
Under review as a conference paper at ICLR 2025

PROVCREATOR: SYNTHESIZING GRAPHS WITH TEXT
ATTRIBUTES

Anonymous authors
Paper under double-blind review

ABSTRACT

In cybersecurity, system provenance graphs are a key primitive to support intru-
sion detection and program identification tasks. Recent movement towards using
data-hungry graph learning models for security-critical applications has exposed
significant limitations in existing provenance datasets. Imbalanced representation
of programs induces bias and performance degradation in downstream models.
Further, these models rely on rich numeric and textual node attributes to accu-
rately encode program behaviors, limiting the ability of existing data augmenta-
tion techniques to address data imbalance in provenance graphs.
We present PROVCREATOR, a novel graph synthesis framework designed for
feature-rich system provenance graphs. PROVCREATOR learns the joint distri-
bution of node attributes and graph structures conditioned on program class la-
bels, enabling targeted generation of realistic system provenance graphs to sup-
plement underrepresented programs. Our evaluation shows that PROVCREATOR
produces provenance graphs with higher structural fidelity, attribute fidelity, and
downstream utility compared to those of previous graph synthesis methods.

1 INTRODUCTION

System provenance (Inam et al., 2023) has gained prominence in recent years as a powerful tool
to counter advanced cyber attack campaigns. The seminal work of King et al. (King & Chen,
2003) established system provenance as a vital field for comprehensive system-wide surveillance
and protection. In system provenance analysis, causal graphs are extracted from surveillance logs
by connecting resources through syscall-level access events. As outlined in Table 1, in provenance
graphs, nodes represent system entities (e.g., processes, files, and network sockets), while edges
denote the interactions between these entities, including CREATE a process, READ or WRITE a file, or
SEND or RECEIVE data to or from a network socket. These nodes have security-relevant attributes
such as filenames, executable names, and IP addresses. Provenance graphs are consumed by Ma-
chine Learning (ML) models to perform security critical tasks, such as intrusion detection (Rehman
et al., 2024) and program classification (Mukherjee et al., 2023).

Table 1: Provenance dataset schema.

Nodes Edges

Process ProcessEvent (Process→ CREATE→ Process)
File FileEvent (Process→ READ, WRITE, EXECUTE→ File)
IPChannel IPChannelEvent (Process→ SEND, RECEIVE→ IPChannel)

However, the effectiveness of ML models is hampered by the inherent data imbalance in system
provenance datasets, as shown in Figure 1. These datasets often lack sufficient representation of
program behaviors, particularly when it comes to less common or underrepresented runtime config-
urations such as WaaSMedicSvc (label D) and DoSvc (label E) of svchost.exe and Write-Host
(label C), $Infs = Get-Item (label D), and Get-AppxPackage (label E) of powershell.exe.
Such imbalance introduces systematic bias in the training process, leading to poor generalizability
of security models. A balanced system provenance dataset is crucial for ensuring reliable intrusion
detection. An ideal dataset should include equal representation of all relevant programs, as well
as their various runtime configurations, such as command-line arguments. The imbalance found in

1



Under review as a conference paper at ICLR 2025

(a) svchost.exe (b) powershell.exe

Figure 1: Provenance dataset of svchost.exe and powershell.exe showcase that certain programs are
underrepresented in the dataset causing dataset imbalance. The underrepresented program being labelled D
and E for svchost.exe, and C, D, and E for powershell.exe. For detailed descriptions of these labels, refer
to §A.1.

real-world datasets means that ML models trained on these datasets may fail to generalize to unseen
environments (Zhou et al., 2023). This could reduce their effectiveness in practical deployments (Al-
saheel et al., 2021) as models may incorrectly predict the behavior of underrepresented programs,
leading to false positives in ML-based intrusion detection systems.

In this work, we introduce PROVCREATOR, a novel graph synthesis framework designed to address
the under-representation of program behaviors in system provenance datasets by synthesizing realis-
tic provenance graphs. These synthetic graphs maintain both structural and attribute-wise similarity
to the original data. To the best of our knowledge, this is the first approach within the provenance
domain to simultaneously generate both graph structure and conditionally accurate node attributes.
Outside the provenance domain, previous works such as Jo et al. (2022) have focused on generating
graph structures with categorical attributes, but have not tackled the challenge of learning textual
node attributes conditioned on graph structure — an inherently complex task, as node attributes are
influenced by both local neighborhood and distant graph nodes.

Beyond just generating a uniform and fixed set of text attributes for all nodes, PROVCREATOR offers
the flexibility to associate nodes with arbitrary sets of text attributes, each with distinct semantics that
can be incorporated and modified with no architecture changes. The ability to synthesize multiple
text attributes for each node with distinct semantics has applications across many domains where
graphs contain semantically rich attributes. While our work only considers static attribute sets for
each node type, PROVCREATOR’s architecture naturally allows for dynamically determined node
attribute sets using flexible attribute indicators.

By jointly generating the graph structure and node attributes, PROVCREATOR is able to achieve
better structural and attribute-wise fidelity with the original training distribution compared to prior
works, and is able to better support downstream model performance for both classification and
intrusion detection. In summary, this work makes the following contributions:

• Data Imbalance Mitigation. We introduce PROVCREATOR, a novel graph synthesis framework
that generates balanced provenance data to address the systematic bias caused by underrepresented
program behaviors in existing datasets.

