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ABSTRACT

Federated Bilevel Optimization (FBO) enables training machine learning models
with nested structures across distributed devices while preserving data privacy.
However, current FBO methods often impose restrictive assumptions, particularly
the requirement of strong convexity in the lower-level objective. To overcome this
limitation, we propose a first-order stochastic gradient method for general FBO
problems, leveraging a Moreau envelope-based min-max optimization reformu-
lation to handle potentially non-convex lower-level objectives. Unlike implicit
gradient methods, our approach eliminates the need for second-order derivative
information. We also establish rigorous theoretical guarantees for convergence
rate and communication complexity, demonstrating linear speedup as the number
of devices increases. Numerical experiments validate the effectiveness and effi-
ciency of our method, showing comparable or superior performances in challenging
scenarios, including federated loss function tuning on imbalanced datasets and
federated hyper-representation.

1 INTRODUCTION

Bilevel optimization has gained prominence in machine learning due to its effectiveness in solving
nested structural problems, with applications in areas such as hyperparameter tuning (Franceschi
et al.,|2018}; Bao et al., 2021} Sinha et al., |2024)), meta-learning (Franceschi et al.| 2018} |Jia & Zhang]|
2024)), and reinforcement learning (Hu et al.,|2024b; [Yang et al.,[2024). These approaches rely on
access to the entire dataset, raising concerns about privacy leakage. With the growing importance of
data privacy, federated bilevel optimization (FBO) has emerged as a crucial paradigm. FBO enables
collaborative learning on distributed datasets while preserving individual privacy, addressing complex
nested optimization problems such as federated reinforcement learning (Ruan et al., 2024} Yin et al.|
2024).

FBO combines the challenges of bilevel optimization and federated learning, addressing both nested
optimization difficulties and the complexities of distributed learning. Existing algorithms, including
AlID-based methods such as|Huang et al.| (2023)); Huang| (2022), and ITD-based methods such as
Xiao & Ji|(2023), often require strong convexity in the lower-level objective functions to compute
federated hypergradients via the implicit function theorem (Kearns|, |1989). The recently proposed
single-loop SimFBO algorithm (Yang et al., 2023)), based on SOBA (Dagréou et al., [2022)), also
depends on strong convexity at the lower level. These requirements significantly limit the applicability
of current algorithms, as many problems naturally involve non-convex lower-level objectives, such as
in Federated Transfer Learning (Liang et al.||2022} Zhang & Li,[2021).

There have been numerous recent studies addressing the issue of non-strong-convexity in the lower-
level of bilevel optimization (BLO) under the single-machine (non-federated) setting (Liu et al.| 2022}
Kwon et al.| [2023} Huang}, [2023b}, [Yao et al., [2023; [Liu et al.| 2024; [Kwon et al., [2024). Given these
significant advancements in addressing lower-level non-strong-convexity in BLO, a natural question
arises:

Can we develop a stochastic gradient method for FBO that does not require strong convexity
in the lower-level problem, while reducing computation and communication costs?
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To achieve this goal, several challenging issues must be addressed.

Inapplicability of the implicit function theorem. Current approaches to FBO rely heavily on
the implicit function theorem, particularly for computing hypergradients—a key component of the
optimization process. While powerful, the implicit function theorem imposes strict conditions on the
problem structure, most notably the requirement for strong convexity in the lower-level objective.

High computational cost of Hessian-Jacobian computations. Existing FBO algorithms often
require matrix-vector products involving the Hessian or Jacobian matrices of the lower-level objective,
which are computationally expensive. Developing new algorithms that eliminate the need for Hessian
or Jacobian computations is essential for scaling to large-scale applications.

Linear speedup challenges under lower-level non-strong convexity. In federated settings, achieving
linear speedup with respect to the number of devices is critical for fully leveraging distributed
resources. However, it remains unclear whether convergence rates can attain linear speedup in the
absence of strong convexity at the lower level in FBO.

1.1 MAIN CONTRIBUTIONS

To address the aforementioned challenges, inspired by the recent advances of |Liu et al.| (2024) in
bilevel optimization, we develop a first-order stochastic gradient method, named MeFBO, for feder-
ated bilevel optimization based on a Moreau envelope-based minimax optimization reformulation,
which allows for nonconvexity in the lower-level problem.

* To the best of our knowledge, MeFBO is the first federated bilevel optimization approach
that uses only first-order derivatives while addressing nonconvex lower-level problems.

* We establish rigorous theoretical guarantees for convergence rate and sample complexity,
demonstrating linear speedup with respect to the number of participating clients (sampling
without replacement).

* We validate MeFBO empirically on three federated bilevel learning tasks: federated hyper-
representation, federated loss function tuning on imbalanced datasets, and federated data
hyper-cleaning. The results demonstrate that MeFBO achieves comparable or superior, and
more robust, performance compared to existing FBO approaches.

Table 1: Comparison of MeFBO with closely related FBO approaches. Below, LL-convexity refers
to the convexity condition of the lower-level objective function. LL-Lipschitz continuity denotes
the Lipschitz continuity requirement of the lower-level problem, which involves multiple orders of
information. H-J free indicates that the method does not require Hessian or Jacobian computations.
For simplicity, we exclude methods with momentum-based acceleration or those designed to handle
system-level heterogeneity.

LL-Lipschitz H-J free Partial Linear

Method LL-convexity continuity participation speedup

FedNest (Tarzanagh et al.,[2022)) strongly convex second-order
FBO-AggITD (Xiao & Ji,[2023) strongly convex second-order
FedBiO (Li et al.,[2023) strongly convex second-order
FedMBO (Huang et al.,[2023)  strongly convex second-order
SimFBO (Yang et al., [2023) strongly convex  third-order
MeFBO (ours) non-convex first-order

N % % % X% %
NN XX %%
NN NN %%

As this work leverages insights from both [Liu et al.|(2024)) and (Yang et al., |2023)), we explain the
differences from the most relevant literature.

Compared to our work, MEHA by |Liu et al.| (2024)) is limited to deterministic settings for non-
federated bilevel optimization. In contrast, even when reduced to the non-federated setting, our
MeFBO is a stochastic algorithm with convergence rate and sample complexity guarantees.
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More importantly, efficiently solving federated bilevel optimization problems is even more challenging
due to the need to preserve privacy and reduce communication costs, which requires a variable number
of local updates on the client side. This adds complexity to both algorithm design and theoretical
analysis compared to non-federated bilevel optimization. For example, local client updates introduce
challenges in setting algorithm hyperparameters (such as client and server learning rates) and in
analyzing communication and sample complexity.

As a result, compared to the analysis in|Liu et al.[|(2024), in the federated learning setting, we must
control the bounds of client drifts and harmonize them with the variance from local stochastic gradient
estimation and errors from client sampling to achieve convergence. Specifically, it is crucial that these
bounds (to be established) explicitly depend on the effects of local update rounds and the number
of participating clients per communication round, as discussed in Section[3.2] This significantly
increases the complexity of the theoretical analysis.

The comparison between SimFBO (Yang et al.,[2023)) and our work is highlighted in Tab]em The
key difference lies in the starting points of algorithm design. SimFBO is designed and analyzed
from the perspective of hypergradient estimation, relying on the strong convexity assumption and
involving second-order derivatives. In contrast, we leverage insights from |Liu et al.|(2024) and use
local stochastic gradient estimators.

1.2 RELATED WORK

We provide a concise review of recent works directly related to ours, with a more comprehensive
review presented in Section [G]

FedNest (Tarzanagh et al., 2022)), one of the earliest FBO methods, is a federated alternating
stochastic gradient method (FedNest) that uses AID-based hypergradient estimation to address
general federated nested problems. Xiao & Ji| (2023) introduced an FBO algorithm employing
ITD-based hypergradient estimation, though these approaches do not achieve linear speedup. The
study by Huang et al.| (2023)), which uses AID-based hypergradient estimation, achieves linear
speedup without requiring full client participation in every communication round. Recent FBO
methods, such as SimFBO (Yang et al., 2023)) and FedBiOAcc (Li et al., 2023), draw inspiration
from SOBA (Dagréou et al., [2022). These approaches transform a linear system problem into
a quadratic one, improving computational efficiency within a single-loop algorithmic framework.
Notably, FedBiOAcc incorporates a momentum-based technique. While these algorithms have made
significant progress, they continue to rely on Hessian matrix computations and are constrained by the
requirement for lower-level strong convexity (LLSC).

In addition to the aforementioned works, there is a growing body of research on bilevel optimization
in asynchronous settings, such as those by [Jiao et al.[(2022)) and |Li et al.| (2024)). Furthermore, FBO
has demonstrated promising practical applications, particularly in the fine-tuning of large language
models (LLMs) within federated settings. For instance, |Wu et al.| (2024)) investigates the use of
FBO for local fine-tuning of LLMs. As noted in Table 2 of Wu et al.|(2024)), these models can be
optimized using either single-level or bilevel approaches. Notably, the bilevel optimization method,
FedBiOT, proposed by |Wu et al.|(2024), exhibits significant advantages over single-level optimization,
especially in scenarios involving hierarchical problem structures.

2 PROPOSED APPROACH

In this work, we study the federated bilevel optimization defined by:

i F = s t.
,uin  F(z,y) ;wzfz(x,y) st yeS(z), (1)

where S(z) is the set of optimal solutions for the lower-level program

Here X and Y are closed convex sets in R% and R% respectively, and n denotes the total number
of clients. For each clienti € [n] := 1,2,...,n, the constant w; represents the weight of client
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i, satisfying 3.7 w; = 1 and Z=in < 4, < ﬁ‘;i% for all i € [n]. The upper- and lower-level

functions, f;(z,y) := E¢,[fi(x, y: &) and g;(z,y) = E¢, [gi(, y; ¢;)], respectively, are expressed
as expectations with respect to the random variables &; and (;.

2.1 MOREAU ENVELOPE-BASED MINIMAX OPTIMIZATION REFORMULATION

The goal of this work is to study first-order stochastic gradient methods for solving problem (I} in
the context of federated learning. To this end, inspired by the recent advance in bilevel optimization
(Gao et al.[(2023); |Liu et al.|(2024)), we first observe that problem (II]) as a bilevel optimization can
be reformulated as a constrained problem

i F L G — <0 3
(Ivyr)Iél)r;xY (Z‘,y) § (l’,y) V’Y(xay) =Y ( )

where v (x,y) is the Moreau envelope of G defined as
. 1 2 .
vy(z,y) = min {G(m,@) + ZHH ol } with v > 0. 3)

Note that G(z,y) — vy (x,y) > 0 forall (z,y) € X x Y. A direct and effective way to solve the
constrained problem (2) is by addressing its corresponding penalty problem:

1
min Y. (z,y) :=—F(x,y) + G(z,y) — vy (z,y), 4
wmn L Te(@y) = CF@y) + Gey) = vy(2.y) @
where ¢; > 0 is a penalty parameter. Recalling the definition (3) of v,, we further observe that
problem (4)) is equivalent to the following minimax problem:

1 1
i T 0) .=—F — 0) — —116 — yl|>.
o in | max T, (2,9,0) . (2,y) + G(z,y) — G(z,0) 2 16—yl )
We refer to problem (3)) as the Moreau envelope-based minimax optimization reformulation of
problem (I). This reformulation enjoys two favorable properties that facilitate simpler and more
efficient implementation in federated bilevel optimization.

(I) When G(z, -) is weakly convex, namely, G(x, -) + p|| - ||?/2 is convex for some positive constant
p, then for v € (0,1/p) the problem (5] is a non-convex-strongly-concave minimax optimization
problem. Consequently, the inner maximizer problem has a unique solution % (z, y) for any (x,y).
Moreover, at this time, v (z,y) is differentiable and

VV’Y(:'C7 y) = (VIG(x7 9:’;(%, y))7 (y - 9;(%, y))/’y)7 (6)
where V1 represent the gradient of a function with respect to its first variable.

(I) The objective function T, (x,y, ) of problem exhibits a favorable linear structure with
respect to the upper and lower level objectives F and G. Consequently, within the context of
federated learning, this gives rise to a local model on the client side:

, ) 1 1
minmax Y. (z,y,0) == — fi(z,y) + gi(x,y) — gi(x,0) — — |0 — y||>. @)
zy 0 ct 2y

Note that we intentionally disregard the constraints on x, y and 6 on the client side, as the correspond-
ing projection operators can be applied on the server side (see Algorithm I]).

