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Abstract

The cold posterior effect (CPE) (Wenzel et al., 2020) in Bayesian deep learning shows
that, for posteriors with a temperature T < 1, the resulting posterior predictive could have
better performance than the Bayesian posterior (T = 1). As the Bayesian posterior is
known to be optimal under perfect model specification, many recent works have studied the
presence of CPE as a model misspecification problem, arising from the prior and/or from
the likelihood. In this work, we provide a more nuanced understanding of CPE as we show
that misspecification leads to CPE only when the resulting Bayesian posterior underfits. In
fact, we theoretically show that if there is no underfitting, there is no CPE. Furthermore,
we show that these tempered posteriors with T < 1 are indeed proper Bayesian posteriors
with a different combination of likelihoods and priors parameterized by T . This observation
validates the adjustment of the temperature hyperparameter T as a straightforward approach
to mitigate underfitting in the Bayesian posterior. In essence, we show that by fine-tuning
the temperature T we implicitly utilize alternative Bayesian posteriors, albeit with less
misspecified likelihood and prior distributions. The code for replicating the experiments can
be found at https://github.com/pyijiezhang/cpe-underfit.

1 Introduction

In Bayesian deep learning, the cold posterior effect (CPE) (Wenzel et al., 2020) refers to the phenomenon in
which if we artificially “temper” the posterior by either p(θ|D) ∝ (p(D|θ)p(θ))1/T or p(θ|D) ∝ p(D|θ)1/T p(θ)
with a temperature T < 1, the resulting posterior enjoys better predictive performance than the standard
Bayesian posterior (with T = 1). The discovery of the CPE has sparked debates in the community about its
potential contributing factors.

If the prior and likelihood are properly specified, the Bayesian solution (i.e., T = 1) should be optimal
(Gelman et al., 2013), assuming approximate inference is properly working. Hence, the presence of the CPE
implies either the prior (Wenzel et al., 2020; Fortuin et al., 2022), the likelihood (Aitchison, 2021; Kapoor
et al., 2022), or both are misspecified. This has been, so far, the main argument of many works trying to
explain the CPE.
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One line of research examines the impact of the prior misspecification on the CPE (Wenzel et al., 2020;
Fortuin et al., 2022). The priors of modern Bayesian neural networks are often selected for tractability.
Consequently, the quality of the selected priors in relation to the CPE is a natural concern. Previous research
has revealed that adjusting priors can help alleviate the CPE in certain cases (Adlam et al., 2020; Zeno et al.,
2021), there are instances where the effect persists despite such adjustments (Fortuin et al., 2022). Some
studies even show that the role of priors may not be critical (Izmailov et al., 2021). Therefore, the impact of
priors on the CPE remains an open question.

Furthermore, the influence of likelihood misspecification on CPE has also been investigated (Aitchison,
2021; Noci et al., 2021; Kapoor et al., 2022; Fortuin et al., 2022), and has been identified to be particularly
relevant in curated datasets (Aitchison, 2021; Kapoor et al., 2022). Several studies have proposed alternative
likelihood functions to address this issue and successfully mitigate the CPE (Nabarro et al., 2022; Kapoor
et al., 2022). However, the underlying relation between the likelihood and CPE remains a partially unresolved
question. Notably, the CPE usually emerges when data augmentation (DA) techniques are used (Wenzel
et al., 2020; Izmailov et al., 2021; Fortuin et al., 2022; Noci et al., 2021; Nabarro et al., 2022; Kapoor et al.,
2022). A popular hypothesis is that using DA implies the introduction of a randomly perturbed log-likelihood,
which lacks a clear interpretation as a valid likelihood function (Wenzel et al., 2020; Izmailov et al., 2021).
However, Nabarro et al. (2022) demonstrates that the CPE persists even when a proper likelihood function
incorporating DA is defined. Therefore, further investigation is needed to fully understand their relationship.

Other works argued that CPE could mainly be an artifact of inaccurate approximate inference methods,
especially in the context of neural networks, where the posteriors are extremely high dimensional and complex
(Izmailov et al., 2021). However, many of the previously mentioned works have also found setups where
the CPE either disappears or is significantly alleviated through the adoption of better priors and/or better
likelihoods with approximate inference methods. In these studies, the same approximate inference methods
were used to illustrate, for example, how using a standard likelihood function leads to the observation of CPE
and how using an alternative likelihood function removes it (Aitchison, 2021; Noci et al., 2021; Kapoor et al.,
2022). In other instances, under the same approximate inference scheme, CPE is observed when using certain
types of priors but it is strongly alleviated when an alternative class of priors is utilized (Wenzel et al., 2020;
Fortuin et al., 2022). Therefore, there is compelling evidence suggesting that approximate methods are not,
at least, a necessary condition for the CPE.

This study, both theoretically and empirically, demonstrates that the presence of the cold posterior effect
(CPE) implies the existence of underfitting; in other words, if there is no underfitting, there is no CPE.
Integrating this perspective with previous findings suggesting that CPE indicates misspecified likelihood,
prior, or both (Gelman et al., 2013), we conclude that CPE implies both misspecification and underfitting.
Consequently, mitigating CPE necessitates addressing both aspects. Notably, simplifying the issue by solely
focusing on misspecification is insufficient, as misspecification can lead Bayesian methods to both underfitting
and overfitting (Domingos, 2000; Immer et al., 2021; Kapoor et al., 2022); CPE only arises when underfitting
occurs. This study thus offers a nuanced perspective on the factors contributing to CPE. Additionally,
by building on Zeno et al. (2021), we show how tempered posteriors represent proper Bayesian posteriors
under different likelihood and prior distributions, jointly parameterized by the temperature parameter T .
Consequently, by adjusting T , we effectively identify Bayesian posteriors with less misspecified likelihood and
prior distributions, leading to a more accurate representation of the training data and improved generalization
performance. Furthermore, we delve into the relationship between prior/likelihood misspecification, data
augmentation, approximate inference, and CPE, offering insights into potential strategies for addressing these
issues.

Contributions (i) We theoretically demonstrate that the presence of the CPE implies the Bayesian
posterior is underfitting in Section 3. (ii) We show in a more general case that any tempered posterior is a
proper Bayesian posterior with an alternative likelihood and prior distribution in Section 4, extending Zeno
et al. (2021) in the case of classification. (iii) We show in Section 5 that likelihood misspecification and prior
misspecification result in CPE only if they also induce underfitting. Furthermore, the tempered posteriors
offer an effective and well-founded Bayesian mechanism to address the underfitting problem. (iv) Finally,
we show that data augmentation results in stronger CPE because it induces a stronger underfitting of the
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Bayesian posterior in Section 6. In conclusion, our theoretical analysis reveals that the occurrence of the CPE
signifies underfitting of the Bayesian posterior. Also, fine-tuning the temperature in tempered posteriors
offers a well-founded and effective Bayesian approach to mitigate the issue. Furthermore, our work aims to
settle the debate surrounding CPE and its implications for Bayesian principles, specifically within the context
of deep learning.

2 Background

2.1 Notation and assumptions

Let us start by introducing basic notation. Consider a supervised learning problem with the sample space
Y × X . In this work, we consider two cases: when Y is a finite set, corresponding to a supervised classification
problem, and when Y is a subset of R, corresponding to a regression problem. For simplicity, we also assume
that X is a subset of Rd. Let the training set D = (Y , X), where Y denotes the set of output entries and X
denotes the set of input entries. If D consists n pairs of samples, we denote D = {(yi, xi)}n

i=1.

We assume a family of probabilistic models parameterized by Θ, where each θ ∈ Θ defines a conditional
probability distribution for a sample (y, x), denoted by p(y|x, θ). The standard metric to measure the
quality of a probabilistic model θ on a sample (y, x) is the (negative) log-loss − ln p(y|x, θ). The expected
(or population) loss of a probabilistic model θ is defined as L(θ) = E(y,x)∼ν [− ln p(y|x, θ)], where ν denotes
the unknown data-generating distribution ν on Y × X . The empirical loss of the model θ on the data
D is defined as L̂(D, θ) = − 1

n ln p(Y |X, θ) = − 1
n

∑
i∈[n] ln p(yi|xi, θ). In this work, we assume that the

likelihood function fully factorizes, i.e., p(Y |X, θ) =
∏

(y,x)∈D p(y|x, θ). We might use the notation p(D|θ)
for p(Y |X, θ) in the presentation when the roles of input/output in the samples are not important in the
context. Also, if it induces no ambiguity, we use Eν [·] as a shorthand for E(y,x)∼ν [·].

2.2 (Generalized) Bayesian learning

In Bayesian learning, we learn a probability distribution ρ(θ|D), often called a posterior, over the parameter
space Θ from the training data D. Given a new input x, the posterior ρ makes the prediction about y
through (an approximation of) Bayesian model averaging (BMA) p(y|x, ρ) = Eθ∼ρ[p(y|x, θ)], where the
posterior ρ is used to combine the predictions of the models. Again, if it induces no ambiguity, we use Eρ[·]
as a shorthand for Eθ∼ρ[·]. The predictive performance of such BMA is usually measured by the Bayes loss,
defined by

B(ρ) = Eν [− lnEρ[p(y|x, θ)]] . (1)

For some λ > 0 and a prior p(θ), the so-called tempered posteriors (or the generalized Bayes posterior)
(Barron & Cover, 1991; Zhang, 2006; Bissiri et al., 2016; Grünwald & van Ommen, 2017), are defined as a
probability distribution

pλ(θ|D) ∝ p(Y |X, θ)λp(θ) . (2)

Note that when λ ̸= 1,
∫

p(Y |X, θ)λdY might not be 1 in general. An implicit assumption is that
pλ(θ|D) is a proper distribution, meaning the normalization constant is finite. In supervised classification
problems, this is always the case because p(Y |X, θ) ≤ 1. Consequently, for any λ > 0, we have 1 =∫

p(θ) dθ >
∫

p(Y |X, θ)λp(θ) dθ. Thus, the tempered posteriors are always a proper distribution in supervised
classification problems.