• Improved Model Performance. We show that ML models trained with PROVCREATOR-
augmented data perform significantly better when compared against those trained on data gen-
erated by prior graph synthesis methods.

• Flexible Text Attribute Generation. Our PROVCREATOR attribute generation model is able to
learn diverse sets of text attributes and accurately generate those attributes using the structure of
the graph.

While the proposed research focuses on the synthetic generation of system provenance graph
datasets, we believe that the PROVCREATOR approach can be applied to other security graph datasets
or highly complex, heterogeneous graphs with textual and numerical attributes. To benefit the re-
search community, we plan to publicly release our augmentation framework, as well as the datasets
generated in this study, after applying privacy-preserving measures to ensure data confidentiality.

2



Under review as a conference paper at ICLR 2025

2 RELATED WORK

Synthetic Data Generation. Synthetic data generation (Yang et al., 2022) involves creating artificial
data that closely resembles real data in its statistical properties and complexity without collecting
additional real data. These approaches aim to address challenges presented by imbalanced datasets
by supplementing underrepresented classes with synthetic examples. Recent advancements in data
analysis techniques and data processing have led to numerous research proposals for data synthesis
across various domains (Cubuk et al., 2019; Al Olaimat et al., 2020; Cordero et al., 2021; Feng et al.;
Yan et al., 2022; Zhao et al.; 2022). Current synthetic graph generation methods consider graph
structure generation and attribute generation separately. We argue that they should be considered
together because neighbourhood structures are often stastistically codependent with node attributes.
Therefore, PROVCREATOR conditionally generates node attributes based on node neighborhood em-
beddings. To confer structural understanding onto the attribute generation process, we jointly train
a graph encoder with a transformer-based attribute generation model. Combined with incremental
improvements in graph structure generation, this formulation yields state-of-the-art synthetic graphs
with rich text attributes.

Although synthetic graph generation research has attracted significant attention across various
research domains, security datasets, particularly system provenance graphs, have seen limited
progress. Synthetic data is valuable in the system provenance domain because real syscall traces
are costly to collect and difficult to share due to privacy concerns, but are required in large quantities
by ML models. Creech & Hu (2013) and Haider et al. (2016) proposed initial prototype imple-
mentations for synthesizing attack behaviors by generating sequences of system calls, but these
implementations lacked consideration of causal dependencies between system resources (e.g., pro-
cesses, files, and network sockets). The operating system (OS) used in Creech & Hu (2013) is
decade old Ubuntu 11.04 which has reached end of life support and it contains no Windows traces.
Furthermore, Creech & Hu (2013) rejected traces over 3 kB thus impacting the completeness of
the traces collected. By directly generating provenance graphs, PROVCREATOR synthesizes data in
an OS-agnostic way with structural consideration of causal dependencies, and can generate large
graphs by combining related subgraphs. While synthetic data generation has been explored in other
security research domains (Cordero et al., 2021), we are unaware of any previous research focusing
on synthetic data generation approaches specifically for system provenance graph datasets.

System Provenance. System provenance tracks fine-grained system data (syscall events), from
large enterprise and industrial systems. It traces bidirectional information flow and control de-
pendencies starting from a Point-Of-Interest (POI) event, enabling forensic analysis and advanced
security defenses (King & Chen, 2003; Liu et al., 2018; Hassan et al., 2019; Wang et al., 2020). By
examining system-call logs (aud, 2015; etw, 2019; Cantrill, 2005), system provenance graphs cap-
ture relationships (i.e., READ, WRITE, CREATE and EXECUTE) among major resources (i.e., processes,
files and network sockets). Nodes, representing system resources, are annotated with attributes
such as executable names, filenames, and IP addresses, making these graphs invaluable tools for
forensic analysis to discover points of entry, track infection propagation, and assess the scale of
damage. Formally, a provenance graph is a connected set of timestamped edges e = (u, v, r), where
u, v ∈ {processes ∪ files ∪ sockets} and v is causally dependent on u (e.g., a file u is written by
a process v), and r is the relationship between the nodes.

Provenance-based ML Research. Initially proposed to automate forensic investigations, system
provenance has become a vital foundation for ML-based security detectors (Wang et al., 2020; Han
et al., 2020; 2021; Jia et al., 2024; Cheng et al., 2024; Mukherjee et al., 2024; Rehman et al., 2024),
propelled by rapid advances in data analysis techniques. Security researchers have expanded the
scope of system provenance studies to construct ML models that counter attacks where adversaries
craft unique, unexposed attack vectors (Mukherjee et al., 2023) that can only be identified during
runtime. While the full provenance graph even for one host machine can be intractably large, com-
prising millions of edges, analysis can be performed on tractable subgraphs extracted by tracing
causal dependencies to and from a POI event. Depending on the objective of the analysis task, vari-
ous query conditions can determine effective POI events, with the system provenance graph serving
as the primary target for analysis.

3



Under review as a conference paper at ICLR 2025

Graph
Label

Graph Structure
Generator Graph Encoder

Node 
Embedding

Transformer

Node 
Attributes

svchost.exe
svchost.exe

taskhostw.exe

Graph Structure

Synthetic Graph

sc.exe

user32.dll
ctac.json

20.72.205.209:443

20.72.205.209:80

svchost.exe

sc.exe
svchost.exe

taskhostw.exe

user32.dll

ctac.json

20.72.205.209:443

20.72.205.209:80

Figure 2: PROVCREATOR’s synthetic graph generation pipeline. Given a graph class label, PROVCREATOR
first generates the graph structure, then constructs node attributes based on the class label and the generated
structure. The result is a synthetic graph with node attributes that are contextually consistent.