2.2 PROPOSED ALGORITHM

In this section, we introduce our MeFBO algorithm for federated stochastic bilevel optimization,
which supports partial client participation, detailed in Algorithm [I]

On the client side. For each communication round ¢, a subset C'*) of participating clients is selected

without replacement. Each active client i € C'*) then performs 7-step stochastic gradient descent
ascent (SGDA) on the local model to update the local variables:

<9£t7k+1> pERHD y<t,k+1>) - (el(t’k) fnét)hgfék),x(t’k) (), (ER) (k) 7n(t)h(t7k'))’ (8)

s Lg s Yi i — Nz i,x Y Yy i,y

4



Under review as a conference paper at ICLR 2025

where 77(5, ), n(t) nz(f) are local learning rates (step sizes), and

i

1 ,
h((gf;k) —Vags(z gt k) a(t k). C(t k)) ;(th,k) 7y(t,k))’

Y, ) z Y 7 )

1
h(t k) . . V fz( (t k) (t k),f(t k)) +V 2 i ( (f k) (f k)’C(t k)) ,y(yl(t,k) . 0§t7k)), )

() . V (2! (t.k) (tk),g(tk))Jrv gi(a! (t.k) (fk)’c(tk)) Vigi( Etk) o(tk)7<(fk))

x,1 ) z ’l

are unbiased estimates of —VoY: (z,y,60), V,TY. (z,y,0), and V,Y. (z,y,6) at

(wgt’k),y§t’k),9§t’k)), respectively, where V, represent the gradient of a function with re-

spect to its second variable. The output of each client i € C*) in this stage is the locally averaged
stochastic gradient estimators:

T—1 T—1 T—1

t 1 tk t 1 t,k t 1 t,k
DRSS S A SR WD P (10)
k=0 k=0 k=0

Communication and aggregating gradients. In this stage (communication round t), each client
i € C® sends the averaged stochastic gradient estimators in ll to the server, which aggregates
these local estimators to compute

ny = 3T @hd), h = ST @al O = 3 @nl, (1)

1€C(t) ieC®) ieC(®)

where w; := w;n/|C?)| is the effective weight of participating client i.

On the server side. Leveraging the aggregated directions h(t), hgf), and hét) from || the server
performs one-step projected gradient descent ascent to update the global variables:

(0(t+1)’w(t+1),y(t+1)> = Projy . x vy (9(75) _ )\ét)hét),x(t) ADR® y® )\ét)h?(f)> .12

where /\((,t), )\g), and )\ét) are the server-side learning rates.

Algorithm 1 MeFBO

Input: initialization (%) y(o) and #(®), communication rounds 7', local update rounds 7, client

learning rates {779 D 0y } server learning rates {)\et), AL, )\( )}, penalty parameter c;, and

proximal parameter .
fort=0,1,2,...,7T — 1do
Sample a subset C'*) of participating clients;
For client i € C'*), initialize 9?’0) =01, :z:l(.t’o) =z®, ygt’o) =y,
for k=0,1,2,...,7—1do
Locally update 9 (¢ k) z!! k)
end for
Client ¢ computes {h

(t,k)

,and y, "’ simultaneously using Eq.;

§t27 h(zt)z, h;i} using Eq. and sends the results to the server;
Server aggregates the local estimators to compute {he , hgf , hg(,t } using Eq. (1 . ) ;
Server updates the global variables using Eq. (I2)) .

end for

Remark and other possible algorithmic designs. (1) Since MeFBO uses only stochastic gradient
estimators, it is a first-order stochastic gradient method, making it significantly different from existing
FBO methods. Another notable feature of MeFBO is its ability to handle constraints on both the upper-
and lower-level variables. Additionally, the corresponding projection operators are implemented
exclusively on the server side, enhancing MeFBO’s practicality and efficiency. (2) MeFBO also
offers strong extensibility. For instance, instead of using SGDA as in (9)), one could employ other
stochastic gradient estimation techniques (e.g., SAGA, STORM) to develop more advanced federated
stochastic bilevel optimization algorithms. Refer to recent advances in bilevel optimization |Dagréou
et al.| (2022); (Chen et al.|(2023); [Huang|(2023b)); Chu et al.| (2024).
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3 THEORETICAL INVESTIGATION

3.1 ASSUMPTIONS

We make the following assumptions in the theoretical investigation.

Assumption 3.1. For the upper-level objective, the following conditions hold:

(i) The UL objective F is bounded below, i.e., F :=  inf  F(x,y) > —o0.
(z,y)EX XY

(ii) Foreachi € [n], f;(z,y) is twice continuously differentiable, and L ¢-Lipschitz continuous.
The gradients V f;(x, y) is L1-Lipschitz continuous, i.e., f;(x,y) is L;-smooth.

(iii) Foreachi € [n], V fi(z,y;&;) is an unbiased estimator of V f;(x, y). Furthermore, there exists
a constant o ¢ such that E[[|V fi(z,y) — V fi(x, y; &)[?] < oF.

Assumption 3.2. For the lower-level objective, the following conditions hold:

(i) For each i € [n], g;(z,y) is twice continuously differentiable, and g;(-,y) is L4-Lipschitz
continuous for any ¥, and g;(z, y) is Le-smooth.

(ii) Foreachi € [n], Vg;(x,y; ;) is an unbiased estimator of Vg;(x, y), and there exists a constant
o4 such that E[||[Vgi(z,y) — Vg (2,4 G)|*] < ol.

(iii) There exists a constant A such that >>7_, w; | V,g:(, y) — V,G(x,y)|]> < A2,

Assumption [3.1fii) and Assumption [3.2]i) impose smoothness and Lipschitz continuity conditions.
Notably, we only require the Lipschitz continuity of the first-order derivatives, a key distinction
from other FBO literature, which typically also assumes the Lipschitz continuity of second-order
derivatives. Assumption [3.1fiii) and Assumption [3.2(ii) are standard assumptions for unbiased
gradient estimators and variance bounds in stochastic gradients. In federated learning, Assumption
[3.2]iii) is commonly used to bound data heterogeneity. The heterogeneity parameter A represents the
level of data heterogeneity, with A = 0 corresponds to the homogeneous data setting.

Remark 3.3. (1) Assumption iii) is used to mitigate the impact of client drifts in y(f') and 0® on
the final convergence. It employs a single parameter A to describe the degree of heterogeneity, as
also used in|Li et al.| (2023, Assumption 3.5). This differs from Yang et al.| (2023, Assumption 4),
which uses two parameters. (2) The upper-level objective does not require a similar assumption to
Assumption iii) because f;(x,y) is assumed to be Lipschitz continuous with respect to both x
and y in Assumption [3.1[ii).

3.2 CONVERGENCE RESULT AND COMPLEXITY ANALYSIS

In this section, we provide the convergence rate and sample complexity of MeFBO under Assumptions
and For simplicity, we let P := |C(®)| for all £. When the lower-level problem of bilevel
optimization is strongly convex and unconstrained, the hypergradient norm is typically used as a
stationary measure for algorithms. Unfortunately, this measure is not easily extendable to nonconvex
lower-level objectives. Therefore, we introduce local surrogates.

Inspired by Liu et al.| (2024), and by leveraging the stationarity condition of problem (), we introduce
the following stationarity measure for nonconvex federated bilevel optimization:

Ry(z,y) = [dist (0, VYe, (2, 9) + Nxxy(2,9))]* . (13)

where Nx «y (z,y) is the normal cone of X x Y at (z,y). Clearly, R¢(z,y) is well-defined when
the hypergradient is. We refer readers to Lemma A.13 in|Liu et al.[(2024])) for a comparison of these
two criteria. Furthermore, R;(z,y) = O if and only if 0 € VY, (z,y) + Nx v (z,y), i.e., the point
(z,y) is a stationary point of problem (4).

Theorem 3.4 (Fixed step size). Fix the number of communication rounds T, local update rounds T,
and the number P of participating clients per communication round. Assume that Assumptions|3.1

and hold. Let ¢, = ¢c(t + 1)P withc > 0, p € (0,1/4), and v € (0, ﬁ) Consider fixed server
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and client step sizes

1
PN ¥ e V- RN (O B () RN O BN ) RS () [ (O I S
0 CAT 4 ) x y Cong Ty My Mo Cn F7/871/4,/P’

where cy, co, and c,, are constants given in Lemma@ Then the sequence (ac(t), y®), H(t)) generated
by Algorithm[l|satisfies

1/2(, _
min E[Rt(x(t-ﬂ)’y(t-&-l))]:o(l( 1 LT (n P)Jr 1 )) (14)

0<t<T—1 P \T1/271/2 T2y, T1/4

Note that the server step sizes in Theorem [3.4]are constant with respect to the number P of partic-
ipating clients, but the client step sizes scale with P~1/2. The proof of Theoremrefers to that
of Theorem D.TT]in Appendix A proof sketch is provided in Appendix Additionally, we
present theoretical results for the decreasing step size in Appendix [C]

Several remarks about Theorem [3.4]are as follows: (1) By Theorem 3.4 MeFBO achieves a linear
convergence speedup with respect to the number of participating clients (sampling without replace-
ment); (2) When n = 1, MeFBO reduces to a first-order stochastic gradient algorithm for nonconvex
bilevel optimization with a convergence rate of O(T~'/?) by setting 7 = 1 in Theorem 3)In
the case of full client participation (i.e., P = n), Theorem [3.4|suggests that increasing the number 7
of local update steps can help improve the convergence rate. In contrast, for partial client participa-
tion, increasing 7 may negatively affect the convergence rate. Theorem [3.4]highlights an important
trade-off in the selection of local update rounds 7. Next, we further analyze the communication and
sample complexity of MeFBO.

Corollary 3.5 (Fixed step size). Under the setting of Theorem[3.4} we have the following results:

(i) In the case of full client participation, setting T = O(T), the per-client sample complexity is
7T = O(e~2) and the communication complexity T = O(e~1).

(ii) For partial client participation, setting T = O(1), the per-client sample complexity is TT =
O(P~2¢72) and the communication complexity T = O(P~2¢72).

For partial client participation, we set 7 = O(1) because further increasing 7 does not improve
the final convergence rate due to the dominant estimator O(P~'7'/27~1/2) in (14). The proof of
Corollary [3.3]is provided in Appendix [D.5]

4 NUMERICAL EXPERIMENTS

We evaluate MeFBO on three federated bilevel learning tasks: federated hyper-representation,
federated loss function tuning on imbalanced datasets, and federated data hyper-cleaning. We
compare its performance with other FBO baselines, including SimFBO (Yang et al.|(2023)), and
FedNest (Tarzanagh et al.[(2022)) and LFedNest (Tarzanagh et al.|(2022)). Although the motivation
and theoretical analyses of these algorithms (except for MeFBO) rely on the strong convexity of
the lower-level problem, all of them can be implemented in nonconvex scenarios. Following the
experimental setup in Tarzanagh et al.|(2022); L1 et al.| (2023)), we use the MNIST dataset (LeCun
et al.|(1998)) with i.i.d., non-i.i.d., and imbalanced data partitioning methods. To ensure the reliability
and stability of our results, all numerical experiments were repeated 10 times, and the reported values
represent the average of these repetitions. Details of all experimental specifications are provided in

Appendix

4.1 FEDERATED HYPER-REPRESENTATION LEARNING

In this learning task, the training and validation datasets are distributed among clients. The goal is
to learn a representation and a header on the joint training and validation datasets while preserving

privacy. Following [Tarzanagh et al.|(2022); Xiao et al|(2023), the problem can be formulated as a
special case of (IJ), given by

min — > feo(,y* (2); Dit) st 4" (2) =argm;nEchc(:v,y;Dtr)+TC||yH2, (15)
i=1 i=1
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where x and y are the parameters of the representation layer and the classifier layer, respectively. The
datasets D}, and D!, are the training and validation sets of client ¢ € [n], respectively. The function
fee 1s the cross-entropy loss, and rc is the regularization parameter used to ensure the (possible)
strong convexity condition. In previous experiments (Yang et al.|(2023); Tarzanagh et al.[(2022)), rc
was set to 0.05. We refer to Appendix [B.T|for the details on the implementation and only discuss the
key model hyperparameter 7c in the main text.

Result with the default setting of rc = 0.05. Table [2| presents the comparison of test accuracy
versus communication rounds in both i.i.d. and non-i.i.d. settings. From these results, we can draw
the following observations: From the perspective of mean and variance, MeFBO outperforms the
other methods in both i.i.d. and non-i.i.d. settings, indicating that MeFBO is more robust.

Table 2: Comparison of the results about test accuracy v.s. communication rounds for hyper-
representation on a 2-layer MLP and MNIST dataset in i.i.d. setiing and non-i.i.d. setting. M-F:
MeFBO(ours); S-F: SimFBO (Yang et al., 2023); L-F:L-FedNest (Tarzanagh et al., 2022)); F-N:
FedNest (Tarzanagh et al.| 2022).

ii.d. non-i.i.d.
Alg. 600 1000 1500 600 1000 1500
F-N 88.53+£0.26 89.68+0.17 90474+ 0.16 8598 &+1.64 87.67+0.46 88.38 +0.83
L-F 90.16 +0.19 90.87 +0.14 91.44 4+0.11 79.81+390 81.83 +£2.11 83.17 +1.89

S-F 9694 +£0.23 97.11 £0.20 97.30 £0.17 95.58 £0.64 96.05 £ 0.39 96.26+ 0.45
M-F 97.12 +0.07 97.54 £ 0.11 97.72 £ 0.10 96.40 + 0.13 96.85 £ 0.09 97.09 + 0.06

Robustness to rc. We test the sensitivity of MeFBO and other FBO algorithms to the model
hyperparameter rc. From Figure[I] we observe the following:

* MeFBO is the most robust to the choice of the regularization parameter rc.