Even though many works on CPE use the parameter T = 1/λ instead, we adopt λ in the rest of the work for
the convenience of derivations. Therefore, the CPE (T < 1) corresponds to when λ > 1. We also note that
while some works study CPE with a full-tempering posterior, where the prior is also tempered, many works
also find CPE for likelihood-tempering posterior (see (Wenzel et al., 2020) and the references therein). Also,
with some widely chosen priors (e.g., zero-centered Gaussian priors), the likelihood-tempering posteriors are
equivalent to full-tempering posteriors with rescaled prior variances (Aitchison, 2021; Bachmann et al., 2022).

When λ = 1, the tempered posterior equals the (standard) Bayesian posterior. The tempered posterior can
be obtained by optimizing a generalization of the so-called (generalized) ELBO objective (Alquier et al., 2016;
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Higgins et al., 2017), which, for convenience, we write as follows:

pλ(θ|D) = arg min
ρ

Eρ[− ln p(D|θ)] + 1
λ

KL(ρ(θ|D), p(θ)) . (3)

The first term is known as the (un-normalized) reconstruction error or the empirical Gibbs loss of the posterior
ρ on the data D, denoted as Ĝ(ρ, D) = Eρ[− 1

n ln p(D|θ)], which further equals to Eρ[L̂(D, θ)]. Therefore,
it is often used as the training loss in Bayesian learning (Morningstar et al., 2022). The second term is a
Kullback-Leibler divergence between the posterior ρ(θ|D) and the prior p(θ) scaled by a hyper-parameter λ.

As it induces no ambiguity, we will use pλ as a shorthand for pλ(θ|D). So, for example, B(pλ) would refer to
the expected Bayes loss of the tempered-posterior pλ(θ|D). In the rest of this work, we will interpret the
CPE as how changes in the parameter λ affect the test error and the training error of pλ or, equivalently, the
Bayes loss B(pλ) and the empirical Gibbs loss Ĝ(pλ, D).

3 The presence of the CPE implies underfitting

Section Overview
We present a definition of the Cold Posterior Effect (CPE) (Definition 1) and show that the presence
of CPE indicates the Bayesian posterior is underfitting, where both the testing loss (Definition 1)
and training loss (Proposition 1) can be improved at the same time by decreasing the temperature
T (increasing λ). We also present the necessary condition of the CPE in Proposition 3 and the case
when Bayesian posterior is optimal in Theorem 4.

A standard understanding for underfitting refers to a situation when the trained model cannot properly
capture the relationship between input and output in the data-generating process, resulting in high errors
on both the training data and testing data. In the context of highly flexible model classes such as neural
networks, underfitting refers to a scenario where the trained model exhibits (much) higher training and testing
losses compared to what is achievable. Essentially, it means that there exists another model in the model class
that achieves lower training and testing losses simultaneously. In the context of Bayesian inference, we argue
that the Bayesian posterior is underfitting if there exists another posterior distribution with lower empirical
Gibbs and Bayes losses at the same time. In fact, we will show later in Section 4 that such a posterior is
essentially another Bayesian posterior but with a different prior and likelihood function. Before delving into
that, we focus on characterizing the cold posterior effect (CPE) and its connection to underfitting.

As previously discussed, the CPE describes the phenomenon of getting better predictive performance when
we make the parameter of the tempered posterior, λ, higher than 1. The next definition introduces a formal
characterization. We do not claim this is the best possible formal characterization. However, through the rest
of the paper, we will show that this simple characterization is enough to understand the relationship between
CPE and underfitting.
Definition 1. We say there is a CPE for Bayes loss if and only if the derivative of the Bayes loss of the
posterior pλ, B(pλ), evaluated at λ = 1 is negative. That is,

d

dλ
B(pλ)|λ=1 < 0 , (4)

where the magnitude of the derivative d
dλ B(pλ)|λ=1 defines the strength of the CPE.

According to the above definition, a (relatively large) negative derivative d
dλ B(pλ)|λ=1 implies that by making

λ slightly greater than 1, we will have a (relatively large) reduction in the Bayes loss with respect to the
Bayesian posterior. Note that if the derivative d

dλ B(pλ)|λ=1 is not relatively large and negative, then we can
not expect a relatively large reduction in the Bayes loss and, in consequence, the CPE will not be significant.
Obviously, this formal definition could also be extended to other specific λ values different from 1, or even
consider some aggregation over different λ > 1 values. We will stick to this definition because it is simpler, and
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the insights and conclusions extracted here can be easily extrapolated to other similar definitions involving
the derivative of the Bayes loss.

Next, we present another critical observation. We postpone the proofs in this section to Appendix A.
Proposition 2. The derivative of the empirical Gibbs loss of the tempered posterior pλ satisfies

∀λ ≥ 0 d

dλ
Ĝ(pλ, D) = −Vpλ

(
ln p(D|θ)

)
≤ 0 , (5)

where V(·) denotes the variance.

As shown in Proposition 7 in Appendix A, to achieve Vpλ

(
ln p(D|θ)

)
= 0, we need pλ(θ|D) = p(θ), implying

that the data has no influence on the posterior. In consequence, in practical scenarios, Vpλ

(
ln p(D|θ)

)
will

always be greater than zero. Thus, increasing λ will monotonically reduce the empirical Gibbs loss Ĝ(pλ, D)
(i.e., the train error) of pλ. The next result also shows that the empirical Gibbs loss of the Bayesian posterior
Ĝ(pλ=1) cannot reach its minimum to observe the CPE.
Proposition 3. A necessary condition for the presence of the CPE, as defined in Definition 1, is that

Ĝ(pλ=1, D) > min
θ

− ln p(D|θ) .

Insight 1. Definition 1 in combination with Proposition 2 shows if the CPE is present, by making λ > 1,
the test loss B(pλ) and the empirical Gibbs loss Ĝ(pλ, D) will be reduced at the same time. Furthermore,
Proposition 3 states that the Bayesian posterior still has room to fit the training data further (e.g., by placing
more probability mass on the maximum likelihood estimator). We hence deduce that the presence of CPE
implies that the original Bayesian posterior (λ = 1) underfits. This conclusion arises because there exists
another Bayesian posterior (i.e, pλ(θ|D) with λ > 1) that has lower training (Proposition 3) and testing
(Definition 1) loss at the same time. Further elaboration on the nature of pλ(θ|D) as another Bayesian
posterior will be provided later in Section 4. In short, if there is CPE, the original Bayesian posterior is
underfitting. Or, equivalently, if the original Bayesian posterior does not underfit, there is no CPE.

However, a final question arises: when is λ = 1 (the original Bayesian posterior of interest) optimal? More
precisely, when does the derivative of the Bayes loss with respect to λ evaluated at λ = 1 become zero
( d

dλ B(pλ)|λ=1 = 0)? This would imply that neither (infinitesimally) increasing nor decreasing λ changes the
predictive performance. We will see that this condition is closely related to the situation that updating such
a Bayesian posterior with more data does not enhance its fit to the original training data better. In other
words, the extra information about the data-generation process does not provide the Bayesian posterior with
better performance on the originally provided training data.

We start by denoting p̃λ(θ|D, (y, x)) as the distribution obtained by updating the posterior pλ(θ|D) with
one new sample (y, x), i.e., p̃λ(θ|D, (y, x)) ∝ p(y|x, θ)pλ(θ|D). And we also denote p̄λ as the distribution
resulting from averaging p̃λ(θ|D, (y, x)) over different unseen samples from the data-generating distribution
(y, x) ∼ ν(y, x):

p̄λ(θ|D) = Eν [p̃λ(θ|D, (y, x))] . (6)

In this sense, p̄λ represents how the posterior pλ would be, on average, after being updated with a new sample
from the data-generating distribution. This updated posterior contains a bit more information about the
data-generating distribution, compared to pλ. Using the updated posterior p̄λ, the following result introduces
a characterization of the optimality of the original Bayesian posterior.
Theorem 4. The derivative of the Bayes loss at λ = 1 is null, i.e., d

dλ B(pλ)|λ=1 = 0, if and only if,

Ĝ(pλ=1, D) = Ĝ(p̄λ=1, D) .

Insight 2. The original Bayesian posterior of interest is optimal if after updating it using the procedure
described in Equation 6, or in other words, after exposing the Bayesian posterior to more data from the
data-generating distribution, the empirical Gibbs loss over the initial training data remains unchanged.

We will give examples that empirically illustrate Theorem 4 and the induced insight later in Section 5.5.

5



Published in Transactions on Machine Learning Research (08/2024)

4 Tempered posteriors are Bayesian posteriors

Section Overview
By extending Zeno et al. (2021) on classification only, we show in general that tempered posteriors
are proper Bayesian posteriors with an alternative combination of likelihood and prior functions
parameterized by λ. Thus, the occurrence of CPE can be explained within the Bayesian framework.

• We provide two examples to show how λ influences the new likelihoods in Section 4.1 and two
examples to show how λ influences the new priors in Section 4.2.

• We show in Section 4.3 that the generalized ELBOs are also proper ELBOs.

• We expand the discussion of the implications in Section 4.4.

As previously discussed, the CPE phenomenon involves achieving improved predictive accuracy by employing
a tempered posterior. A potential criticism is that this tempered posterior does not strictly adhere to the
principles of a proper Bayesian posterior because the tempered likelihood, P (D|θ)λ fails to meet the criteria
of a proper likelihood function when λ ≠ 1 (i.e.,

∫
P (D|θ)λdD ̸= 1 when λ ̸= 1). However, as previously

discussed by Zeno et al. (2021), this tempered posterior effectively serves as a proper Bayesian posterior
with a combination of new likelihood and prior functions. We extend this result beyond classification to our
Proposition 5, proved in Appendix B.1.