3 GRAPH SYNTHESIS METHODOLOGY

PROVCREATOR focuses on two key aspects of graph generation: the generation of the graph struc-
ture and the prediction of node attributes within the generated graph. Previous research has primar-
ily focused on individual aspects without attempting to combine graph structure and graph attribute
generation tailored for cybersecurity applications. Our work is the first to integrate both approaches
within the cybersecurity domain. System provenance graphs are directed heterogeneous graphs,
where different node types are associated with varying attributes. For instance, processes have exe-
cutable names, files have filenames, and sockets have IP addresses and ports.

Figure 2 depicts PROVCREATOR, which trains on system provenance graphs with known labels. In
§3.1, PROVCREATOR extends Graph Diffusion Score-based Sampling (GDSS) (Jo et al., 2022) to
learn the structure of graphs. It then encodes the graph structure as a set of node embeddings. In §3.2,
these node embeddings are then refined through a transformer model, which is trained to reconstruct
node attributes based on the learned embeddings. This enables the model to accurately predict the
complex attributes associated with each node. Finally, the two components (graph structure and node
attributes) are integrated in §3.3 by applying the generated node attributes to the generated graph
structure. This process ensures both the accurate generation of graph structures and the effective
prediction of node attributes, which are essential for semantically rich heterogeneous graphs.

3.1 STRUCTURE GENERATION

Consider a heterogeneous graph G(V,E), where each node v ∈ V and edge e ∈ E belongs to
certain pre-defined types. Each node and edge can have an associated list of attributes, such as
executable path, filename, IP address, etc. Assume that all real-world provenance graphs belong to
a distribution p(G|c), where c is the context of the graph, such as the command line of the POI
process. The goal of graph structure generation is to learn a deep learning model FθF (c, z)→ G to
generate graphs that follow the distribution p, given the condition c and random vector z.

For the design of the model F , many different approaches have been developed in the literature of
general graph generation. Models such as Kipf & Welling (2016), Simonovsky & Komodakis (2018)
generate the whole graph at once. Work such as You et al. (2018), Wang et al. (2017) considers step-
by-step generation where the model iteratively adds nodes and edges to the graph.

In our work, we consider a more recent diffusion based approach based on Jo et al. (2022). To
model the problem, we relax the adjacency matrix representation A of the graph to real numbers
A ∈ R|V |×|V |. A homogeneous graph with node features F can then be represented as G = (X,A)
where X ∈ R|V |×|F |. For heterogeneous graph, node types can be treated as part of the node
features and edge types can be generated by extending the adjacency matrix with an extra dimension
for edge features A ∈ R|V |×|V |×|E|. The design of E can be different depending on the dataset, for

4



Under review as a conference paper at ICLR 2025

our provenance dataset, we use one-hot embedding of the categorical actions described in Table 1.
The T step diffusion process can be represented as the trajectory of {Gt = (Xt, At)}t∈[0,T ], where
G0 is the original graph and Gt follows a prior distribution such as Gaussian distribution. The
model F learns the reverse of the diffusion process and generates the graph from Gt which can be
randomly sampled with random vector z.

The original GDSS paper (Jo et al., 2022) uses a GCN as the backbone and it does not consider
conditional generation. We improved the backbone model by using a graph transformer (Dwivedi &
Bresson, 2020) and following the original stable diffusion (Rombach et al., 2021) paper’s approach
to add the conditioning mechanism for the graph transformer. The condition is set based on the label
of the process represented in the graph; details about the labels can be found in §A.1.

3.2 ATTRIBUTE GENERATION

Most graph generation models only consider simple categorical attributes on nodes and edges.
GDSS (Jo et al., 2022) claims they are the first work that proposes a diffusion process for gener-
ating a whole graph consisting of nodes and edges with attributes. They generate molecular graphs
where the node attributes are the elements and the edge attributes are the types of chemical bonds
between the atoms. In our dataset, in addition to the node types and edge types shown in Table 1, we
have additional string attributes associated with the nodes, such as executable paths and filenames.
Generating these attributes is challenging, because: (1) string attributes have variable length and can
be hundreds of characters long, which makes representing them in a graph neural network difficult;
(2) different node types have distinct and nonuniform sets of associated attributes, so the attribute
generation must have special considerations for each node type. Earlier works such as Koncel-
Kedziorski et al. (2019) consider graph-level text extraction from knowledge graphs. In contrast,
we consider node-level text generation purely based on graph structure and a class label. That is,
our goal is to learn an attribute generation model TθT (hv, c, a)→ s, that produces a text attribute s
given a node embedding hv , a context vector c, and an attribute indicator a.