* Although the theoretical analyses of SimFBO, LFedNest, and FedNest rely on strong
convexity, they achieve the best accuracy when rc¢ = 0, not at the default setting of
rc = 0.05. This indicates that the regularization technique used to enforce strong convexity
may degrade performance, highlighting the urgent need to design and study FBO algorithms
for non-convex scenarios.

* In repeated experiments with 300 communication rounds, SimFBO (Yang et al.| (2023))
achieves the best accuracy when the rc value is not equal to 0.07. For a more intuitive
comparison, please refer to Figure 5]

More comprehensive experimental results are presented in Figures 4] and [5]in appendix [A.1]

4.2 FEDERATED L0OSS FUNCTION TUNING ON IMBALANCED DATASET

Following the federated setting in [Tarzanagh et al.| (2022), the goal of this task is to tune a loss
function for learning on an imbalanced MNIST dataset distributed among clients. The specific
formulation and experimental details are provided in Appendix [B.2}

Results. Figure2]illustrates the comparative performance of FBO algorithms in terms of test accuracy
versus communication rounds, employing local round 7 = 3 for the i.i.d. setting and local round
7 = 1 for the non-i.i.d. setting. This experimental design serves to showcase the performance of
different algorithms with different local rounds under varying degrees of data heterogeneity.

¢ It clearly shows that MeFBO achieves a faster convergence rate and higher accuracy under
different local round 7 , both in the i.i.d and non-i.i.d. setting.

* As illustrated in Figure [2] (b), in a highly heterogeneous environment, it is evident that
MeFBO demonstrates enhanced robustness as the number of communication rounds in-
creases.

More comprehensive experimental results are presented in Figures [ and[7in Appendix[A.2] We also
test the sensitivity of MeFBO and the baselines to the regularization parameter rc. The results are
summarized in Figures[8|and [0]in Appendix indicating that MeFBO is robust to the choice of rc.
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Figure 1: Comparison of the results about test accuracy v.s. communication rounds for federated
hyper-representation under varying regularization coefficients rc of lower-level objectives.
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Figure 2: Comparison of the results about test accuracy v.s. communication rounds for federated loss
function tuning on imbalanced dataset.

4.3 FEDERATED DATA HYPER-CLEANING.

In this task, each distributed client is given a noisy training dataset, where the labels are corrupted
by noise at a corruption rate cr, along with a clean validation set. The goal is to learn weights for
the training samples such that a model trained on the weighted training set performs well on the
validation set. The specific formulation and experimental details, which differ slightly from the model
in|Li et al| (2023), are provided in Appendix

Results. In Figure 3] we compare the performance of different methods with ¢r = 0.7 in i.i.d. setting
and c¢r = 0.9 in non-i.i.d. settings. This experimental design serves to showcase the performance of
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Figure 3: Comparison of the results about test accuracy v.s. communication rounds for federated data
hyper-cleaning.

different algorithms under varying degrees of data heterogeneity and noise levels. The results show
that MeFBO achieves better performance in terms of test accuracy, more comprehensive experimental
results are presented in Figures[T0|and[TT]in Appendix[A.3].

Since an rc regularization technique is commonly used to enforce strong convexity of the lower-level
problem, we also test the sensitivity of MeFBO and the baselines to the regularization parameter rc.
The results are summarized in Figures[T2]and[T3]in Appendix[A.3] indicating that MeFBO is robust
to the choice of rc.

5 CONCLUSION

This paper investigates federated bilevel optimization problems with non-convex lower-level objec-
tives and introduces MeFBO, a novel, flexible, fully gradient-based algorithm. We provide a rigorous
convergence analysis and complexity analysis for our method with both fixed and decreasing step
sizes. Our results demonstrate that MeFBO achieves linear speedup with respect to the number of
clients in federated bilevel optimization, even in the absence of convexity in the lower-level objectives.
Experiments highlight the advantages of our proposed algorithms, particularly in scenarios involving
non-convex lower-level objectives.
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A  SUPPLEMENTARY EXPERIMENTS

A.1 FEDERATED HYPER-REPRESENTATION

Robustness to rc. We illustrate the performance of federated hyper-representation under varying
regularization coefficients rc of lower-level objectives in Figure 4] and compare the convergence
behaviors of our MeFBO, SimFBO, FedNest and LFedNest in hyper-representation under different
regularization settings in Figure[5] From Figure[d] we observe the following:

» SimFBO algorithm shows superior results at rc values of 0, 0.001, 0.005 and 0.01 (as seen
in Figure[5), but it lacks theoretical guarantees and exhibits significant instability at higher
rc values (0.06 and 0.07).

* QOur proposed MeFBO algorithm performs comparably to SimFBO in most cases, potentially
offering greater stability at higher rc values.

* Notably, MeFBO demonstrates superior robustness to the choice of the regularization pa-
rameter rc, maintaining consistent performance across a wider range of rc values compared
to other algorithms.
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Figure 4: Federated hyper-representation under varying regularization coefficients rc of lower-level
objectives.

A.2 FEDERATED LOSS FUNCTION TUNING ON IMBALANCED DATASET

Result with the default setting of ¢ = 0. Figures[6] and [7]illustrate the performance of various
algorithms under different local round settings (7 = 1 and 7 = 3) in i.i.d. and non-i.i.d. settings. We
can draw the following key observations:

* MeFBO consistently outperforms other algorithms across all metrics (accuracy, robustness,
and efficiency), particularly in heterogeneous environments.
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Figure 5: Comparison among our MeFBO, SimFBO, FedNest and LFedNest in federated hyper-
representation under varying regularization coefficients rc of lower-level objectives.

* Statistical heterogeneity from both non-i.i.d. and imbalanced datasets may have a smaller
impact on fully first-order algorithms like MeFBO.

Robustness to rc. We illustrate the performance of federated loss function tuning on imbalanced
datasets under varying regularization coefficients in Figure[8] and compare the convergence behaviors
of MeFBO, SimFBO, FedNest and LFedNest for federated loss function tuning on imbalanced datasets
across different regularization settings in Figure[9}] We can draw the following key observations:

* MeFBO demonstrates superior performance in both test accuracy and loss metrics across
diverse settings, exhibiting enhanced robustness particularly when rc values are high.

* The relative resilience of MeFBO to excessively large rc values highlights its robustness in
extreme regularization conditions. This characteristic reinforces potential of MeFBO as a pre-
ferred method for challenging data hyper-cleaning tasks in federated settings, outperforming
other algorithms in both i.i.d. and non-i.i.d. environments.

A.3 FEDERATED DATA HYPER-CLEANING

Result with the default setting of ¢ = 0. Figures [6] and [7illustrate the performance of various
algorithms under label corruption rate cr (¢r = 0.7 and c¢r = 0.9) in i.i.d. and non-i.i.d. settings.
These figures demonstrate that our proposed algorithm, MeFBO, outperforms other methods in both
i.i.d. and non-i.i.d. settings, achieving superior results within the same number of communication
rounds or time frame.

Robustness to rc. We illustrate the performance of federated data hyper-cleaning under varying
regularization coefficients in Figure[I2] and compare the convergence behaviors of MeFBO, SimFBO,
FedNest and LFedNest for federated loss function tuning on imbalanced datasets across different
regularization settings in Figure[I3] We can draw the following key observations:

* MeFBO demonstrates superior performance in both test accuracy and loss metrics across
diverse settings, exhibiting enhanced robustness particularly when rc values are high. This
consistent superiority underscores the efficacy and stability of MeFBO in various federated
learning scenarios.
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Figure 6: Federated loss function tuning on imbalanced dataset with local update round 7 = 1.

* The relative resilience of MeFBO to excessively large rc values highlights its robustness in
extreme regularization conditions. This characteristic reinforces MeFBO’s potential as a pre-
ferred method for challenging data hyper-cleaning tasks in federated settings, outperforming
other algorithms in both i.i.d. and non-i.i.d. environments.

B DETAILS OF EXPERIMENTS

In this section, we present the specific configurations used in the experiments outlined in Section
Ml For the federated bilevel learning experiments, we designate the number of workers as n =
100, and each local network is structured as a 2 or 3-layer multilayer perceptron with a hidden
dimension of 200 on a MNIST dataset. The hyperparameters are determined through a grid search,
taking into account both the convergence speed and algorithm stability, and we provide a detailed
report of these settings. For the baseline methods FedNest and LFedNest, we use their published
codes in https://github.com/ucr-optml/FedNest. For SimFBO in federated hyper-
representation, we use the source codes sent from the authors. The experiments were performed
utilizing Python 3.7 on a computer equipped with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz
and an NVIDIA A100 GPU boasting 40GB of memory.

B.1 FEDERATED HYPER-REPRESENTATION

In this section, we apply the MeFBO algorithm in Algorithm (1] to the task of federated hyper-
representation learning with a 2-layer MLP on MNIST Dataset with i.i.d. distribution and non-
ii.d. distribution. The classic machine learning approach jointly learns a data representation and
downstream header on the training dataset. In contrast, bilevel representation learning Tarzanagh
et al.| (2022) seeks to learn the data representation on the validation set while learning the header
on the training set. This bilevel representation learning procedure can be formulated as a bilevel
optimization problem. In a federated representation learning scenario involving n = 100 clients, the
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Figure 7: Federated loss function tuning on imbalanced dataset with local update round 7 = 3, (a),
(b), (), (d) : test accuracy vs. communication rounds.

validation and training datasets are distributed across these clients. The objective is to concurrently
learn a representation and header on the combined validation and training dataset, all while ensuring
the privacy of the data. Refer to Xiao et al.|(2023) ,the problem can be formulated as :

mln*che LL' y val)

TEX N
(16)

st y*(z) = argggngfcc x,y; Dyy) + reflyl?,

where  is the parameters of the representation layer; y is the parameter of the classifier layer; Di
and D¢, are, respectively, the training and validation set of client i. The cross-entropy loss f. is

defined as i )
exp m x b

fce(w y7D = |D| Z d U P

d, €D Z —1 €XP (he(x,y;dm))

where C is the number of classes, d,, is the m-th data from class in dataset D and h(z,y;d,,) =
[hi(2,y;dm), ., ho(m,y;dm)] T € RE is the output of the model with parameter (z,) and input
d.,. In Table|2| we employ a regularization coefficient (rc) value of 0.05. For the analysis presented
in Figuresand@ we utilize a range of rc values: 0, 0.001, 0.005, 0.01, 0.05, 0.06, and 0.07.

Hyperparameters. For all methods, 10 clients from 100 clients are chosen randomly and participate
in each communication, all algorithms are implemented with a batch size of 64. For our method

MeFBO and SimFBO, we take the number of local updates,;, for each client % to be 1, a(t k) tobe 1,
and p; to be 0.1.For our method , MeFBO, the ¢;, = 2.7(k + 1)%:%°% and v = 0.015, local step sizes

[ng ), nz(,t), n(t)] and [/\(t) Aét), )\((, )] are both [0.1, 0.1,0.07]. For SimFBO: local step sizes [1), 1)y, 1]
and [v, 7y, v are both [0.2, 0.1, 0.05]. FedNest and LFedNest: we take the inner step size and outer
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Figure 8: Federated loss function tuning on imbalanced dataset under varying regularization coeffi-
cients rc of lower-level objectives in i.i.d. setting.

step size, o = 0.01, 3 = 0.02. For the regularization coefficient case, we set ¢z, = 2.7(k + 1)°-001
and v = 0.015 as fixed values for our MeFBO algorithm across various rc values, as we observed
their impact to be negligible. The step sizes are provided in Table 3]

MeFBO SimFBO LFedNest FedNest
rc=0 [0.1,0.09, 0.05] | [0.2,0.09,0.04] | [0.015, 0.025] | [0.015, 0.025]
rc =0.001 | [0.1,0.09,0.05] | [0.2,0.09,0.04] | [0.015,0.025] | [0.015, 0.025]
rc =0.005 | [0.1,0.09, 0.05] [0.2,0.1,0.04] | [0.015,0.025] | [0.015, 0.025]
rc =0.01 [0.12,0.09, 0.05] | [0.2, 0.09, 0.05] [0.01, 0.02] [0.01, 0.02]
rc = 0.05 [0.1, 0.1, 0.07] [0.2,0.1, 0.05] [0.01, 0.02] [0.01, 0.02]
rc = 0.06 [0.12,0.12,0.07] | [0.2,0.12,0.06] | [0.01,0.015] [0.01, 0.015]
rc =0.07 [0.13,0.12, 0.07] | [0.2,0.12,0.06] | [0.01, 0.015] [0.01, 0.015]

Table 3: Values for the step sizes of federated hyper-representation under various rc. For MeFBO,
the values in the table represent [ng) / AL n?(,t) / )\?(f), nét) / )\ét)]; for SImFBO, the values indicate
(M2 /Yo Ty /Yy Mo/ Vo). In the cases of LFedNest and FedNest, the table provides the inner and outer
step sizes, denoted as [, 3].