Before delving into the description of the new likelihood and prior functions, it is essential to acknowledge
a fundamental aspect. Given a labeled dataset D = (X, Y ) and the conditional likelihood associated to a
classification model, the application of Bayes’ theorem naturally results in the following Bayesian posterior:

p(θ|X, Y ) ∝ p(Y |X, θ)p(θ|X),

where the prior over θ is a conditional prior(Marek et al., 2024; Zeno et al., 2021) that depends on
the unlabelled training data X. However, specifying p(θ|X) for a complex model, like a deep neural
network, poses a significant challenge. Therefore, for practical purposes, nearly all existing works (Wenzel
et al., 2020; Fortuin et al., 2022) assume θ to be independent of X, resulting in the simplified expression
p(θ|X, Y ) ∝ p(Y |X, θ)p(θ), where the prior over θ is now an unconditional prior.
Proposition 5. For any given dataset D = (X, Y ) such that the likelihood fully factories p(Y |X, θ) =∏

(y,x)∈D p(y|x, θ), and λ > 0, the tempered posterior defined in Equation 2 can be expressed as a Bayesian
posterior with a new prior and likelihood function as follows:

pλ(θ|X, Y ) ∝ q(θ|X, λ)
∏

(y,x)∈D

q(y|x, θ, λ), (7)

where the new prior distribution q(θ|X, λ) and likelihood function q(y|x, θ, λ) are defined as:

q(θ|X, λ) ∝ p(θ)
∏

x∈X

∫
p(y|x, θ)λdy, q(y|x, θ, λ) = p(y|x, θ)λ∫

p(y|x, θ)λdy
. (8)

Note that the new conditional likelihood q(y|x, θ, λ) and the new prior q(θ|X, λ) are both parametrized by
the same λ > 0, and note that the prior only depends on the unlabelled training data X.

Adlam et al. (2020) shows that in the specific scenario of Gaussian process regression (essentially our Bayesian
linear regression example in Figure 2), any positive temperature aligns with a legitimate posterior under an
adjusted unconditional prior. This can be seen as a special case of our argument.

In the rest of the section, we will discuss in Section 4.1 how the new likelihoods change with respect to λ,
and in Section 4.2 how the new priors change with respect to λ. Additionally, besides demonstrating that
tempered posteriors are proper Bayesian posteriors, we also show in Section 4.3 that the generalized ELBOs
are also proper ELBOs. Lastly, we discuss the implications of the results in Section 4.4.
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Figure 1: Illustration of the new likelihood q(y|x, θ, λ) and priors q(θ|X, λ). In the left and middle figures, the original
likelihood is in the form of the Bernoulli distribution. The left figure demonstrates the transformation from θ(x) to
θ⋆(x, λ) := θ(x)λ

θ(x)λ+(1−θ(x))λ . In the middle figure, we display a Beta-Binomial example, where the prior, initialized as
a Beta distribution, is updated with a single Bernoulli-distributed sample. In the right figure, we display the new
prior, initialized as an inverse-gamma prior and updated with a Gaussian likelihood with a single observation.

4.1 How λ influences the new likelihoods

The next result, proved in Appendix B.2, shows that in supervised classification settings, higher λ values
induce new likelihood distributions with lower aleatoric uncertainty or, equivalently, lower Shannon entropy,
denoted as H(q(y|x, θ, λ)) := −

∑
y∈Y q(y|x, θ, λ) ln q(y|x, θ, λ).

Proposition 6. For any θ ∈ Θ, any x ∈ X , and any finite output set Y, the entropy of the conditional
likelihood q(y|x, θ, λ) monotonically decreases with λ > 0, i.e.,

d

dλ
H(q(y|x, θ, λ)) ≤ 0 ∀λ > 0 . (9)

This result also holds for regression settings, where Y ⊂ Rd, under the differential entropy, assuming the
Leibniz rule holds. See the proof for a detailed discussion on the matter.

We give two concrete examples, one in regression and one in classification, to illustrate the proposition.

Regression Example Consider the case where the original likelihood is Gaussian, defined as p(y|x, θ) =
N (µ(x, θ), σ2(θ)), where the variance is input-independent, as typically seen in many regression problems.
Then, following Equation 8, the new likelihood corresponds to a scaling in the variance, given by q(y|x, θ, λ) =
N (µ(x, θ), σ2(θ)

λ2 ). Thus, as λ increases, the tempered likelihood q(y|x, θ, λ) induces a proper Gaussian
likelihood with reduced variance, i.e., a new likelihood with lower aleatoric uncertainty.

Classification Example Consider the case of a binary classification problem where the original con-
ditional likelihood is Bernoulli, defined as p(y|x, θ) = θ(x)y(1 − θ(x))1−y with y ∈ {0, 1} and the input-
dependent parameter function θ(x) ∈ [0, 1], which is usually implemented by a neural network with a
softmax activation function in the last layer. Then, following Equation 8, the new conditional likelihood
q(y|x, θ, λ) = θ∗(x, λ)y(1 − θ∗(x, λ))1−y also follows a Bernoulli distribution with a different parameter
function θ∗(x, λ) = θ(x)λ

θ(x)λ+(1−θ(x))λ ∈ [0, 1]. The function θ∗(x, λ) is displayed in Figure 1 (left). When λ

increases, the parameter function that defines the new Bernoulli likelihood becomes more extreme, resulting in
a new likelihood with lower aleatoric uncertainty.

In both cases, we see that as suggested by Proposition 6, as λ increases, the new conditional likelihoods
q(y|x, θ, λ) have lower entropy, i.e., lower aleatoric uncertainty. In Sections 5.2 and 5.3, we will further
explore the implications of this finding and its connection to existing literature.

4.2 How λ influences the new priors

On the other hand, according to Proposition 5, using the tempered posteriors implies implicitly using the
prior q(θ|X, λ). Such prior depends on the unlabelled training data X. On top of that, the functional form
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of the likelihood function is defined by the probabilistic model family through the term
∫

p(y|x, θ)λdy for
x ∈ X. Hence, models θ that yield a large value for this term across most of the training data x ∈ X will be
assigned larger probability mass by the new prior. We will showcase this effect in both regression and binary
classification problems. Moreover, we will see how the new prior q(θ|X, λ) with λ > 1 favors those models
within the model class that yield likelihoods with lower aleatoric uncertainty on the training data X.

Regression Example Consider the case where the original likelihood is Gaussian, defined as p(y|x, θ) =
N (µ(x, θ), σ2(θ)), where the variance is input-independent, as typically seen in many regression problems. A
common parametrization involves θ = (w, γ), where w refer to the weights of the neural network defining
the function µ(x, θ) and γ > 0 is a parameter encoding the variance of the Gaussian likelihood such that
σ2(θ) = γ. The prior p(θ) is then defined as p(θ) = p(w)p(γ), where p(w) is usually a Gaussian distribution
with a diagonal covariance matrix, and p(γ) is usually defined in terms of an inverse-gamma distribution.
Following Equation 8, the new prior would be expressed as q(θ|X, λ) = q(w|X, λ)q(γ|X, λ), where each term

q(w|X, λ) = p(w) , q(γ|X, λ) ∝ p(γ)/γn(λ−1) .

Figure 1 (right) plots the density of q(γ|X, λ) when only one data is observed, with various λ > 1 values
when p(γ) is an inverse-gamma prior. For larger λ values, this new prior will assign more probability mass
to models defining a likelihood with smaller variance or, equivalently, smaller aleatoric uncertainty.

Classification Example Consider another case where the original conditional likelihood is Bernoulli,
defined as p(y|x, θ) = θ(x)y(1 − θ(x))1−y with y ∈ {0, 1} and θ(x) ∈ [0, 1], as commonly used in binary
classification problems. Also, take any prior p(θ). Then, following Equation 8, the new prior is expressed as

q(θ|X, λ) ∝ p(θ)
∏

x∈X

(
θ(x)λ + (1 − θ(x))λ

)
.

Figure 1 (middle) illustrates the transformation of the prior for a Beta-Binomial model with a single training
sample. Initially, the prior p(θ) is taken as a Beta distribution, while the likelihood of this single data is
Bernoulli. As λ ≥ 1 increases, the new prior assigns more probability mass to models where θ(x) is close to
either 1 or 0. In other words, this new prior assigns more probability mass to models that assign more extreme
probabilities to the training data (i.e., models with lower aleatoric uncertainty). Note that the prior does not
consider how accurately these models classify the training data, but only the extremity of the probabilities
assigned to the training data.

We will discuss in Section 5.4 further implications of this finding and how it relates to the literature.

4.3 Generalized ELBOs are also proper ELBOs

Generalized ELBOs, characterized by scaling the KL divergence term using a hyper-parameter λ, have found
widespread application in many studies (Wenzel et al., 2020). This popularity stems from the demonstrated
ability to adjust λ to improve the predictive accuracy of variational approximations:

q⋆
λ := arg min

r∈Π
Er[− ln p(D|θ)] + 1

λ
KL(r(θ), p(θ)) , (10)

where Π defines the variational family. Critics have pointed out a flaw in the above generalized ELBO when
λ deviates from 1, as it no longer functions as a true lower bound for the marginal likelihood. However,
Proposition 5 can be used to justify that such a variational posterior q⋆

λ still emerges from minimizing a valid
ELBO. Specifically, it is constructed based on the revised likelihood and prior functions as follows:

q⋆
λ = arg min

r∈Π
Er[− ln q(Y |X, θ, λ)] + KL(r(θ), q(θ|X, λ)) . (11)

Consequently, this analysis shows that using generalized ELBOs as Equation 10 perfectly adheres to variational
and Bayesian principles.
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4.4 Insights and implications from the section

In this section, we show that employing tempered posteriors seamlessly fits within a Bayesian framework,
which streamlines and enriches the use of diverse likelihood and prior functions.

With the characterization in Section 3, observing CPE implies that the tempered posterior, which implicitly
employs the new likelihood and priors defined in Equation 8 is better specified in comparison to the original
Bayesian posterior. The alignment with the underlying data-generating distribution is easily achieved by
tempering. Consequently, tempered posteriors offer a simple, computationally efficient, and theoretically
sound approach to mitigate the underfitting problem often encountered in contemporary Bayesian deep
learning methods.

Furthermore, as discussed in Section 4.1 and Section 4.2, increasing λ results in likelihoods with lower aleatoric
uncertainty and priors that favor models yielding such likelihoods on the training data X. Therefore, the
occurrence of CPE in contemporary Bayesian deep learning indicates that the models currently employed in
the field often underfit the data by assuming models with too high aleatoric uncertainty. This strengthens
our understanding of the CPE as a consequence of underfitting, resulting from poorly specified likelihood and
prior functions.

We will further expand on and discuss how these implications relate to the literature in Section 5.

5 Likelihood misspecification, prior misspecification and the CPE

Section Overview
We relate our analysis in previous sections to the main arguments of CPE from the literature.