Given a generated structure-only heterogeneous graph with node types and edge types, a Graph
Neural Network (GNN) encoder EθE (G) is used to extract the node embedding hv for each node v ∈
G. Then for each node we input the node embedding to the attribute generation model TθT (hv, c, a)
with the context vector c and attribute indicator a. The attribute indicator is a text label associated
with a type of attribute to generate. In our work, each node type has a fixed list of associated attribute
indicators (e.g., network sockets require both IP addresses and port numbers). Specifically, we use
a transformer decoder for TθT . Since the transformer decoder is an auto-regressive model, we put
hv, c, a as the initial (embedding of) input tokens. Then a <bos> token is added to indicate the
beginning of the output. During training, we apply a mask similar to what one would apply in a
translation task, where the node embedding input is unmasked, and the target tokens after <bos>
are masked with a lower triangular matrix so at each token location the model can get attention from
both the embedding vector and the previously generated token. The attention masking strategy is
commonly seen in seq2seq models, and can also be found in image-to-text models such as Wang
et al. (2022). The introduction of the attribute indicator a enables the model to generate different
attributes for different types of nodes with the flexibility to extend the list of attributes without
architecture changes.

3.3 STRUCTURE AND ATTRIBUTE INTEGRATION

To generate a graph G, we first generate its structure G = FθF (c, z). Then we obtain the structural
node representation with the graph encoder {hv}v∈G = EθE (G). For each node embedding hv in
EθE (G), and for each attribute indicator a that needs to be generated, we use the attribute generation
model TθT to calculate TθT (hv, c, a) yielding each attribute. The output graph is assembled by
attaching the generated attributes to the corresponding nodes. The graph encoder EθE is trained
together with the attribute generation model TθT , and the generation of different attributes are trained
jointly. The algorithm is detailed in Algorithm 1.

5



Under review as a conference paper at ICLR 2025

Algorithm 1 Structure and Attribute Integration Training

Input: Graph datasetD, learning rate for encoder model ηE , learning rate for attribute generation
model ηT , and number of epochs Nepoch

Output: Trained graph encoder model EθE and attribute generation model TθT
Initialize graph encoder model parameters θE
Initialize attribute generation model parameters θT
for epoch = 1 to Nepochs do

δθE ← 0
for each graph G and context vector c in D do
{hv}v∈G ← EθE (G)
B ← {} ▷ Set to accumulate batch training samples
for each v ∈ G do ▷ each v contains a collection of indicator-attribute (a, s) pairs

for each node attribute indicator a in v and corresponding node attribute s do
Add (hv, a, s) into B

end for
end for
for each batch of node attributes (hbatch, abatch, sbatch) in batch(B) do

s′ ← TθT (hbatch, c, abatch)
l = LMLM(s′, sbatch) ▷ LMLM is masked language loss
θT ← θT − ηT∇θT l ▷ Update TθT
δθE ← δθE +∇θE l ▷ Accumulate the gradient for graph encoder EθE

end for
end for
θE ← θE − ηEδθE ▷ Update EθE

end for
Return: Trained model EθE , TθT

4 EVALUATION

To comprehensively evaluate PROVCREATOR, we first demonstrate direct improvements over Jo
et al. (2022) in graph structure generation (§4.1), then demonstrate competent results against strong
baselines in textual attribute generation (§4.2) and overall graph composition (§4.3). Finally, we
demonstrate improvements over Jo et al. (2022) in supporting downstream supervised and unsuper-
vised graph learning tasks (§4.4).

Evaluation Protocol. We trained PROVCREATOR and Jo et al. (2022) to generate provenance graphs
for svchost.exe and powershell.exe in a Windows environment, then used them to supplement
underrepresented sub-programs in our datasets. We chose these programs because they are popular
targets for impersonation by advanced cyber threats (Barr-Smith et al., 2021), and their behavior is
largely determined by their command-line arguments, which provides clear class labels.

For graph similarity measures (§4.1, §4.2, and §4.3), we generated 1,000 graphs for each of
svchost.exe and powershell.exe with PROVCREATOR and with Jo et al. (2022) using the same
training set, then measured the distributional distance of the synthetic graphs to the training set with
established metrics. We additionally propose a node attribute similarity metric with domain-specfic
considerations, BLEU+, which is described in §A.2. For metrics that rely on textual attributes (§4.2
and §4.3), we augment the synthetic graphs from Jo et al. (2022) with appropriate randomly sampled
node attributes from the training set to form a strong baseline.

For downstream tasks (§4.4), we refer to respected works from the cybersecurity domain to guide
our supervised program classification task (Barr-Smith et al., 2021) and unsupervised malware de-
tection task (Rehman et al., 2024). In each of these tasks, we train the downstream GNN models
on each of: (1) the original training data; (2) the original training data supplemented with graphs
generated by Jo et al. (2022); and (3) the original training data supplemented with graphs generated
by PROVCREATOR. For each downstream task, the relevant scoring metrics are reported for each
model configuration.

6



Under review as a conference paper at ICLR 2025

Table 2: Maximum mean discrepancy (MMD) distances of different graph metrics between real and synthetic
datasets generated with GDSS (Jo et al., 2022) and PROVCREATOR where lower number is better.

Degree ↓ Clustering ↓ Bet. Cen. ↓ Cls. Cen. ↓ Katz Cen. ↓ Spectral ↓
svchost.exe (win)

GDSS 0.038 0.022 0.008 0.228 0.209 0.115
PROVCREATOR 0.030 (-0.008) 0.002 (-0.020) 0.007 (-0.001) 0.175 (-0.053) 0.068 (-0.141) 0.060 (-0.055)

powershell.exe (win)

GDSS 0.013 0.267 0.010 0.164 0.064 0.066
PROVCREATOR 0.003 (-0.010) 0.048 (-0.219) 0.007 (-0.003) 0.094 (-0.070) 0.044 (-0.020) 0.021 (-0.045)

4.1 STRUCTURE FIDELITY

Table 2 measures structural fidelity for each of several graph structural stastistics between the real
and synthetic datasets, mirroring the evaluation of Jo et al. (2022). The maximum mean discrepancy
(MMD) distances were calculated between our test datasets and synthetic datasets generated from
PROVCREATOR and GDSS models trained on our svchost.exe and powershell.exe datasets. In
both datasets, we observed a smaller MMD distance for PROVCREATOR than GDSS in all metrics.
This indicates an improvement in structure generation quality over GDSS due to better disambigua-
tion between graph categories through the context vector c, along with incremental improvements
to the base model architecture.