B.2 FEDERATED LOSS FUNCTION TUNING ON IMBALANCED DATASET

In this section, we apply the MeFBO algorithm in Algorithm|I]to the task of federated loss function
tuning on imbalanced dataset with a 3-layer MLP on MNIST Dataset with i.i.d. distribution and
non-i.i.d. distribution. The goal is to learn a model that ensures both fairness and generalization on
datasets with under-represented classesLi et al|(2021a)). In the upper-level (UL), the loss-tuning
parameters are optimized to improve generalization and fairness. In the lower-level (LL), the model
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Figure 9: Comparison among our MeFBO, SimFBO, FedNest and LFedNest in federated loss function
tuning on imbalanced dataset under varying regularization coefficients rc of lower-level objectives.

parameters are trained on a potentially imbalanced dataset. The problem can be formulated as :

n

1 )
f§ D 17
5%1}(1 n P (yz( ) val) ( )
* : 1 = ow 7
st y*(z) = arggg}lﬁ E f\],S (z,y:;Dyy) + rc||y|\2. (18)
i=1

where the number of clients is n = 100, z is the loss-tuning parameters and y is the parameter
of the neural network. Here D} ; and D¢, are respectively the training and validation set of client
1. The numbers of data of different classes are imbalanced in the training data-set {D; }" ;. The
vector-scaling loss 1% is defined as

ow Z oL, eXP(5l hi,, (y;dm) +11,,) (19)

)

dm €D Z(‘ 1 €Xp (5 h (ya ) + Tc)

where M is the data set size, C' is the number of classes, d,,, is the m-th data with label class /,, in
dataset D and h(y; d,,) = [h1(y;dy), ..., ha(y;dn)] T € RY is the logit output of the neural network
with parameter y and input d,,,. Define x = (w, 6, 7) where w := Lwl, .,wc]’ € RY and §, 7 can
be defined similarly. The upper-level loss f'F is a special case of f°¥ withd =1,7 =0andwisa
fixed class weight vector for the validation dataset. In Figures[6|and[7] we employ a regularization
coefficient (rc) value of 0. For the analysis presented in Figures[8]and [0 we utilize a range of rc
values: 0, 0.001, 0.005, 0.01, 0.05, 0.06, and 0.07.

Hyperparameters. For all methods, 10 clients from 100 clients are chosen randomly and participate
in each communication. For our method MeFBO and SimFBO, we take the number of local
updates 7 = 1 and 3, and w; to be 0.1. In the case of 7 = 1, for our method, MeFBO, the
ck = 4(t +1)% and v = 0.015, local step sizes [na(c)ﬂh(;t)ﬂ?é )] and (A, A0 AT are both
[0.1,0.06, 0.01]. For SimFBO: local step sizes [1;, 7y, 7] and [z, Yy, Vo] are both [0.08,0.05, 0.01].
FedNest and LFedNest: we take the best inner step size and outer step size, « = 0.02, 5 = 0.03.
In the case of 7 = 3, for our method, MeFBO, the ¢, = 4(t + 1)*! and v = 0.015, local step

sizes [773(5 ),ng(f),n( )] and [)\gf), /\Z(f)7 )\((f)] are both [0.1,0.06,0.01]. For SimFBO: local step sizes
[y Tws M) and [y, Yo, 775] are both [0.25,0.15,0.03] in i.i.d. setting and local step sizes [, 1y, 7]

z,y; D
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Figure 10: Federated data hyper-cleaning with a label corruption rate of cr = 0.7.

and [z, Yy, Vo] are both [0.1,0.08, 0.015] in non-i.i.d. setting . FedNest and LFedNest: we take the
inner step size and outer step size o = 0.01, S = 0.02. For the regularization coefficient case, we set
ck = 4(t +1)%! and v = 0.015 as fixed values for our MeFBO algorithm across various rc values,
as we observed their impact to be negligible. The step sizes are provided in Table

MeFBO SimFBO LFedNest FedNest
rc=0 [0.1, 0.06, 0.01] [0.25,0.15,0.03] | [0.01, 0.025] [0.01, 0.02]
rc = 0.001 [0.1, 0.05, 0.01] [0.25,0.15, 0.03] | [0.01, 0.025] [0.01, 0.02]
rc =0.005 | [0.12,0.05,0.01] | [0.26,0.15,0.03] | [0.015, 0.02] [0.015, 0.02]
rc =0.01 [0.12, 0.05, 0.01] | [0.27,0.16,0.03] | [0.015,0.02] [0.015, 0.02]
rc = 0.05 [0.15, 0.06, 0.015] | [0.26, 0.15,0.04] | [0.015, 0.025] | [0.015, 0.025]
rc = 0.06 [0.15, 0.07, 0.015] | [0.27, 0.16, 0.04] | [0.015, 0.025] | [0.015, 0.025]
rc =0.07 [0.15, 0.07, 0.015] | [0.27, 0.15,0.05] | [0.015, 0.025] | [0.015, 0.025]

Table 4: Values for the step sizes of federated loss function tuning on imbalanced dataset under
various r¢ with 7 = 3. For MeFBO, the values in the table represent [n;(f) / A, ng(f) / )\z(f), m(,t) / )\gt)];
for SimFBO, the values indicate [1; /., 1y /7y, v/7Vv]. In the case of LFedNest and FedNest, the
table provides the inner and outer step sizes, denoted as [«, 5].

B.3 FEDERATED DATA HYPER-CLEANING

In this section, we apply the MeFBO algorithm (Algorithm [I) to the data hyper-cleaning task using
a 2-layer MLP on the MNIST dataset with both i.i.d. and non-i.i.d. distributions. Following the
approach in|Tarzanagh et al.|(2022), we partition the MNIST dataset into training, validation, and test
sets using both i.i.d. and non-i.i.d. methods. Inspired by the work of |Li et al.|(2023)), to mitigate issues
of data quality and heterogeneity in federated learning settings, a promising approach is federated
data hyper-cleaning. This technique can be formulated as a federated bilevel optimization (FBO)
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Figure 11: Federated data hyper-cleaning with a label corruption rate of cr = 0.9.

problem, where the upper-level objective aims to learn a globally optimal data cleaning policy, while
the lower-level objectives correspond to the individual client objectives after applying the learned
cleaning policy to their local datasets. Notably, the lower-level functions in this formulation exhibit
non-convexity, rendering the overall problem setting more challenging than the strongly convex case.
In this experiment, we are presented with a noisy training dataset whose labels are corrupted by noise
with a corruption rate cr, along with a clean validation set. Our objective is to determine optimal
weights for the training samples such that a model learned over the weighted training set exhibits
superior performance on the validation set. The problem can be formulated as :

Z E(h(x—r w), yj)
(%5,y5)€DL, (20)

Z |D y > o) L(h(x);w’
where Dl and D?

x;,9;) €D,
© .1 denote the training and validation datasets on ith client, respectively. (x5, 95)
denote the j*P data and label. o(-) is the Sigmoid function, £ is the cross-entropy loss, N is the
number of workers in the federated system. In Figures [I0] and [TT} we employ a regularization
coefficient (rc) value of 0. For the analysis presented in Figures[T2|and [I3] we utilize a range of rc
values: 0, 0.001, 0.005, 0.01, 0.05, 0.06, and 0.07.

riunF v, w Z D

val ‘

s.t. wfargmmf P, w )ayj) + reflw'|)?,

Hyperparameters. For all methods, 10 clients from 100 clients are chosen randomly and par-
ticipate in each communication, all algorithms are implemented with a batch size of 10. For our
method MeFBO and SimFBO, we take the number of local updates 7 = 1, and w; to be 0.1. For

our method, MeFBO, the ¢, = 2(t + 1) and v = 0.05, local step sizes [n\”, 5! ),776() )] and

[)\g), Agt), )\((f)] are both [0.1,0.05, 0.03]. For SimFBO: local step sizes [1)3, 1)y, 1] and [z, Yy, 7o)
are both [0.08, 0.06, 0.03]. FedNest and LFedNest: we take the inner step size and outer step size,
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Figure 12: Federated data hyper-cleaning with a label corruption rate of cr = 0.9 under varying
regularization coefficients rc of lower-level objectives.

a = 0.1, 8 = 0.2. For the regularization coefficient case, we set ¢, = 2(t + 1)°°* and v = 0.05 as
fixed values for our MeFBO algorithm across various rc values, as we observed their impact to be
negligible. The step sizes are provided in table[3]

MeFBO SimFBO LFedNest FedNest
rc=0 [0.12, 0.07,0.03] | [0.1,0.06, 0.03] [0.1,0.2] [0.1,0.2]
rc =0.001 | [0.12,0.07,0.03] | [0.1,0.07, 0.02] [0.1,0.2] [0.1,0.2]
rc =0.005 | [0.1,0.07,0.02] [0.1, 0.07, 0.03] [0.2,0.1] [0.2,0.1]
rc =0.01 [0.1, 0.06, 0.02] [0.1, 0.06, 0.02] [0.1, 0.1] [0.1, 0.1]
rc = 0.05 [0.1, 0.06, 0.02] | [0.05,0.03,0.01] | [0.1,0.05] | [0.1, 0.05]
rc = 0.06 [0.1, 0.05,0.02] | [0.04,0.03,0.01] | [0.1,0.05] | [0.1, 0.05]
rc = 0.07 [0.1,0.05,0.02] | [0.04,0.03,0.01] | [0.1,0.05] | [0.1, 0.05]

Table 5: Values for the step sizes of federated data hyper-cleaning under various rc. For MeFBO,
the values in the table represent [ngf) / AL ng(,t) / )\Z(,t), nét) / )\ét)]; for SImFBO, the values indicate

M2/ Yo Ty /Yy Mo/ Vo). In the case of LFedNest and FedNest, the table provides the inner and outer
step sizes, denoted as [«, 3]

C SUPPLEMENTARY THEORETICAL RESULTS

In Theorem [3:4] we have presented the convergence results for an algorithm with a fixed step size.
Below, we provide the convergence results for an algorithm with decreasing step sizes.
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Figure 13: Comparison among our MeFBO, SimFBO, FedNest and LFedNest in federated data
hyper-cleaning with a label corruption rate of c¢r = 0.9 under varying regularization coefficients rc
of lower-level objectives.

Theorem C.1 (Decreasmg step size). Under Assumptions|3.1|and|3.2} we take ¢; = c(t + 1)P with

c¢>0and~y € (0, 2L ). Let the decreasing step sizes
1 —
0<p<—— A0 =20 = P,

1
N =arit+ )T, <<,

(t) (t) —

ny) =i =n =c

1
ny 77 7/8\/>
satisfying the conditions in Lemma@ then the sequence of (x(t) y® 9t ) generated by Algorithm
[1] satisfies

1 1
; (t+1) 1)y | — il
ogrtrél?—HE {Rt(m Y )} 0 (P (T1q71/2

where cg, ¢y, and c,, are positive constants.

t+ 1) 1/4

71/2(n — P) 1
Tl—ap + T3/2q7—1/4)) ? (21)

The proof of Theorem [C.1]is presented in Theorem [D.11]in Appendix [D-4] And there are several
remarks about Theorem

Decreasing step sizes. In contrast to fixed step sizes, the selection of decreasing step sizes can be
independent of T. Moreover, the decay rate q of these step sizes influences the convergence rate: a
larger g results in slower convergence.

Complexity analysis. The introduction of ¢ increases the difficulty of analyzing sample complexities
or communication complexities. Yet, an appropriate trade-off in its selection can optimize both
convergence rate and these complexities.