• Section 5.1: we demonstrate with Bayesian linear regression that exact inference can also
bring CPE, showing CPE is not merely a side effect of approximate inference in NNs.

• Section 5.2: using the same regression examples, we show that model misspecification can
lead to underfitting or overfitting. CPE arises specifically when misspecified likelihoods or
priors cause underfitting, not just from misspecification alone.

• Section 5.3: likelihood misspecification is often identified as a source of CPE in practice. We
show it is because the standard softmax likelihood (high aleatoric uncertainty) is misspecified
and underfits the data-generating process (curated data with low aleatoric uncertainty).

• Section 5.4: we show prior misspecification leads to CPE if it induces underfitting. Using
tempered posteriors implicitly defines better-specified conditional priors that alleviate it.

• Section 5.5: we show that larger models have more flexibility to fit data, thereby mitigating
underfitting and CPE. Conversely, with small models and abundant data, the Bayesian
posterior may already fit the data optimally, thereby exhibiting minimal underfitting (by our
definition) and CPE.

5.1 CPE, approximate inference, and NNs

As mentioned in the introduction, several works have discussed that CPE is an artifact of inappropriate
approximate inference methods, especially in the context of the highly complex posterior that emerge from
neural networks (Wenzel et al., 2020). There are occasions suggesting that if the approximate inference
method is accurate enough, the CPE disappears (Izmailov et al., 2021). However, Proposition 2 shows
that when λ is made larger than 1, the training loss of the exact Bayesian posterior decreases; if the test
loss decreases too, the exact Bayesian posterior underfits. It means that even if the inference method is
accurate, we can still observe the CPE due to underfitting. In fact, Figure 2 shows examples of a Bayesian
linear regression model learned on synthetic data. Here, the exact Bayesian posterior can be computed,
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and it is clear from Figures 2c and 2d that the CPE can occur in Bayesian linear regression with exact
inference. Although simple, the setting is articulated specifically to mimic the classification tasks using BNNs
where CPE was observed. In particular, the linear model has more parameters than observations (i.e., it’s
overparameterized). We also note that Adlam et al. (2020) presents similar findings and observations for
Gaussian process regression.

(a) No likelihood or prior
misspecification

(b) Misspecified
likelihood I

(c) Misspecified
likelihood II

(d) Only misspecified
prior

(e) Same as (c) but with
50 data points

Figure 2: 1. The CPE occurs in Bayesian linear regression with exact inference. 2. Model misspecification
can lead to overfitting and to a “warm” posterior effect (WPE). Every column displays a specific setting, as
indicated in the caption. The first row shows exact Bayesian posterior predictive fits for three different values of the
tempering parameter λ. The second row shows the Gibbs loss Ĝ(pλ, D) (aka training loss) and the Bayes loss B(pλ)
(aka testing loss) with respect to λ. The experimental details are given in Appendix D.

5.2 Model misspecification, CPE, and underfitting

Prior and/or likelihood misspecification can lead Bayesian methods to both underfitting and overfitting, as
widely discussed in the literature (Domingos, 2000; Immer et al., 2021; Kapoor et al., 2022). We illustrate
this using a Bayesian linear regression model: Figures 2c and 2d show how the Bayesian posterior underfits
due to likelihood and prior misspecification, respectively. On the other hand, Figure 2b showcases a scenario
where likelihood misspecification can perfectly lead to overfitting as well, giving rise to what we term a “warm”
posterior effect (WPE), i.e., there exist other posteriors (pλ with λ < 1) with lower testing loss, which, at the
same time, have higher training loss due to Proposition 2. As a result, to describe CPE merely as a model
misspecification issue without acknowledging underfitting offers a narrow interpretation of the problem.

The examples presented in Figure 2 help illustrate the results of Proposition 5 and provide concrete
demonstrations of the theoretical insights discussed: when CPE shows up, tuning λ is akin to finding another
Bayesian posterior with a less misspecified likelihood and prior. However, we note that in this particular
Bayesian linear regression setup, the new prior q(θ|X, λ) is always equal to initial prior p(θ) because the
variance of the likelihood is assumed to be constant. Therefore, the analysis of the regression case in Section
4.2 does not directly apply here.

In the discussion regarding likelihood, we refer to the regression example in Section 4.1. Let’s first have a
look at Figure 2c, where the Gaussian likelihood model has a larger variance than the true data-generating
process. By increasing λ, we obtain a likelihood model with a smaller variance (divided by λ2, as shown
in the regression example in Section 4.1), i.e., we induce a new likelihood with lower aleatoric uncertainty
(Proposition 6). Such a new model is closer to the true data-generating distribution and less misspecified,
thus enjoying better performance. The opposite can be seen in Figure 2b, where the Gaussian likelihood
model has a lower variance than the true data-generating distribution and the WPE occurs.

10
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5.3 The likelihood misspecification argument

Likelihood misspecification has also been identified as a cause of CPE, especially in cases where the dataset
has been curated (Aitchison, 2021; Kapoor et al., 2022). Data curation often involves carefully selecting
samples and labels to improve the quality of the dataset. As a result, the curated data-generating distribution
typically presents very low aleatoric uncertainty, meaning that ν(y|x) usually takes values very close to either
1 or 0. However, as previously discussed in (Aitchison, 2021; Kapoor et al., 2022), the standard likelihoods
used in deep learning for image classification, like softmax or sigmoid, tend to allocate more spread-out
probabilities to the outcomes, implicitly reflecting a higher level of aleatoric uncertainty. Therefore, their
use in curated datasets that exhibit low uncertainty made them misspecified (Kapoor et al., 2022; Fortuin
et al., 2022). To address this issue, alternative likelihood functions like the Noisy-Dirichlet model (Kapoor
et al., 2022, Section 4) have been proposed, which better align with the characteristics of the curated data.
On the other hand, introducing noise labels also alleviates the CPE, as demonstrated in Aitchison (2021,
Figure 7). By introducing noise labels, we intentionally increase aleatoric uncertainty in the data-generating
distribution, which aligns better with the high aleatoric uncertainty assumed by the standard Bayesian deep
networks (Kapoor et al., 2022). Consequently, according to these works, the CPE can be strongly alleviated
when the likelihood misspecification is addressed.

Our theoretical analysis aligns with these findings in Sections 4.1 and 4.4: fitting low aleatoric uncertainty
data-generating distributions, e.g., ν(y|x) ∈ {0.01, 0.99}, with high aleatoric uncertainty likelihood functions
e.g., p(y|x, θ) ∈ [0.2, 0.8], induces underfitting, and thus, CPE. The presence of underfitting is not mentioned
at all by any of these previous works (Aitchison, 2021; Kapoor et al., 2022). On top of that, using Propositions
5 and 6, our work explains why the likelihood implicitly used by the tempered posterior with λ > 1 provides
better generalizaton performance. Because, in this case, we are using a likelihood q(θ|X, λ) (Equation 8) with
lower aleatoric uncertainty, which better aligns with the low aleatoric uncertainty data-generating distribution
induced by curated datasets, thus reducing the degree of model misspecification.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 3: Experimental illustrations for the arguments in Section 5 using small CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with small CNN and CIFAR-10(0) with ResNet-18
in Appendix E. Figures 3a to 3c illustrate the arguments in Section 5. Figure 3c uses the standard prior (σ = 1)
and the standard softmax (γ = 1) for the likelihood without applying DA. Figure 3a follows a similar setup except for
using a narrow prior. Figure 3b uses a narrow prior as in Figure 3a but with a tempered softmax that results in a
lower aleatoric uncertainty. We report the training loss Ĝ(pλ, D) and the testing losses, B(pλ) and G(pλ), from 10
samples of the small Convolutional neural network (CNN) via Stochastic Gradient Langevin Dynamics (SGLD). We
show the mean and standard error across three different seeds. For additional experimental details, please refer to
Appendix E.

Figures 3a and 3b, along with Figures 4a and 4b, illustrate this point through a regular multi-class classification
task on a curated benchmark dataset. Both scenarios utilize the same narrow prior. The distinction in Figure
3b lies in the adoption of a tempered softmax likelihood, defined as p(y|x, θ) = (1 + exp (−γ logits(x, θ)))−1,
with γ = 2, compared to γ = 1 in Figure 3a. This tempered softmax likelihood, more closely aligned with the
dataset’s low aleatoric uncertainty as outlined by (Guo et al., 2017), leads to a reduced incidence of CPE
in Figure 3b compared to Figure 3a. From the perspective of Proposition 5 and specifically Proposition
6, the intrinsic lower aleatoric uncertainty of the likelihood used in Figure 3b (softmax with γ = 2) makes
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(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 4: Experimental illustrations for the arguments in Section 5 using large CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with large CNN and CIFAR-10(0) with ResNet-50
in Appendix E. The experiment setup is similar to the setups in Figure 3 but with a large CNN. Please refer to
Appendix E for further details on the model.

the potential for improvement through increasing λ somewhat limited, resulting in a less pronounced CPE
compared to Figure 3a. It is, however, important to highlight the critical interaction between the likelihood
and the prior, as we dicuss next.

5.4 The prior misspecification argument

As highlighted in previous works, such as in Wenzel et al. (2020); Fortuin et al. (2022), isotropic Gaussian
priors are commonly chosen in modern Bayesian neural networks for the sake of tractability in approximate
Bayesian inference rather than chosen based on their alignment with our actual beliefs. Given that the
presence of the CPE implies that either the likelihood and/or the prior are misspecified, and given that neural
networks define highly flexible likelihood functions, there are strong reasons for thinking these commonly
used priors are misspecified. Notably, the experiments conducted by Fortuin et al. (2022) demonstrate that
the CPE can be mitigated in fully connected neural networks when using heavy-tailed prior distributions
that better capture the weight characteristics typically observed in such networks. However, such priors
were found to be ineffective in addressing the CPE in convolutional neural networks (Fortuin et al., 2022),
indicating the challenges involved in designing effective Bayesian priors within this context.