Table 3: Process, file, and IP channel attribute similarity comparison between real and synthetic datasets. The
similarity of process and file attributes is evaluated with BLEU (Papineni et al., 2002) and BLEU+. IP channel
attribute accuracy is measured based on the network segment of the IP address and the value of the port.

Process
BLEU ↑ Process

BLEU+ ↑ File
BLEU ↑ File

BLEU+ ↑ IPChannel IP
Accuracy ↑ IPChannel Port

Accuracy ↑

svchost.exe (win)

Baseline 0.555 0.989 0.919 0.933 0.135 0.681
PROVCREATOR 0.520 (-0.035) 0.995 (+0.060) 0.995 (+0.076) 0.996 (+0.063) 0.258 (+0.122) 0.258 (-0.423)

powershell.exe (win)

Baseline 0.792 0.841 0.930 0.907 0.395 0.998
PROVCREATOR 0.842 (+0.050) 0.922 (+0.081) 0.990 (+0.060) 0.982 (+0.075) 0.838 (+0.443) 0.839 (-0.159)

4.2 ATTRIBUTE FIDELITY

Provenance graph attributes are complex and domain-specific, making their evaluation challenging.
This section focuses on evaluating individual attributes. For processes and files, we evaluated the
generated filenames and executable names with BLEU and BLEU+ within each respective node
type. To reduce semantically unimportant noise in IP addresses, we only consider 6 coarse-grained
network segments: private, multicast, global, loopback, link-local, and other. A generated IP address
is correct when it is valid and belongs to the same segments as the ground truth IP address. Similarly,
a generated port is correct either when it exactly matches the ground truth port, or when the generated
port and the ground truth port are both in the range [10,000, 65,535]. The reported accuracies for IP
addresses and ports are then simply the proportion of correct generations.

Because synthetically generated graph structures have no ground truth attributes, the experiments in
this section are conducted by generating attributes for real graph structures. The results are shown in
Table 3. The simple baseline method (randomly sampling node attributes from the correct node type
in the training set) is strong due to how the metrics are defined. For example, if the sampled text
matches that of any node in the graph, BLEU and BLEU+ will be 1.0, making the baseline model
the upper bound for models that ignore graph structure. To outperform this baseline, not only do the
generated text attributes need to be accurate, they also need to be correctly associated with each spe-
cific graph. With this in mind, our proposed method achieves significant improvements, indicating
that not only are the generated attributes realistic, they also correctly consider the graph structural
context. Further, we observed that BLEU and BLEU+ can come to opposite conclusions on the same
data, indicating that domain-specific evaluation is necessary. The port numbers are generated as text
tokens and converted to integers, which is generally a bad practice, and not surprisingly, resulted in
poor performance. We leave effective numeric attribute generation for future work.

7



Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20 0.25
Mean Cosine Similarity

powershell.exe

svchost.exe

0.13

0.07

0.14

0.11
graph2vec

0.00 0.05 0.10 0.15 0.20 0.25
Mean Cosine Similarity

0.23

0.13

0.16

0.21
doc2vec

Baseline ProvCreator

Figure 3: Embedding cosine similarity comparison between real and synthetic svchost.exe and
powershell.exe datasets using graph2vec (Narayanan et al., 2017) and doc2vec (Le & Mikolov, 2014a).

4.3 EMBEDDING FIDELITY

We evaluate the overall similarity of the synthetic graphs to the original training set by embed-
ding the graphs into vectors, then measuring the average cosine similarity of those graph em-
beddings to the embeddings of the training set. In Figure 3, we compare PROVCREATOR’s syn-
thetic graphs to those of Jo et al. (2022), augmented with appropriately randomly sampled node
attributes from the training set. For completeness, we use two embedding schemes: doc2vec (Le
& Mikolov, 2014b), which creates a text document from a graph through a series of random walks,
and graph2vec (Narayanan et al., 2017), which extends doc2vec with hierarchical graph structure
representations. Figure 3 shows that PROVCREATOR is able to competently compare even against
synthetic graphs that have node attributes directly sampled from the training set.

4.4 DOWNSTREAM APPLICATION

To demonstrate the practical utility of PROVCREATOR, we consider two security-relevant down-
stream tasks: program classification and malware detection. Figure 4 and Table 4 show classification
and malware detection results, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Weighted Macro F1 Score

svchost.exe

powershell.exe

0.87

0.72

0.93

0.80

0.95

0.84

Real GDSS + Real ProvCreator + Real

Figure 4: Weighted macro F1 scores for subprogram classification in svchost.exe and powershell.exe,
showing improved performance from adding PROVCREATOR’s synthetic provenance graphs.

Program Classification. Program classification is a supervised learning task in which the model
aims to identify the program being executed by a host process. For example, given a provenance
graph centered around an svchost.exe process, identify which command was run based on the
system resources that appear in the graph. The full list of class labels considered in this task is
provided in §A.1.