D PROOFS

D.1 NOTATIONS

For notational convenience, we define

szfz .’t y

(22)

szgz (,9),
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where X and Y are closed convex sets in R% and R% |, n is the total number of clients, the upper-
and lower-functions f;(z,y) = E¢[f;(z, y;&)] and g;(z, y) = E¢ [gi(x, y; ¢;)] for each client i take
the expectation forms w.r.t. the random variables &; and (;, and are jointly continuously differentiable.

i F = iJi\Ly
Louin (z,9) wa(fc y)

st.  yeS),

where S(x) is the set of optimal solutions for the lower-level program:

;Iélnny Zwlgtxy
Similarly, we define
03 (x,y) = argmingcy vy (z,y),
where
v, ()= ot { GG+ 510 -7} 3)

Specifically, in each communication round ¢, each active client ¢ updates the three variables 6, z, y
simultaneously during the k-th local iteration as

a(t k+1) e(t k) (t)h(t k)
Z'Et Jk+1) — xy(t k) _ ( )hg(j k:) (24)
yit,k+1) yz(t k) a(ct)h;f),
where
1
h(t k) vygl( (t k) e(t k) ’Ci(t,k)) + ;(egt,k) _ ygt,lc))7

WD = VA ) 4 Vgl y 5 ) = Vaga(al ), 60 ),
1
M = ST ) 4 V) = S =),

r

(25)

where n(t) ng/), 77@(;) correspond to the local step sizes. Subsequently, we aggregate the “local gradient”

of all nodes participating in the updates during round ¢:

Bt _ (t,k)

hg (j(f)| Z wihg; = C<t>| Z Wi~ Zhez ’
1€C®) ieC®)

h® = _n wih x Z _ w;s hgf ’

le) ezc(:) “I ZGZC:'” Z (26)

(1) — B — R

hy’ = ICO] Z wih,; hy i,
ieC®) zeC(t)

Server aggregation Local gradients

CY) means the set of participating clients in communication round ¢. We set ﬁj‘;“ <w; < 8 Fmax
for all © = 1,2,...n. For notational convenience, we set w; := (t)‘w, And server updates

Ie]
U1 (1) g (t+1) 4
0+ = Projy (0~ A1)
) = Projy (:r(t) - )\g)hgf)) , (27)

y+D) = Projy (y(t) - Agﬂhg)) .
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Then we assume hf) = ]E[hét)],}l; =E[RY), ﬁg = B[], where Ry, bt , b, are defined in

x? Yy

_ n _~ 1 T—1 N
hi = Zwi _hte,i = Z [hét,;k) = E[hét»%k)]]}’
1=0 =
~ LN 1~
Bm SR o= 3 [ = BT @
i=0 T k=0
n T—1
~ [~ 1 ~
=S _hZ,Z— = SRR = E[héf»ik)]”.
i=0 k=0

Next, we define the drifts for variables z, y, and 6 across clients:

AW Z w;— ZEM“ k) —z®?
Ay Zw *ZEly“’“ O] 29)
Ay Zw ZEW (L g2

D.2 A UNIFIED PROOF SKETCH OF THEOREMS [3.4] AND [C_T]

In Section 3] Theorems 3.4 and [C-T] confirm that the MeFBO algorithm is not only straightforward to
implement but also guaranteed to converge theoretically. This section provides a detailed convergence
analysis of the proposed federated bilevel optimization algorithm. The analysis involves two main
steps: first, deriving an upper bound for the residual function, and second, obtaining precise bounds
for the client drift terms. By employing Lyapunov function analysis and selecting step sizes carefully,
we establish rigorous theoretical guarantees for the convergence behavior of Algorithm [T}

Step 1. Upper bound of residual function Rt(:v(t), y(t)) with step size dependencies.
By leveraging Assumptions [3.1] (ii), (iii), and [3.2} along with the L-smoothness properties of ®.,

(established in Lemma, and setting the step sizes as 173(5 ) = nz(,t) = nét) and )\;(f) = )\gf) = c,\)\((,t),

where c, is a positive constant, we derive the following inequality for R, (x(t), y(t)):
Rt( (t+1) (t+1))
1

1 N 2
S)\ét(o()\(f))” (t+1) (t)||2 + O(@)”y(tﬂ) _ y(t)H2 4 O(Aét))||9(t) . aw(x(t)hy(t))H )

s
Lo (A(t m(gt) ) 7 (30)

where 7 represents the number of local update rounds. Step 1 demonstrates that R, (z(**+1),3(+1) is
2 2

bounded by the terms )\((f> Tn(gt) and S,(;t), where Sl(f) consists of three distinct components: the
distances between consecutive iterations of - and y, and the gap between the global iterate #(*) and

its corresponding optimal point 6% (x(t) y(t)) Moreover, by selecting either a suitable ﬁxed step
size or a well-designed decaying step size sequence, we establish the convergence of Rt( y(t))
provided that S,(,t) n @) is appropriately bounded.

Step 2. Bounding S (") in ( l via Lyapunov function analysis.
To demonstrate the descent of Sy ) in @) we introduce an appropriate Lyapunov function:

U, (20, y D) = @, (2, yP) + KE0® — 02 (=, y )12, 31)
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where K := IR /L2 2 , Lg is a positive constant provided in Lemma and &, is defined as:

1
@ (r.y) = —(F,y) - F) + Gley) ~vo(a.9), () eXxY, ()

which ensures the non-negativity of We, (-, -). When the step sizes satisfy the conditions in Lemma
bounds for S’I(,t) in @) can be established, leading to:

S < W, (20, y1) = Wepy (@D D) e+ ey 4 s (33)

Ct+1

where eﬁfo) , eg;), and egg) are defined in Equation 1i corresponding to the variance in stochastic

estimation, data heterogeneity, and client drifts, respectively. The inequality above leverages the
difference in the Lyapunov function evaluated at consecutive iteration points (z(**+1) y(*+1)) and

(z®),y®).

Substituting Equatlon (33) into Equation (30) and summing both sides after rearrangement, and
considering that = is a decreasing sequence along with the non-negativity of ¥, (-, -), we obtain

T-1
®p 2D (t+1) (t) In—-P (t)?
S <o 200" vo (AT X

t=0 t=0 t=0
-1 2 2
+0 (Z A ) ) + 0, (2@, y©), (34)
t=0

where P is the number of clients participating in each communication round. The first, second, and
third terms on the right-hand side of Equation correspond to egto) , egfl) ,and eé? in Equation .
By appropriately selecting fixed or decaying step sizes as specified in Theorem [D.T1] we obtain the
convergence results presented in Theorems and[C.I] Notably, the first, second, and third terms in
Equation (34) align with those in Equation of Theorem [3.4]and Equation (ZI)) of Theorem [D.11]

considering that W, (2(*), y(©)) is a positive constant.

Step a. Descent in @, (z, y).
O, (2D, ) — @, (20,5 1)

1
o) Elle ) — 2O - 0

1

<-0( /\(t)

JE[y“ Y — @2

+OAD + ANENID — 02 (O, D)2 + O(AD +AD)(AD + AP + AP,

where Ag), A(t), and A((f) arise from client drifts as defined in in Appendix The proof
follows a similar approach to Lemma [D:5] Given the projection applied on the server side, the
geometric properties of projection onto a convex set ensure that the right-hand side of the inequality
remains bounded by terms involving E||z(**1) — £(®)]|2 and E||y*+1) — y(®)2.

Step b. Controlling error of the distance between () and 0% (z® y®)
t+1 s (E+1)  (t41)y (|2 t RONFONE
B0 — 03 @)y )2 B0 032,y

1
<231+ 5) (B[ - O +EJ O - O) + 0+ 8,03 B

)

F (146,00 =2 p) = DEOD — 62 (2®,y D)2 + O ) (14 601) (AL + AP + A,

where p := % — Lo and 6 is a positive constant. The proof follows from Lemma Given the
projection applied on the server side, the non-expansiveness property of projection onto a convex set
ensures that the right-hand side remains bounded by E|| h((f) 2.

Moreover, a suitable choice of the positive constant d; ; guarantees a decreasing trend in the distance

between 6(*) and 0% ("), y*)). Specifically, it ensures that the coefficient of E[|6(*) — 62 (2, y®) |2
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on the right-hand side is strictly negative.

Subsequently, we need to establish bounds for Ag), Agf), Aét) and EHh((,t) |2, which can then be
scaled by the corresponding step sizes.

Step c. Bounding server stochastic gradient estimation .
(t)

As defined in , the unique structure of the stochastic gradient h,~ reflects the interplay of partial
client participation, multiple local iterations, and data heterogeneity, complicating the estimation

of its bound. The following inequality captures the bound on EHh((f) [|%:
max - P %
E|nS |12 <o(ﬁ )62 + (9( ) (AY + AP £ AL T E[0Y — 052,y D)%)
max - P *
+ (9(6})7 —Z ) (AY + AP+ AP+ A2 0V - 05,y )7). (35)

The proof is detailed in equations (58) to (63). Since the algorithm involves only a subset of clients,
the analysis employs without-replacement sampling to achieve linear speedup, which introduces the
term + in the bound.

Step d. Controlling the client drifts.
In addition to the challenges posed by unique stochastic updates, partial participation, and data
heterogeneity, the following complexities further complicate the analysis:

* The interdependence between y and 6 introduces significant challenges into the drift analysis.

» Unlike in strongly convex settings, where certain iterates are bounded (e.g., Lemmas 1 and 2
in|Yang et al.|(2023))), the unbounded nature of iterates in our setting complicates the control
of client drifts, thereby introducing additional variability.

The client drifts Ag), Ag(f), and Aét) are bounded as follows:

52 L2
AL <O(®r) (f +207) + O("7) (F +2L7),
t t

2 2
<(9(7'779 )62 + (’)(Tnét) )A (t) 4 (9(7'179 )A(gt) + O(T??ét) )Afw + O(Tnét) )A

+ O(Tnét)Q)EHQ(t) _ Qi(x(t%y(t))”Z’
52 L3
A <O (é +62) + O(m?) ( +12) + O AY + O (D7) AL

2 *
OB 05,y

The proof is pr0V1ded in the appendix, specifically in the proof of Lemma[D.7] The client drifts are
bounded by the variances of the stochastic gradient estimators, the data heterogeneity measure A? as
defined in Assumptlon mm), the client drifts themselves, and the distances of global iterates 0 to
their optimal solutions at each iteration ¢.

All these terms can be controlled by appropriately adjusting the local step sizes 7,, 7y, and 7.
By carefully tuning these step sizes, the impact of client drifts on the convergence analysis can be
mitigated, ensuring improved stability and convergence.

Step e. Deriving inequality (33) through step size adjustment.

By combining steps a, b, ¢, and d, we ensure that the conditions in Lemma are satisfied through
appropriate adjustment of the step sizes. This guarantees that the coefficients of E||z(*+1) — z(1)||2,
E[[6®) — 07 ("), y®)||2, and E[|6®) — 67 (z®),5®)||? are strictly negative. Consequently, the
inequality is achleved

Remark D.1. To simplify the notation, the heterogeneity level A was excluded in the convergence
result of (I4). Below, we present the modified convergence results that explicitly incorporate the
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heterogeneity level A, replacing the formula in (T4):

, 1 1 71/2(n — P) 1 ,
ogltrél%lflERt(x(tH)’y(m)) -© (P (Tl/er/2 T, A%+ Tri/4 MB)) - 0
where M/ := M/} (A?) is a positive constant dependent on A2 It is important to note that A? = 0
does not imply M}(A?) = 0, as the explicit form of M}, is provided in Eq. . The heterogeneity
estimates originate from the stochastic gradient estimation in Step c and client drifts in Step d.
From Eq. (36), it is evident that an increase in the heterogeneity level A leads to a corresponding
slowdown in the convergence rate.

D.3 PRELIMINARY LEMMAS

By Remark [3:3]and (Liu et all, 2024, Lemmas A.5 and A.6), we can easily derive the following
lemma.

Lemma D.2 (Properties of Moreau envelopeLiu et al.[(2024). Suppose that g;(x,y) is La-smooth
on R% x R, Then for~ € (0, i) , Pvy > Lo and py, > % , the function v (z,y) + % ||z|? +
22 ||ly||? is convex on R x Rev. Furthermore, for v € (0, i) Sy(z,y) = {02 (x,y)} is a
singleton and Vv, = (VIG(J:, 0 (z,y)), (y — 03 (z, y))/’y) In addition, the following inequality
holds:

v () € v (E,5) <w<x,y>, (e,y) - <x,y>> ;

for (z,9) € R x Riv.

pUl
2

_ Pus _
lz = 2|* + =y = gl*, - 37)

By Remark [3:3]and (Liu et all 2024, Lemma A.9), we can easily derive the following lemma.

Lemma D.3 (Properties of 07 (z,y) Liu et al.[(2024)). Let v € (0, i) Then, there exists Lo > 0

such that for any (x,y), (z',y') € R% x R, the following inequality holds:
105 (2, y) — 05(2",y")|| < Lol (2, y) — (2", 9)]]. (38)
To establish the convergence results, we introduce an auxiliary function defined as:
1
@, (2,9) = (Fle.y) — E) + Gla.y) = vy(2.0). (2.) € X Y. (39)

Obviously, ®., is non-negative over X x Y.
Lemma D.4 (Properties of ®.,). Under Assumptions and if v € (0, i) then ®., is
Lg,-smooth w.rt. (z,y), where Lo, := Ly/c; + Lo + max{Lq, 1/7}.