Our theoretical analysis provides a deeper insight into these observations. As discussed in Section 3, the
absence of underfitting means the absence of CPE. This suggests flexible likelihood functions may still result
in posteriors that underfit due to the prior’s tendency to overly regularize. This may incur CPE when the
strong prior fails to allocate enough probability to models that both fit the training data well and exhibit good
generalization capabilities. As detailed in Section 4.2, employing tempered posteriors with λ > 1 effectively
defines a conditional prior q(θ|X, λ) that favors models with lower aleatoric uncertainty. If such models align
better with the training data compared to the original prior, then we may observe CPE. Also, the conditional
prior q(θ|X, λ) with λ > 1 can be considered better specified than the original prior p(θ).

Figures 3a and 3c exemplify this situation. The prior in the case of Figures 3a is very narrow (σ = 0.0005),
inducing strong regularization. Such a narrow prior results in a posterior that severely underfits the training
data, evident from the high empirical Gibbs loss that deviates significantly from zero. Additionally, we observe
a strong CPE. On the other hand, with a flatter prior in the case of Figure 3c, the CPE is considerably
diminished. According to the discussion above and Sections 4.2 and 4.4, we know that the flatter prior
allocates more probability mass to preferred models. Also, such preferred models have lower aleatoric
uncertainty than the ones assigned initially by the narrow prior in the former case. To elaborate further, in
the former case, the new prior q(θ|X, λ) with λ > 1 would place much more probability mass to models with
lower aleatoric uncertainty than the narrow prior and strongly alleviating underfitting. In the second case,
since the flatter prior already distributes probability mass more broadly across the model class, the room to
shift probability mass to models with lower aleatoric uncertainty is more limited than that from a narrower
prior, resulting in a milder CPE.
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5.5 Model size, sample size in relation to CPE and underfitting

Larger models have the capacity to fit data more effectively, while smaller models are more likely to underfit.
As we have argued that if there is no underfitting, there is no CPE, we expect that the size of the model
has an impact on the strength of CPE as well. We demonstrate in Figure 3 and Figure 4. Specifically, in
our experiments presented in Figure 3, we use a relatively small convolutional neural network (CNN), which
has a more pronounced underfitting behavior, and this indeed corresponds to a stronger CPE. On the other
hand, we employ a larger CNN in Figure 4, which has less underfitting, and we see the CPE is strongly
alleviated. Actually, this effect can be directly inferred from Theorem 4. For an extremely flexible model
capable of perfectly fitting both the original training samples and new samples, this theorem suggests that a
CPE should not be expected, as the model’s fit on the original data remains perfect, even when new examples
are introduced.

Theorem 4 can also be used to understand why small models in the presence of large training data sets do
not exhibit CPE. We empirically illustrate this point in Figure 2. In particular, Figure 2c and Figure 2e use
the same (small) regression models and settings where the only difference is that Figure 2c uses 5 data points
while Figure 2e uses 50 data points. In situations where a model possesses limited flexibility and the training
set is large, including additional examples should barely affect the fit of the original training data because
the Bayesian posterior is highly concentrated and will be barely affected by a single extra sample. Then, as
predicted by Theorem 4, CPE in Figure 2e is much less significant than in Figure 2c.

Finally, it’s worth noting that Figure 11 in Wenzel et al. (2020) shows the opposite effect, where larger models
exhibit much stronger CPE compared to shallower or narrower versions of the same architectures. However,
it’s important to recognize that Wenzel et al. (2020) studied full-tempering, whereas our work focuses on
likelihood-tempering. For full-tempering, Proposition 2 does not necessarily hold. Intuitively, since λ operates
on both the likelihood (data) and the prior (regularization) simultaneously, the effect of increasing λ is mixed,
not necessarily improving the fit on the training data. Consequently, the CPE brought by full-tempering as λ
increases does not necessarily coincide with better training loss, as the training loss may not be improvable.
As a result, the CPE observed with full-tempering cannot be interpreted solely as underfitting. Therefore, for
full-tempering, increasing model capacity may not achieve a lower degree of CPE, unlike the behavior we
observed in our case focusing on likelihood-tempering.

6 Data augmentation (DA) and the CPE

Section Overview
We show conditions under which data augmentation exacerbates the CPE.

• Section 6.1: starting with the Gibbs loss for clarity, we show that data augmentation induces
a stronger CPE on the Gibbs loss if the augmented data provides more information about the
data-generating process, increasing the correlation between the expected and empirical losses.

• Section 6.2: extending the above idea, we show analogous conditions where data augmentation
exacerbates CPE on the Bayes loss.

Machine learning is applied to many different fields and problems. In many of them, the data-generating
distribution is known to have properties that can be exploited to generate new data samples (Shorten &
Khoshgoftaar, 2019) artificially. This is commonly known as data augmentation (DA) and relies on the
property that for a given set of transformations H = {h : X → X }, the data-generating distribution satisfies
ν(y|x) = ν(y|h(x)) for all h ∈ H. In practice, not all the transformations are applied to every single data.
Instead, a probability distribution (usually uniform) µH is defined over H, and augmented samples are drawn
accordingly. As argued in Nabarro et al. (2022), the use of data augmentation when training Bayesian neural
networks implicitly targets the following (pseudo) log-likelihood, denoted L̂DA(D, θ) and defined as

L̂DA(D, θ) = 1
n

∑
i∈[n]

Eh∼µH
[− ln p(yi|h(xi), θ)] , (12)
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where data augmentation provides unbiased estimates of the expectation under the set of transformations
using Monte Carlo samples (i.e., random data augmentations).

Although some argue that this data-augmented (pseudo) log-likelihood “does not have a clean interpretation
as a valid likelihood function” (Wenzel et al., 2020; Izmailov et al., 2021), we do not need to enter into this
discussion to understand why the CPE emerges when using the generalized Bayes posterior (Bissiri et al.,
2016) associated to this (pseudo) log-likelihood, which is the main goal of this section. We call this posterior
the DA-tempered posterior and is denoted by pDA

λ (θ|D). The DA-tempered posterior can be expressed as the
global minimizer of the following learning objective,

pDA
λ (θ|D) = arg min

ρ
Eρ[nL̂DA(D, θ)] + 1

λ
KL(ρ(θ|D), p(θ)) . (13)

This is similar to Equation 3 but now using L̂DA(D, θ) instead of L̂(D, θ), where we recall the nota-
tion L̂(D, θ) = − 1

n ln p(D|θ). Hence, the resulting DA-tempered posterior is given by pDA
λ (θ|D) ∝

e−nλL̂DA(D,θ)p(θ). In comparison, the tempered posterior pλ(θ|D) in Equation 2 can be similarly expressed
as e−nλL̂(D,θ)p(θ).

There is large empirical evidence that DA induces a stronger CPE (Wenzel et al., 2020; Izmailov et al., 2021;
Fortuin et al., 2022). Indeed, many of these studies show that if CPE is not present in our Bayesian learning
settings, using DA makes it appear. According to our previous analysis, this means that the use of DA
induces a stronger underfitting. To understand why this is case, we will take a step back and begin analyzing
the impact of DA in the so-called Gibbs loss of the DA-Bayesian posterior pDA

λ=1 rather than the Bayes loss,
as this will help us in understanding this puzzling phenomenon.

6.1 Data augmentation and CPE on the Gibbs loss

The expected Gibbs loss of a given posterior ρ, denoted G(ρ), is a commonly used metric in the theoretical
analysis of the generalization performance of Bayesian methods (Germain et al., 2016; Masegosa, 2020). The
Gibbs loss represents the average of the expected log-loss of individual models under the posterior ρ, that is,

G(ρ) = Eρ[L(θ)] = Eρ[Eν [− ln[p(y|x, θ)]] .

In fact, Jensen’s inequality confirms that the expected Gibbs loss serves as an upper bound for the Bayes
loss, i.e., G(ρ) ≥ B(ρ). This property supports the expected Gibbs loss to act as a proxy of the Bayes loss,
which justifies its usage in gaining insights into how DA impacts the CPE.

We will now study whether data augmentation can cause a CPE on the Gibb loss. In other words, we will
examine whether increasing the parameter λ of the DA-tempered posterior leads to a reduction in the Gibbs
loss. This can be formalized by extending Definition 1 to the expected Gibbs loss by considering its derivative
d

dλ G(pλ) at λ = 1, which can be represented as follows:

d

dλ
G(pλ)|λ=1 = −COVpλ=1

(
nL̂(D, θ), L(θ)

)
. (14)

Where COV(X, Y ) denotes the covariance of X and Y . Again, due to the page limit, we postpone the
necessary proofs in this section to Appendix C.

With this extended definition, if Equation 14 is negative, we can infer the presence of CPE for the Gibbs loss
as well. Based on this, we say that DA induces a stronger CPE if the derivative of the expected Gibbs loss for
the DA-tempered posterior exhibits a more negative trend at λ = 1, i.e., if d

dλ G(pDA
λ )|λ=1 < d

dλ G(pλ)|λ=1.This
condition can be equivalently stated as

COVpDA
λ=1

(
nL̂DA(D, θ), L(θ)

)
> COVpλ=1

(
nL̂(D, θ), L(θ)

)
> 0 . (15)

The inequality presented above helps characterize and understand the occurrence of a stronger CPE when
using DA. A stronger CPE arises if the expected Gibbs loss of a model L(θ) is more correlated with the
empirical Gibbs loss of this model on the augmented training dataset L̂DA(D, θ) than on the non-augmented
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dataset L̂(D, θ). This observation suggests that, if we empirically observe that the CPE is stronger when
using an augmented dataset, the set of transformations H used to generate the augmented dataset are
introducing valuable information about the data-generating process.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 5: Experimental illustrations for the arguments in Section 6 using small CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with small CNN and CIFAR-10(0) with ResNet-18
in Appendix E. Figures 5a to 5c illustrate the arguments in Section 6. Figure 5a uses the standard prior (σ = 1) and
the standard softmax (γ = 1) for the likelihood without applying DA. Figure 5b follows the setup as in Figure 5a but
with standard DA applied, while Figure 5c uses fabricated DA. We report the training loss Ĝ(pλ, D) and the testing
losses B(pλ) and G(pλ) from 10 samples of the small Convolutional neural network (CNN) via Stochastic Gradient
Langevin Dynamics (SGLD). We show the mean and standard error across three different seeds. For additional
experimental details, please refer to Appendix E.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 6: Experimental illustrations for the arguments in Section 6 using large CNN via SGLD on
MNIST. We show similar results on Fashion-MNIST with large CNN and CIFAR-10(0) with ResNet-50
in Appendix E. The experiment setup is similar to the setups in Figure 5 but with a large CNN. Please refer to
Appendix E for further details on the model.