In Figure 5, we see that although the baseline performance is quite strong, there are still a couple
classes that are confused. While existing methods (Jo et al., 2022) are able to provide some im-
provement, most of the confusion in underrepresented program classes remains. PROVCREATOR
significantly reduces confusion in those underrepresented programs by guiding its graph synthesis
to focus on supplementing those minority classes. These observations are consistent across both
svchost.exe and powershell.exe classification tasks, demonstrating PROVCREATOR’s ability
to generate more representative synthetic graphs that improve classification performance for under-
represented categories.

8



Under review as a conference paper at ICLR 2025

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

1.0

0.9

0.9

0.7 0.2

0.3 0.7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(a) Real svchost.exe.

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

1.0

0.9

0.9 0.1

0.8 0.2

0.2 0.7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(b) GDSS svchost.exe.

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

0.9

0.9

0.9

0.9

0.1 0.8

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(c) PROVCREATOR svchost.exe.

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

0.8 0.1

0.9

0.6 0.4

0.4 0.6

0.9

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(d) Real powershell.exe.

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

0.8 0.1

1.0

0.8 0.2

0.5 0.4

0.9

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(e) GDSS powershell.exe.

A B C D E
Predicted labels

A
B

C
D

E
Tr

ue
 la

be
ls

1.0

1.0

0.8 0.1

0.8 0.2

1.0

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(f) PROVCREATOR powershell.exe.

Figure 5: PROVCREATOR generated under-represented samples helped the ML model better classify
svchost.exe and powershell.exe than GDSS generated samples.

Table 4: Precision, recall, F1 score, false positive rate (FPR), and area under receiver operating characteristic
curve (ROC-AUC) for FLASH (Rehman et al., 2024) on an svchost.exe malware dataset (Mukherjee et al.,
2023). Detection thresholds were chosen to maximize F1 score on the test set.

Training Data Precision ↑ Recall ↑ F1 Score ↑ FPR ↓ ROC-AUC ↑
Real 1.0 1.0 1.0 0.0 1.0
GDSS + Real 0.891 (-0.109) 1.0 (+0.000) 0.943 (-0.057) 0.122 (+0.122) 0.981 (-0.019)
PROVCREATOR + Real 0.996 (-0.004) 1.0 (+0.000) 0.998 (-0.002) 0.004 (+0.004) 0.998 (-0.002)

Malware Detection. Malware detection is an unsupervised learning task in which the model aims
to identify program behaviors that are dissimilar to those represented in its training set. The mal-
ware samples in the test set were downloaded from VirusTotal and executed in a sandbox to collect
relevant system provenance traces. Table 4 shows that PROVCREATOR’s synthetic data induces less
degradation in malware detection efficacy than that of prior works (Jo et al., 2022). The baseline in
this case is incredibly strong — a perfect detector — because the malware behavior diverges sig-
nificantly from svchost.exe’s typical behavior patterns, resulting in easily detectable differences
in graph structure and node attributes. In future work, we will enrich this comparison with more
challenging malware detection datasets.

5 CONCLUSION

In this paper, we introduced PROVCREATOR, a novel synthetic graph generation framework de-
signed for heterogeneous graphs with nonuniform text attributes. By jointly considering the graph
structure, node attributes, and program class labels, PROVCREATOR addresses program class im-
balance in system provenance datasets with synthetic graphs that contain rich textual attributes.
Further, the inclusion of flexible node attribute indicators enables the generation of semantically
nuanced textual attributes, with multiple attributes per node. Our evaluation on real-world programs
demonstrates improved graph structural fidelity compared to prior works, as well as improved util-
ity in security-relevant downstream tasks. PROVCREATOR marks a step towards applying synthetic
data generation to support accuracy-critical applications that require rich graph attributes.

Reproducibility.

All experimental code related to PROVCREATOR is available at https://anonymous.4open.
science/r/provcreator-aio-4F83.

9

https://anonymous.4open.science/r/provcreator-aio-4F83
https://anonymous.4open.science/r/provcreator-aio-4F83


Under review as a conference paper at ICLR 2025

REFERENCES

The linux audit framework. https://github.com/linux-audit/, 2015.

Event tracing for windows (etw) - windows drivers — microsoft docs. https:
//docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
event-tracing-for-windows--etw-, 2019.

Mohammad Al Olaimat, Dongeun Lee, Youngsoo Kim, Jonghyun Kim, and Jinoh Kim. A learning-
based data augmentation for network anomaly detection. In 2020 29th International Conference
on Computer Communications and Networks (ICCCN), 2020.

Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay Celik, Xiangyu
Zhang, and Dongyan Xu. Atlas: A sequence-based learning approach for attack investigation. In
USENIX Security Symposium (SEC), 2021.

Frederick Barr-Smith, Xabier Ugarte-Pedrero, Mariano Graziano, Riccardo Spolaor, and Ivan Mar-
tinovic. Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land. In IEEE
Symposium on Security and Privacy (SP), 2021.

Bryan Cantrill. Dtrace. In Large Installation System Administration Conference (LISA), 2005.

Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas Pasquier, and Xueyuan
Han. Kairos: Practical Intrusion Detection and Investigation using Whole-system Provenance. In
IEEE Symposium on Security and Privacy (SP), 2024.