Proof. Under Assumptions 3.1{ii) and [3.2]ii), we have
E®,, (x4 +) — B, (), y?)
1 L
<L (E<VF(x(t),y(t)), (2(+D) Dy _ (x<t>7y<t>)> + L@,y 0) - o0, y(t))||2>

Ct

L
+E(VG, ), (@40, y0) = (@10, y0) ) + B, D) = (ol 10

_ E<Vv7(x(t),y(t)), (x(t+1)7y(t+1)) . (x(t)vy(t))>

max{ Ly, 1/~ max{ Ly, 1/
+ { 5 }EHx(t—H) _ x(t)H2 + { 5 / }Elly(t+1) _ y(t)||2

§E<de>ct (2®), y®), D x(t)> + E<Vy<1>ct (2, y®), ytH) — y(t)>

Ly
b B0 (o) 202 LBy —yO)R),

(40)
with Lg, := L1 /c; + Lo + 1/, where the first inequality comes from the Assumption (3.1) and
Assumption (3.2) and Lemma|D.2] O
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D.4 CONVERGENCE ANALYSIS
Lemma D.5 (Descent in @, (z, y)). UnderAssumptionsand with~y € (0

(x® 4™ 0®) generated by Algorithm satisﬁes:
(DCt (x(t+1) I y(t+1))

5T L ), the sequence

! L‘i’t)]E| (D) _ g _ (L L‘I’t)E|y(t+1> y 2
® Q)

225 2)y

2

S(bct (:E(t)7 y(t)) - (

L

t

L2
+(\PL2 + Ag”?;)EHmt) — 082y M)+ <3A§j>(c21 +2L2) + 3A§j>(
t

+L6>A9
(t) 2 A L3 2,3 (t) 72 . 3 @) A®
+ [ 3N\ L5 +7(6—+6L 72) A7+ | 3N L2+$>\y Ay
where @, (x,y) = Cl—t(F(az,y) —F)+G(z,y) — vy(z,y).

Proof. By the Lemma[D.4] we have
(I)Ct (x(t+1)7 y(t+1))
<®,,(x ® y(t)) + E(V, ., (I(t)7y(t))7x(t+1) _ x(t)> +E(V, ., (z(t)’y(t))’y(tﬂ) _ y(t)>

cht
(EaY — 2O + Efly D — 7).

(41)

Considering the update rule for the variable x as defined in (I2) in server and leveraging the geometric
property of the projection operator Proj y, it follows that

(® — ADRD — g O 40 < g, 42)
which leading to
(R0 2+ _ 50y < —ﬁllw““) — 202, (43)
Similarly, we have ’
(hét)7y(t+1) —y®) < _%Hy(t+1) — y®2. 44)
Y

Combining these inequalities (#1), (#3) and @4), we have
B, (20D DY @ (20 4®)

1 1
ﬁEllx““) — 2| - WEHy(tH) -y (45)
Yy

Lq>t
+ 2 EaD — 2O + By -y,

E<V$‘I>ct (2, y®) = AP, 2+ — w(t)> + E<qu)0t (2, ) =B,y — y(“>

1 1
(t)EHJ) (t+1) (t)H2 - (t)E||y(t+l) - y(t)”Q
Ay
L t
i (B[ — a2+ B[y —yO)2). (46)

For E<Vx‘l>ct (®, y &) Z 7, 51 _ 50 > we have

1E<Vw<1>ct (20, () 0 z+1) sc(t)>
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(t) (t) h(t)H + EHx(t-i-l) (t)H27 47)
and for E<Vy<1>ct (z®,y®) = B yt+) _ (0 >

E<Vy¢’a (2, y®) — h{®) yt+D y(t)>

A() (48)
2|9y (0,5 ®) = RO+ B -y,
)\
Combining with (#3), we can obtain that
(I)ct (Z‘(H_l), y(t+1))
/\(t) - 2 /\( ) - 2
<@, (21, y®) + Hv ., (®,y®) — O Hv B, (20, y M) — BV
1 L 1 L
(=~ ﬁ)Ellx(t“) — a2 —( (bt )]Ell 1) — 012, (49)
Al 2 oAl
2
For the term HVICI)Ct (x® y®) — hgf) in , according to the definition, we have
fo.. 000 - St S|
n
[ Sw [vxqsit(a:@,y<t>>w:<m<t>,y<”>1 Vo, (@, yO)o®)
i=1
R
2 n
<2L2]E‘ 02 (2, y M) — 6P| 2|1y w [ o0k, (2, y )] } Zh(““ (50)
i=1

2
ForthetermHZ?zlwi{qubit(x(t)’y(t))[a(t)]i ;zéﬁ&m] ,

according to the definition, we

have
> wi [V RN Zh“ k)} H
=1
wl V. ¢ (t)7y(t))[9(t)] _ﬁ;t;k)
i=1 '
w3 V i@y 4 Vagi (@Y, M) = Vagi(al™, 000
=1
2
— (vwfi(x“% ¥ + Vagi(a®,y ") = Vagi(z), e“)))
T—1 n 2
SINML ( L+ 198 0l ") - (0, 0)
k 0i=1
2 2
—|—3L§(E‘ 2R g ®) +EH9 (k) _ p(t) )) , 51)
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where (a) comes from Jensen’s inequality, (b) comes from the definition in (9]), () comes from the

Assumption [3.1] (i) and Assumption [3.1](i).
Combining the inequalities (50) and (51)), we have

2
HVI(I)“ (x(t),y(t)) _ hff)

2
gngn«:’ 0 (21, y M) — o) +6(—+2L2)A(t +6( +L2)A<t +6L3AY.  (52)

t

, we have

2 ~
, similar to ||V, ®,, (z®,y®) — B

For the term Hqu)ct (z®,y®) — %z(f)

ot 0.0 St

2

L3 L? 3 6
+6(—5 + L3)AY + (65 +6L5 + 5) AP + —AY.
t t Y 0

6 .
ngEHgm — 0 (20, y

Based on the above,
q)ct (x(t—l—l)) y(t+1))

)\(f)

(1)
2N EHV Doy (2, y®) — BO ?

EHV (I)(‘t )ay(t))ih.(t)

1 Lq,t
OE[yHHY — 02

1 Le 1 )12
~ (o — g Bl 2O — (5
22" A0
1 L.:pt 1 cht
<®,, (20, yD) — ( _ JE|jztD) — 2®)12 - (2>\(t) _ VE||y@tD — )2
Y

2)\9) 2
2 L3 L3

t 1 2 t 1 2 t

+(3A;)(Ct2 +2L5) + 300 (5 +L))A;>

3
2 t *
+ ()\(wt)L2 + )\Slf)Z)]EHe(t) - e,y(x(t), y(t))

(t) 72 a L3 2, 3 ®) M2 L 3\ Al
+ | 3NV LE + = (6 +6L3 72) A+ (3N Lot 3N Ay
O

Lemma D.6. Fix the number of communication rounds T, local update rounds T, and the number P
of participating clients per communication round. Under the Assumption[3.1|and[3.2) the iterates of

0 generated by Algorithm|]| satisfy
2

EH@(HI) - gz(x(Hl)’y(tH))

2
max n— P 2
+3(1+5t71)6p ( )Aﬂét)

(D, 5 D) — (2l )

<2L3(1+ %)E
t,1

ﬂm“ SN 4 (14 61.) <(1 — Ny AL + %)% <

57;;@ (Z _113) AD?) Hg(t) 07 (2, y®)

\ BT;DM ( - P)A;ﬂ n ngAgf))Ag)

P

n— 1

1 P—1) w2 1\ Bmaz (=P 02 6 Ly OYA®
= ( >/\ +9(L2 +?) o e DA R R )

+(1 +5t71)

1
gl
2

+6(L2+ =)

1

Ok 2
o  +9L3

o2
(6(z

1
(%

1
n
5 el

P 1 (t) 1 ﬁma:p - P (t)2 (t) (t)
(n1>>\0 +95% ) +77—)\ JINP

[\ \)

ol s
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where p := % — Ly and 6,1 is some positive constant.

Proof. For the gap of § and 6 on server, we have

i

E‘

2
B+ — 3 (z(t+D) (D)

2

2
+E (53)

et+1) _ 9;@(07 y(t))

02 (), (D) — g7 (20, 1))

N 2]E<9(t+1) 91 (0, ), 62 (@D, ) g (20, y<t>)>.
For the last term in([53), we have
QE<9(t+1) _ g:(x(t) (¢ )) 07 (x (t+1),y(t+1)) _ Qi(x(t),y(t))
2B(|60FY — 03 (2, y ) [E[j05 (a1, y V) — 652,y 1)

(a) * 2 * *
Sat,1E||9(t+1) - ev(x(t)vy(t))”2 + EEHQ’)/(‘,L.U-"-U’ y(t+1 ) 0 ( y(t )”2

®) 2L%
<OAE[0C — 03 (20, y )7 + 2R (2, ) — (0, ),

)

where (a) can be derived from Young’s inequality, (b) comes from the Lemma Then the Eq.
(53) can be reformulated as

2
t+1 * t+1 t+1
E‘ UL — g (211 (L) (54)
2 1 2
<(1 +5t,1)1EH9 D — g (2@, y )| +2L3(1 + 5—)@ (2D DY () ()
t,1
2
For the term ]EH9 ) — 02 (2, y )| in Eq. ll
2
1 *

Ellgt+D) — G,Y(x(t),y(t))
(a) 2
<E|00 — AP — 07 (20, y®) (55)
(b) 2 9 2

O ||t _mx(t),y@)H LA EH’lét) _ g <9(t) _gjy(x(t))y(t)))h‘(gt)>7 (56)

where (a) comes from the non-expansive property of Proj, with Qi;(:r(t), y®) € Y and (b) holds
because the clients are selected without replacement.

For the term —E <9(t) — 07 (z®), y 1), hét)> in ,
-k <9(t) — 9 (x(t), yM), hét)>
<9 (t)) h(t)>

<9(f) 20, y(0) Zw Zh(tk>
" 1
E<o (20,0, Zw Zh“’“) waygi<x<t>,e<t>>+<0<t>—y<f>>]>
i=1

—E

v
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* - 1
E <9“> =00y, 3wl Vi, 00) + (01 =y )]

g * 1 *
- Z wi[Vygi(z®, 05z, y ) + = (05 (=", y")) — y(t))]>

5
(°)1 3¢ k) 2
w, L Z]E Vg, 00) 4 7(9<t> _y(w)’
171
p n 17’—1 T—1 2
—I—QZwiTZEHQ(t) _9:( y®) —Pzwz ZEHQ(U —Gf{(x(t),y(t))
i1 k=0 k=0
(d )3 3 1 P 2
Sr2AW L2+ a0 4 3L Am _ PRllgn  gr (o0 0 57
“p +P< +,-},2) 0 +P’Y2 Y 2 'y(x 'Y ) (57

where (a), (b) come from the Eq. @) the first two terms in (c) comes from the Young’s inequality
and the last term in (c) comes from the strong convexity of G(z,0) + 5 =116 — y||? w.r.t. @ which can

be derived from the Lemma[D.2] where (d) comes from the L-smoothness of fi(z,y) and g;(z,y) in
Assumption [3.1] (i) and Assumption [3.2](i).

2
in Eq..

2 2
5| 3w

ieC(t)

=E|| Y @ihly) — wihy) + @ h“)
ieC(t)

= PE

ieC®)

Next, we will analyze the term E hét)

E‘ hs)

s @il

2
ieC®)

(58)
For the first term in Eq.(58)),

E

> @iy~ 1)

ieC®)

(a)E Z w

ieC(t)

’ 2

Z

T—1

2
—PTQEZ wi vyg

i=1 k=0

K2

2R R, (k) | 1(9(t,k) _ Ry
,y K3

2

53, (59)

where (a) holds because clients are selected without replacement, (b) follows from the definition
w; = pw;, where (c) comes from the Assumption (i1), where (d) comes from the inequality
Bmax
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2
For the second term IEH Yico® {Eih((fg in Eq., by Equation (24) in (Yang et al.|(2023))), we

2
=5 (i=7) 2
2

inEq.,

have that

]+ (5

=1

E h()

S @ih)

1€C(t)

(60)

For the term ]EH > wz%((fz

Z“’z R

sz thk)

a 17’ 1

§22wiT2<E
=1

k=0
+2 (IE

* 1.,
,(Vygi(a:(t),e,y(x(t)’y(t)))+;(97( 2® y(t t) H >

=E

h 1
B = V@ 00) + 00—y )

2)
i 1
Z wiVygs(x®,00) + = (91 — y(®)

o

i=1

2 2

1

+ (L2 + = (t,k) —y®

<62n:wz > (L3E||x;

k 0

)

T—1
‘ (t,k) - Ji(t)

)EHGl(t7k) _ o(t)

1
—l—IE’
72

1 2

+4(L% + 72)EHM — 02 (2", y ™)

2
; (61)

1

)EHQ@ 02 (a®, )

1 1
<6L3AY +6(L3 + E)Agﬂ + 6—2A§f) FA(L2+ >

where (a) comes from the definition of 6% (ac(t) y®)) and (b) comes from L-smoothness of f;(z,y)
and g;(z,y) in Assumption [3.1] n (i) and Assumptlon B2] ).

in Eq.,

no2
For the term ) ", w;
n
2
D ui
i=1

<ﬁmax <
- n
=1

n 17’71

7 @)
hg i

(t) ’
T(t
hg i

2

~ 1
)~ E[Vy0 (2,00 + (00 — )]

1
E[Vy0:(x,00) + (0 )]
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Substitute Eqs.(39), (60), (61) and (62)into Eq.(38),
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Substituting equations Eqs.(56), (37) and (64) into Eq. (53)), we can obtain
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where d;1 > 0,p := % — PG, O

Lemma D.7. Fix the number of communication rounds T, local update rounds T, and the number of
participating clients P per communication round. Under Assumptions[3.1|and 3.2} the client drifts
A;(Et), A;t) and A(t) defined in can be bounded as follows:
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where the first term in (a) comes from L-smoothness of f; and g;, the second term in (a) comes from
the Lipschitz continuity of f; and g;.