Figure 5 clearly illustrates such situations. Figure 5b shows that, compared to Figure 5a, the standard DA,
which makes use of the invariances inherent in the data-generating distribution, induces a CPE on the Gibbs
loss. Thus, the condition in Equation 15 holds by definition. On the other hand, Figure 5c uses a fabricated
DA, where the same permutation is applied to the pixels of the images in the training dataset, which destroys
low-level features present in the data-generating distribution. In this case, the derivative of the Gibb loss is
positive, and Equation 15 holds in the opposite direction. These findings align perfectly with the explanations
provided above, showing that DA induces a stronger underfitting.
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6.2 Data augmentation and CPE on the Bayes loss

Now, we step aside of the Gibbs loss and focus back to the Bayes loss. The derivative of the Bayes loss at
λ = 1 can also be written as,

d

dλ
B(pλ)|λ=1 = −COVpλ=1

(
nL̂(D, θ), Spλ=1(θ)

)
, (16)

where for any posterior ρ, Sρ(θ) is a (negative) performance measure defined as

Sρ(θ) = −Eν

[
p(y|x, θ)

Eρ[p(y|x, θ)]

]
. (17)

This function measures the relative performance of a model parameterized by θ compared to the average
performance of the models weighted by ρ. Such measure is conducted on samples from the data-generating
distribution ν(y, x). Specifically, if the model θ outperforms the average, we have Sρ(θ) < −1, and if the
model performs worse than the average, we have Sp(θ) > −1 (i.e., the lower the better). The derivations of
the above equations are given in Appendix C.

By Definition 1 and Equation 16, DA will induce a stronger CPE if and only if the following condition is
satisfied:

COVpDA
λ=1

(
nL̂DA(D, θ), SpDA

λ=1
(θ)

)
> COVpλ=1

(
nL̂(D, θ), Spλ=1(θ)

)
. (18)

The previous analysis on the Gibbs loss remains applicable in this context, with the use of Sρ(θ) as a metric
for the expected performance on the true data-generating distribution instead of L(θ). While these metrics
are slightly different, it is reasonable to assume that the same arguments we presented to explain the CPE
under data augmentation for the Gibbs loss also apply here. The theoretical analysis aligns with the behavior
of the Bayes loss as depicted in Figure 5.

Finally, comparing Figure 5b with Figure 6b, we also notice that using a larger neural network enables us to
mitigate the CPE because we reduce the underfitting introduced by DA.

Related work of the data augmentation argument. The relation between data augmentation and
CPE is an active topic of discussion (Wenzel et al., 2020; Izmailov et al., 2021; Noci et al., 2021; Nabarro
et al., 2022). Some studies suggest that CPE is an artifact of DA because turning off data augmentation
is enough to eliminate the CPE (Izmailov et al., 2021; Fortuin et al., 2022). Our study shows that this is
much more than an artifact, as also argued in Nabarro et al. (2022). As discussed, the (pseudo) log-likelihood
induced by standard DA is a better proxy of the expected log-loss, as precisely defined by Equation 15 and
Equation 18.

Some argue that when using DA, we are not using a proper likelihood function (Izmailov et al., 2021), which
could be a problem. Recent works (Nabarro et al., 2022) have developed principle likelihood functions that
integrate DA-based approaches, hoping to remove CPE. However, they find that CPE still persists. Another
widely accepted viewpoint regarding the interplay between the CPE and DA is that DA increases the effective
sample size (Izmailov et al., 2021; Noci et al., 2021): “intuitively, data augmentation increases the amount of
data observed by the model, and should lead to higher posterior contraction” (Izmailov et al., 2021).

Our analysis provides a more nuance understanding of this interplay between CPE and DA. First, we show
that, when the augmented data provide extra information about the data-generating process, there is a
stronger CPE, as shown in Equations 15 and 18. This, in turn, leads to higher posterior concentration. But,
we also show that higher posterior concentration in the context of non-meaningful DA does not improve
performance; as discussed before, Figure 5c illustrates this situation. Using the analysis given in Section 4, we
can also add that tempering the posterior under DA is again a way to define alternative Bayesian posteriors
that addresses this stronger underfitting, i.e., they better fit the training data and improve generalization.

7 Conclusions and limitations

Our research contributes to understanding the cold posterior effect (CPE) and its implications for Bayesian
deep learning in several ways. Firstly, we theoretically demonstrate that the presence of the CPE implies that
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the Bayesian posterior is underfitting. Secondly, by building on Zeno et al. (2021), we show that, in general,
any tempered posterior can be considered as a proper Bayesian posterior with an alternative likelihood and
prior distribution jointly parametrized by T , beyond merely the case of classification. Hence, fine-tuning
the temperature parameter T serves as an effective and theoretically sound approach to addressing the
underfitting of the Bayesian posterior. Furthermore, we comprehensively discuss the interplay between several
factors and CPE, including the use of approximate versus exact inference, model misspecification, and the
size of the model and samples. Finally, our analysis in Section 6 reveals that data augmentation exacerbates
the CPE by intensifying underfitting. This occurs because augmented data provides richer and more reliable
information, enhancing the capacity for fitting.

Overall, our theoretical analysis underscores the significance of the CPE as an indicator of underfitting within
the Bayesian framework and promotes the fine-tuning of the temperature T in tempered posteriors as a
principled approach to mitigate this issue. Furthermore, by dissecting the nature of the CPE and its effect on
the Bayesian principle, our work aims to resolve ongoing debates and clarify the role of cold posteriors in
enhancing the predictive performance of Bayesian deep learning models.

As a limitation of this work, we want to highlight that the characterization of CPE proposed here is defined
only as the local change of Bayes loss at λ = 1. This approach does not account for scenarios where significant
decreases in Bayes loss at other λ values might also indicate the presence of CPE. We believe that our
theoretical analysis could be expanded to include these cases as well.
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A Proofs for Section 3

In this section, we provide the proofs for Section 3 in the following order. We first prove the derivative of
the empirical Gibbs loss in Proposition 2. Then, we show in Proposition 7 that for meaningful posteriors
(depends on training data), the derivative won’t be zero. Before proving Proposition 3 and Theorem 4, we
first provide Proposition 8, stating an alternative expression of the derivative of the Bayes loss. The proofs of
Proposition 3 and Theorem 4 then follow from that.

A.1 Proof of Proposition 2

We first show a slightly more general result of d
dλEpλ

[f(θ)] for any function f(θ) that is independent of λ. Recall
that the posterior pλ(θ|D) ∝ p(D|θ)λp(θ). With the fact that d

dλ

(
p(D|θ)λp(θ)

)
= ln(p(D|θ))p(D|θ)λp(θ),

the derivative

d

dλ
Epλ

[f(θ)] = Epλ
[ln p(D|θ)f(θ)] − Epλ

[ln p(D|θ)]Epλ
[f(θ)] = COVpλ

(ln p(D|θ), f(θ)) , (19)

where we denote COV(X, Y ) as the covariance of X and Y . Hence, the derivative of the empirical Gibbs loss

d

dλ
Ĝ(pλ, D) = d

dλ
Epλ

[− ln p(D|θ)] = COVpλ
(ln p(D|θ), − ln p(D|θ)) = −Vpλ

(ln p(D|θ)) .

A.2 Proposition 7

Proposition 7. For any λ > 0 and D ̸= ∅, if the tempered posterior pλ(θ|D) ∝ p(D|θ)λp(θ) satisfies
Vpλ

(ln P (D|θ)) = 0, then, pλ(θ|D) = p(θ).

Proof. First of all, note that the tempered posterior is defined as

pλ(θ|D) = p(D|θ)λp(θ)∫
θ

p(D|θ)λp(θ) .

Then,
Vpλ

(ln p(D|θ)) = 0 =⇒
∫

θ

pλ(θ|D) (ln p(D|θ) − Epλ
[ln p(D|θ)])2 = 0

Thus, for any θ ∈ supp(pλ), it verifies that

ln p(D|θ) = Epλ
[ln p(D|θ)] .

That is, ln p(D|θ) is constant in the support of pλ. Let c denote such constant, then

pλ(θ|D) = ecλp(θ)∫
θ

ecλp(θ) = ecλp(θ)
ecλ

∫
θ

p(θ) = p(θ) .

□

A.3 Proof of Proposition 3 and Theorem 4

In order to prove Proposition 3 and Theorem 4, we first show in Proposition 8 that the derivative of the
Bayes loss of the tempered posterior pλ can be expressed by the difference between the empirical Gibbs loss
of p̄λ and the empirical Gibbs loss of pλ.
Proposition 8. The derivative of the Bayes loss of the tempered posterior pλ can be expressed by

d

dλ
B(pλ) = Ĝ(p̄λ, D) − Ĝ(pλ, D) . (20)
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Proof. By definition,

d

dλ
B(pλ) = d

dλ
Eν [− lnEpλ

[p(y|x, θ)]] = −Eν

[
d

dλ
lnEpλ

[p(y|x, θ)]
]

,

where
d

dλ
lnEpλ

[p(y|x, θ)] =
d

dλEpλ
[p(y|x, θ)]

Epλ
[p(y|x, θ)] = COVpλ

(ln p(D|θ), p(y|x, θ))
Epλ

[p(y|x, θ)]

due to Equation 19. By expanding the covariance, the above formula further equals to

Epλ
[ln p(D|θ)p(y|x, θ)] − Epλ

[ln p(D|θ)]Epλ
[p(y|x, θ)]

Epλ
[p(y|x, θ)] = Ep̃λ

[ln p(D|θ)] − Epλ
[ln p(D|θ)] ,

where the probability distribution p̃λ(θ|D, (y, x)) ∝ pλ(θ|D)p(y|x, θ). Put everything together, we have

d

dλ
B(pλ) = Epλ

[ln p(D|θ)] − Eν [Ep̃λ
[ln p(D|θ)]] = Epλ

[ln p(D|θ)] − Ep̄λ
[ln p(D|θ)] , (21)

where

p̄λ(θ|D) = Eν [p̃λ(θ|D, (y, x))] = Eν

[
pλ(θ|D)p(y|x, θ)
Epλ

[p(y|x, θ)]

]
.