Carlos Garcia Cordero, Emmanouil Vasilomanolakis, Aidmar Wainakh, Max Mühlhäuser, and
Simin Nadjm-Tehrani. On generating network traffic datasets with synthetic attacks for intru-
sion detection. 2021.

Gideon Creech and Jiankun Hu. Generation of a new ids test dataset: Time to retire the kdd collec-
tion. In 2013 IEEE wireless communications and networking conference (WCNC), 2013.

Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning Augmentation Strategies From Data. 2019.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
ArXiv, abs/2012.09699, 2020. URL https://api.semanticscholar.org/CorpusID:
229298019.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura,
and Eduard Hovy. A Survey of Data Augmentation Approaches for NLP.

Waqas Haider, Gideon Creech, Yi Xie, and Jiankun Hu. Windows Based Data Sets for Evaluation
of Robustness of Host Based Intrusion Detection Systems (IDS) to Zero-Day and Stealth Attacks.
2016.

Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer. UNICORN: Run-
time Provenance-Based Detector for Advanced Persistent Threats. In Network and Distributed
System Security Symposium (NDSS), 2020.

Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li, Junghwan Rhee, James Mickens, Margo Seltzer,
and Haifeng Chen. Sigl: Securing software installations through deep graph learning. In USENIX
Security Symposium (SEC), 2021.

Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, and
Adam Bates. NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage. In
Network and Distributed System Security Symposium (NDSS), 2019.

Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jason Mink, Noor Michael, Sneha
Gaur, Adam Bates, and Wajih Ul Hassan. SoK: History is a Vast Early Warning System: Auditing
the Provenance of System Intrusions. In IEEE Symposium on Security and Privacy (SP), 2023.

10

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://api.semanticscholar.org/CorpusID:229298019
https://api.semanticscholar.org/CorpusID:229298019


Under review as a conference paper at ICLR 2025

Zian Jia, Yun Xiong, Yuhong Nan, Yao Zhang, Jinjing Zhao, and Mi Wen. Magic: Detecting
advanced persistent threats via masked graph representation learning. In USENIX Security Sym-
posium (SEC), 2024.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning,
2022. URL https://api.semanticscholar.org/CorpusID:246634850.

Samuel T King and Peter M Chen. Backtracking intrusions. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

Thomas Kipf and Max Welling. Variational graph auto-encoders. ArXiv, abs/1611.07308, 2016.
URL https://api.semanticscholar.org/CorpusID:14249137.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. Text
Generation from Knowledge Graphs with Graph Transformers. In Jill Burstein, Christy Doran,
and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 2284–2293, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1238. URL https://aclanthology.org/
N19-1238.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Interna-
tional conference on machine learning, pp. 1188–1196. PMLR, 2014a.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents. 2014b.

Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Junghwan Rhee, and
Prateek Mittal. Towards a Timely Causality Analysis for Enterprise Security. In Network and
Distributed System Security Symposium (NDSS), 2018.

Kunal Mukherjee, Josh Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim, Murat
Kantarcioglu, and Kangkook Jee. Evading provenance-based ml detectors with adversarial system
actions. In USENIX Security Symposium (SEC), 2023.

Kunal Mukherjee, Joshua Wiedemeier, Qi Wang, Junpei Kamimura, John Junghwan Rhee, James
Wei, Zhichun Li, Xiao Yu, Lu-An Tang, Jiaping Gui, et al. Proviot: Detecting stealthy attacks in
iot through federated edge-cloud security. In International Conference on Applied Cryptography
and Network Security, pp. 241–268. Springer, 2024.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pp. 311–318, USA, 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.
1073135.

Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan. FLASH: A Comprehensive Approach to
Intrusion Detection via Provenance Graph Representation Learning. In IEEE Symposium on Se-
curity and Privacy (SP), 2024.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2021. URL https://api.
semanticscholar.org/CorpusID:245335280.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks, 2018. URL
https://api.semanticscholar.org/CorpusID:3637466.

11

https://api.semanticscholar.org/CorpusID:246634850
https://api.semanticscholar.org/CorpusID:14249137
https://aclanthology.org/N19-1238
https://aclanthology.org/N19-1238
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:3637466


Under review as a conference paper at ICLR 2025

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. ArXiv,
abs/1711.08267, 2017. URL https://api.semanticscholar.org/CorpusID:19140125.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100, 2022.

Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Junghwan Rhee,
Zhengzhang Chen, Wei Cheng, Carl A Gunter, and Haifeng Chen. You Are What You Do: Hunt-
ing Stealthy Malware via Data Provenance Analysis. In Network and Distributed System Security
Symposium (NDSS), 2020.

Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D. Mooney, and
Bradley A. Malin. A Multifaceted benchmarking of synthetic electronic health record generation
models. 2022.

Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, and Furao Shen. Image
data augmentation for deep learning: A survey, 2022.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning, 2018. URL https://api.semanticscholar.org/CorpusID:46937309.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data Aug-
mentation for Graph Neural Networks.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann, Neil Shah, and
Meng Jiang. Graph Data Augmentation for Graph Machine Learning: A Survey. 2022.

Yan Zhou, Murat Kantarcioglu, and Chris Clifton. On improving fairness of ai models with synthetic
minority oversampling techniques. In Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM), pp. 874–882, 2023.

