in the theoretical
analysis of the generalization performance of Bayesian methods (Germain et al., 2016; Masegosa, 2020). The
Gibbs loss represents the average of the expected log-loss of individual models under the posterior fl, that is,

G(fl) = Efl[L(◊)] = Efl[E‹ [≠ ln[p(y|x, ◊)]] .

In fact, Jensen’s inequality confirms that the expected Gibbs loss serves as an upper bound for the Bayes
loss, i.e., G(fl) Ø B(fl). This property supports the expected Gibbs loss to act as a proxy of the Bayes loss,
which justifies its usage in gaining insights into how DA impacts the CPE.

We will now study whether data augmentation can cause a CPE on the Gibb loss. In other words, we will
examine whether increasing the parameter ⁄ of the DA-tempered posterior leads to a reduction in the Gibbs
loss. This can be formalized by extending Definition 1 to the expected Gibbs loss by considering its gradient
Ò⁄G(p⁄) at ⁄ = 1, which can be represented as follows:

Ò⁄G(p⁄)|⁄=1 = ≠COVp⁄=1
!
nL̂(D, ◊), L(◊)

"
. (14)

Where COV(X, Y ) denotes the covariance of X and Y . Again, due to the page limit, we postpone the
necessary proofs in this section to Appendix C.

With this extended definition, if Eq. 14 is negative, we can infer the presence of CPE for the Gibbs loss as
well. Based on this, we say that DA induces a stronger CPE if the gradient of the expected Gibbs loss for the
DA-tempered posterior exhibits a more negative trend at ⁄ = 1, i.e., if Ò⁄G(p⁄

DA)|⁄=1 < Ò⁄G(p⁄)|⁄=1.This
condition can be equivalently stated as

COVp⁄=1
DA

!
nL̂DA(D, ◊), L(◊)

"
> COVp⁄=1

!
nL̂(D, ◊), L(◊)

"
> 0 . (15)

The inequality presented above helps characterize and understand the occurrence of a stronger CPE when
using DA. A stronger CPE arises if the expected Gibbs loss of a model L(◊) is more correlated with the
empirical Gibbs loss of this model on the augmented training dataset L̂DA(D, ◊) than on the non-augmented
dataset L̂(D, ◊). This observation suggests that, if we empirically observe that the CPE is stronger when using
an augmented dataset, the set of transformations T used to generate the augmented dataset are introducing
valuable information about the data-generating process.

Figure 5 clearly illustrates such situations. Figure 5b shows that, compared to Figure 5a, the standard DA,
which makes use of the invariances inherent in the data-generating distribution, induces a CPE on the Gibbs
loss. Thus, the condition in Eq. 15 holds by definition. On the other hand, Figure 5c uses a fabricated DA,
where the same permutation is applied to the pixels of the images in the training dataset, which destroys
low-level features present in the data-generating distribution. In this case, the gradient of the Gibb loss is
positive, and Eq. 15 holds in the opposite direction. These findings align perfectly with the explanations
provided above, showing that DA induces a stronger underfitting.

6.2 Data Augmentation and CPE on the Bayes loss

Now, we step aside of the Gibbs loss and focus back to the Bayes loss. The gradient of the Bayes loss at
⁄ = 1 can also be written as,

Ò⁄B(p⁄)|⁄=1 = ≠COVp⁄=1

1
nL̂(D, ◊), Sp⁄=1(◊)

2
, (16)
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(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 5: Experimental illustrations for the arguments in Section 6 using small CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with small CNN and CIFAR-10(0) with ResNet-18
in Appendix E. Figures 5a to 5c illustrate the arguments in Section 6. Figure 5a uses the standard prior (‡ = 1) and
the standard softmax (“ = 1) for the likelihood without applying DA. Figure 5b follows the setup as in Figure 5a but
with standard DA applied, while Figure 5c uses fabricated DA. We report the training loss Ĝ(p⁄, D) and the testing
losses B(p⁄) and G(p⁄) from 10 samples of the small Convolutional neural network (CNN) via Stochastic Gradient
Langevin Dynamics (SGLD). We show the mean and standard error across three di�erent seeds. For additional
experimental details, please refer to Appendix E.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shu�ed

Figure 6: Experimental illustrations for the arguments in Section 6 using large CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with large CNN and CIFAR-10(0) with ResNet-50
in Appendix E. The experiment setup is similar to the setups in Figure 5 but with a large CNN. Please refer to
Appendix E for further details on the model.

where for any posterior fl, Sfl(◊) is a (negative) performance measure defined as

Sfl(◊) = ≠E‹

5
p(y|x, ◊)

Efl[p(y|x, ◊)]

6
. (17)

This function measures the relative performance of a model parameterized by ◊ compared to the average
performance of the models weighted by fl. Such measure is conducted on samples from the data-generating
distribution ‹(y, x). Specifically, if the model ◊ outperforms the average, we have Sfl(◊) < ≠1, and if the
model performs worse than the average, we have Sp(◊) > ≠1 (i.e., the lower the better). The derivations of
the above equations are given in Appendix C.