The last equality is because

Eν [Ep̃λ
[ln p(D|θ)]] =

∫
(y,x)

ν(y, x)
∫

θ

p̃λ(θ|D, (y, x)) ln p(D|θ) dθ d(y, x)

=
∫

θ

∫
(y,x)

ν(y, x)p̃λ(θ|D, (y, x)) d(y, x) ln p(D|θ) dθ

=
∫

θ

Eν [p̃λ(θ|D, (y, x))] ln p(D|θ) dθ

= Ep̄λ
[ln p(D|θ)] .

The last expression in Equation 21 further equals to Ĝ(p̄λ, D) − Ĝ(pλ, D) by definition. □

A.3.1 Proof of Proposition 3

Note that for any distribution ρ, we have Ĝ(ρ, D) := Eρ− ln p(D|θ) ≥ minθ − ln p(D|θ). On the other hand,
Proposition 8 together with Definition 1 give that the CPE takes place if and only if

d

dλ
B(pλ)|λ=1 = Ĝ(p̄λ=1, D) − Ĝ(pλ=1, D) < 0 .

Therefore, it is not possible to have Ĝ(pλ=1, D) ̸> minθ − ln p(D|θ) and, at the same time, Ĝ(p̄λ=1, D) <
Ĝ(pλ=1, D) because Ĝ(p̄λ=1, D) ≥ minθ − ln p(D|θ).

A.3.2 Proof of Theorem 4

It’s easy to see from Proposition 8 that

d

dλ
B(pλ)|λ=1 = Ĝ(p̄λ=1, D) − Ĝ(pλ=1, D) = 0

if and only if Ĝ(p̄λ=1, D) = Ĝ(pλ=1, D).
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B Proofs for Section 4

B.1 Proof of Proposition 5

First of all, by the definition in Equation 2, and assuming a data-independent prior p(θ|X) = p(θ), the
tempered posterior is given by

pλ(θ|X, Y ) ∝ p(Y |X, θ)λp(θ) ,

where the tempered likelihood fully factorizes as p(Y |X, θ)λ =
∏

(y,x)∈(Y ,X) p(y|x, θ)λ. Let a similar but
y-independent function k(θ, X, λ) =

∏
x∈X

∫
p(y|x, θ)λ dy.

Therefore, p(Y |X, θ)λp(θ) = p(Y |X,θ)λ

k(θ,X,λ) (k(θ, X, λ)p(θ)) , where we can let the new prior

q(θ|X, λ) ∝ p(θ)k(θ, X, λ) = p(θ)
∏

x∈X

∫
p(y|x, θ)λ dy ,

and the new posterior

q(Y |X, θ, λ) = p(Y |X, θ)λ

k(θ, X, λ) =
∏

(y,x)∈(Y ,X) p(y|x, θ)λ∏
x∈X

∫
p(y|x, θ)λ dy

=
∏

(y,x)∈(Y ,X)

q(y|x, θ) .

B.2 Proof of Proposition 6

The proof is made using differential entropy, i.e. assuming continuous target values y. The only assumption
is that Leibniz integral rule holds for q(y|x, θ, λ) ln q(y|x, θ, λ)), verifying that

d

dλ

∫
(q(y|x, θ, λ) ln q(y|x, θ, λ)) dy =

∫
d

dλ
(q(y|x, θ, λ) ln q(y|x, θ, λ)) dy .

In the case of supervised classification problems, we adopt the Shanon entropy, where equality holds naturally

d

dλ

∑
y∈Y

(q(y|x, θ, λ) ln q(y|x, θ, λ)) =
∑
y∈Y

d

dλ
(q(y|x, θ, λ) ln q(y|x, θ, λ)) .

From the definition of differential entropy, we got that

H(q(y|x, θ, λ)) = −
∫

q(y|x, θ, λ) ln q(y|x, θ, λ) dy .

Thus, taking derivative w.r.t. λ and exchanging derivative and integral leads to the following expression

d

dλ
H(q(y|x, θ, λ)) = −

∫
d

dλ
(q(y|x, θ, λ) ln q(y|x, θ, λ)) dy = −

∫
(ln q(y|x, θ, λ) + 1) d

dλ
q(y|x, θ, λ) dy .

Using that
∫

d
dλ q(y|x, θ, λ)dy = d

dλ

∫
q(y|x, θ, λ)dy = 0, simplifies the expression as

d

dλ
H(q(y|x, θ, λ)) = −

∫
ln q(y|x, θ, λ) d

dλ
q(y|x, θ, λ) dy .

Let us consider now the second term inside the integral. Using the derivative of the quotient rule leads to the
following:

d

dλ
q(y|x, θ, λ) = d

dλ

p(y|x, θ)λ∫
p(y|x, θ)λ dy

= p(y|x, θ)λ ln p(y|x, θ)∫
p(y|x, θ)λ dy

−
p(y|x, θ)λ

∫
p(y|x, θ)λ ln p(y|x, θ) dy

(
∫

p(y|x, θ)λ dy)2 .

Where, using the definition of q(y|x, θ, λ), we got that

p(y|x, θ)λ ln p(y|x, θ)∫
p(y|x, θ)λ dy

= q(y|x, θ, λ) ln p(y|x, θ) ,
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and
p(y|x, θ)λ

∫
p(y|x, θ)λ ln p(y|x, θ) dy

(
∫

p(y|x, θ)λ dy)2 = q(y|x, θ, λ)
∫

q(y|x, θ, λ) ln p(y|x, θ) dy

= q(y|x, θ, λ)Eq[ln p(y|x, θ)] .

As a result, we got that∫
ln q(y|x, θ, λ) d

dλ
q(y|x, θ, λ) dy = Eq[ln p(y|x, θ) ln q(y|x, θ, λ)] − Eq[ln q(y|x, θ, λ)]Eq[ln p(y|x, θ)]

Using q(y|x, θ, λ) definition again:∫
ln q(y|x, θ, λ) d

dλ
q(y|x, θ, λ) dy = Eq[ln p(y|x, θ) ln p(y|x, θ)λ∫

p(y|x, θ)λ
] − Eq[ln p(y|x, θ)λ∫

p(y|x, θ)λ
]Eq[ln p(y|x, θ)]

Where, expanding the logarithms the denominators cancel each other, leading to∫
ln q(y|x, θ, λ) d

dλ
q(y|x, θ, λ) dy = Eq[ln p(y|x, θ) ln p(y|x, θ)λ] − Eq[ln p(y|x, θ)λ]Eq[ln p(y|x, θ)]

= λV(ln p(y|x, θ)) ≥ 0
As a result, the entropy is negative.

C Proofs for Section 6

C.1 Proof of Equation 14

Note that
d

dλ
G(pλ) = d

dλ
Epλ

[L(θ)] = COVpλ
(ln p(D|θ), L(θ)) = COVpλ

(−L̂(D, θ), L(θ)),

where the second equality is by applying Equation 19. By taking λ = 1, we obtain the desired derivative.

C.2 Proof of Equation 16

Recall from the proof of Theorem 8 that
d

dλ
B(pλ) = Epλ

[ln p(D|θ)] − Ep̄λ
[ln p(D|θ)] = Ep̄λ

[L̂(D, θ)] − Epλ
[L̂(D, θ)],

where p̄λ(θ|D) = Eν [p̃λ(θ|D, (y, x))] (Equation 6), and p̃λ(θ|D, (y, x)) ∝ pλ(θ|D)p(y|x, θ) is the distribution
obtained by updating the posterior pλ with one new sample (y, x).

Therefore,

Ep̄λ
[L̂(D, θ)] = EνEp̃λ

[L̂(D, θ)] = Eν

[
Epλ

[
p(y|x, θ)

Epλ
[p(y|x, θ)] L̂(D, θ)

]]
.

By Fubini’s theorem, the above formula further equals to

Epλ

[
Eν

[
p(y|x, θ)

Epλ
[p(y|x, θ)] L̂(D, θ)

]]
= Epλ

[
Eν

[
p(y|x, θ)

Epλ
[p(y|x, θ)]

]
L̂(D, θ)

]
= Epλ

[
−Spλ

(θ) · L̂(D, θ)
]

.

On the other hand, since

Epλ
[−Spλ

(θ)] = Epλ

[
Eν

[
p(y|x, θ)

Epλ
[p(y|x, θ)]

]]
= Eν

[
Epλ

[
p(y|x, θ)

Epλ
[p(y|x, θ)]

]]
= 1 ,

we have
Epλ

[L̂(D, θ)] = Epλ
[L̂(D, θ)]Epλ

[−Spλ
(θ)] .

By putting them altogether,
d

dλ
B(pλ) = Epλ

[
−Spλ

(θ) · L̂(D, θ)
]

− Epλ
[L̂(D, θ)]Epλ

[−Spλ
(θ)] = −COV

(
L̂(D, θ), Spλ

(θ)
)

.
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D Experiment details for Bayesian linear regression on synthetic data with exact
inference

In this section we detail the settings of the toy experiment using synthetic data and exact Bayesian linear
regression in Figure 2. We also show extra results of the derivative of Gibbs loss and Bayes loss w.r.t to λ
approximated by samples.

To begin, we will outline the data-generating process for the synthetic data used in the experiment shown
in Figure 2 and Figure 7. We sample x uniformly from the [−1, 1] interval and pass it through a Fourier
transformation to construct the input of the data. That is, for a sampled x, the input x is constructed by
a 10-dimensional Fourier basis function ϕ(x) = [g1(x), ..., gK(x)]T for K = 10, where the basis functions
are defined as follows: g1(x) = 1√

2π
, and for other odd values of k, gk(x) = 1√

π
sin (kx), whereas for even

values of k, gk(x) = 1√
π

cos (kx). The distribution of the output y ∈ R given an input x, denoted as ν(y|x),

follows a Normal distribution with mean 1T x and variance 1.0, where 1 is an all-ones vector. That is,
ν(y|x) = N (1T x, 1.0).

In our experiment, the likelihood model and the prior model are defined differently for the four settings in
Figure 2. To enable exact inference, both the likelihood and the prior are Gaussian, which gives a closed-form
solution for the posterior predictive. This choice also provides convenience when studying the CPE: different
values of λ on the likelihood term can be naturally absorbed into the Gaussian densities by adjusting the
variance (dividing by λ) without hindering the exact inference step. We describe them in detail in the
following.