Next, we will analyze A?(f) and A(t). For A((f),
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where the first term in (a) comes from L-smoothness of f; and g;. For the second term in (66)),
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where (a) comes from the definition of 9?;(5(5(75), y(t)) and (b) comes from Assumption (iii) and
L-smoothness of f;(x,y) and g;(z, y) in Assumption[3.1] (i) and Assumption[3.2)(i). Then we have
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where (a) comes from the definition of 0*( y(t)) and (b) comes from the Lipschitz continuity and
L-smoothness of f;(x,y) and g;(z,y) in Assumptlonn 3.1)(i) and Assumption[3.2](i). Then we have
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Next, we will prove that A! and A} can be bounded by EHG(t) -0 (z®),y®)
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Lemma D.8 (Descent in Lyapunov function ¥, (a:(t), yM)). Fix the number of communication
rounds T, local update rounds T, and the number of participating clients P per communication round.
We define the Lyapunov function as:
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where (a) comes from Lemmas [D.5]and[D-6 (b) comes from the Lemma|D.7)and the inequalities (73)

and (76).

(t)
For the term )\(t) L ( + 5 ) in the first line of Eq. 1) we take 61 = %,
4(1—2e2)
then we have i
1 Lo 9 1
- —= - — - 2KL;(1+ —
(2/\§f) 2 9( * 5t,1))
1 L 4
- Ol LT 2KL§(—(t) ~2)
20 2 PNy
< 1 Ls, 8KL?
- 2)\(0 2 p)\ét)
(a) 4KL2
= ( P)‘(t) ) )

21+ ﬁ) in

where (a) comes from the condition . Similarly, for the term —2/\1(0 — Lo
the first line of Eq.(88) , ’

1 Lo ) 1 4K L3
- — — t —2KLZ(1+ — <—\—="]- 90
<2>\§f) 2 g 5“)) (p/\(t) ©0)

2

in the second and third lines in the Eq. li we have

For the coefficients ofIEHH — 0 (x ®) y®)

3 1. n/P-1 2
t)r2 (t) 2y _ _ @ 2 i (t)
(ADLZ A 72) K((1+5t71)(1 pAY +4(L2+72)P<n1))\9

1.4 n—P 2
2 L\ Pmaz (t) B
(L3 + )5 (n_1>A9 ) 1)

(a) 3 )\(t)p
t) 72 t (%)
<A®r2 +>\§/)? - g2 E
® o, K L2 3 1 (c) 1 9 31\
A iy 37 Ry o7 U oo 7 A R A o

where (a) comes from the condition (80), (b), (c) comes from the condition (78). Similarly, we take
the conditions (78), (81)), (82), (79) and (80), we have
2)

2
1
+ 127771(/’5)2(72 + Lg)EHO(t) - 91;(35('5), y®)

1
(8777(” (= +L§)EH9<”—%(w“%y“)

L3 A L3 3
A (sa0 (L Al gz 3
((3/\9c (G +18)+ 5 (6 +6L2+72))

1n/P— (t)2 1 Bmae (M —P ()2 61 (t)
+(1+0,)K (6 QP( >)\ H0 (T A +;?>\9)

1 3
< (L3 + )N
<tosrrz (L2t 2N P (92)
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and

2
2,1
(24T77§t) (? +L§)EH9(t) _ 9:(96(”711(“)

) _ g* ((E(t), y®)

2)
. W72 1 5\ 2
(3A$ L3+ " Ay ) +(1+ 6t71)K<6(L2 +

2 ﬁmam n—P (t)2 § 2 (t)
+9(L3 + 72) P (n_1>)‘9 +p(L2+72))‘9 ))

g#(
128K 1.2
Combining with the inequalities (88), (O1)), (92), (O3), we have

W, (z (t+1) (t+1)) -, (m(t)’y(t))

Ct+1
4KL9 1 H (t+1) _ (t)HQ _ 4KL3 LH

(t t

PP poAY
1 5 3
64K L] (2+ el

3
L+ ?)Agﬂ p]EHH(t) — 02 (a®,y®) 93)

y(t+1) _ y(t) ”2

2
()

))\(t)EHH 0*( )y 4 By €an + eﬁfﬁ, (94)

where

221

P 2
el = 6K B A= 7%“ (95)
Pr

O] 2, (1)?
=2 max
K Brax0yMg P 1

€sto

52 L2
e (mgt) (662 +24A% 8( +05) +8% L 20L2) + 0 %0 (1))

1
: <(3A§;>L§ + %Agp) +(1+01)K p8(L2 Q)A(et)>

18 1

5

+ (mﬁﬁ (252 +8A% 4 4( +02) + 8— + 2L2> + ) ERORIG) (1))
L2 YR 3 ®

: (3/\9( L+ L3) + 7(6— +6L3 + e )) (1+ 4, 1)K— Ay

(5
= AP ((652+24A2+8( +62)+8 +20L2+m %0 (1 ))

9 3 p 18, 5 1
' ((3L2 + ¥)32TL§ +(1+ 5t71)K;(L2 + ?))

52 L2 2 2
- (253 +8A% 4 4(—§ +62) + 8—]; +2L2 + i 070 (1))

L 5, 1, 13 2 3 18 1
(3(2+L) 2(62+6L 7) (1+5t1)K7)>. (96)

O

The following remarks provide crucial insights into the step size condition and the boundedness of
certain terms in our analysis:

Remark D.9. Tt is important to note that the condition for the step size in Lemma [D.8]is indeed
satisfiable. We maintain the same inequality direction with the step size on the left-hand side and a
constant on the right-hand side. Furthermore, we ensure that the right-hand side is always positive,
thereby guaranteeing the existence of a valid step size.

Building upon the step size condition, we now turn our attention to the boundedness of a key term in
our analysis:
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Remark D.10. It is noteworthy that Mé defined in lmb can be regarded as a constant when the step
sizes are bounded. Next, we briefly explain this: to prove that M. é can be regarded as a constant, we

only need to prove that Mé is bounded. In Mé we only need to demonstrate that J; ; is bounded

()
(since the step size are bounded and é is decaying). Recall that §; ; := ’\7(” Noting that d; ;

4(1—A ”)

is increasing with respect to )\(t), and considering that )\ét) < 5 , we have d; 1 < =. Therefore, M3
is bounded.

It is noteworthy that, based on Remark [D.10} we can conclude that a certain term M; in the following
theorem can be regarded as a constant.

Theorem D.11. Fix the number of communication rounds T, local update rounds T, and the number
of participating clients P per communication round. We define the Lyapunov function as:

Ve, (2, y0) = B[ @, (0@, y )] + KJ0O = 0320,y ) 2, ©7)

where K := L3+ 2, and Ly is a positive constant provided in Lemmal|D.3| Under Assump-
2L9

tions and let the step sizes )\56), /\g)7 )\((f), ng(f), 7735 ), 77; satisfy the following conditions:
UnderAssumptionsandH let ¢, = ¢(k + 1)P with ¢ > 0 and v € (0, ﬁ)
(i) For decreasing step sizes, we choose

®) _ o 71 1 l—gq () _ 1/4
N =exTi(t+1)71 2<q<1, 0<p< 5 e = 7/8\F(t+1)
(98)

where cy and c,, are some positive constants. If the step szzes )\ S Az 2 /\yt), ét), nf(f), ny(f satisfy the
conditions in Lemma@ then the sequence of (x ®) y® 9t) ) generated by Algorzthmlsansﬁes

1 1 71/2(n — P) 1
- (t+1) -+ — o [ 1
Oggéljr“l—lE {Rt(x Y )} =0 (P (T1QT1/2 + Tl—an + T3/2q7-1/4>> (99)

(ii) For fixed step sizes, we choose p € (0,1/4) and

1
Cn T7/8T1/4\/P’

where the cy and c, are some positive constants. If the step sizes /\é )7 )\g), )\3(, ), nét), 77( ) 771(, satisfy

the conditions in Lemma@ then the sequence of (x ®) ), G(t)) generated by Algorzthmlsansﬁes

1/2(, _
min E{Rt(x(t-&-l)’y(tﬁ-l))]20(113( LT (n P)Jr 1 >> oD

A =eriT 12 gl = (100)

0<t<T—-1 T1/271/2 T1/2p Tr1/4

Proof. Based on (84), we have

2
4K(It’)0 ]E”x(t-'rl) _ x(t)||2 4KL9EHy(t+1) y(t)||2
0 )\
1 1.2 1 )\(t) Ello® — g (21 4® ’ 102
+m( 2“"?)99 _7(x ) (102)

Ct41

2
Ay 1n—P (2
<E(We, (a0, y) = ., , (@0, D)) 40 M ] +0 (M2 5T >

/ 2
+0 (Mngét) )\ét)) .
Upon telescoping (I02) over the range k = 0,1, ..., K — 1, we derive

VAKL2 AKIL?
Z O]E” (t+1) _ (t)||2 + 7(75)0E||y(t+1) _ y(t)”Q
t=0 PAg PAg
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2
1 2 Ly t x (o (t t
+m(L2+¥)>\e pE‘O()—O,Y(x(),y())
ST 1)\(1‘,) J1n— T—1 9
<EV, (@, y") + O | My == 20— +OG%P 1§:W)> (103)
t

T-1
, 2
+ O (Msr g nét) /\((,t)>

t=0
’ 1 +1n—P 1 /
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As a consequence of the weak convexity of g and its continuous differentiability with respect to y, as
stipulated in Assumption [3.2] (i) and supported by|Gao et al (2023), we deduce that

1
(egct)7 eét)) e aVF(x(t+1),y(t+1)) + VG( (t+1) y(t+1)) _ VV7($(t+1),y(t+l))

+ Ny (2, (D),
with
~ 1
e®) .= V&, (at+D) 5Dy {0 _ — (x<t+1> _ x(t)) :
Az
~ 1
eét) =V, (x(tﬂ)ay(t“)) - h,v(f) - W (y(tH) - y(t)) .
Y

Next, we estimate ||ez)||

eSO <Va e, (2D, yHD) = W, 0, (20,5 O))
1

(t) )y _ 7@
IV (o) RO+ 15

B[zt — (). (104)

Considering the first term on the right hand side of the preceding inequality, there exists L., > 0,
VoW, (a0, 50 ) = VoW, (20,5 )| < Ly, (D, 50F) — (@, 5@ (105)

52, we have

For the term ||V, W, (z(®),y®)) —

Vo, (2®, y®) — ROl < HV e, (20, y®) = B0 H
2
<Lo[61 — 0 (af w“w+0< m?x?>. (106)

Hence, we have

1
I <L, 50) = (@O, g )]+ e+ 20

+W®—@u®w@n+o( myA”>. (107)
Similarly,

eSO ]| <Ly, || (D, 4 D) — (20 y “W+A|w“1 y |
Yy

1
+¢¢“—%w@wmm+0<vWﬁA“) (108)

By the definition of D, (z(*t1), y(*+1)) and the inequalities (107) and (108}, we have
D, (x(tJrl)7 y(t+1))
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(L + L@ ) @0, O+ (L + 0 — 03610,y
1 1
Ry 2D — 20 + N0} [y — @)+ 0 ( TT}at) AU )>
Az Ay

By utilizing the inequality mentioned above and performing left and right multiplication by /\ét), we
establish the existence of C'z > 0 such that

AR, )

4K L2 4KL
<Cpg ( )\(t)e ”x(t+1) _ :E(t)||2 0 ” (t+1) _ y(t)H2

0

(13
64K L2

2 2 2
)A(t He)@) - 9;(x<t>,y<t>)H ) +0 (A(;) s ) (109)

Combining this with (T03)) implies that

2
T—1 )\(t)

T-1 © 1n_ptl
AD R (D) DY <o | pp, &=t=0_ 70 ol m,="=
; 6 t(x Y )— 1 Pr + 2Pn71 - 9

e (Z A Tmf)2> , (110)

where M, := EW,, (2, y©) + M, + M and My := M,.
For decreasing step size, we choose the step size as in (98)), then Z ) = O(1) and
f 01 (1)? )\(t) O (1). Because 1/2 < ¢ < 1, it holds that

T-1 T-1 q 1—q
o AP} = ( ) o ((TH)) . 111
<§ ) <t_0 t+1 > - (1-q) o
Then we have

1/2(,, _
min E{Rt(x(iﬂrl) (t+1))}o<1< 1 i (n P)Jr 1 >) (112)

0<t<T—1 P \T1-ar1/2 Ti—an T3/2—ar1/4

From the definition of R;, we have

1 1 1 7/2(n — P) 1
~ SR | — o 2
03@1¥71E [vch(x ¥ )} =0 (P (Tl—q71/2 T Tl-ap + T3/2—q71/4>> :

If0 < p < 154, then VF(z(F1), y(t+1) satisfies

min E [VF(J;““) y(tH))}
0<t<T—1 ’

1 1 71/2(n — P) 1
=0 = — + — + — ,
P \Tl—q 2p7-1/2 Tl—a—2pp T3/2—q 2p7-1/4

which ensures the convergence of VF (z(*+1) (1)) For fixed step size, we choose the step size as
in (T00), it holds that

1 1 71/2(n — P) 1
i (t+1) o ()| — —
og?%l:pq]E {Rt(x Y )} 0 (P <T1/271/2 + T1/2p, + T71/4>) ’

(113)
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D.5 COMPLEXITY ANALYSIS
Corollary D.12. Under the setting of Theorem 3.4} we have the following results:

(i) In the case of full client participation, setting T = O(T), the per-client sample complexity is
T = O(e~2) and the communication complexity T = O(e™1).