According to Definition 1 and Eq. 16, DA will induce a stronger CPE if and only if the following condition is
satisfied:

COVp⁄=1
DA

1
nL̂DA(D, ◊), Sp⁄=1

DA
(◊)

2
> COVp⁄=1

1
nL̂(D, ◊), Sp⁄=1(◊)

2
. (18)

The previous analysis on the Gibbs loss remains applicable in this context, with the use of Sfl(◊) as a metric
for the expected performance on the true data-generating distribution instead of L(◊). While these metrics
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are slightly di�erent, it is reasonable to assume that the same arguments we presented to explain the CPE
under data augmentation for the Gibbs loss also apply here. The theoretical analysis aligns with the behavior
of the Bayes loss as depicted in Figure 5.

Finally, comparing Figure 5b with Figure 6b, we also notice that using a larger neural network enables us to
mitigate the CPE because we reduce the underfitting introduced by DA.

Related work of the data augmentation argument. The relation between data augmentation and
CPE is an active topic of discussion (Wenzel et al., 2020; Izmailov et al., 2021; Noci et al., 2021; Nabarro
et al., 2022). Some studies suggest that CPE is an artifact of DA because turning o� data augmentation
is enough to eliminate the CPE (Izmailov et al., 2021; Fortuin et al., 2022). Our study shows that this is
much more than an artifact, as also argued in Nabarro et al. (2022). As discussed, the (pseudo) log-likelihood
induced by standard DA is a better proxy of the expected log-loss, in the precise sense given by Eq. 15 and
Eq. 18.

Other works argue that, when using DA, we are not using a proper likelihood function (Izmailov et al., 2021),
and that could be problem. Recent works (Nabarro et al., 2022) have developed principle likelihood functions
that integrate DA-based approaches, hoping that this will remove CPE. But they find that CPE still persist.
Another widely accepted viewpoint regarding the interplay between the CPE and DA is that DA increases
the e�ective sample size (Izmailov et al., 2021; Noci et al., 2021), “intuitively, data augmentation increases
the amount of data observed by the model, and should lead to higher posterior contraction” (Izmailov et al.,
2021).

Our analysis provides a more nuance understanding of this interplay between CPE and DA. First, we show
that, when the augmented data provide extra information about the data-generating process, there is a
stronger CPE, as shown in Equations 15 and 18. This, in turn, leads to higher posterior concentration. But,
we also show that higher posterior concentration in the context of non-meaningful DA does not improve
performance; as discussed before, Figure 5c illustrates this situation. Using the analysis given in Section 4, we
can also add that tempering the posterior under DA is again a way to define alternative Bayesian posteriors
that addresses this stronger underfitting, i.e., they better fit the training data and improve generalization.

7 Conclusions

Our research makes several contributions toward understanding the cold posterior e�ect (CPE) and its
implications for Bayesian deep learning. Firstly, we theoretically demonstrate that the presence of the CPE
implies that the Bayesian posterior is underfitting. And, secondly, we show that any tempered posterior can
be considered as a proper Bayesian posterior with an alternative likelihood and prior distribution jointly
parametrized by T . Hence, this work shows that fine-tuning the temperature parameter T serves as an
e�ective and theoretically sound mechanism to address the underfitting of the Bayesian posterior. Finally,
our analysis in Section 6 unveils that data augmentation exacerbates the cold posterior e�ect (CPE) by
intensifying the degree of underfitting. This is attributed to fact that the augmented data supplies richer and
more reliable information, thereby enhancing the capacity for fitting.

Overall, our theoretical analysis underscores the significance of the CPE as an indicator of underfitting within
the Bayesian framework and promotes the fine-tuning of the temperature T in tempered posteriors as a
principled approach to mitigate this issue. Furthermore, by dissecting the nature of the CPE and its e�ect
with Bayesian principle, our work aims to resolve ongoing debates and clarify the role of cold posteriors in
enhancing the predictive performance of Bayesian deep learning models.
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