1. No misspecification: likelihood p(y|x, θ) = N (θT x, 1.0), prior p(θ) = N (0, 2). This is the baseline
for comparison.

2. Misspecified likelihood I: likelihood p(y|x, θ) = N (θT x, 0.15) (the order of Fourier transformation is
K = 20, however note that it still contains the K = 5 data-generating process in its solution space),
prior p(θ) = N (0, 2). In this case, the model is misspecified in a way that it has a smaller variance
than the data-generating process.

3. Misspecified likelihood II: likelihood p(y|x, θ) = N (θT x, 3.0), prior p(θ) = N (0, 2). In this case,
the model is misspecified in a way that it has a larger variance than the data-generating process.
This is similar to one of the scenarios where CPE was found: the curated data has a lower aleatoric
uncertainty than the model (Aitchison, 2021).

4. Misspecified prior: likelihood p(y|x, θ) = N (θT x, 1.0), prior p(θ) = N (0, 0.5). The prior is poorly
specified in a way that it is tightly centered at 0 while the best θ should be 1.

In all the experiments, every training set consists of only 5 samples. Since there are more parameters than
the number of training data points, our setting falls within the “overparameterized” regime where CPE has
been observed in Bayesian deep learning (Wenzel et al., 2020).

Continuing from Figure 2, where we show the Gibbs loss Ĝ(pλ, D) (training) and the Bayes loss B(pλ)
(testing) with respect to λ, we now show their derivatives d

dλ Ĝ(pλ, D) (Equation 5) and d
dλ B(pλ) (Equation

20) respectively in Figure 7. Here the losses are included for a clearer depiction of the derivatives. To
approximate the Bayes loss for generating the plot, we use 10000 data points sampled from the data-generating
distribution. Also, the derivatives are approximated using 10000 samples from the exact posteriors. From
Figure 7, we could clearly see that the derivatives perfectly characterize the losses in all four settings.

E Experiment details for Bayesian neural networks on image data with approximate
inference

In this section, we first present in Appendix E.1 the architectures of the small and large CNNs used in this
paper. As promised in the main text, we then provide results on additional image datasets trained with
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(a) No likelihood or prior
misspecification

(b) Misspecified likelihood
I

(c) Misspecified
likelihood II

(d) Only misspecified
prior

(e) Same as (c) but with
50 data points

Figure 7: The derivatives d
dλ

Ĝ(pλ, D) (Equation 5) and d
dλ

B(pλ) (Equation 20) characterize the Gibbs
loss Ĝ(pλ, D) and the Bayes loss B(pλ) perfectly.

Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011) in Appendix E.2. Lastly, we provide
additional results using mean-field variational inference (MFVI) (Blei et al., 2017) on MNIST, where we
observe that the results of MFVI align with the ones with SGLD.

E.1 Architectures of small/large CNN

Small CNN The small CNN is similar to LeNet-5, but with 107786 parameters in total:

1. Convolutional layer 1. Input channels: 1 (assuming grayscale images), output channels: 6, kernel
size: 5x5, padding: 2, activation: ReLU.

2. Average pooling layer 1. Kernel size: 2x2, stride: 2.

3. Convolutional layer 2. Input channels: 6, output channels: 16, kernel size: 5x5, padding: 2, activation:
ReLU.

4. Average pooling layer 2. Kernel size: 2x2, stride: 2.

5. Flattening layer. Flattens the output from the previous layers.

6. Fully connected layer 1. Input features: 784 (16 channels * 7 * 7), output features: 120, activation:
ReLU.

7. Fully connected layer 2. Input features: 120, output features: 84, activation: ReLU.

8. Fully connected layer 3 (output layer). Input features: 84, output features: num_classes (specified
during instantiation).

Large CNN The large CNN is similar to the small CNN, but with 545546 parameters in total:

1. Convolutional layer 1. Input channels: 1 (assuming grayscale images), output channels: 6, kernel
size: 5x5, padding: 2, activation: ReLU.

2. Average pooling layer 1. Kernel size: 2x2, stride: 2.

3. Convolutional layer 2. Input channels: 6, output channels: 16, kernel size: 5x5, padding: 2, activation:
ReLU.
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4. Average pooling layer 2. Kernel size: 2x2, stride: 2.

5. Convolutional layer 3. Input channels: 16, output channels: 120, kernel size: 5x5, padding: 2,
activation: ReLU.

6. Flattening layer. Flattens the output from the previous layers.

7. Fully connected layer 1. Input features: 5880 (120 channels × 7 × 7), output features: 84, activation:
ReLU.

8. Fully connected layer 2 (output layer). Input features: 84, output features: num_classes (specified
during instantiation).

In all the convolutional layers, no stride = 1 and padding is set to same.

E.2 Stochastic Gradient Langevin Dynamics (SGLD)

Our experiments using SGLD are categorized into 4 groups:

1. Bayesian CNNs (small and large) on MNIST (Figures 3 - 6 in the main text)

2. Bayesian CNNs (small and large) on Fashion-MNIST (Appendix E.2.1)

3. Bayesian ResNets (18 and 50) on CIFAR-10 (Appendix E.2.2)

4. Bayesian ResNets (18 and 50) on CIFAR-100 (Appendix E.2.3)

where each group evaluates the effect of underfitting on a small model and a large model. Note that as we
follow the standard ResNet-18 and ResNet-50, the details of the architectures are omitted. They have around
11 million and 23 million parameters, respectively. We implement with PyTorch (Paszke et al., 2019) and
train the model using cyclical learning rate SGLD (cSGLD) (Zhang et al., 2019) for 1000 epochs. We set the
learning rate to 1e-6 with a momentum term of 0.99. We run cSGLD for 10 trials and collect 10 samples for
each trial. Experiments were conducted on NVIDIA A100 GPU, with each trial taking around 30 hours.
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E.2.1 Small and Large CNNs via SGLD on Fashion-MNIST

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 8: Extended results of Figure 3 using small CNN via SGLD on Fashion-MNIST.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 9: Extended results of Figure 4 using large CNN via SGLD on Fashion-MNIST.
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(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 10: Extended results of Figure 5 using small CNN via SGLD on Fashion-MNIST.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 11: Extended results of Figure 6 using large CNN via SGLD on Fashion-MNIST.
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E.2.2 ResNet-18 and ResNet-50 via SGLD on CIFAR-10

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 12: Extended results of Figure 3 using ResNet-18 via SGLD on CIFAR-10.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 13: Extended results of Figure 4 using ResNet-50 via SGLD on CIFAR-10.
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(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 14: Extended results of Figure 5 using ResNet-18 via SGLD on CIFAR-10.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 15: Extended results of Figure 6 using ResNet-50 via SGLD on CIFAR-10.
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E.2.3 ResNet-18 and ResNet-50 via SGLD on CIFAR-100

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 16: Extended results of Figure 3 using ResNet-18 via SGLD on CIFAR-100.

(a) Narrow prior and standard softmax (b) Narrow prior and tempered softmax (c) Standard prior and standard softmax

Figure 17: Extended results of Figure 4 using ResNet-50 via SGLD on CIFAR-100.
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(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 18: Extended results of Figure 5 using ResNet-18 via SGLD on CIFAR-100.

(a) Standard prior and standard softmax (b) Random crop and horizontal flip (c) Pixels randomly shuffled

Figure 19: Extended results of Figure 6 using ResNet-50 via SGLD on CIFAR-100.
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E.3 Mean-Field Variational Inference (MFVI)

Experimental Settings: These experiments were run using Tensorflow (Abadi et al., 2015), Tensorflow
Probability (Dillon et al., 2017) and Keras (Chollet et al., 2015). By default, we use zero-center Normal
distributions, N (0, σ), as priors with different standard deviations, i.e., σ values. For the variational
approximation, we use fully factorized Normal distributions, where both the mean and the standard deviation
of each of them were the parameters to be learned by the variational algorithm. Although using an over-
simplified family to approximate the true posterior, MFVI also achieves competitive results (Zhang &
Nalisnick, 2021) compared to SGLD.

The convolutional neural network used for this experiment is a variational implementation of the network
described above. This variational model uses a total of 1091092 parameters, double the number of parameters
of the original model.

We use an Adam optimizer with a default learning rate 0.001, batch size = 100, and run during 100 epochs,
which in our case, is enough to achieve convergence. The Keras global seed was set to 15. Other seeds were
set, but similar results were obtained. Experiments were performed on Google Colab on a NVIDIA T4 GPU.
The computation time was in the order of a few hours.

Prior Misspecification, Likelihood Misspecification and the CPE:

We run a similar experiment to the one reported in Figure 4 but using MFVI (Blei et al., 2017) as an
approximate inference technique. The results of this experiment are reported in Figure 20. The conclusions
are completely similar to the ones already discussed in Section 5.
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(a) Baseline: "narrow" prior + standard
softmax likelihood
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Figure 20: CPE can be mitigated by a less misspecified model (Figure 20b) or imposing a less regularizing
prior (Figure 20c). We plot the training loss Ĝ(pλ, D) and the testing loss B(pλ) with different priors and likelihood
models. The parameter σ is the standard deviation of the isotropic Gaussian prior centered at zero, while the
parameter γ serves as a smoothing parameter on the logits. All metrics are approximated using 10 samples drawn
from the MFVI posterior.

Data Augmentation (DA) and the CPE:

As in the previous case, we ran a similar experiment to the one reported in Figure 4 but using MFVI (Blei
et al., 2017) as an approximate inference technique. The results of this experiment are reported in Figure 21.
The conclusions are very similar to the ones already discussed in Section 6.
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(a) No augmentation
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(b) Rand. crop and horiz. flip
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(c) Pixels randomly shuffled

Figure 21: CPE only occurs with “meaningful” augmentation (Figure 21b). We plot the training loss
Ĝ(pλ, D) and the testing losses B(pλ) and G(pλ) with different augmentation methods. While Figure 20 shows no
augmentation, Figure 21b and 21c show standard augmentation and an artificially designed “harmful” augmentation,
where the pixels are shuffled randomly. All metrics are approximated using 10 samples drawn from the MFVI posterior.
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