(ii) For partial client participation, setting 7 = O(1), the per-client sample complexity is 7T =

O(P~2¢72) and the communication complexity T = O(P~2¢72).

n—P

~ 0, then we
n

Proof. From Theorem , for nearly full client participation, which means that
have

1 1 1
- (t+1) , (t+1)y] — 2
ogrtrélfrflq]E {Rt(m Y )} =0 <P (T1/27-1/2 * T71/4>> se (114)

Then we can obtain the per-client sample complexity 77" = O (6*2) , then local update rounds can
saving communication rounds, we take 7 = O(T'), then we have T' = O (6*1).

For partial client participation, we can obtain that the number of local update cannot affect the whole
convergence rate. From Theorem [D.T1] we have

1 1 7/2(n — P) 1
3 (t+1) ,(t+1)\| -
pmin ERy(ay )} =0 <P (T1/271/2 +—iE, T7-1/4>> . (119)

When we take 7 = O (1) will lead to the best performance. Then we have

1 1
- (t+1) (1] — R
og?%l%llE {Rt(x Y )} © <P <T1/2>) =6

Since T' >> P, the per-client sample complexity is 77 = O(P~2%¢~?) and communication rounds

T=0(P2?) O

E RELATED WORK

E.1 BILEVEL OPTIMIZATION WITHOUT LLSC

Since the seminal work by Bracken & McGill| (1973), numerous studies have proposed various
methods for addressing bilevel optimization problems. Extensive overviews of these approaches can
be found in surveys|Sinha et al.|(2017); [Liu et al.[(2021a)); Zhang et al.|(2023). In this section, we
provide a brief overview of relevant work on bilevel optimization (BLO) without the lower-level
(LL) strong convexity assumption. Beyond the LL strong convexity assumption, Liu et al.|(2021b)
developed a method with initialization auxiliary and pessimistic trajectory truncation. |Huang|(2023a)
proposed a momentum-based implicit gradient BLO algorithm and established a convergence analysis
framework under a nondegenerate condition on the LL Hessian. |Arbel & Mairall (2022)) extended
implicit differentiation to a class of non-convex LL functions with possibly degenerate critical
points and developed unrolled optimization algorithms. Xiao et al.|(2023)) developed a generalized
alternating method for BLO with a non-convex LL objective. However, these works require second-
order gradient information. In contrast, the value function reformulation of BLO was first utilized
in|Liu et al|(2023) to develop BLO algorithms in machine learning using an interior-point method.
Subsequently, [Liu et al.|(2022)) introduced a fully first-order value function-based BLO algorithm
and established non-asymptotic convergence results. Recently, Shen & Chen| (2023) proposed a
penalty-based fully first-order BLO algorithm, relaxing the relatively restrictive assumption on the
boundedness of both the upper-level (UL) and LL objectives present in|Liu et al.|(2022)). Notably,
these works involve a double-loop structure, which makes them challenging to employ in Federated
Bilevel Optimization. To mitigate the requirement of single-loop structure, [Liu et al.| (2024); |Yao
et al.| (2023)) developed single-loop and Hessian-free gradient-based methods utilizing a Moreau
envelope-based reformulation of bilevel optimization.
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E.2 FEDERATED (BILEVEL) LEARNING

Federated Learning (FL) was initially proposed by Google to coordinate the collaborative training
of a common task across thousands of clients while addressing data isolation and privacy con-
cerns(McMahan et all, [2017). As the pioneering algorithm, FedAvg(McMahan et al. [2017) has
effectively addressed the aforementioned issues; however, it has also given rise to a series of new
challenges such as fairness, communication overhead, malicious participants and privacy (Mohri
et al.| [2019; [Stichl [2019; [Yu et al., 2019, Wang & Joshil 2021; [Bagdasaryan et al., 2020} Bhagoji
et al.,[2019; [Kim & Hong}, 2019; [Aivodji et al.L[2019). To address these challenges, some research
efforts have introduced a nested optimization structure, known as Federated Bilevel learning, such as

(Xing et al| 2022} [Li et al.| 2022} [Zeng et al., 2021} [Li et al., 2021b; [Hu et al.| [Huang et al.]
2022 [Tolpegin et al., 2020; [Sun et al., 2021} [Zhang et al., 2021} |Cheng et al., [2024)). In response

to the demand for solving problems with such model requirements, there have been some effective
attempts. As one of the earliest methods of federated bilevel optimization(Tarzanagh et al.[2022),
FedNest is a federated alternating stochastic gradient method based on AID-based hypergradient
estimation to address general federated nested problems, which needs the federated hypergradient
estimation. Additionally, there are other FBO algorithms based on AID-based hypergradient estima-
tion(Huang et al.| 2023). Xiao & Ji|(2023) introduced a federated Bilevel Optimization algorithm
with hypergradient estimation based on ITD-based hypergradient estimation. Recent FBO methods,
such as SImFBO 2023) and FedBiOAcc 2023), draw inspiration from SOBA
(Dagréou et al [2022). These approaches transform a linear system problem into a quadratic one, im-
proving computational efficiency within a single-loop algorithmic framework. Notably, FedBiOAcc
incorporates a momentum-based technique. While these algorithms have made significant progress,
they continue to rely on Hessian matrix computations and are constrained by the requirement for
lower-level strong convexity (LLSC).

In addition to the aforementioned works, there is a growing body of research on bilevel optimization
in asynchronous settings, such as those by [Jiao et al.[(2022)) and |L1 et al.| (2024)). Furthermore, FBO
has demonstrated promising practical applications, particularly in the fine-tuning of large language
models (LLMs) within federated settings. For instance, (2024) investigates the use of
FBO for local fine-tuning of LLMs. As noted in Table 2 of (2024), these models can be
optimized using either single-level or bilevel approaches. Notably, the bilevel optimization method,
FedBiOT, proposed by (2024), exhibits significant advantages over single-level optimization,
especially in scenarios involving hierarchical problem structures.
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F ADDITIONAL EXPERIMENT RESULTS

Extending beyond Section[d.3] we conducted comprehensive experiments with both expanded datasets
and more sophisticated neural architectures. We evaluated MeFBO (Algorithm 1), SiImFBO
[2023), FedNest (Tarzanagh et all 2022), and LFedNest (Tarzanagh et al.| [2022)) on additional
data hyper-cleaning tasks. The experiments employed either a 2-layer MLP (as in Section[4.3)) or a
7-layer CNN (LeCun et al.| [1998) on Fashion MNIST and CIFAR-10

2009) datasets. Following (Xiao & Jil[2023), we also implemented a 2-layer MLP architecture
for CIFAR-10.

Fashion-MNIST represents a moderate increase in complexity compared to MNIST, featuring fashion
items rather than handwritten digits. Both datasets contain 70,000 grayscale images (28x28). CIFAR-
10, comprising 60,000 color images (32x32, RGB), presents greater complexity due to its real-world
object representations and multi-channel color information.

Figure[T4]summarizes our experimental findings, yielding several key insights:

Results on Larger Datasets and Complex Neural Architectures. Figure[I4]presents comparative
performance analyses across different network architectures and datasets under i.i.d. settings with a
corruption rate (cr) of 0.7:

* Fashion MNIST with 2-layer MLP: As shown in Figure [[4]a), while maintaining consis-
tency with Section[d.3[s architecture but scaling to a larger dataset, MeFBO demonstrated
superior convergence characteristics, achieving the highest test accuracy (approximately 85

* CIFAR-10 with 7-layer CNN: As illustrated in Figure [[4[b), when tested on the more
complex CIFAR-10 dataset with a 7-layer CNN architecture, MeFBO maintained its supe-
rior performance, achieving the highest accuracy among all methods. Notably, SimFBO
encountered memory constraints that prevented its execution on this larger-scale task.

* Architecture Comparison on CIFAR-10: Following [2023)), we compared the
performance of 2-layer MLP and 7-layer CNN architectures using MeFBO on CIFAR-10, as
shown in Figure[T4[c). The MLP exhibited faster initial convergence but plateaued at a lower
accuracy, while the CNN achieved higher ultimate accuracy despite slower convergence.
However, these performance levels suggest room for improvement. We hypothesize that
architectural limitations may be constraining performance on this specific task, warranting
further investigation in future research.

5] — MeFBO —— CNN-CIFAR-10
—— LFedNest 1 —— MLP-CIFAR-10
FedNest

Test Accuracy
Test Accuracy
Test Accuracy

|
65 —— LFedNest
FedNest

100 200 300 400 500 200 400 600 800 1000 200 400 600 800 1000 1200 1400
A d

Communication Rounds Communication Rounds ation R

(a) MLP-Fashion MNIST (b) CNN-CIFAR-10 (¢) MLP v.s. CNN

Figure 14: Comparison of different algorithms in federated data hyper-cleaning under a label
corruption rate of cr = 0.7.

Hyperparameter. For all methods, 2 clients are randomly selected from a pool of 20 clients
to participate in each communication round. All algorithms are implemented with a batch size
of 256. For our method, MeFBO, and SimFBO, we set the number of local updates 7 = 1,
and w; = 0.1. For MeFBO, the parameter ¢, = 3(t + 1)%%°! and v = 0.015. The local step
sizes [0S, 18 nS?) and (A, AP, AD] are set to [0.2,0.15,0.1] for MLP-Fashion MNIST, and
[0.3,0.3,0.05] for CNN-CIFAR-10. For SimFBO, the local step sizes [1;, 7y, 7] and [z, Yy, 7]
are both set to [0.1, 0.05,0.015]. For FedNest and LFedNest, we set the inner and outer step sizes
as follows: a = 0.02, 8 = 0.03 for CNN-CIFAR-10, and o« = 0.01, 8 = 0.02 for MLP-Fashion
MNIST.
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G COMPARISON OF R; IN (I3])) AND HYPERGRADIENT

In the case where the lower-level problem is non-convex, the hypergradient cannot be well-defined,
making a direct comparison with R, in (I3) infeasible. Consequently, the analysis is confined to
scenarios where the lower-level problem is strongly convex. Specifically, let g;(x, y) be a strongly
convex function, with X = R% and Y = R%. The hypergradient V®(z) is associated with the
hyper-objective ®(x) := F(x,y*(z)), where y*(z) is the unique lower-level (LL) optimal solution.
Using the expression (EI) for Vv, (x, y) and the optimality condition of 6 := 6 (x,y), given as

0* —
vyG(x79f/)+ ’Y’Y Y :07

the residual function R;(z,y) can be expressed as:

1 2

Rt(xay) - 2

2
Ci

1
2
t

<V1F(=’E, y) + ¢ [VoG(x,y) — V. G(x, 05 (x, y))])
VyF(z,y) + ¢ |VyG(z,y) — V,G(z, 02 (, Y))]|

C

2
1
BV y))|
R (x.y)
Compared to the stationarity measure Rt(x, y) proposed in Equation (15) of Liu et al. (2024), our
work establishes the following relationship:

vV Ri(z,y) = C%Rt(x, Y)

Thus, we can directly apply Lemma A.14 in (2024):
Lemma G.1. 2024) Under Assumptionsand suppose that X = R%, Y = R,

and the lower-level objective g;(x,y) is a p-strongly convex. Let v > 1/, then

2
< 2L 4R @, y)|
< o

ly —y™ ()l (116)

Additionally, suppose \|R§2)(m,y)|| < Ly/ey, then clly — y*(x)|| < 6Lg/p. If further

v2,G(x,-), V2, G(x,-) are L o-Lipschitz continuous, then

L Lo
IV®(x) — RV (2, < Lt 7||R§2> (@),

where L, = % 1+ %) Ly + 6LG"2Lf) + 6Z‘§Lf with Lg is a positive constant defined in

7 BY
Lemma 2.2 of \Ghadimi & Wang| (2018).
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