A APPENDIX

A.1 CHOSEN SUBPROGRAMS OF svchost.exe AND powershell.exe

We chose svchost.exe and powershell.exe programs because they are popular targets for im-
personation by advanced cyber threats (Barr-Smith et al., 2021), and their behavior is largely deter-
mined by their command-line arguments, which provides clear class labels.

Table 5: Label descriptions for svchost.exe.

Label Command Description
A svchost.exe -k netsvcs -p -s (ServiceName) Starts a service in the netsvcs service group. This group contains

services that interact with the network, including Windows Up-
date (wuauserv), group policy client (gpsvc), and various other
services.

B svchost.exe -k LocalSystemNetworkRestricted -s
(ServiceName)

Starts a service in the LocalSystemNetworkRestricted service
group. This group contains services that do not connect to the
network, like the File History Service (fhsvc) and the Portable
Device Enumerator Service (WPDBusEnum).

C svchost.exe -k wsappx -p -s (ServiceName) Starts a service in the wsappx service group. This group contains
the Client License Service (ClipSVC) and AppX Deployment
Service (AppXSvc), which are both used in relation to AppX
packaged applications installed from the Windows Store.

D svchost.exe -k wusvcs -p -s WaaSMedicSvc Starts the Windows Update Medic Service in the wusvcs group.
This service automatically repairs components of Windows Up-
date that are broken or disabled.

E svchost.exe -k NetworkService -p -s DoSvc Starts the Delivery Optimization service (DoSvc), which opti-
mizes content delivery like updates. It runs under the Network-
Service group.

12

https://api.semanticscholar.org/CorpusID:19140125
https://api.semanticscholar.org/CorpusID:46937309


Under review as a conference paper at ICLR 2025

Table 6: Label descriptions for powershell.exe.

Label Command Description
A powershell.exe -ExecutionPolicy AllSigned

-NoProfile -NonInteractive -Command "& {Inline
Script}"

Executes an inline PowerShell script used by Windows Defender
to verify the hash of scripts it uses.

B powershell.exe -ExecutionPolicy Bypass
-NoProfile -Command "Add-Type ’C# Code’; . . .

Adds a .NET type, then calls a function from that type. These
PowerShell commands are found in a Windows Defender script.

C powershell.exe -ExecutionPolicy Restricted
-Command Write-Host ’Final result: 1’;

Runs a simple command that writes text to the console.

D powershell.exe -ExecutionPolicy Restricted
-Command $Res = 0; $Infs = Get-Item ...

Executes a PowerShell script that checks if an INF file with a
certain key exists, and prints the result to console.

F powershell.exe /C Get-AppxPackage ... Lists installed AppX packages.

A.2 BLEU+

BLEU+ is a metric specifically designed to measure the quality of filepath generation. Given a
path p splitted into segments of directories and filename pi ∈ p and a set of reference filepath P ref,
BLEU+ is defined as:

bleup = max
pref
i ∈P ref

LCP(p, pref
i )

|pref
i |

where |p| is the length (number of segments) of the filepath p, LCP(·, ·) is a function that calcualtes
the segment level longest common prefix for two given string. Specifically, we define the equality
of two segments in a way that better suits the scenario of filepath. The rules are:

• If the segment are identical, return true.

• If the segment is a filename (last segment) and the reference segment ends with “.tmp”,
return true.

• If the previous segment in the reference filepath is “tmp”, “temp” or “temporary” (case
insensitive), return true.

• If the previous segments in the reference filepath is “/home”, “/mnt/home”, “C:
Users”, return true.

• If both the reference segment and the input segment match the pattern of UUID, return true.

• Otherwise, return false.

A.3 MODEL ARCHITECTURE

Figure 6 shows the architecture of the structure generation model. In our implementation, we set
L = 12, H = 8, the dimension of h is 256, the dimension of e and y is 128. The orange arrow
highlights the conditional generation components we introduced.

Figure 7 shows the architecture of the structure generation model. In our implementation, we set
L = 4, M = 12, hidden dimension of the GCN is 512, Embedding size of the transformer is 512
and max length is 128. We used the RobertaTokenizer which gives us the token size of 50265.

13



Under review as a conference paper at ICLR 2025

.

Figure 6: Structure Generation Model Architecture

14



Under review as a conference paper at ICLR 2025

Node
Embedding

Condition
Attribute
Name

BOS

Initial Tokens Embedding

Multi-Head
Attention

Add&Norm

Add&Norm

Feed
Forward

BERT-like
Transformer

EOS
Attribute

Value

For each node i
For each attribute

Figure 7: Attribute Generation Model Architecture

A.4 EXAMPLE OF GENERATED GRAPHS

Figure 8 shows examples of generated graphs. The left column shows the generated structure, and
the right column shows the generated attributes.

15



Under review as a conference paper at ICLR 2025

(a) Structure Generation Exam-
ple 1

(b) Attribute Generation Exam-
ple 1

(c) Structure Generation Exam-
ple 2

(d) Attribute Generation Exam-
ple 2

(e) Structure Generation Exam-
ple 3

(f) Attribute Generation Example
3

Figure 8: Examples of generated graphs

16


	Introduction
	Related Work
	Graph Synthesis Methodology
	Structure Generation
	Attribute Generation
	Structure and Attribute Integration

	Evaluation
	Structure Fidelity
	Attribute Fidelity
	Embedding Fidelity
	Downstream Application

	Conclusion
	Appendix
	Chosen subprograms of svchost.exe and powershell.exe
	BLEU+
	Model Architecture
	Example of Generated Graphs


